1,338 research outputs found

    An Indoor Navigation System Using a Sensor Fusion Scheme on Android Platform

    Get PDF
    With the development of wireless communication networks, smart phones have become a necessity for people’s daily lives, and they meet not only the needs of basic functions for users such as sending a message or making a phone call, but also the users’ demands for entertainment, surfing the Internet and socializing. Navigation functions have been commonly utilized, however the navigation function is often based on GPS (Global Positioning System) in outdoor environments, whereas a number of applications need to navigate indoors. This paper presents a system to achieve high accurate indoor navigation based on Android platform. To do this, we design a sensor fusion scheme for our system. We divide the system into three main modules: distance measurement module, orientation detection module and position update module. We use an efficient way to estimate the stride length and use step sensor to count steps in distance measurement module. For orientation detection module, in order to get the optimal result of orientation, we then introduce Kalman filter to de-noise the data collected from different sensors. In the last module, we combine the data from the previous modules and calculate the current location. Results of experiments show that our system works well and has high accuracy in indoor situations

    Magnopark, Smart Parking Detection Based on Cellphone Magnetic Sensor

    Get PDF
    We introduce a solution that uses the availability of heavy crowds and their smart devices, to gain more result as to where potential parking is possible. By leveraging the raw magnetometer, gyroscope, and accelerometer data, we are able to detect parking spots through the natural movement exerted by the walking pedestrians on the sidewalks beside the streets. Dating back as far as 2013, a very large portion of pedestrians composing the crowds on the sidewalk, possessed at least one smart device in their hand or pocket14]. It is this statistic that fuels our application, in which we depend on crowds or even a steady rate of pedestrians, telling others around them where unoccupied parking sport are, without making a single bit of noise. In other words, we use the walking pedestrians’ cellphone sensors to classify the sidewalk parking spots as occupied and vacant. The more pedestrians walking on the sidewalk, the more accurate our application works. As the years and technological advances both increase, we predict that the number of smart devices will only increase, allowing our solution to become much more precise and useful. The biggest contribution of our study can be summarized as follows: • Implementation of Magnopark; a high accuracy parking spot localization system using internal smart phone sensors • Evaluation and test of Magnopark in different situations and places • Test of Magnopark for different users with different walking habits and speed • Development of an algorithm to detect the users’ stride, speed, and direction change • Building a classification model based on the features extracted from the cellphone sensors • Pushing the classified data to the cloud for the drivers’ us

    Transparent Authentication Utilising Gait Recognition

    Get PDF
    Securing smartphones has increasingly become inevitable due to their massive popularity and significant storage and access to sensitive information. The gatekeeper of securing the device is authenticating the user. Amongst the many solutions proposed, gait recognition has been suggested to provide a reliable yet non-intrusive authentication approach – enabling both security and usability. While several studies exploring mobile-based gait recognition have taken place, studies have been mainly preliminary, with various methodological restrictions that have limited the number of participants, samples, and type of features; in addition, prior studies have depended on limited datasets, actual controlled experimental environments, and many activities. They suffered from the absence of real-world datasets, which lead to verify individuals incorrectly. This thesis has sought to overcome these weaknesses and provide, a comprehensive evaluation, including an analysis of smartphone-based motion sensors (accelerometer and gyroscope), understanding the variability of feature vectors during differing activities across a multi-day collection involving 60 participants. This framed into two experiments involving five types of activities: standard, fast, with a bag, downstairs, and upstairs walking. The first experiment explores the classification performance in order to understand whether a single classifier or multi-algorithmic approach would provide a better level of performance. The second experiment investigated the feature vector (comprising of a possible 304 unique features) to understand how its composition affects performance and for a comparison a more particular set of the minimal features are involved. The controlled dataset achieved performance exceeded the prior work using same and cross day methodologies (e.g., for the regular walk activity, the best results EER of 0.70% and EER of 6.30% for the same and cross day scenarios respectively). Moreover, multi-algorithmic approach achieved significant improvement over the single classifier approach and thus a more practical approach to managing the problem of feature vector variability. An Activity recognition model was applied to the real-life gait dataset containing a more significant number of gait samples employed from 44 users (7-10 days for each user). A human physical motion activity identification modelling was built to classify a given individual's activity signal into a predefined class belongs to. As such, the thesis implemented a novel real-world gait recognition system that recognises the subject utilising smartphone-based real-world dataset. It also investigates whether these authentication technologies can recognise the genuine user and rejecting an imposter. Real dataset experiment results are offered a promising level of security particularly when the majority voting techniques were applied. As well as, the proposed multi-algorithmic approach seems to be more reliable and tends to perform relatively well in practice on real live user data, an improved model employing multi-activity regarding the security and transparency of the system within a smartphone. Overall, results from the experimentation have shown an EER of 7.45% for a single classifier (All activities dataset). The multi-algorithmic approach achieved EERs of 5.31%, 6.43% and 5.87% for normal, fast and normal and fast walk respectively using both accelerometer and gyroscope-based features – showing a significant improvement over the single classifier approach. Ultimately, the evaluation of the smartphone-based, gait authentication system over a long period of time under realistic scenarios has revealed that it could provide a secured and appropriate activities identification and user authentication system

