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Abstract

To build useful applications based on large vocabulary continuous speech recognition
systems, such systems have to run in real time on common platforms. However, with
most research focused on further reducing the recognition error rates, the topic of
speed has been neglected in the development of speech recognition algorithms.

I will present a speaker independent system that has been designed for fast speech
recognition using vocabularies up to 65,000 words. Using the approaches presented
in this thesis, this recognizer can now run in real time, 200 times faster than the
original evaluation system.

Important progress was made on the following topics:

Tradeo�s: a better understanding of the tradeo�s between the computational e�ort
and the accuracy of the acoustic modeling provides a foundation to methodically
develop faster algorithms.

Algorithms: a number of new or improved algorithms were introduced and ana-
lyzed in this work, such as:

� Lookaheads: Lookaheads provide early estimates of acoustic and language
model scores to the recognition process. These estimates can be used to restrict
the search space at low risk.

� Generalized-BBI: the cross codebook bucket box intersection algorithm reduces
the e�ort for the observation probability computation, especially when used in
speech recognition systems with very large continuous hidden Markov models.

� Frame Skipping: for many sections of the recorded speech, not all operations
have to be performed for all frames provided by the preprocessing.

The recognizer presented here is derived from existing evaluation systems. No spe-
cialized small recognizer had to be trained in order to get real time performance.
Therefore, the new algorithms can also help to reduce the cycle time in developing
new evaluation systems.

All algorithms have been developed and tested on a state-of-the-art dictation system
for the North-American-Business-News (NAB) Task. By testing on other databases,
robustness with respect to new microphones and foreign accents has been veri�ed.
It was also shown that the new algorithms can be ported to a variety of tasks such
as a Japanese dictation system and the automatic transcription of spontaneously
spoken German scheduling dialogues.
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Zusammenfassung

Um sinnvolle Anwendungen auf der Basis von sprecherunabh�angiger Spracherkennung
mit gro�en Vokabularen bereitstellen zu k�onnen, m�ussen diese Spracherkennungssyteme
in Echtzeit lau��ahig sein. Weil das Augenmerk der Spracherkennungs-Forschung
haupts�achlich auf der Senkung der Fehlerrate lag, wurde die Entwicklung schneller Al-
gorithmen oft vernachl�assigt.

Ich stelle ein System vor, das f�ur schnelle Spracherkennung bei Vokabularen von bis zu
65,000 Wortformen entwickelt wurde. Durch die in dieser Arbeit vorgestellten Ans�atze
l�auft dieser Erkenner inzwischen in Echtzeit, 200 mal schneller als das urspr�ungliche Eval-
uationssystem.

Wichtige Fortschritte wurden auf den folgenden Gebieten gemacht:

Wechselwirkungen: ein besseres Verst�andnis der Wechselwirkungen zwischen dem
Aufwand und der Genauigkeit f�ur die statistische Modellierung des Signals erlaubt die
systematische Entwicklung schnellerer Algorithmen.

Algorithmen: mehrere neue oder verbesserte Algorithmen wurden im Rahmen dieser
Arbeit eingef�uhrt und analysiert, zum Beispiel:

� Lookaheads: Lookaheads geben fr�uhe Sch�atzungen f�ur die Bewertungen der akusti-
schen Modelle und der Sprachmodelle. Diese Sch�atzungen k�onnen verwendet wer-
den, um den Suchraum mit minimalem Risiko zu beschr�anken.

� Generalized-BBI: der codebuch�ubergreifende Bucket-Box-Intersection-Algorithmus
reduziert den Aufwand zur Berechnung der Emissionswahrscheinlichkeiten, ins-
besondere bei der Verwendung von gro�en, voll kontinuierlichen Hidden-Markov-

Modellen.

� Frame-Skipping: F�ur viele Teile des Sprachsignals, ist es nicht notwendig alle Berech-
nungen f�ur jedes einzelnde Zeitfenster (Frame) zu berechnen.

Der hier vorgestellte Erkenner wurde von einem bestehenden Evaluationssystem abgeleit-
et. Es wurde bewu�t darauf verzichtet, eigens einen speziellen, kleineren Erkenner zu
trainieren um Echtzeitverhalten zu erzielen. Deshalb k�onnen die neuen Algorithmen auch
dazu verwendet werden die Zykluszeit bei der Entwicklung von Evaluationssystemen zu
senken.
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Alle Algorithmen wurden auf einem 'state-of-the-art' Diktiersystem f�ur das North-

American-Bussiness-News Szenario entwickelt und getestet. Durch Vergleichstests auf an-
deren Datenbasen wurde die Robustheit gegen�uber anderen Mikrophonen und Sprechern
mit Akzent getestet. Die Portierbarkeit der Algorithmen wurde anhand der Anwendung
auf so verschieden Szenarios wie einem Japanischen Diktiersystem und einem System zur
automatischen Transliteration spontan gesprochener Terminabsprache-Dialoge �uberpr�uft.
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Chapter 1

Introduction

1.1 Why Speech Recognition

For most common tasks, speech is a much more natural way to communicate than
typing on a keyboard. Most people learn to speak long before they learn to write
or type. According to o�cial statistics [World Factbook, 1996] more than three
percent of all Americans and Germans cannot read or write at all.

While there are typists that can type faster than they can speak, this is certainly
not true for most of us. Employing a typists is often considered to be too expensive.
However, the time of the people who might use a typist is usually evenmore valuable.
Since word processing is the most common use of PCs, the potential market for fast
dictation systems is large. Many companies such as Microsoft [Alleva et al., 1997],
IBM [Gopalakrishnan et al., 1995], Dragon [Ellermann et al., 1993], and Siemens
[Niem�oller et al., 1997] put substantial resources into the development of such prod-
ucts.

Other than being more economical, computers can also be programmed to be more
discreet than humans. Applications that require this sort of discretion could be the
dictation of business letters, speech-to-speech translation [Osterholtz et al., 1992,
Bub et al., 1997], and the monitoring of telephone lines.

Just like the miles of tapes from tapped phone lines all over the world, large amounts
of data are not accessible as texts. Less controversial examples are broadcast news,
interviews, and talk shows. To exploit these sources, a summary or a key word index
is required to allow the search of speech documents the same way as collections of
�led text documents. Using a speech recognition system, such databases can be
created and maintained automatically [Hauptmann and Wactlar, 1997].

While typing, the user has to stay put at the computer, have both hands on the
keyboard and the eyes focused on the screen. These limitations are known to cause
health problems such as shortsightedness, headaches, back pain and repetitive strain
injury [RSI, 1997]. Also, they restrict the use of a computer to applications where

9



10 CHAPTER 1. INTRODUCTION

the user does not need to move around, and does not needs hands and eyes for other
purposes. Speech o�ers an ergonomic input alternative and it allows drivers to keep
both hands on the wheel while accessing the navigation database of their car.

Finally, the space requirements of a microphone are substantially lower than those
of a full size keyboard. Considering that keyboards tend to be among the largest
parts of a modern computer this could also become an issue when designing the next
generation of palm-tops.

Limitations

Speech recognition is not always the best way to interact with a computer, just as
using a computer is often not the best way to solve a problem. Continuous speech
recognition is still too expensive to be integrated into a cheap pocket calculator.
It is also impractical to have �fty people talking to their computers in an open-
plan o�ce. Entering the PIN for a MAC-card over a speech interface raises obvious
security problems. Adverse environments such as the noise level in a cockpit limit the
usability of speech recognition interfaces in some situations. Finally, some drawing
and design tasks cannot be e�ciently solved using speech recognition as the only
input modality.

However, combinations with related techniques provide interesting ways to extend
the �eld of useful speech applications [Waibel et al., 1997]. Speaker identi�cation
can be used to add security, lip reading raises the accuracy in environments with
high noise levels, and touch-screens with gesture recognition help to design complex
objects.

1.2 Recognition Speed versus Accuracy

Problem

Many of the applications mentioned above require real time large vocabulary speech
recognition. This means the recognition process should not take longer on a common
computer than the speaker took to utter the sentence.

Unfortunately, the complexity of speech recognition systems has been steadily in-
creasing along with the recognition accuracy | more often than not at the expense
of recognition speed. The reason for this development is associated with the sole
evaluation criterion for speech recognition systems: the word accuracy on bench-
mark tasks. With this paradigm, the recognition speed is only relevant where it
limits the number of experiments that can be performed to raise the word accuracy.
To achieve peak performance, common recognizers used in such evaluations take sev-
eral hundred seconds to process a single second of input speech on state-of-the-art
computers.
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However, for most real-world applications, recognition speed is just as important as
recognition accuracy. A dictation system that takes four days to process half an
hour of speech will not make a useful product. A database interface that takes 15
minutes to respond to a four second query is not likely to be accepted by any user.

The argument that speed is really no issue as programs get faster with each new
generation of computers is only partly valid. On one hand, systems tend to get more
complex at a higher rate than computers get faster. On the other hand, a speech
recognition system used as an input interface is not supposed to devour 100% of the
available cycles.

The importance of speed and e�cient algorithms in speech recognition can
best be illustrated by the substantial research e�ort of companies such
as Microsoft [Alleva et al., 1997], IBM [Gopalakrishnan et al., 1995], Dragon
[Ellermann et al., 1993], and Siemens [Niem�oller et al., 1997] on this topic.

Solution Concept

One goal of this thesis work was to investigate how the recognition speed of HMM-
based LVCSR systems can be improved. To that end, the recognition time of a
given prototype recognizer was to be cut by a factor of 200 to real time performance
without reducing the accuracy below a set threshold. All progress was monitored
by evaluating the performance of the resulting system using recordings that were
collected for common recognition scenarios.

In many cases the faster algorithms and techniques include approximations that re-
duce the recognition accuracy of the system. The resulting speed-up and accuracy
loss often depend on a number of parameters. The behavior of a system that com-
bines several lossy techniques can be complex and is studied in more detail in the
following chapters. Understanding how much and why the accuracy is inuenced
by introducing new algorithms into the recognition process gives valuable clues for
further research.

To guide the research, the distribution of the recognition time over the subtasks
of the recognition process was analyzed. All subtasks that were signi�cantly con-
tributing to the computational e�ort were studied in detail. After exploiting the
most promising improvements found in the literature, new algorithms were devel-
oped and introduced to further reduce the time spent on the corresponding subtasks.

Using the spin-o�s of the research presented in this thesis, a dictation system with a
vocabulary of 65,000 words was built. This dictation system runs in real time, 200
times faster than the original full scale evaluation recognizer.
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1.3 How to Read this Thesis

This document has been structured to allow direct access to relevant information
while still being readable from front to back. To avoid unwanted repetitions, the
author has used the margins to add pointers with page numbers to related chapters
(these are links in the HTML version of this thesis).

1 Introduction: The �rst half of this introduction motivates speech recognition! 9

research and highlights the importance of fast speech recognition.

2 Fundamentals of Speech Recognition: This chapter is an introduction to the! 13

fundamentals of speech recognition, insofar as they are relevant for later chapters.
Speech experts may want to skip this chapter.

3 Test Environment: Here the environment used to develop and test most algo-! 31

rithms is described: the North-American-Business-News scenario and database, the
JRTk speech recognition toolkit, and the baseline recognizer.

4 Speed Issues in Speech Recognition: This chapter contains a brief overview! 35

of some common techniques that have been used in the past to speed up recognition
systems. For some of the techniques that have been applied to the JRTk system
performace results are presented.

5 Thesis Contributions: This chapter describes the algorithms and techniques! 55

used and developed for the work presented in this thesis, such as the search-engine,
the unigram lookaheads, the HMM-based phoneme lookaheads, and the Generalized-
BBI algorithm. Experimental results as well as some implementation speci�c details
of the recognizer used for the experiments are added where appropriate.

6 Application-Oriented Issues: Other than the speed issues addressed in the last! 101

two chapters, there are a number of further requirements to make a speech recogni-
tion system usable. Robustness and portability are two of the most important. The
third section describes how the recognizer can be run as a pipeline to produce output
while the speaker is speaking. In the last section, the author presents a dictation
system based on the research work presented in earlier chapters.

7 Conclusion: Finally, on page 111, there is a summary of the results to put the! 111

achievements of this thesis into the context of the �ndings of other groups. A brief
outlook on the future of fast speech recognition closes this chapter.

Appendix: Other LVCSR Systems:This appendix provides an overview of large! 115

vocabulary continuous speech recogniton systems other than the one used for this
thesis. Whereever such a system is mentioned in the above chapters, this appendix
can be used as quick reference to �nd additional information.



Chapter 2

Fundamentals of Speech

Recognition

When the weight of the paperwork

equals the weight of the plane,

the plane will y.

{ Donald Douglas

This chapter provides an introduction to the fundamentals of speech recognition,
insofar as they are relevant for later chapters.

The topics covered in this chapter are: training data, test data, evaluation data, word
correct rate, word error rate, word accuracy, real-time, CPU-time, language models,
bigrams, trigrams, sampling, feature vectors, spectrum, pronunciation dictionaries,
hidden Markov models, forward algorithm, Viterbi algorithm, continuous speech
recognition, time synchronous search, depth �rst search, and N-best searches.

Techniques that have been introduced to speed up the recognition process, such as
pruning strategies and using a tree organized lexicon in the search for the best word
sequence, can be found in the chapter on speed issues. ! 35

Speech recognition experts may want to skip this chapter and proceed directly to
the description of the test and development environment. For further reading, ! 31

[Waibel and Lee, 1990] and [Schukat-Talamazzini et al., 1993] provide good start-
ing points.

This chapter is divided into three sections: First, the techniques used to measure
recognition quality and recognition speed are introduced. The second section states
the speech recognition problem, and explains what methods such as statistical lan-
guage modeling and hidden Markov models can be used to solve it. Finally, using
these methods, two approaches to continuous speech recognition are presented.

13



14 CHAPTER 2. FUNDAMENTALS OF SPEECH RECOGNITION

2.1 Measuring Performance

In computer science, it is a common approach to solve problems in several steps:

1. State and analyze the problem.

2. Set up a theory on how to solve the problem.

3. Derive experiments that can be used to support or disprove the theory.

4. Evaluate the experimental evidence.

In speech recognition, the crucial question that needs to be answered by experiments
is 'will the suggested approach improve the recognition of new data ?'.

It is important that the data used to verify a theory has not been used in any form
while building the recognizer. Therefore, there are usually three sets of data used
to build a recognition system: training data, test data, and evaluation data.

The training data is used to build the recognizer and adjust its many parameters.
The amount of required training data depends on the recognition approach. For
most recognition systems, more training data will yield better recognition results.

The test data is used to evaluate new algorithms during the development phase of
the recognizer. Since many decisions are made based on this data (e.g. whether to
use algorithm A or B in the system), it becomes 'contaminated'; the decisions may
not be independent of the test set, and the resulting performance may be higher on
the test data than on completely unseen data.

The evaluation data used for the �nal assessment of the system should be therefore
be unseen. This means none of the system's parameters has been adjusted to this
data, and no decision was ever made based on recognition results on this data. The
amount of test and evaluation data inuences the con�dence in the results, that is
the expected maximumdeviation from the original results when testing on a di�erent
test set.

Throughout this thesis, the problem can usually be formulated as 'the recognizer is
too slow'.
While there are many suggested solutions to this problem, the experiments used
to validate these theories are mostly based on the recognition accuracy and the
recognition time measured on actual speech data as evaluation criteria.
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2.1.1 Recognition Accuracy

The Word Correct Rate for continuous speech recognition is given as:

Word Correct Rate = 100 � number of correctly recognized words

number of spoken words
(2.1)

Words that are inserted by mistake are not included in computing the Word Correct
Rate. The more insertion errors are made in one sentence, the more likely one
of those matches a word that was actually spoken, though the usability of the
recognition output is low. This is why theWord Error Rate and the Word Accuracy
are more commonly used to measure the recognition quality.

Word Error Rate = 100 � substitutions + deletions + insertions

number of spoken words
(2.2)

The Word Accuracy1 is de�ned as 100 �Word Error Rate.

Con�dence Intervals

The Word Correct Rate is a mean over a closed set of two values: each recognized
word can be either correct (1) with a probability p or wrong (0) with a probability
(1 � p).

According to [Bamberg and Baur, 1996], the boundaries Vo=u of the con�dence in-
terval for such a distribution are computed to:

Vo=u =
2n �X + c2 � c

q
4n �X(1� �X) + c2

2(n+ c2)
(2.3)

Here, n is the number of words in the test set and �X the mean of the Word Correct
Rate. Also, c = 1:96 for a 95% con�dence interval given n > 100 can be found by
table lookup or numerical integration.

To decide whether the output of two recognition runs on the same test data dif-
fer signi�cantly, the distribution of errors within the test set can be analyzed
[Gilick and Coz, 1989]. For each recording in the test set, the di�erence in Word
Accuracy between both tests is calculated. It is then assumed that the deviation
from 0 of the mean over these values is caused by random uctuations. Unless this
hypothesis can be disproved, the di�erence between the outputs is not signi�cant.

1An important extension of quality assessment for recognition of spontaneous speech is given in
[Fisher and Fiscus, 1993]; to avoid randommatches where the recognition is completely wrong, this
measure takes into account not only what words were recognized but also where in the recording
they were recognized. For low Error Rates in dictation systems this extension does not make a
signi�cant di�erence.
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2.1.2 Recognition Speed

The recognition speed is de�ned as the required recognition time in seconds per
second of speech input. The recognition time can be measured in `real' seconds or
in CPU-seconds, which is the time the recognition process has exclusive use of the
central processing unit of a computer with a multitasking operating system such as
UNIX. Since the time used for network access or loading virtual memory pages from
disk is not counted in the CPU-seconds, care must be taken that new algorithms do
not increase the real recognition time while reducing the CPU-time. The advantage
of using CPU-seconds is that they are mostly independent of the amount of core
memory available and the load other processes put on the CPU, making comparisons
between separate test runs easier.

Quite obviously, the recognition time depends on the computer and compiler used
for the experiment. More information on this topic can be found in chapter 4.4.3.! 51

In the following chapters, the recognition time is always given in CPU-seconds.
Unless the recognition process is explicitly divided into several steps, the recognition
time always covers all parts of the recognition process, including all �le I/O and
preprocessing.

As a unit for the recognition time I will use the real time factor (RT). 2 RT means
that the computer needed twice as long to recognize a recording than the speaker
took to say it. Ideally, the time during which the speech is recorded is used for
speech recognition. If a realtime system is pipelined, the time delay between the! 107

end of the input speech and the recognition can become neglegible.

Con�dence Intervals

To compute the con�dence intervals for the recognition time, the test set is subdi-
vided into a su�ciently large number of segments. If all errors in one segment are
assumed to be independent from the errors in the remaining segments, the variance
� and the mean �X of the recognition speed can be computed assuming a normal
distribution.

The borders Vo=u of the con�dence interval are computed to

Vo=u = �X � �cp
n

(2.4)

Where n is the number of recordings and c = 1:96 for n > 100 given a 95% con�dence
interval.
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2.2 Modeling the Speech Signal

The goal of speech recognition is to �nd the most likely word sequenceW for a given
speech signal A. This is the word sequence for which

P (W jA) = P (W )P (AjW )

P (A)
(2.5)

is largest.

P(W) gives the probability of a particular word sequence, and is independent of
the actual input signal. For instance, the word sequence 'but does it' is much more
likely to occur in any sentence than the sequence 'but doses it'.

P(AjW) is the probability of observing the signal A given that the actual word
sequence is W .

P(A) is the probability of the recorded signal. Once the signal has been recorded,
P (A) is the same for all word sequences that may have been said. Therefore, P (W jA)
is largest for the word sequence for which the product P (W )P (AjW ) is largest.

The following sections present methods to compute P (W ) and P (AjW ):

Language Models: shows a simple algorithm to estimate P (W ). ! 17

Sampling and Feature Vectors: explains how the speech signal A is made ac- ! 18

cessible to the computer.

Phonemes and Pronunciation Dictionaries: describes how the words in W ! 21

can be broken into smaller characteristic units of speech (phonemes) to simplify the
modeling of P (AjW ), the word.

Hidden Markov Models: introduces the concept of representing phonemes as a ! 22

chain of states sj that emit feature vectors xi as a generative model for P (AjW ).

Observation Probabilities: gives a method to estimate the probability density ! 23

f(xj jsi) of a single feature vector being produced by a single state.

Forward Algorithm: presents an algorithm to actually compute P (AjW ) for a ! 23

given word sequence W using the methods introduced in the previous sections.

Viterbi Algorithm: gives a faster algorithm that can be used to approximate ! 25

P (AjW ) along the best state sequence through a given word sequence W .

2.2.1 Language Models

To estimate the probability P (W ) of a given word sequence W , most recognition
systems use n-grams such as bigrams and trigrams [Jelinek, 1990]. On a large text
corpus the counts for all word pairs (for bigrams), triples (for trigrams) or sequences
of words (for n-grams) are accumulated to compute the conditional probability
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P (wijwi�1; wi�2; ::; wi�n+1) for observing a word wi given its predecessors. Using
trigrams, the probability P (W ) is computed as:

Ptrigram(W ) =
NY
i=1

P (wijwi�1; wi�2): (2.6)

To estimate probabilities for word pairs, triples or sequences that do not occur
frequently enough in the chosen text corpus, a variety of smoothing and back-o�
techniques can be used [Katz, 1987, Ney and Essen, 1991].

Though many other approaches to language modeling have been proposed, few have
been as successful as n-gram models for tasks where a large enough corpus for the
probability estimation is available.

2.2.2 Sampling and Feature Vectors

Before the speech signal can be analyzed by the computer, the variations in pressure
at the microphone have �rst to be transformed into an electrical signal. The resulting
continuous signal is then cut into discrete time slices and transformed into discrete
amplitude values by an analog to digital converter hardware. Common resolutions
for the applications in this thesis are 16,000 16-bit values per second. For reference:
Compact Disk players use two channels, with 48,000 16-bit values per second and
channel.2

0.25 sec 0.50 sec 0.75 sec 1.00 sec

0

Figure 2.1: A picture of the speech signal 'but does it' without preprocessing. The relative
amplitude of the signal is given over the recording time in seconds.

