1,914 research outputs found

    Screen navigation system for visually impaired people

    Get PDF
    Purpose – The SETUP09 system consists of both navigation and a computer-aided drawing technique for the people who are blind and visually impaired (BVI). The purpose of this paper is to address the need for a screen navigation technique, which can facilitate a user’s ability to produce art, and scientific diagrams electronically, by introducing a compass-based screen navigation method. Design/methodology/approach – BVI computer users were tested using different screen navigation tasks to assess the accuracy and efficiency of this compass-based navigation technique by using a prototype (SETUP09) and tactile paper grid maps. Findings – The results confirmed that the compass-based navigation facilitates higher accuracy in screen-based moving and location recognition with a noticeable reduction in time and effort. Research limitations/implications – Additional improvements such as the addition of a sound layer to the interface, use of hotkeys, braille and user speech inputs are yet to be tested. Social implications – The current lack of suitable and efficient screen navigation technology is a limiting factor for BVI students and computer users in producing diagrams and drawings. This may place limitations on their career progression and life contentment. It is challenging for a BVI person to draw diagrams and art, which are commonly taught in education or used in industry. The compass-based screen navigation system was developed to address BVI users’ need to be able to create such content. Originality/value – A compass-based navigation method enables screen navigation through a formal command language and enables intuitive movement to a screen location using matrix-style compass directions with zoom-in and zoom-out capabilities

    An intelligent multimodal interface for in-car communication systems

    Get PDF
    In-car communication systems (ICCS) are becoming more frequently used by drivers. ICCS are used in order to minimise the driving distraction due to using a mobile phone while driving. Several usability studies of ICCS utilising speech user interfaces (SUIs) have identified usability issues that can affect the workload, performance, satisfaction and user experience of the driver. This is due to current speech technologies which can be a source of errors that may frustrate the driver and negatively affect the user experience. The aim of this research was to design a new multimodal interface that will manage the interaction between an ICCS and the driver. Unlike the current ICCS, it should make more voice input available, so as to support tasks (e.g. sending text messages; browsing the phone book, etc), which still require a cognitive workload from the driver. An adaptive multimodal interface was proposed in order to address current ICCS issues. The multimodal interface used both speech and manual input; however only the speech channel is used as output. This was done in order to minimise the visual distraction that graphical user interfaces or haptics devices can cause with current ICCS. The adaptive interface was designed to minimise the cognitive distraction of the driver. The adaptive interface ensures that whenever the distraction level of the driver is high, any information communication is postponed. After the design and the implementation of the first version of the prototype interface, called MIMI, a usability evaluation was conducted in order to identify any possible usability issues. Although voice dialling was found to be problematic, the results were encouraging in terms of performance, workload and user satisfaction. The suggestions received from the participants to improve the system usability were incorporated in the next implementation of MIMI. The adaptive module was then implemented to reduce driver distraction based on the driver‟s current context. The proposed architecture showed encouraging results in terms of usability and safety. The adaptive behaviour of MIMI significantly contributed to the reduction of cognitive distraction, because drivers received less information during difficult driving situations

    The State of Speech in HCI: Trends, Themes and Challenges

    Get PDF

    Fast speaker independent large vocabulary continuous speech recognition [online]

    Get PDF

    Multi-modal post-editing of machine translation

    Get PDF
    As MT quality continues to improve, more and more translators switch from traditional translation from scratch to PE of MT output, which has been shown to save time and reduce errors. Instead of mainly generating text, translators are now asked to correct errors within otherwise helpful translation proposals, where repetitive MT errors make the process tiresome, while hard-to-spot errors make PE a cognitively demanding activity. Our contribution is three-fold: first, we explore whether interaction modalities other than mouse and keyboard could well support PE by creating and testing the MMPE translation environment. MMPE allows translators to cross out or hand-write text, drag and drop words for reordering, use spoken commands or hand gestures to manipulate text, or to combine any of these input modalities. Second, our interviews revealed that translators see value in automatically receiving additional translation support when a high CL is detected during PE. We therefore developed a sensor framework using a wide range of physiological and behavioral data to estimate perceived CL and tested it in three studies, showing that multi-modal, eye, heart, and skin measures can be used to make translation environments cognition-aware. Third, we present two multi-encoder Transformer architectures for APE and discuss how these can adapt MT output to a domain and thereby avoid correcting repetitive MT errors.Angesichts der stetig steigenden Qualität maschineller Übersetzungssysteme (MÜ) post-editieren (PE) immer mehr Übersetzer die MÜ-Ausgabe, was im Vergleich zur herkömmlichen Übersetzung Zeit spart und Fehler reduziert. Anstatt primär Text zu generieren, müssen Übersetzer nun Fehler in ansonsten hilfreichen Übersetzungsvorschlägen korrigieren. Dennoch bleibt die Arbeit durch wiederkehrende MÜ-Fehler mühsam und schwer zu erkennende Fehler fordern die Übersetzer kognitiv. Wir tragen auf drei Ebenen zur Verbesserung des PE bei: Erstens untersuchen wir, ob andere Interaktionsmodalitäten als Maus und Tastatur das PE unterstützen können, indem wir die Übersetzungsumgebung MMPE entwickeln und testen. MMPE ermöglicht es, Text handschriftlich, per Sprache oder über Handgesten zu verändern, Wörter per Drag & Drop neu anzuordnen oder all diese Eingabemodalitäten zu kombinieren. Zweitens stellen wir ein Sensor-Framework vor, das eine Vielzahl physiologischer und verhaltensbezogener Messwerte verwendet, um die kognitive Last (KL) abzuschätzen. In drei Studien konnten wir zeigen, dass multimodale Messung von Augen-, Herz- und Hautmerkmalen verwendet werden kann, um Übersetzungsumgebungen an die KL der Übersetzer anzupassen. Drittens stellen wir zwei Multi-Encoder-Transformer-Architekturen für das automatische Post-Editieren (APE) vor und erörtern, wie diese die MÜ-Ausgabe an eine Domäne anpassen und dadurch die Korrektur von sich wiederholenden MÜ-Fehlern vermeiden können.Deutsche Forschungsgemeinschaft (DFG), Projekt MMP

    A Voice Controlled E-Commerce Web Application

    Full text link
    Automatic voice-controlled systems have changed the way humans interact with a computer. Voice or speech recognition systems allow a user to make a hands-free request to the computer, which in turn processes the request and serves the user with appropriate responses. After years of research and developments in machine learning and artificial intelligence, today voice-controlled technologies have become more efficient and are widely applied in many domains to enable and improve human-to-human and human-to-computer interactions. The state-of-the-art e-commerce applications with the help of web technologies offer interactive and user-friendly interfaces. However, there are some instances where people, especially with visual disabilities, are not able to fully experience the serviceability of such applications. A voice-controlled system embedded in a web application can enhance user experience and can provide voice as a means to control the functionality of e-commerce websites. In this paper, we propose a taxonomy of speech recognition systems (SRS) and present a voice-controlled commodity purchase e-commerce application using IBM Watson speech-to-text to demonstrate its usability. The prototype can be extended to other application scenarios such as government service kiosks and enable analytics of the converted text data for scenarios such as medical diagnosis at the clinics.Comment: 7 page
    • …
    corecore