    Towards a Practical Pedestrian Distraction Detection Framework using Wearables

    Full text link
    Pedestrian safety continues to be a significant concern in urban communities and pedestrian distraction is emerging as one of the main causes of grave and fatal accidents involving pedestrians. The advent of sophisticated mobile and wearable devices, equipped with high-precision on-board sensors capable of measuring fine-grained user movements and context, provides a tremendous opportunity for designing effective pedestrian safety systems and applications. Accurate and efficient recognition of pedestrian distractions in real-time given the memory, computation and communication limitations of these devices, however, remains the key technical challenge in the design of such systems. Earlier research efforts in pedestrian distraction detection using data available from mobile and wearable devices have primarily focused only on achieving high detection accuracy, resulting in designs that are either resource intensive and unsuitable for implementation on mainstream mobile devices, or computationally slow and not useful for real-time pedestrian safety applications, or require specialized hardware and less likely to be adopted by most users. In the quest for a pedestrian safety system that achieves a favorable balance between computational efficiency, detection accuracy, and energy consumption, this paper makes the following main contributions: (i) design of a novel complex activity recognition framework which employs motion data available from users' mobile and wearable devices and a lightweight frequency matching approach to accurately and efficiently recognize complex distraction related activities, and (ii) a comprehensive comparative evaluation of the proposed framework with well-known complex activity recognition techniques in the literature with the help of data collected from human subject pedestrians and prototype implementations on commercially-available mobile and wearable devices

    SenSys: A Smartphone-Based Framework for ITS applications

    Get PDF
    Intelligent transportation systems (ITS) use different methods to collect and process traffic data. Conventional techniques suffer from different challenges, like the high installation and maintenance cost, connectivity and communication problems, and the limited set of data. The recent massive spread of smartphones among drivers encouraged the ITS community to use them to solve ITS challenges. Using smartphones in ITS is gaining an increasing interest among researchers and developers. Typically, the set of sensors that comes with smartphones is utilized to develop tools and services in order to enhance safety and driving experience. GPS, cameras, Bluetooth, inertial sensors and other embedded sensors are used to detect and analyze drivers\u27 behavior and vehicles\u27 motion. The use of smartphones made the data collection process easier because of their availability among drivers, the set of different sensors, the computation ability, and the low installation and maintenance cost. On the other hand, different smartphones sensors have diverse characteristics and accuracy and each one of them needs special fusion, processing, and filtration methods to generate more stable and accurate data. Using smartphones in ITS faces different challenges like inaccurate readings, weak GPS reception, noisy sensors and unaligned readings.These challenges waste researchers and developers time and effort, and they prevent them from building accurate ITS applications. This work proposes SenSys a smartphone framework that collects and processes traffic data and then analyzes and extracts vehicle dynamics and vehicle activities which can be used by developers and researchers to create their navigation, communication, and safety ITS applications. SenSys framework fuses and filters smartphone\u27s sensors readings which result in enhancing the accuracy of tracking and analyzing various vehicle dynamics such as vehicle\u27s stops, lane changes, turn detection, and accurate vehicle speed calculation that, in turn, will enable development of new ITS applications and services

    SLS: Smart localization service: human mobility models and machine learning enhancements for mobile phone’s localization

    Get PDF
    In recent years we are witnessing a noticeable increment in the usage of new generation smartphones, as well as the growth of mobile application development. Today, there is an app for almost everything we need. We are surrounded by a huge number of proactive applications, which automatically provide relevant information and services when and where we need them. This switch from the previous generation of passive applications to the new one of proactive applications has been enabled by the exploitation of context information. One of the most important and most widely used pieces of context information is location data. For this reason, new generation devices include a localization engine that exploits various embedded technologies (e.g., GPS, WiFi, GSM) to retrieve location information. Consequently, the key issue in localization is now the efficient use of the mobile localization engine, where efficient means lightweight on device resource consumption, responsive, accurate and safe in terms of privacy. In fact, since the device resources are limited, all the services running on it have to manage their trade-off between consumption and reliability to prevent a premature depletion of the phone’s battery. In turn, localization is one of the most demanding services in terms of resource consumption. In this dissertation I present an efficient localization solution that includes, in addition to the standard location tracking techniques, the support of other technologies already available on smartphones (e.g., embedded sensors), as well as the integration of both Human Mobility Modelling (HMM) and Machine Learning (ML) techniques. The main goal of the proposed solution is the provision of a continuous tracking service while achieving a sizeable reduction of the energy impact of the localization with respect to standard solutions, as well as the preservation of user privacy by avoiding the use of a back-end server. This results in a Smart Localization Service (SLS), which outperforms current solutions implemented on smartphones in terms of energy consumption (and, therefore, mobile device lifetime), availability of location information, and network traffic volume

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future
    • …
    corecore