2The highest frequency that can be reproduced from the sampled signal is a little smaller than
half the sampling rate. While the region above 8 kHz contains little valuable information for speech
recognition, hi-� de�nitions require an accurate reproduction of frequencies up to 20 kHz.
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It is not a good idea to try to use the sampled signal directly for speech recognition
purposes. The amount of data is still too large (32 kBytes per second) and contains
random noise as well as unwanted information on speaker properties, background
noise and the recording channel. This interference complicates the recognition pro-
cess.

A number of preprocessing steps are commonly used to reduce the amount of data
and to emphasize the dependence on the spoken words by suppressing irrelevant
information. While there are many algorithms that are frequently used for the
preprocessing of the speech signal, this section only gives a brief introduction into
the techniques that are required for a complete understanding of the work presented
in this thesis.

Most preprocessing algorithms begin by computing a spectral analysis over a win-
dow covering N samples, which is moved over the signal in increments of 10 or 20
milliseconds. The time slices corresponding to these increments are called frames.
The spectral coe�cients F (m)

� for the frame starting at themth sample of the original
signal f are computed using the discrete Fourier Transform:

F (m)
� =

N�1X
n=0

fm�nwne
�2�i�n=N (2.7)

4

8

0.25 sec 0.50 sec 0.75 sec 1.00 sec

kHz

Figure 2.2: The spectrum of the signal 'but does it'. Darker regions represent frequencies
that contribute signi�cantly to the signal at a given time. Unlike in the original signal, the
phonemes B and D (marked by a sudden rise over all frequencies), the vowels (horizontal
stripes representing overtones produced by the vocal cords), and the S (high frequencies
only) can be easily spotted in the spectrum.

From the resulting spectral coe�cients, a variety of features such as Mel-scale and
Mel-cepstrum coe�cients can be derived [Waibel and Lee, 1990]. Many of these
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features are motivated by the spectral resolution and sensitiveness of the human
ear.

Also, to capture the changes in the signal, a feature-vector used to describe the signal
for one frame can additionally contain features of neighbor frames or the di�erence
between features of the predecessor and successor frames.

The output of the preprocessing is usually a feature vector with 8 to 50 coe�cients
for every 6 to 10 milliseconds of speech. From now on, the signal A in equation 2.5
will be represented by such a sequence of feature vectors.
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2.2.3 Phonemes and Pronunciation Dictionaries

To simplify the computation of P (AjW ), the words of the word sequence W can be
broken into smaller characteristic units of speech, called phonemes.

Since many languages do not have simple rules to derive pronunciation from spelling
or vice versa, this information is provided to the speech recognizer in the form of
pronunciation dictionaries.

Instead of phonemes, often simpli�ed phone-like units are used, which will be repre-
sented as symbols in capital letters (AA, AY, B, ..). For simplicity, they will still
be referred to as phonemes.

...

aisles AY L Z

eye AY

dollar D AA L AXR

quit K W IH T

quite K W AY T

to T UW

too T UW

two T UW

...

...

Monat M OH N A T

Pfunden P F U N D E2 N

teilen T AI L E2 N

teilgenommen T AI L G E2 N O M E2 N

teilnehmen T AI L N EH M E2 N

...

If there is more than one common pronunciation for a word, alternative variants can
be introduced into the dictionary.

...

the DH AX

the(2) DH IY

...

...

wichtig V I CH T I CH

wichtig(2) V I CH T I K

...
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2.2.4 Hidden Markov Models

To describe the speech process by means of statistics, the speech signal A is consid-
ered to be produced by a Markov chain with states and transitions: Each state can
produce an observed feature vector with a certain probability. Using these proba-
bilities, the probability P (AjW ) of a signal A being produced by the Markov chain
corresponding to the word sequence W can be computed.

Since the speech signal di�ers between the bor-
ders and the center of a phoneme, each phoneme
is commonly modeled as a sequence of three
states representing the beginning, the center,
and the end segment of the phoneme. Some-
times each of these segments has two states to
control the minimum duration of a phoneme.
The alignment between states and the segments
of the phoneme are exible and adjusted during
the training process.
The transition model between states provides a
self loop to remain in the current state (slow
pronunciation), a step into the next state (nor-
mal) or a transition skipping one or more states
for fast pronunciations (not shown in the pic-
ture).
Joining together the states of di�erent
phonemes produces Markov Chains for whole
words. A speech recognition system works by
comparing the probability that the observed
sequence of feature vectors was produced by
the Markov Chain representing a given word
to the probabilities of it being produced by the
chains for other words in the dictionary.
Especially at the transitions between phonemes,
the speech signal is known to depend on the
identity of the phonemes to both sides of
the current phoneme. The spectrum of the
phoneme L will look di�erent if surrounded by
vowels than if followed by an Z. This is why
models for phonemes in the context of one or
more adjacent phonemes, called polyphones, are
used as common units to model speech. If the
same model is used for several similar poly-
phones, these models are referred to as allo-
phones.

phoneme
Z

L

(AY) L (Z)

AY

() AY (L Z)

(AY L) Z ()

polyphone

phoneme

polyphone

phoneme

polyphone

e

m

b

e

m

e

m

b

b

Example Markov Chain for the

word aisles
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2.2.5 Observation Probabilities

As part of the computation of P (AjW ) it is necessary to compute the probability
density f(xjs) of a given feature vector x being generated by a single polyphone
state s.

When modeling speech with hidden Markov models (HMM), it is assumed that f(xjs)
only depends on the current feature vector and state. The probability density can
be approximated by a superposition of M Gaussian distributions. If the coe�cients
in the feature vectors are not correlated, this probability density is computed as:

f(xjs) =
MX
m=1

csm exp�(
DX
d=1

(xd � �smd)
2=2�2smd) (2.8)

All mean vectors �sm of the Gaussians for a model s, together with their variances
�sm, will be referred to as the codebook for the model. The mixture coe�cients csm
of the Gaussians for a model s will be called weights.

Several allophones can share one codebook. Models that share a codebook can
describe di�erent allophones by using di�erent sets of weights. If this is not done,
and all models that share one codebook use the same weights, the HMM is called
fully continuous. If on the other hand there is only a single codebook in the system,
and the di�erences between di�erent models are expressed by di�erent sets of weights
only, the resulting HMM is a semi-continuous HMM.

Recognizers that do not use di�erent allophones for one phoneme in di�erent con-
texts are called context independent.

Since an understanding of the HMM training algorithm is not required for the work
presented in this thesis, it will not be described here. An excellent tutorial is found
in [Rabiner, 1989].

2.2.6 Forward Algorithm

The goal of the forward algorithm is to compute the probability P (AjW ), that is to
determine how likely an observed sequence of feature vectors was generated by the
Markov Chain representing the word sequence W: To that end, for each state, the
probability for observing the sequence up to a given feature vector is computed over
all possible state sequences leading to that state (�gure 2.3).

The observation probability for a feature vector in a hidden Markov state si is usually
assumed to depend only on the current feature vector xj and the state si, but not
on any earlier states or inputs. Therefore, the probabilities can be computed by a
simple iteration over the input vectors. The resulting algorithm is known as forward
algorithm.
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P(x |s  ,t )1 11

P(x ..x |s  ,t )1 3 32

P(x ..x |s  ,t )1 3 33

P(x ,x |s  ,t )1 2 22

P(x ,x |s  ,t )1 1 22

P(x ..x |s  ,t )1 4 42

P(x ..x |s  ,t )1 4 43

0

0 0

1 3 31 P(x ..x |s  ,t )1 4 41P(x ..x |s  ,t )s

s

s

2

3

1

Figure 2.3: Example for the forward algorithm.

When processing the �rst feature vector, the probability for being in the �rst state
of the chain must be one and the probability for being in any other state must be
zero, since it is not allowed to start the sentence in the middle of a word:

P (x1js1; t1) = P (x1js1)
P (x1js2; t1) = 0 (boundary value) (2.9)

P (x1js3; t1) = 0 (boundary value)

For all subsequent input vectors xi, the probability for observing the sequence up to
xi and ending up in state sj is computed by calculating the sum over the probabilities
of all legal predecessor states at ti�1, multiplied by the observation probability for
the current feature vector xi in this state.

P (x1 : : : xijs1; ti) = P (x1 : : : xi�1js1; ti�1)P (xijs1) (2.10)

P (x1 : : : xijs2; ti) = (P (x1 : : : xi�1js1; ti�1) + P (x1 : : : xi�ijs2; ti�1))P (xijs2)
P (x1 : : : xijs3; ti) = (P (x1 : : : xi�1js2; ti�1) + P (x1 : : : xi�ijs3; ti�1))P (xijs3)

After processing all feature vectors, the total cumulative probability in the �nal
state of the chain is the probability for the observed sequence given this particular
Markov chain.

For the implementation of the forward algorithm, measures must be taken to avoid a
oating point underow: the product over several small probabilities can easily take
values below the resolution of the chosen data type. Since the algorithm requires
the computation of a sum over probabilities, the resolution for small probabilities
cannot easily be increased by using logarithmic probabilities instead.
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2.2.7 Viterbi Algorithm

The Viterbi algorithm is used to �nd the most likely sequence of states in a Markov
chain to produce an observed sequence of feature vectors. The observation prob-
ability along the best state sequence through the Markov chain can also be used
as an approximation for the probability of that chain producing the observed se-
quence of feature vectors. This estimate can be used to build a simple isolated word
recognizer.

s3

s2

s1

Figure 2.4: Example for the Viterbi algorithm. The arrows indicate the best predecessor
state for each point in time and each state. The gray �elds mark the best path through
the chain.

Since the utterance has to start at the beginning, at the time t1 the only legal state
is s1. Legal successors of s1 are s1 and s2, both of which do not have other legal
predecessors at the time. Hence, the best predecessor state of s1 and s2 for t2 is
s1. The probabilities of the corresponding state sequences are P (x1js1)P (x2js1) and
P (x1js1)P (x2js2).
At t3, both s1 and s2 are legal predecessors for s2. For the Viterbi algorithm the
better one (s2) is chosen giving P (x1js1)P (x2js2)P (x3js2) as probability for observing
x1; x2; x3 along the best state sequence to s2.

For all states sj and points in time ti the observation probability along the most
likely state sequence is computed by:

P (x1 : : :xijsj ; ti) = P (xijsj))max(P (x1 : : :xi�1jsj ; ti�1); P (x1 : : :xi�1jsj�1; ti�1)) (2.11)

To be able to retrieve the best state sequence, a pointer to the best predecessor is
stored for each state and point in time. After processing the last feature vector, the
trail starting at the last state of the Markov chain can be followed backwards to the
�rst state and frame.
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The big advantage of the Viterbi algorithm over the forward algorithm is that no
sums of probabilities need to be computed. Therefore it is possible to simply work
with the logarithm of all probabilities, computing sums of logarithmic probabilities
rather than products of probabilities. The resulting logarithmic score range stays
well within the limitations of most computers. Logarithmic probabilities are very
common in speech recognition. In this thesis, the word score always refers to a
negative logarithmic probability: high scores always mean low probabilities and low
scores mean high probabilities.

Since the Viterbi algorithm aligns the time slices corresponding to the input feature
vectors to the states of the Markov chain with respect to the observation probabili-
ties, the process is also referred to as dynamic time warping (DTW).

2.3 Continuous Speech Recognition

Using the forward algorithm, it is possible to determine for each word sequence W
how likely the signal A was produced by the corresponding Markov chain. However,
it is impractical to enumerate all possible word sequences to �nd the sequence that
maximizesP (AjW ). If the recording is segmented into sectionsAi containing exactly
one word w, P (Aijw) can be computed for each section to �nd the best matching
sequence of words in A.

4

8

0.25 sec 0.50 sec 0.75 sec 1.00 sec

kHz ?

Figure 2.5: The spectrum for the sentence 'but does it' illustrates that there is no clearly
de�ned word boundary between the �nal S of the word 'does' and the I of the word 'it'.

Unfortunately, as illustrated in �gure 2.5, for continuous speech a correct automatic
segmentation cannot always be found.
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2.3.1 Time Synchronous Search

A common approach to �nd the best sentence hypothesis for a sample of continuous
speech is theOne-Stage-Dynamic-Time-Warping algorithm [Sakoe and Chiba, 1978,
Sakoe, 1979, Ney, 1984]. It is a generalized Viterbi algorithm that combines the
segmentation with the recognition process. Within the Markov chain for a word,
the algorithm �nds the probability along the best path through the word using the
Viterbi algorithm. However, for each frame there are additional possible transitions
from all word ends into all word-begin states. While in the normal Viterbi algorithm
the only legal predecessor of a word-begin state is this same word-begin state, all
word-end states are now considered to be possible predecessors.

IH

T

IH

Z

(3)

(3)

(0)

(0)

(2)

(1)

(1)

(2)

from word ’it’

from word ’is’

Figure 2.6: Example for the One-Stage-DTW: (0) possible start points for the sentence,
(1) the �rst possible word-end points, (2) the �rst possible word-transitions, (3) possible
end points for the sentence. The best path (gray background) is found by following the
pointers backwards.

Figure 2.6 gives an example for two words with two phonemes each: it and is. From
these words sentences like 'it is.' or `is it?' or 'it is it.' can be built.

All word-begin states in the �rst frame (0) are possible start points for a sentence.
After a few frames, the transition into a word-end state is possible (1). In the next
frame (2) all word-begin states must consider these word-end states as legal prede-
cessors. At this point the language model transition probabilities P (wnewjwold = is) ! 17

and P (wnewjwold = it) can be included. This means the best predecessor of the word
it is not necessarily the best predecessor of the word is.
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Upon reaching the last frame, the algorithm takes the word end with the best score
and follows the pointers backwards just like the Viterbi-Algorithm. Every time the
pointer crosses a word-boundary, it produces one word of the sentence hypothesis
that is thus generated in reverse order.

Since the required multiplications can be replaced by sums in the logarithmic space,
it is common to use the negative logarithm of the cumulative probabilities. Hence,
a large score implies a small probability and a small score a large probability.

To reconstruct the best word sequence, the only required information is which word
was the best predecessor to the current word end. Therefore, for each word end, the
following information is stored: which was the best predecessor word and at what
frame was the transition from this predecessor into the current word made. This
structure, marked as long arrows in �gure 2.7, is called the backtrace.

IH

T

IH

Z

(S)

from word ’it’, frame 6

Figure 2.7: Computing the One Stage DTW using 2 frames and a backtrace. The back-
trace, represented as at rectangles above the word models, contains a pointer to the best
predecessor word and starting point for each word end and each frame.

Note that if no language model is used, the best predecessor word for all words
starting in one frame is the word with the best score in its word-end state for the
previous frame. In this case the backtrace looks the same for all words and could
be replaced by a single back-pointer per frame. If, however, the best predecessor
depends on the identity of the word because of a bigram language model, one back-
pointer has to be stored for each frame and each word end.3

3Using trigram language models complicates matters even more and would exceed the scope of
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The information that is to be stored in the backtrace upon reaching the last state of
a word could be obtained by following the back-pointers within that word from state
to state. However, it is much more e�cient to maintain the information of the word
entry frame and the predecessor word in the data structure of each state for the
current frame. In the next frame, each within-word state inherits this information
from its best predecessor state. Thus, no further information about the exact path
within the words needs to be stored. The memory requirement is reduced to the
memory used for the backtrace plus the contents of all states for the current and the
previous frame. The incomplete sentence hypothesis that is under construction in
each of the states of the Markov chain is called a partial hypothesis. Many partial
hypotheses have cumulative scores that are so bad compared to other hypotheses
that they are unlikely to be the best choice at the end of the sentence. These partial
hypotheses can be pruned from the search space. Since pruning is a rather vital
speed issue, and because several pruning strategies have been investigated in the
work for this thesis, more detailed information and experiments can be found in
chapter 4.2.1. ! 39

N-best Hypotheses

For many applications, knowing the best word sequence is not enough. Instead, it
might be bene�cial to know what the second best sequence looks like and whether
other sequences get a similar score.

Such lists of hypotheses can be re-ordered by applying expensive acoustic models or
long-range language models that cannot be used during the main recognition process
because they require the unavailable right context of a word [Austin et al., 1992].
Another application of N-best lists is the �ne-tuning of parameters such as the
language-model weight [Schwartz et al., 1992].

Also, if the second best hypothesis has the opposite meaning of the �rst, it may be
a good idea to reject the recognition (e.g. do/don't delete �les).

To build N-best lists based on a time synchronous search, there are a number of
common algorithms. The most accurate but also slowest approach is the exact N-
best algorithm. For each state it uses an N-deep stack of partial hypotheses sorted by
their cumulative score. To build the new stack for a state at the time ti, all partial
hypotheses from all predecessor states at time ti�1 are considered. From those, the
N-best partial hypotheses that di�er in the associated word sequence are chosen for
the new state (�gure 2.8). The �rst state of a word can therefore have the �nal
states of N di�ering words as predecessors. At the end of the utterance, the N best
hypotheses can be extracted by following the N best of all partial hypotheses in the
stacks of all word-end states.

For more detailed information about algorithms to �nd the N-best hypotheses refer
to [Schwartz and Chow, 1990, Schwartz and Austin, 1991].

a fundamentals chapter. This problem will be addressed in more detail in chapter 5.1.2 (! p. 59).
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s3

s2

s1

from ’is’ from ’it’ from ’in’

t t t t11 12 13 14

1st best

2nd best

Figure 2.8: Example for the Computation of the exact N-best algorithm (N=2). For each
state, there is a stack of possible partial hypotheses representing di�ering word sequences.

2.3.2 Depth First Search

All search algorithms mentioned so far are time synchronous, and are therefore
basically breadth �rst searches. The depth �rst search, however, keeps all partial
hypotheses on a stack and expands only the hypothesis that looks most promising at
the moment [Paul, 1992b, Paul and Neioglu, 1993]. Once this hypothesis reaches the! 125

�nal frame of the utterance, the best overall hypothesis is available. The algorithm
can be set up to either stop then, or to continue until the second best hypothesis
reaches the last frame, and so on until the resulting N-best list is long enough
for the application in question. The main problem with the depth �rst search is
knowing which partial hypothesis is more promising, because the current scores for
di�erent partial hypotheses can be based on a di�erent number of frames. Also,
the e�cient organization of the hypotheses in the stack can be quite demanding.
Therefore, depth �rst searches are not often the method of choice for the �rst pass
of a decoder. They are sometimes found as a second pass or used to combine the! 120

results of several search passes with new information sources [Alleva et al., 1993].



Chapter 3

Test Environment

The nice thing about standards is

that there are so many of them to choose from.

{ Andrew S. Tanenbaum

This chapter gives an outline of the environment used for the experiments described
in later chapters. There are three main sections: The �rst section gives an overview
of the the JANUS recognition toolkit that has used as development toolkit through-
out this work. The North American Business News (NAB) database used for train-
ing, test, and evaluation of the recognizers and algorithms is presented in the second
section. Finally, the actual NAB recognition system used as baseline for most ex-
periments is described.

3.1 The JANUS Recognition Toolkit

Strictly speaking, JANUS is a speech-to-speech translation system. However, the
speech recognition component used for JANUS was originally also called JANUS.

The JANUS speech recognition engine has been around since before 1991, though
by now there is probably not a single component of the original system that has
not been been rewritten several times or completely removed. After a complete
re-implementation in 1995, the JANUS recognition engine was renamed to JRTk
(JANUS-Recognition-Toolkit) to avoid further confusion and to reect its new ca-
pabilities.

Since 1991, the author has contributed to all versions of JANUS, especially by work-
ing on the search but also on the runtime performance of other algorithms such as
the computation of observation probabilities. However, this is probably the place to
point out that JRTk is a joint e�ort of many dedicated researchers. Without their
contribution to the recognition system, most parts of this thesis would never have
been written.

31
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The JRTk User Interface

JRTk is not just a speech recognizer, but a speech toolkit with a programming
interface. The programming interface is realized as an integrated tcl interpreter
[Welch, 1995], used to run scripts from which the user can create the objects that
make up the recognizer, such as preprocessing objects, codebooks and a search.

The main advantage of a programmable toolkit is that many experiments on new
techniques can be performed without changing a single line of the JRTk source code.
The main disadvantage is that the large exibility often reduces the e�ciency and
makes it di�cult to automatically detect errors in scripts of novice users. A library
of standard scripts for common tasks is used to minimize those problems.

By combining the graphical interface of tcl-tk with JRTk, many of the internal
objects of JRTk can be visualized and used to quickly create prototypes for new
speech applications.! 108

Observation Probabilities in JRTk

JRTk contains many di�erent variants for the computation of observation probabili-
ties, ranging from completely semi-continuous, to tied mixture systems (e.g senones! 23

as described in [Hwang and Huang, 1992]), and to fully continuous density HMMs.
The Gaussians can be modeled using no covariances, radial covariances, diagonal
covariances, or full covariance matrices. Acoustic modeling using neural nets, alone
or in combination with HMMs is also possible [Fritsch et al., 1997].

However, most of the systems realized with JRTk use the following architecture:
each polyphone is divided into three states. These sub-polyphones are clustered to
build 2,000 to 5,000 sub-allophones [Finke and Rogina, 1997]. To model each of the
sub-allophones, a codebook containing 16 to 48 Gaussians with diagonal covariances
is used. Further context information can be introduced by using di�erent sets of
weights to di�erentiate between sub-allophones that share a codebook.

Details on the fast computation of observation probabilities in JRTk are introduced
throughout the following chapters.

Search in JRTk

JRTk uses a multi-pass search strategy. The underlying idea is to use a �rst search
pass to restrict the search space for the second pass, which uses better but more
expensive algorithms to �nd the best word sequence. More details about this search
algorithm are given in chapter 5.1.! 56
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3.2 The North American Business News Task

All algorithms presented in this thesis have been developed for and tested on the
North-American-Business-News (NAB) dictation scenario.

The NAB task is the successor of the better known Wall Street Journal (WSJ)
task. Both tasks are recordings of read newspaper articles, collected for the evalu-
ations organized by the Defense Advanced Research Agency, DARPA, to compare
the performance of speech recognition systems.

The evaluation conditions clearly divide the available material into training, test
and evaluation data and they de�ne �xed word lists and language models for the
so called hub and spoke tests. All NAB results presented in this thesis have been
computed on data used for the last o�cial evaluation of NAB dictation systems in
November 1994.

For most experiments in this thesis, the conditions of the main (P0) test were used:
For the P0 test, the recognizer could be trained with all available data, and tested
using a vocabulary size of 65,000 words. The full test set for the P0 test consists
of 316 utterances covering 10 male and 10 female speakers. The total length of the
test set is about 53 minutes, or 8,186 words. All P0 recordings were made in a quiet
o�ce environment using a high quality close speaking microphone.

The recognition results of the competing recognizers in the 1994 evaluation ranged
between 7.2% and 22.8% Word Error Rate. Comparing more recent results on the
same evaluation set can be misleading as some recognizers have since been tuned to
this set.

Many of the experiments presented in this thesis iterate over several parameters. To
conserve time and reduce the memory requirements, some of these experiments were
performed using a subset with only 7,500 of the 65,000 words of the full vocabulary.
This subset was built to contain the same number of out of vocabulary words on
the test set as the 65,000 word vocabulary. The normal out of vocabulary rate for
such a small vocabulary would be over 5%, introducing new recognition errors, thus
making it harder to compare the results to the large vocabulary experiments. For all
important experiments and conclusions, comparative results on the full vocabulary
are provided.

Also, a subset of 50 sentences from the female test set covering all 10 speakers was
chosen for most experiments. Additional experiments were performed to show the
inuence of the size of the test set on the con�dence intervals of the results. ! 96

Robustness and portability studies have been performed on further data sets taken
from other subsets of the NAB evaluation (so called spoke conditions) and from
recordings of German, English, and Japanese spontaneous speech. Some results are
also available on the data of a LVCSR dictation system for Japanese.

More details about the NAB task and evaluation results on the P0 and spoke tests
are presented in the proceedings of the DARPA-workshop [ARPA Workshop, 1995].
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3.3 The Baseline NAB Recognizer

The baseline recognition system used for the experiments on NAB was trained by
Ivica Rogina [Rogina, 1997] with the only goal being to minimize the error rate on
the 1994 P0 evaluation data. Robustness and recognition speed were no criteria
at any point in the development of the baseline system. The error rates on the
NAB 1994 P0 evaluation data achieved by the system that served as baseline for
all NAB experiments in this thesis were around 9%.1 Under evaluation conditions,
this system ran at 200 times real-time. Setups and results for the systems of other
groups in this evaluation are given in the appendix.! 115

Preprocessing

The speech signal is sampled with a resolution of 16 bit at 16 kHz. Using 16 mil-! 18

lisecond long, overlapping windows, a vector of 16 Mel-scale coe�cients is computed
for every 10 milliseconds of speech input. The mean of all vectors in one utterance
is subtracted from each vector. This is the only step in the preprocessing for which
the whole utterance is required.

Using a window of seven consecutive vectors a 'super-vector' is constructed. This
super-vector is mapped to the 48-coe�cient feature vector using a matrix multipli-
cation. The matrix for this step is determined by means of a linear discriminant
analysis (LDA) to minimize the within class scatter and to maximize the between
class scatter of the data assigned to the allophone segments of the acoustic model
[Fukunaga, 1990].

Acoustic Models

The system used in this thesis contains 3,000 context dependent codebooks with 32! 23

Gaussians in a 48 dimensional feature space. For each codebook there is exactly
one set of weights de�ning the model for one allophone segment (fully continuous
density HMM). The maximumcontext width used is two phonemes in each direction,
resulting in quinphone models. Two separate systems were trained for male and
female speakers.

Language Models

For all NAB experiments the o�cial 64K trigram language model t95+60k1 with! 17

8,814,128 trigrams and 7,454,368 back-o� bigrams was used. This language model
was built on a text corpus of more than 300,000,000 words and is provided as part
of the NAB evaluation materials.

1Current error rates of an improved system with larger codebooks and speaker adaptation are
around 7%. Many preliminary experiments for this thesis were based on an older system with an
error rate of 23% and have been repeated with the 9% system.



Chapter 4

Speed Issues in Speech

Recognition

Any su�ciently advanced technology

is indistinguishable from magic.

{ Arthur C. Clarke

This chapter gives an overview of some techniques that have been used in the past
to speed up recognition systems. Algorithms that were developed by the author or
are very closely related to the thesis contribution are presented in chapter 5. ! 55

There are four main sections in this chapter:

Language Models:While computing the language model probabilities is no speed ! 36

issue by itself, using language models considerably complicates the recognition pro-
cess. This section presents two common approaches used to reduce the impact of
the language models on the recognition time.

Search: Finding the best word sequence in a large search space is a computation- ! 39

ally demanding task. Methods such as pruning the search space and using a tree
organized lexicon are commonly used to reduce this e�ort. Often, improvements in
the search structure also reduce the time required for other subtasks.

Observation Probabilities:Most LVCSR systems spend 60% to 90% of the total ! 45

CPU-time on the computation of observation probabilities with mixtures of Gaus-
sians, depending on the vocabulary size and the complexity of the acoustic models
used. This section presents some faster algorithms to compute these observation
probabilities and an alternative approach using neural nets.

Parallel Computing and Hardware: If the algorithmic approaches are not ! 49

enough, it is always possible to resort to faster machines or special purpose hard-
ware. The last section in this chapter describes some of these hardware related
approaches.

35
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4.1 Language Models

The bigram and trigram probabilities used for the language modeling are usually
pre-computed before the recognition run. Computing the transition score then cor-
responds to one or two table lookups. This it not an expensive operation.

Whenever language models are used, the best predecessor word can be a di�erent
word end for every word-begin state. Therefore, for the word-begin states of all
words in the vocabulary (e.g. 65,000) the best predecessor has to be found among
all possible word ends. This has to be done for every frame, about 100 times per
second of input speech. Even if the number of active word-end states is reduced
to about 200 states by pruning strategies, evaluating the remaining 1,300,000,000! 39

word transitions per second still presents a problem.

4.1.1 Smoothed Language Models

When generating statistical language models from large corpora, most of the possible
n-grams are not observed in the training text or are not frequent enough for a robust
probability estimation.

w1

w3

w2

w1

w2

w3

P(w1|w1)

wn
P(wm)

P(w3)B(w3)

P(w3|w3)

B(wn)

P(wm|w3)

wm

word begin statesword end states

P(w3|w1)

Figure 4.1: For back-o� bigram models, the probability P (wmjwn) for unseen bigrams
can be divided into two terms P (wmjwn) = P (wm)B(wn). The best predecessor word for
all unseen word transitions is the same for all words. Only word transitions that have
been observed often enough to provide a robust probability estimation depending on both
words have to be explicitly computed (fat arrows).

For the North-American-Business-News corpus, the language model contains prob-
abilities for 60,000 unigrams but only for 5�106 bigrams, though 60; 0002 = 3:6�109
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bigrams are technically possible. The probabilities for all remaining bigrams (99.9%)
have to be estimated using back-o� strategies [Katz, 1987].

For the computational e�ort in speech recognition, the most interesting aspect of
these back-o� strategies is that for unseen bigrams, P (w2jw1) = P (w2)B(w1) is
composed of two terms of which one depends only on the predecessor word and the
other only on the successor. For all word transitions with unseen bigrams the best
predecessor is the same word. The e�ort for �nding this predecessor to compute all
unseen transitions grows only with O(n), where n is vocabulary size. The e�ort for
�nding the best predecessor for all transitions with explicit bigram information is
still large as it grows with the number of observed bigrams in the training corpus,
but much smaller than O(n2);

4.1.2 Delayed Bigrams

When using Delayed Bigrams, the language model information is included after
computing the transition into a successor word, for instance upon computing the
transition into the last phoneme of the successor word.

At the transition into the last phoneme of a word wnew the transition probability
into wnew is included. To that end, the entry point into wnew that is stored in the
partial hypothesis is used to determine which of the words ending at the entry point
would be the best predecessor of wnew when including the transition probability
P (wnewjwold);

Since many words are pruned from the search space before reaching their last
phoneme, this approach avoids the rather costly procedure of �nding the best prede-
cessor for these words. Also, this method agrees with search strategies that organize
the search lexicon into a phonetic tree where the identity of the successor is not ! 41

available until a tree leaf, usually the last phoneme of the word, is reached.

The most serious disadvantage of Delayed Bigrams is that the entry point for the
successor word is determined without any language model information. This lack of
information causes segmentation and pruning errors depending on the importance of
the language model. For the NAB experiments in this thesis this leads to a relative
increase in error rate of about 12%.

A second search pass can be used to recover these errors if the inuence of the ! 59

language model is only moderate.

The generation of segmentation errors is illustrated in �gure 4.2. Suppose that at
the time t1 the best word end is is w1, and at the time t2 the best and possibly only
word end is w2. A couple of frames after t2, but prior to the transition into the last
phoneme, the two resulting partial hypotheses are both legal predecessors to the
same state. The best predecessor is chosen only according to the current scores in
the partial hypotheses, without respect to language model information. The word
entry point is set to t2, though using the language model the best predecessor and
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t2t1

from word wfrom word w
correct segmentation wrong segmentation

21

Figure 4.2: Example for a segmentation error caused by the use of delayed bigrams.

entry point word may have been t1. Since the segmentation is wrong, the predecessor
word can also be incorrect. Now consider the case of a language model that has a
zero probability for the transition from w2 to the current word. In this case the
probability of the currently best and quite possibly only active hypothesis suddenly
drops to zero resulting in an empty recognition output. This is the reason why
Delayed Bigrams should not be used with restrictive language models.
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4.2 Search

For large vocabularies, the search space grows quickly. When using a dictionary
with 65,000 words that each have average of about 5 phonemes with three states,
the full search space contains close to 1,000,000 partial hypotheses at each point in
time. Using even simple pruning strategies reduces this number signi�cantly.

However, pruning tends to be more e�cient in eliminating partial hypotheses to-
wards the end of the words. At the beginning of a word there is no acoustic evidence
how well the word will match. Therefore, many word-begin states are active. When
the search lexicon is organized into a tree the number of word-begin states becomes
signi�cantly lower.

Multi-pass search strategies can further help to reduce the total recognition time
as illustrated with the forward-backward-search algorithm and the section on word
graphs.

4.2.1 Pruning the Search Space

Many partial hypotheses have a score that is so bad compared to other hypotheses,
that they are unlikely to be the best choice at the end of the sentence. These partial
hypotheses can be pruned from the search space.

Some of the more advanced pruning strategies that have been investigated in the
work for this thesis are described in in section 5.1.4. ! 63

Score related thresholds

The easiest way to prune the search space is to determine the score of the best partial
hypothesis for a frame and then remove all partial hypotheses from the search space
that have a cumulative score that is worse by a speci�ed value. If a partial hypothesis
is removed from the search space, the corresponding state is said to be inactive. It
can be reactivated by computing a transition from an active state into it.

All remaining partial hypotheses now have scores in the range determined by value
used for the pruning. This value is called a beam. If the acoustic and language
models describe the speech signal well, the distance between the best and the second
best hypothesis will be large, and only a few states will remain active. In di�cult
sections, the number of active states increases.

One of the drawbacks of pruning with beams is that good values for pruning thresh-
olds depend on the modeling used for the recognizer. The likelihood of removing
the correct hypothesis and thus introducing search errors increases for small beams,
as shown in the example in �gure 4.3. Values that yield acceptable error rates for a
given application are usually determined by trial and error.
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Figure 4.3: Pruning with a score related threshold for an NAB experiment (50 female
sentences, reduced vocabulary). The RT=0.74 WA=77.7 value corresponds to a pruning
beam-width of 170. The RT=1.73 WA=88.0 value corresponds to a pruning beam of 230.

Special care must be taken if the score increase is not smooth at certain points of the
search. At the transition across word boundaries for instance, the word transition
probability is included. The word-begin states that have a word end as a predecessor
are pruned against the state with the best overall partial hypothesis which could
very well be a word-end state. If the bigram penalty �log(P (wnewjwold)) that is
added during the word transition exceeds the beam width, the partial hypothesis in
the new word will be always be pruned right after the transition. This can lead to
a signi�cant loss in word accuracy for small beams.

Also, If there is a strong mismatch between training and test conditions, most hy-
potheses will get a bad score and no single hypothesis scores much better than all
others. In this event too many hypotheses will remain active and the search time
spent on this section increases signi�cantly, though the recognition result is still
likely to be wrong. This can be a serious problem if a certain response time is
required for a given application.

Throughout the following chapters there are graphs such as in �gure 4.3 that plot the
word accuracy over the recognition time. Unless stated di�erently in the description
of the experiment, data points within one line belong to the same experiment and
di�er only by the setting of the pruning thresholds. The goal of these plots is to
show that the cost in terms of word accuracy loss for a given speed-up is not larger
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Figure 4.4: Pruning with a score related threshold for an NAB experiment (160 female
sentences, reduced vocabulary). The recognition time for one sentence di�ers between 0.7
and 1.7 RT.

than it would have been if the speed-up had been achieved by reducing the pruning
thresholds.

4.2.2 Tree Search

Many words in the dictionary start with the same phoneme. For all copies of that
phoneme, the computation of the Viterbi algorithm is largely identical.

By using a single phoneme copy for all words starting with the same phoneme,
the search lexicon is restructured to form a set of trees. For a context in-
dependent system the tree structured lexicon has about 50 tree roots (one for
each monophone) compared to 65,000 word-begin phonemes in the linear lexicon
[Gopalakrishnan et al., 1995]. Trees for context dependent systems, where only
words that start with the same allophone share a tree root, are considerably less
dense. For the NAB recognition system used in this thesis, 1,000 di�erent word-
begin allophones were used. Towards the word ends, the tree becomes less and less
compact. The reduction from 65,000 to 1,000 word-begin roots still leads to a sig-
ni�cant speed-up, because the pruning is least e�cient during these �rst states of a
word.

When using a tree search, the identity of the successor word is not known at the
transition of a word end (a leaf in the tree) into a new word (a tree root). Since the
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Figure 4.5: Example for Delayed Bigrams in a tree search.

successor word is not known, the language model cannot be included at this point.
A number of approaches have been proposed to integrate the language model into
a tree search [Steinbiss et al., 1994, Alleva et al., 1997].

1. The language model probability is included upon computing the transition
into the last phoneme of the successor word, where the identity of the word is
always known (Delayed Bigrams). The problems of this approach have already
been pointed out in section 4.1.2.! 37

2. To avoid the segmentation problems caused by choosing the wrong predecessor
due to Delayed Bigrams, a new tree copy is allocated for each frame where new
words can start [Ney et al., 1992].

3. For each active predecessor word at a word transition, a tree copy is allocated.
This way, the actual choice of the best predecessor word is delayed until the
language model information is available.

Tree Copies for Start Frames

The segmentation errors described in section 4.1.2 can be avoided by creating a tree! 37

copy for each point in time where word transitions are possible. This way, paths
from di�erent entry points are not merged into one state. Only after the transition
into the last phoneme of the word, when the language model has been included, all
trees for that word are merged again.

While maintaining tree copies can be tedious, the total e�ort is still smaller than
the e�ort of a linear search provided that a good pruning strategy is used. Since
no systematic error is made in this search strategy, no second recognition pass is
required.

Tree Copies for Predecessor Words

A less common approach is to create a tree copy for all active predecessor words.
This approach solves the segmentation problem because the segmentation errors
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are caused by choosing the wrong predecessor at a time where no language model
information is available. Due to pruning, the number of active predecessor words
is usually small (about 50 words), putting an upper limit on the increase in search
e�ort.

4.2.3 Forward-Backward Search

If the beams in the beam search are too small, important sentence hypotheses are
lost. If the system could use the outlook for a partial hypothesis before deciding to
prune it, the likelihood of an error would be reduced.

An estimate of how well a partial hypothesis will do when reaching the end of the
utterance would help most. In this case all but the best few hypotheses could be
pruned.

If an expensive technique is to be used during the recognition, such as detailed
acoustic models or exact N-best searches, this estimate can be produced by means
of a preliminary recognition run. The resulting recognizer has multiple search passes,
each pass restricting the search space for the next pass.

To that end, it is possible to �rst compute a Viterbi-search backwards, starting at
the last frame of the utterance and in the last state of all words. The backtrace of
this search pass contains the best cumulative score between the end of the sentence
and each word entry point for each frame, �(t; wy).

bactrace
of
backward
pass

word 1

word 2

word 3

best path
to word begin

forward

Figure 4.6: Forward-Backward search: at the word transition in the second (forward)
pass the outlook of each partial hypothesis is known for all possible word transitions.

The next pass is a forward-oriented search during which the best cumulative score
�(t � 1; wx) from the beginning of the utterance to all word ends in a frame is
computed. Together with the information from the backtrace of the backward pass,
�(t � 1; wx)�(t; wy)P (wyjwx) gives the best score this partial hypothesis will have
when continued to the end of the utterance along the best possible path. Using this
information the pruning beams can be very tight without losing the globally best
hypothesis.

One problem with the forward-backward strategy is related to the statistical lan-
guage models which are built to provide an estimate for P (w3 = xjw1 = y;w2 = z),
while during the backward pass, P (w1 = yjw3 = x;w2 = z) is required.
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Also, before the search direction can be changed, the whole utterance has to be avail-
able. Pipelining with a granularity below the utterance level and run-on recognition! 107

are not possible with this approach.

The forward-backward search is described in [Schwartz and Austin, 1991]. Some
information about the BBN system in which it was �rst used are found in the! 116

Appendix. A similar approach for a multi-pass search is also mentioned in
[Murveit et al., 1993].

4.2.4 Word Graphs

Word graphs can be used to direct the recognition process of a second search pass, for
example with more expensive acoustic models. As the number of word transitions is
very limited, highly complex language models can be applied during a search along
a word graph.

Also, for many applications a list of likely hypotheses or a word graph that e�ciently
represents many alternative hypotheses is more useful than the single best-scoring
hypothesis.

Alternatives from a word graph can be used in repair dialogues to correct recogni-
tion errors [McNair and Waibel, 1994]. For database queries or speech translation
systems, the parser that processes the speech input can parse the word graph rather
than a single word sequence and thus �nd a word sequence that is best based on a
combination of both the speech recognition knowledge sources and the parsers own
representation of the world.

A very e�cient algorithm to build a word graph is to simply reuse the backtrace! 28

of the search as word graph. To that end, only the information known about the
word entry points for each word is used, while the information about the correct
predecessor word is ignored. All words ending at the word-entry point of a word are
its predecessors for the word graph. Each word in the graph gets a score de�ned by
the score of the partial hypothesis at the end of this word (found in the backtrace)
minus the score of the partial hypothesis of its original predecessor.

an

for

the

a

an

is a

fur sample

Sam

sentence

sentience

ascend

example

Figure 4.7: A little word graph (81 hypotheses).

If the resulting word graphs are to large for the intended application, they can be
pruned as follows: for each word in the word graph, the score of the best hypothesis
through this word is computed, including all available language model information.
Subsequently, all words that only contribute to hypotheses with scores larger than
a given threshold are removed from the word graph.
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4.3 Observation Probabilities

To model continuous speech with context dependent phone models, it has become a
common approach to use hidden Markov models with a large number of codebooks
to estimate the observation probabilities. In the case of a system with 3,000 context ! 23

dependent codebooks with 32 Gaussians in 48 dimensional space, 9,216,000 multi-
plications are required to compute all observation probabilities for a given frame
(assuming diagonal covariances). At a frame-rate of 100 frames per second, this
requires 921,600,000 multiplications per second for real time performance. Because
the system is not supposed to run only on the few existing teraop computers, more
e�cient algorithms for this task have to be developed.

Some of the algorithms used to e�ciently compute weighted vector distances were
not originally developed for speech recognition tasks but for image and speech com-
pression. The Nearest Neighbor Approximation is a typical example for these algo-
rithms.

4.3.1 Nearest Neighbor Approximation

As an approximation for the observation probability it is assumed that

f(xjs) =
MX
m=1

csm exp

 
�

DX
d=1

(xd � �smd)
2=2�2smd

!

� M
max
m=1

csm exp

 
�

DX
d=1

(xd � �smd)
2=2�2smd

!
(4.1)

This means that only the Gaussian in the codebook that has the smallest Maha-
lanobis distance to the input vector is used in calculating the observation probability.

Since the weighted distances of the Gaussians in a codebook di�er by large amounts
in high dimensional space, and because this di�erence is emphasized by the expo-
nential function, the contribution of the remaining Gaussians is often insigni�cant.

By using only the nearest neighbor for the estimation of the observation proba-
bility, the computational e�ort can be reduced in two ways [Bei and Gray, 1985,
Fissore et al., 1993]:

1. When computing the distance to a Gaussian, the partial distance can exceed
the currently smallest distance before reaching the last coe�cient. Since the
actual distance to any vector that is not the nearest neighbor is not used in
the score computation, there is no need to complete the distance computation.

2. Because no sum over the weighted distances has to be computed, the compu-
tation can be kept completely in the logarithmic space.
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Experiments

For systems in a high dimensional feature space, the di�erence between the distances
to the Gaussians within one codebook can be considerable. The contribution of all
but the nearest neighbor to the score and the resulting loss in word accuracy by
using the nearest neighbor approximation is insigni�cant.
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Figure 4.8: Word accuracy over recognition time using the nearest neighbor approxima-
tion. These experiments were performed on 50 sentences of female speakers, taken from
th 1994 NAB evaluation data.

For the female subset of the NAB evaluation, no loss in word accuracy was observed.
For the male subset, the loss was a mere 0.3% absolute word accuracy. On the
German Spontaneous Scheduling Task (GSST), the word accuracy dropped from
84.7% to 84.4%. Considering that this loss in word accuracy comes with a factor
two to three boost of the recognition speed, this is nearly negligible.

Unless noted otherwise, all experiments in this thesis have been computed using the
nearest neighbor approximation.

4.3.2 Gaussian Selection and related approaches

The goal of the Gaussian selection [Bocchieri, 1993b] is to reduce the number of
Gaussians used for the computation of the observation probability.

As a �rst step, all Gaussians are clustered to build a smaller codebook, the GS-
codebook. A GS-vector is associated with all Gaussians of the original codebook
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that have a weighted distance below a threshold T to that GS-vector. Depending on
this threshold T , a Gaussian of the original codebook can be associated with more
than one GS-vector.

The computation of an observation probability is then performed in two steps: �rst,
the GS-vector with the smallest distance to the input vector is determined; next, all
Gaussians associated with that GS-vector are used for the main probability compu-
tation. Since there will be codebooks that have no Gaussian associated with some
of the GS-vectors, the score for these cases is approximated by a constant back-o�
value.

As extension to this algorithm [Knill et al., 1996] proposes a two level algorithm to

T2

Gaussians
per
codebook

one Gaussian per

constant back-off

codebook

several T1

Figure 4.9: The double ring algorithm to approximate back-o� values uses two thresholds,
T1 and T2.

estimate the observation probability for Gaussians (�gure 4.9): all Gaussians within
a codebook that have a weighted distance smaller than T1 to the selected GS-vector
are directly used to compute the observation probability. If for a codebook there is
no Gaussian in this area, the one Gaussian with the smallest distance to the GS-
Vector is taken instead, provided that this distance is smaller than T2. If the distance
is larger than T2 for all Gaussians of the codebook, the score is approximated by a
�xed value.

One of the drawbacks of the Gaussian Selection algorithm is that if the number
of GS-vectors is too small, the approximation is not good enough. If however the
GS-codebook is large, there is a large overhead for �nding the nearest neighbor in
the GS-codebook.

In chapter 5.2.6 an alternative approach that is also based on segmenting the feature ! 87

space is described: the Generalized-BBI algorithm, that was developed as part of
this thesis, uses a binary tree instead of a second level codebook to segment the
feature space.

More algorithms for the fast computation of observation probabilities can be found
in [Schukat-Talamazzini et al., 1993] and [Kurimo and Somervuo, 1996].
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4.3.3 Neural Nets

With the exception of the Abbot recognition system [Hochberg et al., 1995b], there! 118

are only few successful attempts [Fritsch et al., 1997] to estimate the observation
probability for LVCSR systems using neural nets.

The Abbot system uses recurrent neural nets. During the training, multiple nets
are trained for speaker clusters, which are merged prior to the recognition step.

The error rate of this system in the 1994 NAB evaluation on the P0 set was 12.4%.
While the best completely HMM-based system had an error rate of only 7.2%, most
of the remaining systems in the competition had only slightly lower error rates.

The big advantage of the Abbot system over systems that use mixtures of Gaussians
to estimate the observation probabilities is, that the number of parameters required
to estimate these probabilities with neural nets is smaller. Reasonable error rates
can be acchieved even with context independent models or a very small number of
context-dependent models (! also [Tebelskis, 1995]). Therefore, the computation
of the observation probabilities takes less time. Also, since the neural nets use a dis-
criminative rather than a maximum likelihood approach, their discriminative ability
is usually larger. That could reduce the risk of pruning the correct hypothesis. The
Abbot evaluation system was reported to run at 15 RT on an HP735 workstation.
This was about a factor of 10 faster than the competing systems.

Therefore, if using mixture of Gaussians is not a requirement, neural nets provide
good alternative to estimate the observation probabilities.



4.4. PARALLEL COMPUTING AND HARDWARE 49

4.4 Parallel Computing and Hardware

When running out of faster algorithms, it can be worth considering resorting to
faster computers.

Multi-processor architectures with two to ten multi-purpose processors are getting
more and more common. For these architectures, threads are an e�cient way to
parallelize the recognition process.

Some researchers and developers also resort to massively parallel architectures or ! 50

special purpose hardware. However, many of these architectures are too restrictive
for research purposes, and to expensive for most commercial applications.

Finally, even among single processor machines there can be substantial di�erences
in performance. Common benchmarks such as the SPECfp95 values can give an ! 51

indication of how much faster a new platform is, but the actual performance for
speech recognition can only be determined by running timings for the respective
recognition system.

4.4.1 Threads

With the DEC-Alpha 2100 servers, multi-processor machines have moved into many
research groups that previously were not using parallel machines on a regular base.
This trend has continued with the introduction of the SUN-Ultra-2 workstation and
the SUN Enterprise servers. These machines have between 2 and 14 processors,
which are often used to recognize one utterance per processor.

Threads provide a simple mechanism to parallelize the recognition with a much �ner
granularity.

For example, the computation of the observation probabilities for di�erent code-
books can be executed in parallel on di�erent processors. This is usually the most
expensive subtask of the recognition process.

There is a distinct overhead for keeping a threaded process and to distribute the
codebooks over the processors. Table 4.1 shows the results for parallelizing the score
computation with threads.

Real-time

without Threads 0.80 * RT
with Threads 0.74 * RT

Table 4.1: Example for a NAB system using a vocabulary size of 7,500 words at 83.2%
word accuracy on a SUN-Ultra with two CPUs.

As the computation time for the optimized NAB system with Lookaheads is spread
over many routines, an e�cient parallelization within one utterance becomes di�-
cult. If the workstation has enough memory to process two utterances at a time,
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and if the application does not require a fast serial processing of single utterances,
it is more e�cient to parallelize over several utterances.

4.4.2 Special Purpose Hardware

Product oriented Hardware

One application for special purpose hardware is to market products that cannot run
in real time on common PC platforms. One example for this approach is the Siemens
Dictation System [Niem�oller et al., 1997] that uses a PC-board with several special
purpose DSP chips to compute the observation probabilities.

The advantage of this approach for products is that it is much more di�cult to
make illegal copies of custom hardware compared to speech recognition software.
If however the competition is able to o�er an all-software product, the hardware
solution may become hard to sell.

Research oriented Hardware

There are many parallel architectures that could theoretically improve the research
possibilities for the development of speech recognition algorithms, such as iWarp,
MASPAR [Sloboda, 1992, J�urgens, 1995], CNAPS [Wahle, 1994]. However, very few
research groups are using them on a regular basis.

The main problem with these approaches are:

� Fix-point arithmetic, lack of memory and other restrictions can severely limit
the application of parallel computers for many speech algorithms.

� If algorithms that have been optimized to sequential architectures are ported
to massively parallel platforms, some of the optimizations have to be reversed.
Also, not all parts of the program can be e�ciently parallelized. The actual
speed-up of the total program is always substantially smaller than the theo-
retically possible speed-up.

� Research prototypes have to be exible and change quickly to accommodate
novel research ideas. If the e�ort of porting existing software to the special
purpose hardware is high, new approaches will not be ported and the parallel
version quickly becomes outdated.

� Some of the massively parallel computers are too expensive for their useful
lifespan. Even if a machine is 50 times faster than a conventional workstation
on a real world problem, this advantage can quickly be out-paced by the
development of new sequential processors.
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4.4.3 Faster Processors

To evaluate speech recognition systems, the word accuracy or word error rate is
used. However, it is often more interesting to know how well a given system or
algorithm performs at a given speed.

Measuring the word accuracy to compare algorithms implemented on di�erent recog-
nition systems can already be challenging: the inuence of other di�erences between
the systems, including but not limited to the number of bugs in the code and training
procedure, the amount and quality of training data, and the ability of the researcher
to make good educated guesses for the initial setting of the many parameters of such
a system, render most of these types of comparisons futile.

If at the same time the speed of the recognizer needs to be taken into account,
matters get worse: most systems have not been developed to run on the same
hardware using the same compiler. Even if a system is ported to a new platform
for comparison with another system, the system that has been developed on that
platform has an advantage because it has likely been tuned to the strong points of
the original architecture.

Many publications do not mention what con�guration was used for the published re-
sults. If this information is available, careful estimates can be made using standard-
ized processor and machine benchmarks such as SPECint92/95 and SPECfp92/95
for integer and oating point performance respectively. However, care should be
taken to make sure these numbers can be applied to speech recognition.

Most timings published in this thesis have been performed on a single processor of
a two processor SUN-Ultra-2 workstation operating at a clock rate of 167 MHz.

The following table give a list of SPEC values for some machines commonly used in
the speech community. These values were taken from the world wide web1.

Machine CPUs MHz Fp92 Fp95

Sun Ultra 2 1 167 351 9.33
Dec Alpha 2100-4/275 1 275 291 -.{
HP 9000 Series 700 Model 735 1 99 174 3.98
SGI Indigo2 R4400SC 1 150 94 -.{

Table 4.2: SPEC values for some common machines

Experiments

To evaluate the predictive power of the SPEC-results for a given speech recognition
system, the author has performed comparative timings for one experiment over a
small selection of platforms.

1http://www.specbench.org Januar 1998.
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Since compiler options and minor rearrangements of the code can substantially in-
uence the results in some cases, these experiments, like all comparative timings
between platforms, should be considered with some caution.

The test conditions for the results in table 4.3 were as follows:

Compiler and compiler options

� gcc: For all machines gcc version 2.7.2 was used.
gcc -O3 -fomit-frame-pointer -ffast-math

� cc on Sun: Version SC4.0 (18 Oct 1995) was used. The compiler options re-
ect quite a bit of tuning, though not exactly to this but to similar recognition
tasks:
cc -xO5 -fsimple=1 -dalign -native -Xa

� cc on DEC-Alpha: The native compiler delivered with OSF1 V4.0 was
used. The compiler options reect the same amount of tuning as those for
the Sun compiler:
cc -O4 -Olimit 2000 -float const -fp reorder -no misalign -tune

host

� cc on HP: The native compiler delivered for HP-UX B.10.01 A was used. All
attempts at more aggressive optimization lead to a linker error.
cc -Ae +O4

Machine Clock Compiler Real-time Memory

Sun Ultra-2 167 MHz cc SC4.0 1.03 262 MBytes
Sun Ultra-2 167 MHz gcc 2.7.2 1.13 262 MBytes

DEC Alpha 2100-4/275 275 MHz cc 1.80 394 MBytes
DEC Alpha 2100-4/275 275 MHz gcc 2.7.2 1.82 394 MBytes

HP 9000/735 99 MHz cc 1.77 228 MBytes
HP 9000/735 99 MHz gcc 2.7.2 1.90 228 MBytes

Table 4.3: Comparative timings for 7,500 Word NAB for a word error rate of 13.4%.

Test environment

Using janus3.2-P000, a test on the 50 female NAB sentences was performed. The
test was using the Generalized-BBI algorithm, lookaheads, and frame-skipping for
best performance. The vocabulary was limited to 7,500 words to make sure the
program would �t completely into the main memory of all machines used without
swapping.
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The test was repeated four times in the same process to avoid distortions due to
swapping during the process startup. The presented times reect the user time with-
out startup as reported by the c routine times and veri�ed using the /usr/bin/time
command. The largest and smallest value of the four runs were removed before com-
puting the average over the remaining two runs. The deviations between any two
runs on the same machine were within a 3% margin.

Conclusion

The SPEC92fp benchmarks give little indication on how well JRTk will perform on a
machine. While the comparison between the HP machines and the Sun-Ultra turns
out just as expected from the SPEC92fp values, the timings for the Alpha processor
are surprisingly slow. One reason for this could be that the code is optimized
toward 32-bit operations while the Alpha architecture works most e�ciently for 64-
bit operations. Note also, that these experiments were performed for a recognition
system that relies heavily on oat operations and may not port at all to systems
that have been optimized for integer performance. The only reliable way to tell how
fast a given speech recognition system will run on a new platform, therefore, is to
try an actual recognition run.
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Chapter 5

Thesis Contributions

We are all agreed that your theory is crazy. The question which

divides us is whether it is crazy enough to have a chance of being

correct. My own feeling is that it is not crazy enough.

{ Niels Bohr

In this chapter three di�erent approaches to reduce the recognition e�ort are inves-
tigated. By combining the resulting algorithms, real-time performance for a 65,000
word NAB recognizer was achieved starting from an NAB evaluation system that
ran about 200 times slower.

First, search issues like the implementation of the tree search, pruning strategies, and ! 56

lookaheads will be addressed. The main idea behind the algorithms presented in this
�rst section is to reduce the recognition time by avoiding expensive computations
for part of the search dictionary. Some of the techniques described here, such as the
tree search, were already used to make the 200 RT evaluation system possible in the
�rst place.

The second section is about reducing the e�ort for the most expensive subtask in the ! 76

recognizer, namely the computation of the observation probabilities with mixtures
of Gaussians. Balancing the quality of the computed scores against the quantity
of scores that can be computed per second is an important issue in this section.
The most important algorithm presented in this section is the Big-Bucket-Box-
Intersection algorithm, that was found to be best suited to reduce the computation
e�ort while maintaining a high accuracy.

Finally, algorithms designed to avoid expensive computations that are not likely to ! 96

produce new information in stationary sections of the speech signal conclude the
chapter.

Since the three directions are su�ciently orthogonal to each other, the individual
gains add up to the total required speed-up. Each section builds on the previous
sections and shows the possible speed-ups based on the best system so far.

55
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5.1 Search

The multi-pass search algorithm used for this thesis is designed to work best for
the recognition of unrestricted continuous speech using large vocabularies between
2,000 and 65,000 words.

To capture coarticulation e�ects between words, the search has to allow for acoustic
models that depend on the previous or following word. The resulting problems
and solutions are briey described in the �rst part of this section, as they have an
important e�ect on the complexity of the recognition task.

The search itself is organized into two time synchronous forward passes. The output
of each pass is a backtrace, that can be used to restrict further passes, to build word
graphs, or to simply extract the best hypothesis. The �rst pass is a tree search
using an approximation to include trigram probabilities that is very similar to the
Delayed Bigrams described in the previous chapter. The second pass is a linear! 37

search that is primarily used to recover errors made because of the approximations
in the tree pass, but can also use more complex acoustic models.

After introducing the two search passes, the pruning mechanisms used in the �rst
search pass are presented along with some experiments on their respective bene-
�ts. The last two parts of this section describe the language model and acoustic
lookaheads.

5.1.1 Cross-Word Models

If the allophone to be used for a phoneme depends on the successor word, the actual
model cannot be determined before the identity of the successor word is known.

Unfortunately, before recognizing the successor word the current word has to be
recognized. One way out of this dilemma is to create copies of the current word for
each possible successor word, then recognize the successor word and only keep the
copies that were actually required. However, to identify the correct successor word,
it may theoretically be required to know the next word too.

Fortunately, it is usually safe to assume that the cross-word coarticulation is limited
to phonemes that are close to the word boundaries.

In JRTk, only the models for the �rst and last phoneme of a word can depend
on cross word contexts. Also, this context is limited to the last phoneme of the
predecessor word and the �rst phoneme of the successor word respectively.

To avoid a combinatorial explosion, di�erent techniques are used to manage left
contexts, right contexts, and single phone words.

Left Context

For cross-word dependent models, the allophones to be used for the �rst phoneme
in a word depend on the last phoneme of the predecessor word.
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Figure 5.1: context dependent modeling of the word he, only shown with 5 of the 50
possible context phonemes to each side. The words used in this example are would, must,
can, will, is and good, bad, sing, do, kill.
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Figure 5.2: Example for a multiplexed word-begin phoneme.

To determine the left context, the identity of the predecessor word is required. The
left context is modeled using the identity of the last phoneme of the best predecessor
word ending at this frame. For search passes that are using Delayed Bigrams, this
predecessor has to be picked without using any language model information.
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The identity of the best predecessor word can di�er from frame to frame. Since the
partial hypotheses for the di�erent states of a word-begin phoneme did not made the
transition into this word at the same frame, the states within one phoneme can have
di�erent predecessor words and use di�erent allophone models. Also, the allophone
model to be used for one state can change from frame to frame. In JRTk those
phonemes are multiplexed as follows: each state is modeled using the context that
corresponds to its best predecessor word. The sub-allophone used to model a state
in a word-begin phoneme therefore depends on previous decisions in the search.

Figure 5.2 shows how the multiplexed phoneme models work. In the example there
are three active word ends w1, w2 and w3 that have a similar cumulative score.
The sub-allophone used to model the states of the word-begin phoneme depends
on the predecessor word for this state. However, this solution is not exact: at
the time t the word w2 is not available as predecessor for state s3, since all legal
predecessor states use w1 as their best predecessor. If the best overall chain was
indeed s1(w2; t� 2); s2(w2; t� 1); s3(w2; t) it would be lost due to earlier decisions.

Right Context

Because most words can be pruned before the search reaches their last phoneme,
it is possible to make dedicated copies of the remaining word-end phonemes for all
possible right contexts. However, if the pruning thresholds are set to allow too many
word ends, and if the number of possible right contexts is large, the computational
e�ort for this approach can quickly dominate the time required for the recognition
process.

Single Phone Words

Which allophone to use for single-phone words depends on the last phoneme of
the predecessor word and on the �rst phoneme of the successor word. To avoid
the overhead for evaluating up to 2500 possible combinations, single-phone word
contexts are restricted to the predecessor word and use a multiplexed phoneme
model.

5.1.2 Tree Search

For the tree search, the lexicon is organized as an allophone-tree, or more precisely! 41

as a forest of allophone-trees. All phonemes that model the beginning of words
using the same allophone share the root of one of these trees. Trees built for con-
text dependent systems are much less compact than trees for context independent
systems. The context dependent NAB recognizer currently in use has over 1,000
root nodes, depending on the vocabulary size and the complexity of the acoustic
modeling, while context independent systems need only about 50 root nodes.
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The nodes further down the trees represent the allophones for the middle sections
of the words. The leaves of the tree correspond to the word-end phonemes.

At the transition from the word ends (the leaves of the trees) into a new word (a
root of a tree), the identity of the new word is not known. The transition is therefore
computed using the leaf with the best cumulative score so far as predecessor. The
only language model included at this point is the unigram lookahead. ! 69

Further down the tree, upon computing the transition into the last phoneme of the
word, the word identity is always known. At this point the best predecessor for the
current word given the trigram language model and the �xed entry point for this
word is determined.

As an additional approximation, it is assumed that the best predecessor word of
the predecessor word, w�2, is correct and independent of the current word. Then,
the best predecessor word for w0 is the w�1 that minimizes the sum

word-end-score(w�1(tbeg�1))� log(P (w0jw�1; w�2))
This predecessor word is used to compute the language model probability that re-
places the unigram lookahead at the transition into the last phoneme. This Delayed
Trigram approach is very similar to the Delayed Bigrams described in chapter 4.1.2. ! 37

However, it allows the use of some trigram information in the �rst search pass.

5.1.3 Linear Search

The linear search pas uses a normal, linear search lexicon. The search space is
restricted using information obtained from the backtrace of the previous search ! 28

pass, usually a tree search.

Based on the backtrace, a word list is built for each frame, containing all words that
will be allowed to start at that frame in the second pass. Each word that reached
its word end for longer than a given amount of frames in the �rst pass is considered
a good candidate and is allowed to start at the corresponding entry frame in the
second pass. Since it is known that the tree pass has introduced segmentation errors ! 37

into the search, the area where a word is allowed to start is expanded by a few frames
in either direction.

Figure 5.3 shows an example where the word has to reach the word end for a mini-
mum of two frames to be considered as candidate for the second pass. The startup
region is expanded by one frame in each direction1.

These word lists are used to limit the number of words that are considered for word
transitions in the linear search. Thus, the vocabulary at each frame is reduced
enough to make a linear search viable.

1More realistic values are 5 frames for the number of frames a word has to reach its word end
and a 15 frame error margin for the width of the start window.
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sorted by
begin-
frame 4: is, his, this

1: kiss

5: is

backtrace:

2 kiss

end-frame: ... 15 16 17 18 19

2 kiss
3 his

4 is

3 his
3 this

2 kiss

word list:

4 is
4 is
3 his

3 his

2: kiss, his, this

3 this

3: is, his, this, kiss

3 hiss

2 kiss 2 kiss

4 miss

Figure 5.3: A segment taken from a backtrace. To build the word list, the words from
the backtrace are examined and added to the word list of the corresponding entry frame
(shown to the left of the words). The words `hiss' and `miss' did not make it into the word
list because they only reached their word end for a single frame.

The linear search includes the language model information directly at the transition
into the new word, avoiding the segmentation errors the tree search may have made.
However, the best predecessor is still chosen assuming that the predecessor of the
predecessor depends only on the identity of the predecessor and not on the current
word (poor man's trigrams). This approximation is dropped for the language model
re-scoring of the word graphs.

Experiments

In these experiments, the linear search is used to repair the 12% relative error rate
increase introduced by using Delayed Trigrams instead of full trigrams in the tree
search. At high word accuracies, the maximum yield in word accuracy for the linear
pass therefore is 1.2% absolute. However, to catch all these errors, the required
computation time for the linear search pass alone is about 40% of the time required
for the tree search. As shown in �gure 5.4, the linear search should therefore only
be used in areas where the plot of the word accuracy over the runtime is already
rather at.

In the case of the NAB system with 65,000 words, the linear search pays o� only
for word accuracies over 87% and recognition times beyond 2.5 times real time. For
faster systems, a larger increase in word accuracy can always be obtained by relaxing
the pruning thresholds.

The combined search can also use a simpler acoustic model in the tree than in the
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Figure 5.4: tree and linear search versus tree search only.

linear pass. That way, the recognition time in the tree search goes down, and the
di�erence in word accuracy between the tree and linear passes increases. However, if
the tree uses a less accurate acoustic model, it is less e�ective in reducing the search
space for the linear pass. Preliminary experiments on such techniques did not yield
any improvements over using just the tree search for fast systems.

5.1.4 Pruning the Search Space

The default pruning paradigm in JRTk is a beam search, where the cumulative score ! 39

of the partial hypotheses is used to remove all partial hypotheses from the search
space that di�er by more than a threshold from the best partial hypothesis at the
time. These thresholds are also called beams.

An alternative approach is to restrict the search space to a maximum number of
active partial hypotheses, phonemes, or word ends. These pruning strategies are
especially useful to provide an upper bound to the total search e�ort.

Beams

In this thesis, up to �ve di�erent beams for the tree search, and four more for the
linear search were used. The main reason for the large number of beams is to provide
a platform to investigate whether di�erent pruning thresholds for di�erent points in ! 63

the search are useful.
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Figure 5.5: Use of di�erent beams in JRTk. The numbers in this �gure correspond to
the description in the text.

1. Pruning of roots and nodes:
If the best cumulative score of all partial hypotheses within a root or node
of the search tree exceeds the cumulative score of the best partial hypothesis
at the time by more than this beam, all states within this phoneme are set
inactive.

2. Transitions into nodes:
If the cumulative score for the partial hypothesis in the last state of a phoneme
exceeds the cumulative score of the best partial hypothesis at the time by
more than this beam, no transition from this state into the next phoneme is
considered.

3. Transitions into leaves:
If the cumulative score for the partial hypothesis in the last state of a model
that is succeeded by a leaf exceeds the cumulative score of the best partial
hypothesis by more than this beam, the transition into this leaf is not com-
puted. Otherwise, the transition is computed and if this transition activates a
formerly inactive leaf, all cross-word dependent copies of this leaf are allocated.

4. Word to Word Transitions:
If the cumulative score for the partial hypothesis in the last state of a leaf
exceeds the best cumulative score in all leaves by more than this beam, no
transitions (into roots) are computed from this state.

5. Pruning leaves in tree search:
If the best cumulative score of all states within one leaf exceeds the best
cumulative score in all leaves by more than this value, all states in this leaf are
deactivated. The reason why leaves are only compared to leaves in the tree
search that the language model penalty is added at the transition into the leaf.
Therefore, it is hard to compare the score in this model to the scores in the
states right before the transition. Since there are no such Delayed Bigrams in
the linear search, this beam is only used for the tree search.
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The large variety of pruning beams may appear confusing. However, for most cases
their individual settings have only little inuence on the total system performance ! 65

and a novice user can safely set them all to the same value.

Maximum Number of Active Word Ends

To use a limit for the number of active word ends is mostly a security feature: even
if all other beams are set to extremely large values, the maximum number of word
ends remains reasonable. For small beams, the number of actually active word ends
is still allowed to drop below this value. This pruning strategy avoids unwanted
growth of the search space for inputs that do not match the recognizers models well,
and limits the resulting recognition time.

Since the memory required to store the backtrace depends directly on the number of
word ends, limiting the maximum number of word ends also controls the maximum
amount of memory used per frame.

Even for a vocabulary size of 65,000 words, the maximum number of word ends can
be reduced to as little as 15 to 50 words without a signi�cant loss in word accuracy.

The biggest advantage of using the number of word ends rather than an absolute
score threshold is that this number does not depend on the size of the scores of
the acoustic modeling used. If a new acoustic model is to be used (e.g. with more
coe�cients per feature vector), these values do not need to be readjusted.

Using a constant rather than a maximum number of active word ends is not useful
to restrict the search space, since the number of required word ends varies within
a sentence and from sentence to sentence. Usually, the normal beams model these
changing requirements better than a constant number of hypotheses.

Maximum Number of active Phonemes

Similar to the maximum number of word ends, this measure limits the maximum
number of active phoneme models. Whenever a constant value of active phoneme
models is exceeded, all active phoneme models are sorted by the best cumulative
score in the model. All but a �xed number of models are then deactivated, leaving
only the best ones active. Again, this value is mostly independent of the actual
modeling used, and can serve as an emergency limit to avoid excessive search time.

Experiments

This chapter studies the e�ect of the settings of the experimental beams provided
by the JRTk search. ! 39

Four sets of experiments were performed:
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1. All pruning thresholds get the same setting.

2. All pruning thresholds get the same setting, and the maximum number of
active word ends is restricted.

3. The relative setting of the �ve thresholds in the tree search is adjusted using
values derived from a priori knowledge.

4. The relative setting of the same �ve thresholds is hand tuned on the test set
to estimate an upper limit for the gain using several beams.

One threshold
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Figure 5.6: Pruning with one threshold. The RT=0.74 WA=77.7 value corresponds
to a pruning threshold of 170. The RT=1.73 WA=88.0 value corresponds to a pruning
threshold of 230.

For this experiment, all thresholds are set to the same value, while all other prun-
ing mechanisms are disabled. A partial hypothesis that matches the current input
considerably worse than the currently best partial hypothesis for several phonemes
is not likely to lead to the globally best hypothesis. Therefore, the size of the single
pruning threshold should roughly correspond to the cumulative score over one to
two phonemes.

The average score per phoneme for the NAB system used for this experiment ranges
around 130. Therefore, useful values for pruning beams would be expected to lie
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between 130 and 260. Figure 5.6 illustrates how the word accuracy changes with
the recognition speed for di�erent values of the single pruning threshold.

Maximum number of active word ends

The required value for the maximum number of active word ends can be found on a
cross-validation set as follows: For all hypotheses produced for the cross-validation
set, the ranks of all word ends in the backtraces are determined. If only word ends
that have a higher rank are removed, the original hypotheses can still be found. But
for very few sentences, a value of 15 to 20 active word ends is su�ciently large.
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Figure 5.7: Pruning with one threshold and a limited number of active word ends.

Especially in systems that use conservative settings for the remaining beams, reduc-
ing the maximum number of active word ends yields considerable speed-ups. Figure
5.8 illustrates how using the number of active word ends to restrict the search space
puts an upper bound to the recognition time. This makes it easier to guarantee
that the response time of the system remains within the limits required for a given
application.

Five pruning thresholds

The following considerations went into the initial adjustment of the �ve pruning
thresholds relative to each other:



66 CHAPTER 5. THESIS CONTRIBUTIONS

0

5

10

15

20

25

30

35

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

pe
rc

en
t o

f 
te

st
ed

 s
en

te
nc

es

recognition time in times realtime

Runtime Distribution with Maximum Number of Word Ends

beam only
beam and word ends

Figure 5.8: Runtime distribution using a limited number of active word ends.

1. The more specialized a threshold is, the smaller it should be.

2. If the system commits a search error due to too small beams, the resulting
gain in computing time should be as large as possible. The more expensive
a step in the search is (cross-word polyphones with phoneme copies at word
ends), the more aggressively should the pruning try to minimize the number
of active states for this step.

Figure 5.9 shows that the word accuracy for a search that is pruning with �ve
thresholds is a little higher than for a search that is using a single threshold. These
�ve initial a priori pruning beams have been used for all NAB experiments presented
in other sections of this thesis to plot the word accuracy over the recognition time.

Manually tuned thresholds

To estimate an upper limit for the possible improvement of �ve beams versus one,
the relative setting of the beams was manually tuned on the test set. To that end,
the following procedure was carried out for each beam, beginning with the within
phoneme beam: the beam is set to a number of di�erent values, and for each of these
values the other beams are varied according to the settings in table 5.1. Whenever
better settings are found, the table is updated for the remaining experiments. Figure
5.10 shows the di�erence between the a priori and tuned versions of the beams.
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top b pb lpb wb lpab
faster .. ... ... ... ... ...
.. 16 160 150 140 140 135
.. 17 170 160 150 150 145
.. 18 180 170 160 160 155
.. 19 190 180 170 170 165
.. 20 200 190 180 180 175
.. 21 210 200 190 190 185
.. 22 220 210 200 200 195
.. 23 230 220 210 210 205
.. 24 240 230 220 220 215
.. 25 250 240 230 230 225

better .. ... ... ... ... ...

Table 5.1: initial pruning thresholds; top: Maximum number of active word ends; b:
Pruning within phonemes; pb: Pruning at phoneme transitions; lpb: Transition into
word-end phonemes; wb: Word transitions; lpab: Word-end phonemes among themselves.
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Figure 5.9: pruning using �ve a priori beams.

Number of active word ends: The word accuracy drops at settings of less than
10 active word ends. Larger settings lead to a higher recognition time for large
beams only. Limiting the number of active word ends also reduces the variance of
the recognition time for di�erent sentences.

Pruning of the last phonemes among themselves: The original values were a
little larger than required.
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Figure 5.10: Beams tuned on the test set versus a priori beams.

Other thresholds: All improvements seen in �gure 5.10 were due to the improved
settings of the maximum number of active word ends and the pruning of the last
phonemes among themselves. For the remaining beams the a priori values were
close to optimal.

Pruning thresholds: Summary

Fine tuning the relative settings of the pruning thresholds pays o� in areas where
the error rates are small and the pruning allows large gains in recognition time for
small losses in word accuracy. However, the yield of using �ve instead of one pruning
threshold is small: even at a high word accuracy of 88%, the maximum speed-up for
the 7,500 word NAB system is only around 12%. Fine tuning the thresholds should
therefore be the �nishing touch to a system.
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5.1.5 Unigram Lookaheads

When using a tree structured lexicon, the bigram information cannot be included ! 41

until after the word identity is known.

H A

E
1.0

1.0

P(have)+P(has)

P(have)+P(has)

P(has | he)

P(have | I)

S

V

P(have)+P(has)

he

I

?

Figure 5.11: An example for language model lookaheads for the transitions in a tree with
the words have and has. Until the bigram probability can be included, an approximation
of the unigram probability has to be used.

However, estimates for the unigram probability of the remaining subtree can be
calculated before reaching the �nal phoneme. They can be used to remove partial
hypotheses that combine a bad cumulative score with an unlikely list of possible
word ends as outlook.

In �gure 5.11 the unigram probability for the transition of going into either one
of the two words in the tree can be included the moment the transition into the
root of the tree is computed. The resulting combined score allows a more accurate
comparison to partial hypotheses in other tree roots. At the transition from the
phoneme H into the phoneme A the number of words in the remaining subtree is
still the same, so no further information can be provided. However at the transition
into the S of the word has the identity of the word is known. At this point the
best predecessor for the corresponding entry point is determined and the unigram
probability used so far is replaced by the bigram probability P (hasjhe).
This lookahead strategy has been previously published in
[Woszczyna and Finke, 1996, Steinbiss et al., 1994].

Experiments

Unlike the JRTk-driven experiments in the rest of this thesis, the results presented in
this section have been produced using an older NAB recognition system based on the
JANUS-2 code. The maximum word accuracy for the experiments in this section is
therefore considerably less than in the remaining sections. The Unigram-Lookaheads
evaluated here are now an integral part of the JRTk search engine.

Also, unlike in other sections of this thesis that always plot the word accuracy over
the recognition time in times real time, the graphs in this section show the word
accuracy over the number of computed observation probabilities used per frame.
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For JANUS-2, the number of score computations was roughly proportional to the
recognition time. It was chosen for these experiments because it is independent of
the computer used to perform the experiments.

Data points within one line show the pruning behavior for di�erent word-end thresh-
olds, graphs with the same type of marker di�er in the setting of the within-phoneme
pruning threshold.

Figure 5.13 illustrates the loss in word accuracy due to segmentation errors that has
already been described in chapter 4.1.2. Below a certain pruning threshold, these! 37

search errors introduced by the use of the Delayed Bigrams can no longer be repaired
by the second search pass.

Using Unigram Lookaheads, an estimate for the language model penalty is already
available at the beginning of the word, and this estimate is updated at each phoneme
transition. This reduces the risk of pruning the globally best hypothesis. As can be
seen in �gure 5.12, the word accuracy for smaller beams is considerably higher with
unigram lookaheads than without.
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Figure 5.12: Reduction of search errors using Unigram-Lookaheads on NAB after the �rst
search pass (tree search).

As an alternative approach, using the largest bigram probability instead of the
largest monogram probability has been tried. For each phoneme transition in the
tree, the largest bigram probability for all possible predecessor words and all words
remaining in the subtree is computed and used as an estimate for the expected
bigram probability. Though this procedure is considerably more complex than the
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Figure 5.13: Reduction of search errors using Unigram-Lookaheads on NAB after both
search passes (tree and linear search).

unigram lookahead, it failed to outperform the simpler approach and is therefore no
longer used.

5.1.6 Phoneme Lookaheads

One of the most important techniques in reducing the recognition e�ort is the use
of acoustic lookaheads at phoneme level. Their job is to predict at as little cost
as possible, how well each partial hypothesis will do in a couple of frames. This
estimated future score can be used to prune bad hypotheses before more costly
operations are computed for them.

For the transition from the end of one phoneme into the �rst state of a new phoneme
it is possible to predict how well this new phoneme will do over the next couple of
frames by using a simpler acoustic model for that phoneme. By combining the score
of the partial hypothesis prior to the transition and this lookahead score, a more
accurate comparison of this partial hypothesis to other hypotheses can be done to
decide whether or not this transition is worth trying.

Since even a tree search has many partial hypotheses that continue with the same
phoneme or monophone, using an acoustic lookahead for more aggressive pruning
can reduce the computational e�ort signi�cantly. In context dependent systems the
tree search can have over 1,000 root nodes which are hard to prune because in the
�rst states of a root node very little acoustic and language model information is
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available. Using acoustic lookaheads makes it possible to predict which of those
root nodes will be pruned within the next couple of frames and so avoid to activate
them in the �rst place. The e�ort of computing the scores for about 50 context
independent lookaheads is small compared to the e�ort of computing the scores for
the 1,000 context dependent root nodes.

In this thesis the usability of context independent hidden Markov models to estimate
acoustice lookahead scores was investigated, because this approach �ts well into the
framework of an HMM-based recognition system. For most HMM-based recognizers
a small context-independent system is built during the bootstrap process. This
system can be reused for the lookaheads, eliminating the need of training additional
models.

Another method of estimating lookahead scores is to use the output of a context-
independent neural net that takes a couple of frames as input and is trained to
predict which monophones are likely to start at a given point [Paschen, 1997].

Other information on phoneme-lookaheads and fast matches can be found in
[Kenny et al., 1993], [Garudadri et al., 1994], and [Ravishankar, 1996].

HMM-based Phoneme-Lookaheads

4 frames

ahead

J
A

N
A

J
E

N
E

N
A
J
A

= sum for pruningpartial hypothesis +

look-
a2
a1

next 4 frames

Figure 5.14: Phoneme lookaheads. In this example 6 partial hypotheses are candidates
for a phoneme transition at time t1. The sum of the cumulative score of each partial
hypothesis and the lookahead score of the next monophone (grey rectangles) is used to
decide which of these hypotheses should actually be considered for a transition.

For each phoneme transition, the sum of the score accumulated so far in the partial
hypotheses plus the estimated score for the next phoneme in the word is compared
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to a threshold. The transition is computed only if the sum is below the threshold.

A small context independent HMM with three states and a small number of Gaus-
sians is used to compute phoneme lookaheads. To quickly estimate the score over the
next couple of frames, a linear alignment is used rather than a Viterbi-alignment:
A typical lookahead for the next four frames (x1; x2; x3; x4) for the monophone A

(states A1; A2; A3) would be computed to:

lookahead(A; 4) = score(A1; x1) + score(A1; x2) +

score(A2; x3) + score(A2; x4) (5.1)

To make up for the di�erence in size and accuracy of the lookahead HMMs and the
full acoustic modeling, a multiplicative parameter  is used.

During the search, transitions from a last state of an allophone are only considered if
the cumulative score score(before transition) for the partial hypothesis in this state
is small enough:

score(before transition) < score(best partial hypothesis)

+ lookahead(A) +pruning threshold (5.2)

Experiments

The phoneme-lookaheads used for these experiments are small, context independent
hidden Markov models: using the labels of the best system at the time, a little
HMM with 16 Gaussians per codebook and one codebook for each of the 3 states of
the context independent monophones is trained. To avoid duplicate e�ort, exactly
the same preprocessing is used for the main and for the the lookahead acoustic.
However, the lookahead system only uses the �rst 16 coe�cients of each feature
vector.

The phoneme lookaheads reduce the number of active roots and nodes in the search
tree. If fewer roots and nodes are active, the number of computed observation
probabilities drops too, resulting in a considerable speed-up of the total system.

For these experiments with a four frame lookahead, a linear alignment between the
�rst two HMM states and the next four input vectors was chosen: the lookahead
score is the sum of the scores for the �rst state over the next two frames and the
scores for the second state over the two frames after that. Using all three states of
the lookahead HMM or using more complex alignment strategies did not yield any
improvements in preliminary experiments.

Figure 5.15 shows how the number of active nodes decreases for a given pruning
threshold. Even for very modest pruning thresholds that do not a�ect the recogni-
tion accuracy, the number of active normal nodes is reduced signi�cantly by using
phoneme lookaheads. The number of active root nodes is reduced by a factor of two.
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Figure 5.16: Phoneme-Lookaheads with di�erent lookahead weights.



5.1. SEARCH 75

Figure 5.16 shows how the recognition time for the same word accuracy can be
reduced with phoneme lookaheads for three di�erent lookahead weights. The exact
setting of the lookahead weight does not have a large impact on the performance
of the algorithm. The initial lookahead-factor of 5.0 was estimated by comparing
the average score per phoneme for the main acoustic model to the lookahead model.
Lookahead-factors larger than 7.0 lead to a signi�cant loss in word accuracy, while
for lookahead-factors smaller than 3.0 reduce the possible speed-up. Using phoneme
lookaheads, the recognition time for a recognizer using a 7,500 word vocabulary at
a given word accuracy is cut in half.
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Figure 5.17: NAB phoneme lookaheads using the full 65,000 word vocabulary.

Figure 5.17 shows the improvement for a single lookahead weight using the full 65,000
word vocabulary. Since the larger vocabulary adds more leafs than root nodes to
the search tree, and because leafs can be e�ciently pruned without lookaheads, the
relative speedup due to phoneme lookaheads is smaller for larger vocabularies.
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5.2 Observation Probabilities

The runtime pro�le in �gure 5.18 shows that the recognition time for the North-
American-Business-News recognizer is dominated by the computational e�ort for
evaluating the observation probabilities. Though the pro�le has been created using
a simpli�ed version of the score computation (nearest neighbor approximation),
it still takes 70% to 90% percent of the total recognition time depending on the
vocabulary size. This is why faster score computation algorithms play an important
role in this thesis.
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Figure 5.18: Runtime pro�le using the nearest neighbor approximation. Using the same
acoustic modeling, the relative e�ort for the search grows with the vocabulary size.

Most experiments in this chapter have been performed using the nearest neighbor
approximation and phoneme lookaheads. Each section in this chapter builds on
earlier sections, comparing the runtime behavior of new algorithms to the behavior
of the best approach so far. The following approaches will be presented in this
section:

Order of the Gaussians in the codebook: When using the nearest neighbor! 77

approximation, the computation of the Mahalanobis distance can often be aban-
doned after considering only a few coe�cients. If the Gaussian with the smallest
Mahalanobis distance to the input vector is used �rst, the computation for the sub-
sequent Gaussians can be interrupted earlier. It is therefore bene�cial to �rst try
the Gaussians that are more likely to be the nearest neighbor.

Removing unused Gaussians: If during the recognition phase a particular Gaus-! 78
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sian is hardly ever used as the nearest neighbor, it can be removed from the codebook
without inuencing the recognition result.

Reduced Dimensionality: The baseline system for the NAB experiments uses 48 ! 79

coe�cients per Gaussian. One approach to reducing the e�ort for �nding the nearest
neighbor is to only use the most important of these coe�cients.

Radial Covariances: Using radial rather than diagonal covariances saves one mul- ! 81

tiplication per coe�cient in the computation of each Mahalanobis distance.

Bucket Box Intersection: These experiments show that the new implantation ! 84

of the bucket-box-intersection algorithm outperforms all other methods tried in this
section, except for the Generalized-BBI.

Generalized-BBI: The Generalized-BBI is an extension of the BBI-algorithm ! 87

that has been developed by the author to compensate for problems that
arise when applying the BBI to systems with fully continuous HMMs. The
Generalized-BBI uses larger BBI-trees which can cover any number of codebooks
[Woszczyna and Fritsch, 1997].

5.2.1 Order and Importance of Gaussians

Order of the Gaussians

If the scoring algorithm only uses the distance to the nearest neighbor, the com-
putation for one Gaussian can be aborted if the distance over the �rst coe�cients
exceeds the distance to the nearest Gaussian so far. If the nearest Gaussian happens
to be the �rst in the codebook, subsequent computations will be aborted earlier.

The order of the Gaussians within the codebook is therefore important. There is a
long term and a short term optimum for this order:

1. The more frequently a Gaussian is the nearest Gaussian during the recognition
phase, the earlier it should be tried.

2. The nearest Gaussian in the previous frame is most likely to be the nearest
Gaussian in this frame, since the speech signal usually changes slowly.

To accommodate both requirements, the following algorithm was used to update the
order of the Gaussians in the codebook: for every score computation, the nearest
Gaussian is moved from whatever position it had in the codebook to the �rst po-
sition, satisfying the short term consideration. Moving the best vector to the �rst
position also performs a kind of speaker adaptation, moving the vectors required for
the current speaker to the front. The remaining Gaussians move down to �ll the
resulting gap. Frequently used Gaussians will thus remain among the �rst Gaussians
to be tried in the score computation. The overhead of this method is almost zero,
since the implementation of the score computation in the JRTk already uses a list
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containing the indices of the Gaussians to use in a score computation. The e�ort
of rearranging the indices in this list is very small compared to the actual score
computation.
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Figure 5.19: Reordered vectors

Figure 5.19 shows the speed-up due to using the resorted Gaussian list. Note that
keeping a counter for each Gaussian to order them by their actual frequency is not
only much more expensive but also less e�ective since the short term importance of
the Gaussians is neglected.

Removing Unused Gaussians

When using the nearest neighbor approximation, some of the Gaussians contribute
only rarely to the score computation. While completely removing those Gaussians
reduces the word accuracy, there is also a considerable speed-up. In this experiment
a Gaussian is removed from the codebook if it is used 100 times less frequently than
the most frequently used Gaussian of the same codebook.

Figure 5.20 shows the decrease in word accuracy and the increase in recognition
speed due to removing rare Gaussians.

5.2.2 Reduced Dimensionality

For some systems a linear discriminant analysis (LDA) has become an integral
part of the preprocessing. The goal of the LDA is to provide feature vectors with



5.2. OBSERVATION PROBABILITIES 79

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

0 1 2 3 4 5 6 7 8 9 10 11 12

w
or

d 
ac

cu
ra

cy

recognition time in times realtime

Removing unused Gaussians -- NAB with 7,500 words

sorted Gaussians
removing unused Gaussians

Figure 5.20: Removing rare Gaussians

unrelated coe�cients, which are sorted by variance. Coe�cients with a higher index
can be assumed to be less important for the recognition compared to coe�cients
with smaller indices.

It is therefore possible to use only a subset of the coe�cients to determine the nearest
neighbor, and then calculate the exact distance to this Gaussian over all coe�cients.

Experiments

The baseline system for the NAB experiments uses 48 coe�cients per Gaussian.
Due to the linear discriminant analysis in the preprocessing, the variance increases
with the order of the coe�cient. It can therefore be assumed that some of the higher
coe�cients contain mostly noise and contribute little to the choice of the nearest
vector.

The e�ort for retraining a new system with fewer coe�cients is usually too large.
Also, the absolute size of the scores depend on the number of coe�cients used.
Therefore, a reduced number of coe�cients is used only for the most costly step
in the score computation, namely the task of identifying the nearest neighbor. The
actual score is then computed using all 48 coe�cients, keeping the size and accuracy
of the scores comparable to the original system.

Figures 5.21 and 5.22 show the inuence of using 36 instead of 48 coe�cients on a
system with 7,500 and 65,000 words respectively.
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Figure 5.21: Using 36 instead of 48 Coe�cients to determine the nearest neighbor on
NAB with 7,500 words.

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

0 1 2 3 4 5 6 7 8 9 10 11 12

w
or

d 
ac

cu
ra

cy

recognition time in times realtime

36 versus 48 coefficients -- NAB with 65,000 words, unsorted Gaussians

48 coefficients
36 coefficients

Figure 5.22: Using 36 instead of 48 Coe�cients to determine the nearest neighbor on
NAB with 65,000 words.
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These experiments were performed before the introduction of the Generalized-BBI
algorithm. Using the Generalized-BBI algorithm, the number of Gaussians from
which the nearest neighbor has to be chosen is signi�cantly smaller. Therefore, the
speed-up when using a smaller number of coe�cients to determine this Gaussian is
insigni�cant when combined with the Generalized-BBI.

5.2.3 Radial Covariances

Using radial rather than diagonal covariances saves one multiplication per coe�cient
in the computation of each Mahalanobis distance. However, the resulting speed-up
on modern processors with several FPUs and long pipelines is much smaller than
expected. Also, the accuracy of the resulting scores is smaller, shifting the load from
the score computation to the search process. The remaining overall speed-up is not
signi�cant.

5.2.4 Low Level Optimizations

If an ine�cient implementation of an otherwise correct algorithm is considered a bug,
this paragraph is about workarounds for bugs. These bugs can often be considered
to be bugs in the c optimizer rather than in the implementation of the score com-
putation: depending on the compiler, the optimizer and the processor architecture,
measures like unrolling (SUN) or not unrolling (ALPHA) loops, using oats instead
of doubles (SUN) or doubles instead of oats (ALPHA) and slightly rearranging the
data structures can reduce the total runtime by 20% to 30%. Since attempts to work
around these optimizer problems seriously a�ect the readability and portability of
the resulting code they have been strictly limited to the innermost loops of the most
expensive routines. All experiments up to the section on BBI have been performed
without low level optimizations. Starting with the BBI section, these improvements
are always included.
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5.2.5 Bucket Box Intersection

The bucket-box-intersection (BBI) algorithm [Fritsch and Rogina, 1996] is a gen-
eralized version of the bucket-Voronoi-intersection algorithm [Fritsch et al., 1995]
[Ramasubramanian and Paliwal, 1992a].

Gaussian distribution with T=0.3
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Figure 5.23: Bucket Box Intersection: the Gaussian is cut o� at T=0.3; the rectangle
around the intersection of the Gaussian with the plane de�nes the border of the Gaussian
box.

For each codebook vector, a rectangular box is de�ned around the ellipsoid where
the value of its Gaussian distribution falls below a threshold T (�gure 5.23). If
the input vector x does not fall into the Gaussian box of a codebook vector, this
codebook vector can be ignored when computing the observation probability for x.
The maximum error of this approximation is given by the value of T.

To quickly eliminate Gaussian boxes that do not contain an input vector, the BBI
uses a pre-computed binary decision tree over each codebook to dynamically deter-
mine the subset of Gaussians to be used in the score computation. This tree is a K-
dimensional space partitioning tree (K-d tree) developed by Bentley [Bentley, 1975]
is used. Each question of the decision represents a hyper-plane in K-dimensional
space perpendicular to one axis. Such a hyper-plane can be described by the inter-
cept of the hyper-plane with this axis. If the input vector lies to one side of the
hyper-plane, then it cannot fall into any Gaussian boxes that are completely on the
other side of this hyper-plane.
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Figure 5.24: Bucket Box Intersection example in two-dimensional space.
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Figure 5.25: Bucket-Box-Intersection tree.

The BBI-trees for a speech recognition system (one per codebook) are pre-computed
after the training of the recognizer. At the beginning of the tree building algorithm
there are no deviding hyper-planes and the Gaussians of all vectors share one node.
The next step is to �nd the optimum hyper-plane to split this node. For each axis
an experimental hyper-plane is determined perpendicular to the axis such that the
same number of Gaussians in the node are on either side of the hyper-plane. Of
those hyper-planes, the one that intersects with the fewest Gaussian boxes is then
chosen to divide this node. Gaussian boxes to one side of the hyper-plane go into one
node, Gaussian boxes on the other side of the hyper-plane into the other node, and
Gaussian boxes that intersect the hyper-plane go into both nodes. This procedure
is repeated until a prede�ned tree depth is reached. The �nal nodes that contain
one or several Gaussians each are called buckets.

While this algorithm does not produce an optimal tree with respect to the test
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situation,2 the resulting tree is well balanced and can be built within less than one
hour based on the systems codebooks only.

The BBI algorithm yields the best improvement for systems that have few but large
codebooks and is therefore especially well suited for semi-continuous HMMs.! 23

Experiments

The experiments in this section have been performed after the introduction and
preliminary experiments for the Generalized-BBI. The original intent of the ex-! 87

periments was to show the bene�ts of the Generalized-BBI over the normal BBI
presented here. Therefore, the phoneme-lookaheads used in this section are already
computed using a single Generalized-BBI tree. Since the overall contribution of the
scores for the lookaheads to the computational load is low, this has little impact on
the total computation time.
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Figure 5.26: Normal BBI

Figure 5.26 shows that using normal BBI with one small BBI tree for each of the
3,000 codebooks of the system results in a 20% speed-up over a system using the
fastest score computation method so far. The experiment was performed using a tree
depth of 6, which was found to be optimal for a cross-validation set. The Gaussian
boxes were chosen to intersect the Gaussians at 50% of their maximum value. The
BBI was used in conjunction with the Nearest Neighbor Approximation, using only! 45

2An optimal BBI-tree would be tuned to on average return buckets with as few Gaussians as
possible during a normal recognition run.
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the Gaussian in the selected BBI bucket that has the smallestMahalanobis distance
to the input vector to estimate the observation probabilities.
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Figure 5.27: Di�erent buckets of the BBI tree contain di�erent numbers of Gaussians.
This plot shows the percentage of observation probabilities that are estimated using a
bucket that contains a given number of Gaussians.

How the BBI-speed-up is achieved is illustrated in �gure 5.27: since the average
number of Gaussians in the selected BBI-bucket for a corresponding codebook is
about ten, the average number of Mahalanobis distances to be computed drops from
32 to 10.

BBI-Summary

By combining the di�erent techniques to speed up the score computation within
each codebook (nearest neighbor approximation, code optimizing, BBI), the total
recognition time can be reduced by a factor of four.

Figures 5.28 and 5.29 show the respective improvements for a 7,500 word vocabulary
and a 65,000 word vocabulary.
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Figure 5.28: Recognition time with/without combined improvements on NAB with 7,500
words in the vocabulary.
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Figure 5.29: Recognition time with/without combined improvements on NAB 65,000
words
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5.2.6 Generalized-BBI

Most of the large vocabulary continuous speech recognition systems built with the
JRTk use thousands of small codebooks to model the sub-allophones. For this
con�guration, the Bucket-Box-Intersection algorithm is not well suited because the ! 82

number of Gaussians over which each binary tree can be built is very small.
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Figure 5.30: Runtime pro�le with normal BBI

As can be seen in �gure 5.30, even with a combination of the BBI algorithm and the
Nearest Neighbor Approximation, the score computation still requires a signi�cant
portion of the total CPU-time for the NAB system used.

The average number of scores computed per frame is about 200 to 400, but only
one of these scores contributes to the globally best hypothesis. Most of the score
computations are for allophones that are not closely related to the signal observed at
the moment. The distance from the input vector to all Gaussians in the codebooks
associated with these allophones is usually large. Therefore, the score for these
allophones is not likely to contribute to the best hypotheses and the inuence of the
correct choice of the codebook vectors used for these score computations is small.

To take advantage of this, for the Generalized-BBI algorithm
[Woszczyna and Fritsch, 1997] larger BBI trees are used, which can cover any
number of codebooks. In the most common con�guration, a single Generalized-BBI
tree is built over the Gaussians of all codebooks (Big-BBI). To estimate the
observation probability for an allophone that is modeled by a codebook which is
not represented by a Gaussian in the bucket associated with the input vector, a
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back-o� strategy has to be used. In this case all Gaussians of this codebook have a
large distance to the current input vector.

For the initial experiments, the Gaussian in the codebook that got the most training
was chosen as a back-o�. Also, for non-back-o� score computations, all Gaussians in
the bucket were initially used to estimate the observation probabilities. Later in this
chapter it will be shown how the performance of the Generalized-BBI can be im-
proved by combining the Generalized-BBI with the Nearest Neighbor Approximation
and by using more sophisticated back-o� strategies.

Generalized-BBI with all Gaussians
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Figure 5.31: Big-BBI using all Gaussians on NAB with 7500 words

Figure 5.31 shows that though there is a pronounced loss in word accuracy, the
Generalized-BBI also allows a higher recognition speed compared to the best system
so far.3

Figure 5.32 illustrates the di�erence in the speed-up mechanismbetween the BBI and
the Generalized-BBI algorithm: Using the BBI algorithm the speed-up is achieved
by a uniform reduction of the number of Gaussians per score call over all codebooks
(�gure 5.27) regardless of the distance of the codebook to the input vector. For! 85

3These results should not be compared to the BBI-system presented in the previous section,
because they have been produced without the Nearest Neighbor Approximation and using an older
code version. A comparison between Big-BBI and normal BBI is shown in �gure 5.38.
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Figure 5.32: Distribution of the score calls over the number of Gaussians in the selected
Generalized-BBI bucket.

the Generalized-BBI algorithm, the scores for most codebooks are estimated using
a back-o� value or a single Gaussian of that codebook, while the scores for the few
codebooks that are close to the input vector are computed accurately with many
Gaussians.

As can be seen in �gure 5.32, the total number of Mahalanobis distances computed
for the above experiment is largest for the buckets containing two or more Gaussians.
This is because for a bucket with two Gaussians, two distances need to be computed,
and for a bucket with 32 Gaussians, 32 distances are required. It should therefore be
possible to obtain an additional speed up by combining the Generalized-BBI with
the Nearest Neighbor Approximation to reduce the computational e�ort in buckets
with large numbers of Gaussians.

One of the next questions that needs to be answered is whether the loss in word
accuracy is due to a poor choice of the Generalized-BBI Gaussians, or due to a poor
estimation of the back-o� Gaussians.

For more than 50 percent of all score calls a back-o� Gaussian (0 Gaussians in
bucket) is used. This is not unexpected, since most of the 200 score calls for a given
frame are for partial hypotheses that do not match the current acoustics, and will
be pruned away later on; many of the corresponding codebooks do not overlap with
the bucket box interval selected by the input vector. Since the back-o� score calls
are frequent, a good estimation of the back-o� values is important because they
contribute signi�cantly to the structure of the search space.
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Generalized-BBI with Nearest Neighbor Approximation

To combine the Generalized-BBI with the Nearest Neighbor Approximation, from all
Gaussians in the Generalized-BBI bucket only the one Gaussian with the smallest
Mahalanobis distance to the input vector is used for the actual score computation.
As shown in �gure 5.33 the Nearest Neighbor Approximation can be combined suc-
cessfully with the Generalized-BBI.
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Figure 5.33: Generalized-BBI using the Nearest Neighbor Approximation

Generalized-BBI using Better Back-O�s

The original choice of the backo� vector for a codebook was completely independent
of the current input vector. A better approximation makes the choice of the backo�
vector dependent on the input vector, by having one backo� vector per codebook
for each BBI bucket.

For this experiment, the Gaussian of the codebook that has the smallest distance
to a bucket is included in that bucket. The metric used to measure the distance is
the Euclidean distance between the Gaussian box of the Gaussian and the border of
the bucket. By doing this for each codebook bucket combination, the back-o� case
is eliminated in the score computation.

As shown in �gure 5.34, the better back-o�s increase the word accuracy substantially.
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Figure 5.34: Generalized-BBI (one Big-BBI tree) with back-o�s

Alternative back-o� strategies

Since these initial results on improved back-o� strategies for the Generalized-BBI
are very encouraging, there is still ongoing research to �nd even better back-o�
strategies.

bucket with sample
data points

E

M

Figure 5.35: Generalized-BBI: backo� strategies

The following strategies are being explored:

1. From all Gaussians in the codebook, use the one that saw most training data.
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Using this technique the resulting word accuracies are substantially smaller
than the ones of the baseline system without Generalized-BBI.

2. From all Gaussians in the codebook, use the Gaussian that has the smallest
Mahalanobis distance to the border of the selected bucket. In the example in
�gure 5.35 this algorithm would select the Gaussian marked M. The advantage
over the �rst method is that the choice of the back-o� vector depends on the
selected bucket. Since the Mahalanobis distance to the border of a bucket is of-
ten only de�ned in one dimension, the choice of the back-o� Gaussian depends
mostly on the value of the covariance matrix for this direction. Experiments
have shown that this method does not work signi�cantly better than the �rst
method.

3. From all Gaussians in the codebook, use the one that has the smallest Eu-
clidean distance between the border of the associated Gaussian box and the
border of the bucket. In the example in 5.35 this algorithm would select the
Gaussian marked E. While lacking a mathematical foundation, this method
was found to work substantially better than the �rst two approaches and is
currently implemented as the standard back-o� strategy.

4. Instead of the Euclidean distance to the Gaussian box, a Gaussian representing
the average of all Gaussians falling into the bucket is computed. To determine
the back-o� Gaussian, the Mahalanobis-distance to this average Gaussian is
used.

5. The back-o� vector can be estimated with either of the last two methods, but
if the distance of the selected Gaussian to the bucket exceeds a threshold,
a constant back-o� score depending only on the codebook and the selected
bucket is used instead. As the distances to input vectors that fall into remote
buckets tend to be error prone, the hope is to obtain a small speed-up combined
with a more robust score estimation.

While some back-o� strategies may seem intuitive in a two dimensional picture,
the behavior in a 48-dimensional feature space partitioned by a BBI tree with a
maximum depth of 10 is not easily predictable.
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Generalized-BBI Parameters

For BBI and Generalized-BBI trees alike, two parameters have to be adjusted: the
depth of the BBI-tree and the threshold  for the Gaussian boxes.
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Figure 5.36: Generalized-BBI: depth of the BBI tree

Figures 5.36 and 5.37 give the word accuracy over the recognition time for a number
of Generalized-BBI trees of di�erent depths and thresholds.4

For smaller values of , the Gaussian boxes are larger. This means more boxes inter-
sect with a bucket, and while the computational e�ort goes up, the word accuracy
increases along with the accuracy of the probability estimation.

Deeper Generalized-BBI trees result in smaller buckets containing fewer Gaussians.
While the recognition time goes down, the size of the tree grows. Since each bucket
must contain at least one back-o� Gaussian for each of the 3,000 codebooks, the size
of the BBI-trees quickly becomes prohibitive beyond a tree depth of 10.

While it is also possible to build BBI trees over any combinations of codebooks,
such as using one tree for all codebooks of one monophone, no further speed-ups
or improvements could be achieved so far over just using one big BBI tree over all
codebooks (Big-BBI).

4Note that the increase in speed over the results in �gure 5.34 has two reasons: since the �rst
results on Generalized-BBI were very encouraging, the preliminary implementation was replaced
by a better and more e�cient implementation. Also, the Generalized-BBI algorithm is now used
for the codebooks of the phoneme lookahead models too.
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Figure 5.37: Generalized-BBI: threshold 

depth  Gaussians/bucket Size (MBytes) RT (WA=80)

6 0.30 13.5 % 4.3 1.65
8 0.30 8.5 % 12.6 1.45
10 0.30 5.7 % 40.8 1.30
6 0.50 9.2 % 3.3 1.50
8 0.50 5.0 % 9.7 1.30
10 0.50 2.9 % 31.7 1.20
6 0.80 4.8 % 2.4 1.30
8 0.80 2.0 % 7.3 1.30
10 0.80 0.9 % 25.7 1.25

Table 5.2: Comparison of di�erent Generalized-BBI trees

Generalized-BBI Summary

For a vocabulary of 7,500 words, using Generalized-BBI instead of normal BBI
reduced the recognition time by 35% from 1.9*RT to 1.2*RT at a word accuracy of
80%.

The e�ort to add the Generalized-BBI to an existing system is very small: the only
thing that has to be done is the computation of the Generalized-BBI tree, which
takes about one hour on the SUN-Ultra used for these experiments.
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Figure 5.38: Generalized-BBI versus BBI for NAB with 7,500 words
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Figure 5.39: Generalized-BBI versus BBI for NAB with 65,000 words
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5.3 Skipping Input Frames

Even for systems that use the Generalized-BBI algorithm, more than half of the
total CPU-time is still used for score computation in the case of the 7,500 word
recognizer, and more than 40% in the case of the 65,000 word recognizer.

The original intent of the experiments in this section was to reduce the number of
score calls by skipping the computations for some input frames. However, as the
second part of the section shows, is more e�cient to skip whole input frames rather
than only score computations.
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Figure 5.40: Runtime Pro�le using Generalized-BBI

5.3.1 Skipping Score Computations

Since at a frame rate of 100 frames per second speech is a slowly changing signal,
the observation probabilities do not usually change dramatically from one frame to
the next. Also, there is no faster way to compute a score than to assume it has not
changed, and not compute it at all. If high recognition speeds are required, the error
introduced by this approximation can be recovered by using wider beams. For the
experiment in this section, the score computations were skipped every other frame,
independent of the dynamic behavior of the input signal.

Figure 5.41 shows that the speed-up for the 7,500 word vocabulary is around 20%.
The maximum word accuracy at large beams is reduced to below 88%.
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Figure 5.41: Skipping score computations, 50 recordings with 95% con�dence intervals.
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Figure 5.42: Skipping score computations for NAB with 65,000 words
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5.3.2 Reducing the Frame Rate

If computing the scores only every other frame still produces a reasonable recog-
nition output, it is worth trying to completely skip every other frame during the
preprocessing. The following issues need to be considered:

� To avoid retraining, the input vectors must still match the Gaussians in the
codebooks. Smoothing or deviations in delta-computations of the preprocess-
ing should be avoided.

� The topology of the phoneme-models should be extended by allowing longer
skip transitions to compensate for the compressed time-axis in the Viterbi
algorithm.

� While the number of acoustic scores per sentence is cut in half, the number of
word transitions remains the same. Instead of adjusting the language model
parameters, it is possible to scale the acoustic scores to compensate for this.

� Lookahead weights and other frame-rate related parameters have to be ad-
justed.
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Figure 5.43: 50 versus 100 frames per second. Parts of the plots for 50 fps have been
recomputed using a slightly di�erent hardware con�guration to verify the results. However,
the deviations are very small.
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Figure 5.43 shows that reducing the number of frames per second yields a consid-
erable speed-up. What is not shown in this plot is that the maximum achievable
word accuracy drops to 87%. This method should therefore only be used if very
high recognition speeds are required.

However, using the frame skipping, a recognition with a vocabulary of 65,000 words
is now possible in real time, at an error rate of only 18.5%.

5.3.3 Conditional Frame Skipping

One of the drawbacks of the frame skipping technique described earlier in this section
is that for rapid speech the error rate increases can be prohibitive, especially if the
concept is extended from skipping only every other frame to skipping up to two out
of three frames.

Two considerations go into the estimation of the number of frames to be skipped:

� If the signal remains static for the next couple of frames, the exact behavior
for the next frame compared to the current frame may be less important than
if the signal is about to change.

� If the recognition process is expensive at the current frame, that is if a large
number of states is active, skipping the next frame yields a larger speed-up
compared to simple sections of the speech signal, where only few states are
active.

To estimate whether the signal is static with respect to the acoustic models, the
output of the HMMs for the lookaheads can be used: Computing the observation
probabilities f(xjs) for these models is fast enough to be performed for every input
frame x and every state s of the lookahead HMM model. The Euclidean distance
between the vectors of these scores for the next two frames is used to determine
whether or not the signal is currently changing:

D(x) =
SX
s=0

(f(x+ 1js)� f(xjs))2 (5.3)

To normalize this value, the current distance is divided by the maximum distance
observed up to the current frame in the test set:

Dnorm(x) =
D(x)

max0�i�xD(i)
(5.4)

For the presented experiment on conditional frame skipping, the normalized score
vector distance was used as follows:

0:0 < Dnorm(x) � 0:3 : xnext = x+ 3; (skip two frames)

0:3 < Dnorm(x) � 0:6 : xnext = x+ 2; (skip one frame)

0:6 < Dnorm(x) � 1:0 : xnext = x+ 1; (skip no frames)

(5.5)
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Figure 5.44: Results for the conditional frame skipping on NAB using a 65,000 word
vocabulary. Unlike in the previous experiments on frame skipping, the lookahead scores
are now computed for every frame.

Figure 5.44 shows the results for this experiment: while skipping two out of tree
frames yields a faster recognition than skipping one out of two frames, the word ac-
curacy is also smaller. Using the conditional frame skipping, the loss is considerably
smaller. Note that the conditional frame skipping only appears to be faster than
always skipping two out of three frames: if the points corresponding to the same
beam setting are compared, the conditional skipping is a little slower. However,
the corresponding word accuracy is up to 4% better when compared to the simpler
approach.



Chapter 6

Application Oriented Issues

This chapter gives additional information about some speci�c application oriented
issues of the algorithms introduced in this thesis. Since most experiments during
the development of the algorithms were performed o�-line and from pre-recorded
data, they do not capture possible e�ects to systems with actual users and limited
per sentence response time.

The �rst section illustrates how the algorithms presented in this thesis performed ! 101

when applied to new tasks. As a �rst portability test, all methods were tried on the
subset for male speakers, mostly to check against possible tuning to the test set. For
further portability studies, the system used for the German Spontaneous Scheduling
Task (GSST) is presented in more detail.

The second section addresses the issue whether robustness of the recognizer to- ! 105

wards noise and foreign accents su�ered by the introduction of the new algorithms.
However, since no e�ort had previously been made to increase robustness for the
particular setup used as baseline in this thesis, many results are not conclusive and
may not generalize to other setups. To reduce the lack of robustness in the baseline
recognizer would have been beyond the scope of this thesis.

The third section explains how a system using all of the new algorithms can still ! 107

be fully pipelined, allowing recognition output before the end of the utterance has
been detected.

Finally, an simple application demonstrator that successfully integrates all of the ! 108

above techniques is described.

6.1 Portability

Many of the presented algorithms that have been developed on the subset for female
speakers of the NAB dictation task been ported to a variety of di�erent tasks. As a
�rst portability test, all methods were tried on the subset for male speakers, mostly
to check against possible tuning to the test set.

101
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The Generalized-BBI algorithm, the unigram and phoneme lookaheads, and the
general knowledge about pruning behavior were also successfully applied to build
faster recognizers for the German, English, and Japanese spontaneous scheduling
tasks as part of the VerbMobil project, and for a Japanese dictation system.

The system used for the German Spontaneous Scheduling Task (GSST) is presented
in more detail to show the algorithms ported to new tasks.

NAB for male speakers

But for a few exceptions, the experiments in chapters 4 and 5 have been performed
on a subset of the NAB evaluation data that contains only female speakers. Making
so many decisions on a limited set of data quickly leads to algorithms that will
not work well for other data. To be certain this did not happen here, the most
important techniques, like the setting of the pruning thresholds, the unigram and
phoneme lookaheads, the use of the Generalized-BBI algorithm with the Nearest
Neighbor Approximation and the skipping of score computations1 were reused for
the male system without adapting or tuning any parameters. The only di�erence
when compared to the system used on the sentences by female speakers was the use
of the appropriate codebooks and weights for the gender dependent recognizer. Also,
a new Generalized-BBI tree had to be computed for use with the male codebooks.
The lookahead system is gender independent and was reused without any change.

Figures 6.1 and 6.2 show that porting the algorithms that have been developed and
tested for the female subset of the NAB data to the male subset yield satisfactory
results without adjusting any parameters.

German Spontaneous Scheduling Task (GSST)

The spontaneous speech used for this test contains transcribed human-to-human
dialogues, mostly taken from the VerbMobil project.

The acoustic variability in the spontaneous data is higher, making the recognition
task harder. However, since the scenario is limited to scheduling dialogues only, the
task is covered well by the statistical language model and the out of vocabulary rate
is low for a vocabulary of only 5,500 words.

All techniques used for the NAB system were successfully ported to GSST, and some
of them were used for the integration of the 1997 VerbMobil prototype.

This faster system was based on the recognizer used for the 1996 VerbMobil evalua-
tion. The gender independent evaluation recognizer had 2500 codebooks, each with
32 Gaussians in 32 dimensional space. Over those codebooks, 10,000 weights were
used to model further allophones. To reduce the speaker to speaker variations, a

1Skipping whole frames was not tried until after the experiments for this section.
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Figure 6.1: The male and female NAB systems for a 7,500 word vocabulary behave very
similarly.
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Figure 6.2: Using the vocabulary size of 65,000 words the male system (unseen data) and
the female system used to develop the algorithms still behave the same.
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vocal tract length normalization (VTLN) was used. The required warping factor for
this algorithm was determined using the output of a preliminary recognition run.

The total recognition process for one sentence was divided into 7 to 8 steps:

1. Tree search using a neutral VTLN parameter

2. Linear search using a neutral VTLN parameter

3. Re-scoring the word graph using a trigram language model

4. Forced Alignment of the resulting hypothesis to determine a better VTLN
parameter

5. Tree search using the new VTLN parameter

6. Linear search using the new VTLN parameter

7. Re-scoring the new word graph using a trigram language model

8. Optional speaker and channel adaptation

RT WA
Evaluation system without adaptation or adjudication 200 84.9
Using 2500 instead of 10,000 weight sets 70.5 84.9
Nearest Neighbor Approximation 32.0 84.4
Generalized-BBI 17.0 83.6
VTLN between tree and linear search only 10.3 83.1
3-state phoneme model instead of 6-state 8.2 83.1
Phoneme lookaheads 7.3 82.8
Retraining without any VTLN 5.3 81.9
Generalized-BBI for lookaheads, improved pruning 4.3 81.5
Tree search only, no linear search 2.3 80.0

Table 6.1: Speeding up the VerbMobil-recognizer for the 1997 integration.

Figure 6.3 compares the Generalized-BBI system used for integration into the 1997
prototype to several alternative algorithms to compute the observation probabilities.
The Generalized-BBI and BBI trees were chosen after some testing on a cross-
validation set and have a depth of 4 for the 2,500 BBI trees and a depth of 8 for the
one Generalized-BBI tree.

Also shown is the pruning behavior for the Generalized-BBI system with a frame
rate of 50 instead of 100 frames per second. This system was not used for the
integration because it does not reach the required minimum word accuracy of 80%.
Reducing the global frame rate on a recognizer for spontaneous speech is dangerous
because of frequent sections with rapid speech.
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Figure 6.3: The integrated system using Generalized-BBI in comparison to 1) the same
system with frame skipping and 2) to a system with normal BBI only and �nally 3) to a
system using only the Nearest Neighbor Approximation.

The requirements for the integrated system, namely to achieve a minimum word
accuracy of 80% at a recognition time of less than 3 RT was met by porting the
algorithms developed in this thesis to the new task.

6.2 Robustness

Usually, the robustness of a recognizer is reduced if small pruning thresholds are
used. If the speech signal used to test the recognizer deviates from the training con-
ditions by new background noises, dialects or foreign accents, or by using a di�erent
microphone, the word accuracy for a recognizer with tight pruning thresholds will
su�er more than the accuracy of a system with large beams.

This is not necessarily the case for the other methods presented here to reduce the
recognition time. Phoneme lookaheads use small acoustic models, that are less likely
to be over-specialized than the big models of the main acoustic and might even
improve the recognition results.

To �nd out to what degree the recognizers robustness was a�ected by increasing
the recognition speed, a number of experiments has been performed on data that
deviates signi�cantly from the training conditions of the recognizer. Using the eval-
uation data of the spoke conditions for the 1994 NAB evaluation, tests were run on
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speech with foreign accents (S3) and low quality microphones (S5).

The o�cial language model for this test would have used a closed 5,500 word vo-
cabulary. However, as the goal of these experiments is to compare the recognition
under adverse conditions to the clean speech results presented in earlier sections,
they were run reusing the same language model and vocabulary as the clean speech
experiments. The resulting vocabulary size and perplexity is larger compared to the
o�cial evaluation conditions. The presented error rates should not be compared to
those published in [ARPA Workshop, 1995].

For the s3-tests on foreign accent speech, 111 sentences were chosen randomly from
the original test set so that each of the 10 speakers is equally represented. The native
languages for the 10 speakers are British English, Mandarin Chinese, Norwegian,
German, Japanese, Indian, Croatian, Mexican Spanish, Hebrew and French.

For the S5-tests on di�erent microphones, 127 recordings were chosen randomly
from the original test set, with an equal representation of all 20 speakers and all 10
microphones. Two of the 10 microphones are dynamic microphones, the remaining
eight use a condenser system. No headset mounted microphone was used in the
recordings of this test set. All training data used for the NAB recognizer was
recorded using a dynamic headset mounted microphone (Sennheiser HMD 410).

Test set Subset WE baseline WE fast recognizer

NAB-94 normal female 8.9 % 12.7 %
NAB-94 normal male 9.2 % 13.3 %
NAB-94 accent female 34.4 % (*3.9) 47.7 % (*3.8)
NAB-94 accent male 21.9 % (*2.4) 30.3 % (*2.3)
NAB-94 micro. female 15.0 % (*1.7) 26.7 % (*2.1)
NAB-94 micro. male 21.1 % (*2.3) 35.2 % (*2.6)

Table 6.2: Robustness of the fast versus the baseline recognizer. The factor given in
parentheses speci�es the error rate increase over the clean speech experiment. Since no
measures were taken to improve the robustness of the baseline system, the signi�cance of
these results is very low.

Table 6.2 lists the results for the NAB baseline system and the fast recognizer on
a 7,500 word vocabulary. The error rates for the fast recognizer were taken at two
times real time, assuming that for adverse conditions run times slower than real-
time are acceptable. This system is still using tight beams that lead to a slight
performance loss for bad acoustics.

The error rates for the baseline system were obtained using the settings that yield
the best results for clean speech. They still include a phoneme lookahead which
does not a�ect the word accuracy at the conservative beams settings used. The
recognition times for this system are at about 90 to 100 times real-time (200 RT
without lookaheads).
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Since the baseline system has been tuned to perform well on the very clean data
of the main evaluation test set, and since no attempt was made to increase the
robustness of the system, the loss of performance for adverse conditions is dramatic
but not surprising. Unfortunately, this also considerably reduces the signi�cance
of the experimental results presented in this chapter. Adding preemphasis to the
preprocessing and using Mel-cepstrum coe�cients rather than Mel-scale coe�cients,
speaker adaptation, and adding VTLN as well as noisy training data to train a
smaller system, all of these are only a few of the many steps that need to be taken
to solve this problem. As this experiment was about comparing the fast to the
baseline recognizer, and not on how to improve the baseline robustness, these steps
would have gone far beyond the topic of this thesis.

However, recent results [Kubala et al., 1997c] on the 1996 DARPA Hub-4 Evaluation ! 116

on broadcast news show that the possibilities for improvements on speech of foreign
speakers are somewhat limited: while the reported recognition rates on clean speech
by American speakers are 14.9% without and 13.5% using speaker adaptation, the
corresponding values for foreign speakers are 26.4% without and 23.2% with speaker
adaptation.

6.3 Pipelining

While the speaker is still speaking, the recognizer can perform useful tasks such as
preprocessing, computing observation probabilities, and search. The earlier the user
gets feedback from the system, the better he can judge whether the recognizer is
performing as expected. If the system has been designed to allow pipelining, and if
the recognizer performs well enough under real-time constraints, the response time
of the resulting system depends only on the small, constant delays introduced during
the pipelining.

If any recognition output is to be produced before the speech input is over, al-
gorithms that require all of the utterance can not be used in the process. One
algorithm that has to be modi�ed for pipelining is the normalization in the prepro-
cessing, which uses the value of the highest amplitude in the utterance or a mean
over all frames in the utterance. Long range language models and forward backward
search strategies can also cause problems.

Such maximum and mean values have to be computed as running means over a
window that only requires a small number of frames beyond the point for which the
preprocessing output is computed. If the search strategy disagrees with a run-on
implementation, it is often possible to create a preliminary output with a search
that can be pipelined, and then update that output with all available information
at the end of the utterance.

However, if the system has not been planned and trained to run in a pipelined
fashion, the approximations introduced to this end can reduce the performance of
the system in terms of speed and word accuracy.
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The only restrictions that the fast NAB system imposes on the pipelining of the
recognition process are as follows

� The phoneme lookaheads need up to �ve frames of speech beyond the point
examined by the search. These �ve frames correspond to less than a tenth of a
second of speech data. Therefore, any delay caused by the lookaheads will be
on the order of a tenth of a second, which is insigni�cant for most applications.

� For the current preprocessing, several steps use a normalization over the whole
utterance. Those have to be replaced by a normalization over a decaying
window. Without retraining of the recognizer, the resulting deviation from
the training conditions leads to a loss in word accuracy of about 2% absolute.

Since the NAB-System loses more than 5% word accuracy absolute due to pruning
in the area between one and two times real time, the use of pipelining for an online
system pays o�: if the time that the user has to wait for the recognition output is
kept the same, the recognizer can spend twice as long to process the input because
it can do useful work during the recording time. The resulting increase in word-
accuracy of about 5% more than compensates the loss due to normalizing problems.

Note that no matter how the recognizer has been trained, the pipelining only leads
to a subjective speed-up. The actual number of cycles used for the recognition is
always larger in pipelined mode since the search structure becomes more complicated
(e.g. due to frequent backtraces).

6.4 The NAB Dictation System

To demonstrate how prototype applications can be built using the results from the
work performed in this thesis, this section describes the English dictation system
built based on the JRTk Toolkit. Further details on the scenario and recognizer are
found in chapter 3.! 31

The goal of the dictation system is to provide fast speaker independent recognition of
English speech, using a vocabulary size of 20,000 words or more. The word accuracy
depends on the recognition speed, and can be adjusted using a slider which inuences
the beam settings. For real time performance, the average initial word accuracy for
native speakers is about 80%. The system can be adapted to a new speaker using a
learn button, which invokes a maximum likelihood adaptation step on the recognized
data so far.

Most of the recognition happens while the speaker is still speaking, minimizing the
actual time the user has to wait for the system. The con�dence in the recognition
output is computed by analyzing the variability of the word-graph and represented
with the gray level used to display the text.
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Figure 6.4: Example output of the recognition system. The actual input was taken from
the test set: As competition in the mutual fund business grows increasingly intense, more

players in the industry appear willing to sacri�ce integrity in the name of performance.

Yields on taxable money market mutual funds rose slightly in the latest week, while tax

exempt yields dropped. Cott corporation, the Canadian bottler of private label soft drinks

that has mesmerized the stock market with its marketing gains in recent years now has the

short sellers on its tail. The warning ags are ying at America's mutual fund. Build

a better mouse-trap the saying goes and the world will beat a path to your door. The

beleaguered US dollar tumbled to another record low against the surging Japanese Yen

early Monday before edging upward and restoring calm to worldwide currency markets.

The corresponding word accuracy is around 80%.

To help correct remaining recognition errors, words and sections of the recognized
text can be replayed by clicking on them.

Remaining problems are the high memory usage (more than 300 MBytes of RAM),
and the low robustness with respect to changing recording conditions and foreign
accents. Also, the usability of the statistical language model that was built using
data collected in 1994 and 1995 is low for new data. It has to be updated regularly
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using commercially available databases. If a dictation system is used frequently,
rebuilding the language model with the newly dictated speech is also an option.
Finally, as can be seen in �gure 6.4, the word accuracy of 80% may not be enough
for many applications.



Chapter 7

Conclusion

When you make your mark in the world,

watch out for guys with erasers.

{ The Wall Street Journal

7.1 Summary
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Figure 7.1: Pruning behavior of the currently fastest NAB system on a vocabulary with
65,000 words.

111



112 CHAPTER 7. CONCLUSION

Using the techniques that have been developed as spin-o�s from the research pre-
sented in this thesis it is now possible to recognize speaker independent, continuously
spoken speech in real time with JRTk, using a vocabulary size of 65,000 words.

The corresponding error rate on the NAB task is 17%; if an error rate of below 15%
is required, this can be achieved at only 1.35 times real time. Figure 7.1 shows the
pruning behavior of the so far fastest NAB system.

The total speed-up is composed of many contributions, including:

� Demonstrating that the loss of 0.1% to 0.3% absolute in Word Accuracy due
to the introduction of the Nearest Neighbor Approximation is small compared! 45

to the possible speed-up of more than a factor of two.

� Evaluating when to use only the �rst pass of the new two-pass search and! 56

when to use both passes.

� Comparing and combining di�erent pruning strategies.! 61

� Introducing Unigram-Lookaheads that make a tree-search viable for vocabu-! 69

laries between 2,000 and 65,000 words.

� Introducing Phoneme-Lookaheads with a new approach based on context-! 72

independent HMMs that �ts well into the framework of an HMM-based rec-
ognizer. The resulting speed-up of this is again about a factor of two.

� Developing the Generalized-BBI, a generalized version of the bucket-box-! 87

intersection algorithm that works well for fully continuous HMMs, and com-
bining it with the Nearest Neighbor Approximation. The total speed-up over
just using the Nearest Neighbor Approximation is again about a factor of two.

� Using a data driven conditional frame-skipping approach to speed up the recog-! 99

nition process for stationary portions of the speech signal.

Also, low level optimizations and insights gained on approaches that either did not
work, or did not combine well with algorithms helped to achieve the goal of a real
time recognition system on a single processor of a Sun-Ultra workstation with a 167
MHz clock-rate.

7.2 Assessment

A number of companies are pushing into the large vocabulary speech market with
considerable e�ort. For a marketable software, recognition speed is as important as
accuracy. Recently, some companies have developed LVCSR systems that provide
high accuracy at near real time performance. However, these systems di�er in
signi�cant aspects from the JRTk system.
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Recently Dragon Systems started marketing their 30,000 word speaker dependent
continuous speech recognition system Dragon Naturally Speaking, that runs on a
133MHz Pentium PC. This product is the result of several years of research on fast
LVCSR. The main two di�erences when compared to the JRTk are that the dictation
system is tuned to be small and fast but not as exible as a toolkit, and that it is
speaker dependent. Using speaker dependent models allows the use of much smaller
acoustic models, avoiding the problem of the high costs for score computation, which
was one of the main points addressed in this thesis. Speaker dependent models also
tend to discriminate better, allowing a more aggressive restriction of the search
space. In November 1997 IBM released its ViaVoice Gold product, which supports ! 122

a similar functionality. To get the full dictation functionality, the user is required
to read 256 enrollment sentences that are used to adapt the system to the user.

A comparable system for Pentium-PC's proposed by Siemens Corp ! 126

[Niem�oller et al., 1997] is speaker independent with a vocabulary size of 10,000
words. However, to achieve real time performance on a PC platform, special-
purpose hardware is used for the observation probabilities, leaving only the search
to the main CPU.

The most recent results for NAB, with a vocabulary size of 20,000 words, from the
research group of Hermann Ney, usually regarded as the reference site for fast speech ! 125

recognition in Europe [Ortmanns et al., 1997a, Ortmanns et al., 1997b], are around
8 to 16 times real time for error rates over 16%.

The fast JRTk resulting from the work presented in this thesis therefore compares
favorably to the systems presented by the international community. An important
bene�t of the fast JRTk System is that while it is as fast and accurate as the
competing dictation systems, it is nevertheless a exible research system.

7.3 Perspectives

The fast recognition systems based on JRTk are derived directly from full evaluation
systems. Therefore, the reduced recognition times also helps to reduce the cycle
time for the development of research systems, hopefully leading to recognizers that
provide even higher accuracies at high recognition speed.

On the long run, some of the algorithms presented in this thesis may become obso-
lete: for instance, it is not yet clear whether mixtures of Gaussians or Neural Nets
are the better approach to estimate observation probabilities.

However, the current impression is that the combination of mixtures of Gaussians
and Neural nets may yield the lowest error rates, resulting in a continuing demand
for algorithms like the Generalized-BBI.

Unless a dramatic breakthrough in pattern matching introduces a completely new
paradigm for the search problem, the tree search and lookahead algorithms will
remain useful for a long time.
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Finally, using a mode dynamic view of the input stream, allowing for changes in
frame rate and maybe even the selection of features within one utterance, may
become an important step towards faster systems and higher accuracies.



Appendix A

Other LVCSR Systems

This appendix gives an overview of large vocabulary continuous speech recognition
systems other than the JRTk in order to de�ne the global context in which this
thesis took place. It also provides some comprehensive information about systems
that have been referred to elsewhere in this thesis.

Many of the described systems can be con�gured to use a variety of vocabularies
and acoustic and language models. Since the test-set of the 1994 NAB evaluation
served as baseline for most experiments in this thesis, the setup reported for this
evaluation is given where available.

To show the progress in some systems, and to give more detailed information about
systems that did not participate in the 1994 NAB evaluation, the system con�gura-
tions for the 1996 Broadcast News Evaluation is also provided for some participants.

Since the number of research groups working on speech recognition is very large,
the following sections cannot describe all existing systems. However, the author has
attempted to select systems and setups that are representative for the ongoing work
in the speech community.

A.1 AT&T

The AT&T recognizer is an HMM based system that uses a standard hidden Markov
model approach for acoustic modelling with triphones. It features a unique bottom
up search strategy that represents one of its key di�erences to the JRTk system used
in this thesis. Also, for fast estimation of the observation probabilities AT&Ts recent
systems use Gaussian Selection techniques rather than the binary space partitioning
approaches pursued in this thesis.

Other recent work in the AT&T LVCSR research includes the development of parallel
speech recognition algorithms and the automatic determination of parameters.

115
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November 1994 NAB Hub1 Evaluation

For this evaluation, 39 features were computed in the preprocessing step, consisting
of 12 cepstral parameters, the log energy, and their �rst and second derivatives.

The system used gender dependent triphone models. Where the training data was
insu�cient to estimate accurate triphone models, a back-o� to left-context or right-
context diphone models or context independent models was used. The resulting
system had 12,500 codebooks, each containing between four and 15 Gaussians with
diagonal covariances. Over these codebooks, additional distribution weights de�ned
a total of 22,000 context dependent phoneme models.

To �nd the best recognition hypotheses the system used two main passes, the �rst
to build a word graph, the second to re-score the word graph based on full context
dependent acoustic models and 5-gram language models. The �rst pass was subdi-
vided into several steps, including phoneme recognition, syllable recognition, word
recognition and bigram application. Each of these step produces a lattice, that was
used to restrict the search space for the subsequent step.

With this setup, the AT&T system reached a 13.0% word error rate for the NAB-C1
(contrast) evaluation conditions.

Selection of Papers

For further information about the AT&T system, refer to [Ljolje et al., 1995],
[Mohri and Riley, 1997], [Phillis and Rogers, 1997], and [Bocchieri and Mak, 1997].

A.2 BBN { Byblos

The BBN Byblos recognizer is an HMM based system that uses a multi-pass de-
coder based on the forward-backward search developed by BBN.More expensive and
accurate acoustic models were used in successive passes. Neural Nets for acoustic
modelling were applied to re-score N-Best lists. The multi-pass forward-backward
search that uses complex acoustic models only after the search space has been con-
siderably reduced by earlier passes eliminates the need for faster computation of
observation probabilities. However, this approach is di�cult to use for real-time
systems since the result of the forward pass is unreliable, and the backward pass
cannot start until after the end of the utterance has been detected. Recent LVCSR
research includes work on e�cient decoders and multi-lingual speech recognition.

November 1994 NAB Hub1 Evaluation

For this evaluation, a preprocessing step with 45 features, consisting of 14 cepstral
coe�cients energy, and their �rst and second derivatives was chosen.
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Two acoustic models with di�erent complexity were used, both based on 5 state
hidden Markov models. The less complex model consisted of 46 context independent
codebooks, each with 64 Gaussians and diagonal covariance matrixes. Over these
codebooks, distribution weights de�ned 30,000 allophones. This model is referred
to as phonetically tied mixture model (PTM).

The more complex model had 5,000 context dependent codebooks with 32 Gaussians
each, again with diagonal covariances. Over these 5,000 codebooks, distribution
weights again de�ned 30,000 allophones. This model is referred to as state clustered
tied mixture system (SCTM).

To �nd the best recognition hypotheses, BBNs developed its own multi-pass forward-
backward search algorithm:

1. Fast match in forward direction produced word ending scores using a simpli�ed
time synchronous search.

2. Time synchronous backward pass using within word PTMs and bigrams pro-
duces word starting points and scores.

3. Forward oriented time synchronous search using the same models as the pre-
vious pass provides updated word ending scores.

4. The resulting lattice was processed using cross-word SCTM models and tri-
grams to produce an N-best list.

5. The N-best list was re-scored with neural networks.

With this setup the Byblos system got an 11.9% word error rate for the NAB-C1
(contrast) evaluation conditions.

November 1996 broadcast-news evaluation

For this evaluation, BBN used a modi�ed multi-pass recognizer:

1. The �rst pass was a time synchronous forward search with bigrams and within
word triphones (45 codebooks with 256 Gaussians each) which created a lattice
of word end times and scores.

2. The subsequent search pass built an N-best-list using approximate trigrams
and within-word SCTM models (1,000 codebooks with 64 Gaussians each).

3. Finally, a re-scoring step with cross-word triphones and trigrams was used to
produce the 1-best recognition.

For the November 1996 Broadcast News HUB-4 evaluation the system used a 45,000
word vocabulary and achieved a 30.2% word error rate.
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For more information about the BBN system, refer to:
[Austin et al., 1991], [Schwartz and Austin, 1991], [Schwartz et al., 1992],
[Austin et al., 1992], [Nguyen et al., 1994], [Nguyen et al., 1995],
[Nguyen and Schwartz, 1997b], [Nguyen and Schwartz, 1997a],
[Kubala et al., 1997a], [Kubala et al., 1997b], and [Kubala et al., 1997c].

A.3 Cambridge University { ABBOT

The ABBOT system di�ers signi�cantly from JRTk and all other systems described
in this appendix by being the only neural net driven system used in large scale
evaluations. It is also among the few systems to use a stack decoder rather than a
time synchronous Viterbi algorithm for the search process. Both features make it
one of the fastest evaluation systems, requiring but a fraction of the computational
resources used by its competitors.

November 1994 NAB evaluation Hub1-C1

Two sets of features, one based on Mel-coe�cients and one on cepstral coe�cients
were used. For each feature set 62 feature vectors were computed per second of
input speech. This value was not chosen because it gave the smallest word error
rate rather than to reduce the recognition time.

The computation of the observation probabilities was performed with context inde-
pendent recurrent neural networks. To build a speaker independent system, model
merging techniques were applied to speaker dependent models.

With this setup the ABBOT system got a 12.4% word error rate for the NAB-C1
(contrast) evaluation conditions.

November 1996 broadcast news evaluation

Again, two sets of features (PLP and Mel-scale) where used, generating 62 feature
vectors per second of input speech.

Connectionist models with time delays were trained to estimate posteriori phone
probabilities, which were converted to likelihoods and then used instead of the usual
observation probabilities in an hidden Markov model decoder. A major change to
the 1994 system was in the use of 604 word-internal context dependent phoneme
models.

To �nd the best recognition hypotheses, a single pass decoding with the NOWAY
stack decoder was used. With a 65,000 word vocabulary, the error rate of the
ABBOT system in the 1996 HUB-4 test was 34.7%. The recognition speed for this
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system in the evaluation was estimated to about 60 times slower than real time on
an 170MHz UltraSparc, which was considerably faster than most of its competitors.

Selection of Papers

For more information about the ABBOT system, refer to:
[Renals and Hochberg, 1995], [Hochberg et al., 1995b], [Hochberg et al., 1995a],
[Cook et al., 1997b], [Cook et al., 1997a], and [Cook et al., 1997c].

A.4 Cambridge University { HTK

With a word error rate of only 10.5% under the NAB-C1 conditions, the HTK sys-
tem was the best recognizer in the 1994 LVCSR evaluation. Its success appears to
be founded on consequently applying all promising algorithms such as quinphone
models, cross-word models, 4-gram language models and unsupervised speaker adap-
tation. Considerable e�ort was also invested in the pronunciation dictionaries.

Entropics is the commercial spin-o� of the Cambridge University HTK system.
Since the code commercial code is more stable and more toolkit-oriented, the per-
formance on evaluation sets is a bit lower than of its state-of-the-art cousin. A
modi�ed version of the commercial HTK system was also used by the University of
Hamburg in the 1996 and 1997 Verbmobil Evaluations [H�ubner et al., 1996].

Since the HTK research system is tuned towards maximumperformance and the En-
tropics commercial system towards toolkit exibility rather than recognition speed,
most issues addressed within this thesis have not been pursued for these systems.

November 1994 NAB evaluation Hub1-C1

12 Mel-Cepstral coe�cients and their �rst and second derivatives were used for
preprocessing in this evaluation. Cepstral-Mean normalization was performed for
each sentence. The acoustic models used were cross-word-allophone HMM models
with a maximum context of two phonemes to each side.

Each time synchronous search pass created a word-lattice, that could be re-scored or
used to restrict the next search pass. The bigram language model for the �rst pass
was also coded into such a lattice, eliminating the need for an explicit implementa-
tion of the language model. Between the �rst and the second pass, an unsupervised
speaker adaptation based on the hypothesis of the �rst pass was used to reduce the
di�erence between the general speaker independent system to the current speaker.
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November 1996 broadcast news evaluation

For preprocessing, the signal power, 12 modi�ed PLP cepstral parameters and their
�rst and second derivatives were used. The acoustic model consisted of gender de-
pendent continuous mixture density hidden Markov models with decision tree clus-
tered triphones and quinphones. Several model sets were used for di�erent speaking
styles and recording conditions.

The search algorithm was guided by a lattice which encodes the language model,
and generates a lattice that can be used to restrict further search passes. Between
search passes, unsupervised speaker adaptation was applied to improve the acoustic
models.

Triphone acoustic models and bigram language models were used in �rst two de-
coding and MLLR passes. For subsequent passes, quinphones and 4-grams were
used.

Using a 65,000 word vocabulary, a 27.5% word error rate was achieved in the Novem-
ber 1996 Broadcast News HUB-4 evaluation. The recognition speed for all passes
was estimated to be about 340 times slower than real-time.

Selection of Papers

For more information about the HTK system, refer to: [Woodland et al., 1995],
[Knill et al., 1996], [Woodland et al., 1997a], [Humphries and Woodland, 1997],
and [Woodland et al., 1997b].

A.5 Carnegie Mellon University: SPHINX

The SPHINX-II system was very successful in a number of (D)ARPA LVCSR evalu-
ations. Its success is due to the early use of context dependent acoustic models tied
at the state level. The most frequently used search strategy is a time-synchronous
forward pass to �nd likely word-end points, followed by a time-synchronous back-
ward pass to �nd likely word-begin points. The result of these two passes is then
combined using an A* search. Speed issues for the computation of observation prob-
abilities are addressed by using a very small number of codebooks. The SPHINX
system also makes extensive use of integer arithmetic, though on modern systems
with multiple oating point units that e�ort is usually no longer needed. In re-
cent years most of the research in the SPHINX group was aiming at robust speech
recognition.

November 1994 NAB evaluation Hub1-C1

Sphinx-II used senonic semi-continuous hidden Markov Models to model context-
dependent phones, including those between words. The system used four types of
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codebooks: Mel-frequency cepstral coe�cients, �rst cepstral derivative, second cep-
stral derivative, and the signals power along with its �rst and second derivative. A
number of phone classes were identi�ed (27 for males, 28 for females), and a set
of four codebooks was trained for each phone class. Cepstral vectors were normal-
ized with an utterance-based cepstral mean value. The semi-continuous observation
probability was computed using a variable-sized mixture of the top four Gaussians
from each phone-dependent codebook. This combination of semi-continuous hidden
Markov Models with phone-dependent codebooks approached the functionality of
continuous hidden Markov models in a computationally feasible fashion. Four sets
of models were trained { two female and two male.

In the 1994 HUB1-C1 (NAB, contrast conditions) evaluation, the SPHINX-II-system
reached an error rate of 13.7%.

Selection of Papers

For more information about the CMU SPHINX system, refer to:
[Lee and Alleva, 1991], [Alleva et al., 1992], [Huang et al., 1992],
[Alleva et al., 1993], [Hwang et al., 1993b], [Hwang et al., 1993a],
[Chase et al., 1995], [Ravishankar, 1996], and [Ravishankar et al., 1997].

A.6 Daimler Benz

Though not represented in any of the o�cial (D)ARPA LVCSR evaluations, the
speech group of Daimler Benz has developed a robust speech recognition component
that has been used for the Verbmobil Evaluations. Focus of the research has been on
robustness in adverse environments, and little has been published about the internal
structure of the decoder.

Apparently, it uses a decoder that organizes the dictionary into a tree and takes
advantage of delayed bigrams for e�cient language modelling. It can also e�ciently
produce compact word-graphs as an alternative recognition output.

Selection of Papers

For more information about the Daimler recognizer, refer to: [Class et al., 1993] and
[Ehrlich et al., 1997].

A.7 Dragon

Probably the most important feature of the Dragon LVCSR research is, that it has
recently led to a commercially viable speaker dependent LVCSR product, Dragon
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Naturally Speaking. In the 1994 HUB1-C1 (NAB, contrast conditions) evaluation,
the Dragon research system reached an error rate of 13.2%. Since a lot of the research
has been done with a product in mind, the systems used at Dragon usually require a
lot less resources than other research systems competing in the ARPA evaluations.
For instance, while most systems were processing 100 feature vectors per second of
input speech, Dragon decided to use a coarser sampling of only 50 feature vectors for
testing in the 1994 evaluation. While most systems use 4-byte oats for their input
features, Dragon used 1-byte parameters. To reduce the resource requirements even
more, the commercial version applies automatic vocabulary switching to restrict the
search space.

Selection of Papers

For more information about the Dragon research system, refer to:
[Ellermann et al., 1993], [Chevalier et al., 1995] and [Peskin et al., 1997].

A.8 IBM

The IBM speech recognition system di�ers form other competing systems by the
early use of a rank-based approach for the computation of observation probabilities
that allows to avoid certain search problems related to extreme probability values.
The search strategy is a combination of an A* with a time-synchronous Viterbi
search and therefore di�cult to compare to the fully time-synchronous search of
other systems.

A commercial LVCSR dictation system, IBM ViaVoice, has been derived from the
research system used for the (D)ARPA evaluations. This system requires several
minutes of read speech to adapt to a new user.

November 1994 NAB evaluation Hub1-C1

The preprocessing for this system was one of the few to use a linear discriminant
analysis at this time. The original input features were super-vectors composed of up
to 9 vectors of 24 Mel cepstral coe�cients. Using the LDA, these were mapped into
a 60 dimensional feature space for the recognizer.

Other features that made this system substantially di�erent from its competitors
include that during the �rst recognition pass the usual mixture of Gaussian probabil-
ities were replaced by a probability derived from the rank of the models score. Also,
IBM developed it's own search strategy, the so called envelope search, that combines
aspects of the A* heuristic search algorithm with those of the time-synchronous
Viterbi search.

The error rate of the IBM system in the 1994 HUB-1 NAB-C1 test was 11.1%,
putting the system on the second place after the HTK system.
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November 1996 broadcast news evaluation

For the 1996 broadcast news evaluation, acoustic models for 5741 sub-phonetic units
with context-dependent tying were used. Five separate such acoustic models were
trained for di�erent speaking styles and recording conditions.

With 65,000 words in the recognition vocabulary, the IBM-system achieved a 32.2%
error rate in o�cial 1996 Broadcast news HUB-4 evaluations.

Selection of Papers

For more information about the IBM research system, refer to:
[Gopalakrishnan et al., 1994], [Bahl et al., 1995a], [Bahl et al., 1995b],
[Gopalakrishnan et al., 1995], [Bakis et al., 1997a], [Padmanabhan et al., 1997],
and [Bakis et al., 1997b].

A.9 LIMSI

The speech group of the French Laboratoire d'Informatique pour la M�ecanique et les
Sciences de l'Ing�enieur took part in a number of the (D)ARPA evaluations. Their
system had the lowest error rates for the November 1993 WSJ and the November
1996 broadcast news evaluation. The system is tuned towards minimum error rate
recognition and includes few algorithms to improve the recognition speed.

November 1994 NAB evaluation Hub1-C1

The recognizer used continuous density HMMs with Gaussian mixtures for acoustic
modeling and n-gram statistics estimated on newspaper texts for language modeling.
A �rst search pass generated a word-lattice by means of a simple time-synchronous
graph-search strategy, which was shown to still be viable with large vocabularies
when used with bigram back-o� language models. A second forward pass incorpo-
rated the trigram language model probabilities.

The gender dependent acoustic modeling was based on cepstrum-based features and
consisted of context-dependent phone models (intra and inter-word) with phone du-
ration models. Also, LIMSI did a lot of work to increase the accuracy and consistency
of the pronunciation dictionaries for training and testing their system.

In the 1994 HUB1-C1 (NAB, contrast conditions) evaluation, the LIMSI-system
reached an error rate of 12.1%.
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November 1996 broadcast news evaluation

The LIMSI November 1996 speech recognizer for the ARPA broadcast news task
made use of continuous density hidden Markov models with Gaussian mixture for
acoustic modeling and trigram statistics estimated on newspaper texts (160M words)
and broadcast news transcription (132M words).

The gender dependent acoustic models were trained on the WSJ0/WSJ1, and
adapted using MAP estimation with 35 hours of broadcast news data. Also, two
sets of models were used to allow for the di�erent speaking styles. Throughout the
system, position dependent triphones were used.

The recognizer uses a tree pass search, with more accurate acoustic and language
model in successive passes. The �rst pass created a word graph, using only bigram
language models in the process. The second pass re-scored this word graph with
a trigram language model. The resulting 1-best hypothesis was used for MLLR
adaptation. The resulting acoustic models were used for a �nal recognition, again
with trigram language models.

With a vocabulary of 65,000 words, a 27.1% error rate was obtained in the o�cial
1996 Broadcast news HUB-4 evaluation. The estimated recognition speed during
the evaluation was reported to be about 250 to 300 times slower than real-time.

Selection of Papers

For more information about the LIMSI system, refer to: [Gauvain et al., 1993],
[Lamel and Gauvain, 1993], [Gauvain et al., 1995b], [Gauvain et al., 1995a], and
[Gauvain et al., 1997].

A.10 Microsoft { Whisper

Though not represented in the o�cial (D)ARPA evaluations, there is a signi�cant
amount of LVCSR related research and development at Microsoft. Many of their
researchers are former CMU students. The few available publications suggest, that
their research on LVCSR-systems for fast Pentium PC's allows near real time recog-
nition with very low error rates for dictation applications.

Selection of Papers

For more information about the Microsoft Whisper LVCSR system, refer to
[Huang et al., 1995] and [Alleva et al., 1997].
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A.11 MIT { Lincoln Laboratories

The most important di�erences between the MIT-System and most other LVCSR
systems are, that the MIT system is using a stack decoder instead of a time-
synchronous search, and that the number of people working on it is substantially
smaller. Little new work was reported on the development of LVCSR systems since
the 1994 NAB evaluation.

The word error rate of the MIT-system in the 1994 HUB-1 NAB-C1 evaluation was
19%.

Selection of Papers

For more information about the Lincoln Stack-Decoder, refer to [Paul, 1992b],
[Paul and Neioglu, 1993],[Paul, 1995a],[Paul, 1995b], and [Paul, 1995c].

A.12 Philips and University of Aachen

The group around Hermann Ney, previously at Philips Research Labs and now at
the University of Aachen, has a long history of research of fast speech recognition
techniques. Most of the research is focused on language modelling and the search
algorithm. They have pursued a variety of approaches to build word graphs and
�nd the best recognition hypothesis, some of which resemble the algorithms used in
JRTk. However, recent papers also explore possibilities for fast observation prob-
ability computation. The latest published recognition times for the 1994 NAB set
with a vocabulary size of 20,000 words are around 8 to 16 times real time for error
rates over 16%.

November 1994 NAB evaluation Hub1-C1

The system built for the November 1994 NAB evaluation used a multi-pass recog-
nition approach. First, high density word graphs were produced using a time syn-
chronous search with a fast approximation bigram language model. Further passes
were guided by this word graph to include full bigram information. The resulting
word graph was re-scored using a trigram language model and unsupervised speaker
adaptation of the acoustic models. For acoustic modelling, clustered within-word
triphones were applied.

In the 1994 HUB1-C1 (NAB, contrast conditions) evaluation, the Philips-system
reached an error rate of 13.4%.
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For more information about the speech recognition systems of these two groups, refer
to [Ney, 1984], [Ney and Essen, 1991], [Ney et al., 1992], [Oerder and Ney, 1993],
[Ney, 1993], [Steinbiss et al., 1993], [Ney and Essen, 1993], [Steinbiss et al., 1994],
[Bugast et al., 1995], [Ortmanns et al., 1997a], [Ortmanns et al., 1997b], and
[Ney et al., 1997].

A.13 Siemens

Though not represented in the o�cial ARPA or Verbmobil evaluations, the speech
group of the Siemens research laboratories have developed an LVCSR system that
achieves real time performance on Pentium PCs by using special purpose hardware
for the computation of observation probabilities. Therefore, the complexity of the
acoustic models used for the computation of these observation probabilities can be
very large, yielding a high discriminative power that helps to reduce the remaining
computational load small by pruning the search space.

Selection of Papers

For more information about this research system, refer to [Hauenstein, 1993] and
[Niem�oller et al., 1997].

A.14 SRI { DECIPHER

The SRI system is another example for a recognizer using a multi-pass time syn-
chronous search, with tied mixture hidden Markov models. Most of the development
e�ort went into the reduction of the error rate, and only little research was reported
on means for achieving real time recognition.

November 1994 NAB evaluation Hub1-C1

The front-end processing extracted 6 spectral features to model the speech signal:
cepstral coe�cients and the normalized energy, both with �rst and second deriva-
tives. The cepstral features were computed from an FFT �lter-bank and subsequent
cepstral-mean normalization on a sentence basis is performed. The 6 spectral fea-
tures were modeled as a single 39-dimensional observation stream.

The multi-pass-search schemeused for this evaluation has the following passes: a �rst
forward-backward pass generates word-lattices using a 60,000-word bigram language
model and context-dependent, genonic hidden Markov models. Only within-word
context dependent models were used in the �rst pass. The �rst-pass genonic HMMs
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have 1,800 Gaussian mixtures per gender, each with 32 components. These Gaussian
codebooks (genones) were shared among disjoint sets of HMM states that were
determined automatically using clustering techniques. The Gaussian computation
was sped up using vector quantization and Gaussian shortlists. Both forward and
backward passes used recognition networks with a tree-structured back-o� node.

The second pass performed a forward-backward N-best search on the word-lattices
using the �rst-pass genonic hidden Markov models. The N-best lists were then
re-scored using more expensive acoustic and language models.

In the 1994 HUB1-C1 (NAB, contrast conditions) evaluation, the SRI-system
reached an error rate of 12.2%.

Selection of Papers

For further information about the SRI system, refer to
[Murveit and Butzberger, 1992],[Murveit et al., 1993],[Digalakis et al., 1995] and
[Weng et al., 1997].

A.15 Other LVCSR Systems

Several smaller groups, such as the speech groups at Boston University
[Ostendorf et al., 1995] and New York University [Sekine et al., 1995] cooperated
with the larger groups at BBN and SRI for the ARPA LVCSR evaluations, often by
producing results in the form of re-scored N-best lists.

There are also research groups focusing on languages other than English. For in-
stance, NTT does intensive research in Japanese LVCSR and has published a number
of papers on this topic [Matsuoka et al., 1997].

This list is by no means complete, but gives only a brief glimpse at the LVCSR
research community.
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