
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Fall 2017

SenSys: A Smartphone-Based Framework for ITS applications SenSys: A Smartphone-Based Framework for ITS applications

Abdulla Ahmed Alasaadi
Old Dominion University, a.alasaadi@gmail.com

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Alasaadi, Abdulla A.. "SenSys: A Smartphone-Based Framework for ITS applications" (2017). Doctor of
Philosophy (PhD), Dissertation, Computer Science, Old Dominion University, DOI: 10.25777/6s3w-1646
https://digitalcommons.odu.edu/computerscience_etds/34

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It
has been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/34?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

SENSYS: A SMARTPHONE-BASED FRAMEWORK FOR

ITS APPLICATIONS

by

Abdulla Ahmed Alasaadi
B.Sc. February 2003, University Of Bahrain, Bahrain

M.Sc. 2005, Lancaster University, England

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
December 2017

Approved by:

Tamer Nadeem (Director)

Kurt Maly (Member)

Michele Weigle (Member)

Mecit Cetin (Member)

ABSTRACT

SENSYS: A SMARTPHONE-BASED FRAMEWORK FOR ITS
APPLICATIONS

Abdulla Ahmed Alasaadi
Old Dominion University, 2018
Director: Dr. Tamer Nadeem

Intelligent transportation systems (ITS) use different methods to collect and pro-

cess traffic data. Conventional techniques suffer from different challenges, like the

high installation and maintenance cost, connectivity and communication problems,

and the limited set of data. The recent massive spread of smartphones among drivers

encouraged the ITS community to use them to solve ITS challenges.

Using smartphones in ITS is gaining an increasing interest among researchers and

developers. Typically, the set of sensors that comes with smartphones is utilized to

develop tools and services in order to enhance safety and driving experience. GPS,

cameras, Bluetooth, inertial sensors and other embedded sensors are used to detect

and analyze drivers’ behavior and vehicles’ motion.

The use of smartphones made the data collection process easier because of their

availability among drivers, the set of different sensors, the computation ability, and

the low installation and maintenance cost. On the other hand, different smartphones

sensors have diverse characteristics and accuracy and each one of them needs spe-

cial fusion, processing, and filtration methods to generate more stable and accurate

data. Using smartphones in ITS faces different challenges like inaccurate readings,

weak GPS reception, noisy sensors and unaligned readings. These challenges waste

researchers and developers time and effort, and they prevent them from building

accurate ITS applications.

This work proposes SenSys a smartphone framework that collects and processes traf-

fic data and then analyzes and extracts vehicle dynamics and vehicle activities which

can be used by developers and researchers to create their navigation, communica-

tion, and safety ITS applications. SenSys framework fuses and filters smartphone’s

sensors readings which result in enhancing the accuracy of tracking and analyzing

various vehicle dynamics such as vehicle’s stops, lane changes, turn detection, and

accurate vehicle speed calculation that, in turn, will enable development of new ITS

applications and services.

iv

Copyright, 2018, by Abdulla Ahmed Alasaadi, All Rights Reserved.

v

ACKNOWLEDGMENTS

Firstly, I would like to express my sincere gratitude to my advisor Dr. Tamer

Nadeem for his continues support, guidance, patience, and motivation during my

Ph.D study.

My sincere thanks also goes to my thesis committee: Prof. Kurt Maly, Dr.

Michele Weigle and Dr. Mecit Cetin, for their insightful comments and encourage-

ment.

Also, I want to show my gratitude to Prof. Hussain Abdulwahab who passed away

last December for all his help, care, and guidance during my time at Old Dominion

University.

Last but not least, I would like to thank my family for supporting me in every

way and throughout my Ph.D study and my life in general.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xv

1. INTRODUCTION . 1
1.1 INTELLIGENT TRANSPORTATION SYSTEMS 2
1.2 SMARTPHONES IN ITS . 4
1.3 SENSYS FRAMEWORK . 5
1.4 CONTRIBUTION . 6
1.5 ROAD MAP . 7

Chapter

2. LITERATURE REVIEW . 8
2.1 INTELLIGENT TRANSPORTATION SYSTEMS 8

2.1.1 INDUCTIVE LOOP DETECTORS . 8
2.1.2 MAGNETOMETER . 8
2.1.3 PIEZOELECTRIC DETECTORS . 9
2.1.4 PNEUMATIC TUBES . 9
2.1.5 VIDEO IMAGE DETECTION SYSTEMS 10
2.1.6 INFRARED AND LASER SENSORS . 11
2.1.7 RADAR SENSORS . 11
2.1.8 MICROWAVE SENSORS . 11

2.2 SMARTPHONES IN ITS . 11
2.2.1 INERTIAL SENSORS IN ITS . 13

3. SENSYS FRAMEWORK . 18
3.1 OVERVIEW . 18
3.2 DATA COLLECTION AND PREPARATION LAYER 18

3.2.1 DATA COLLECTION . 18
3.2.2 DATA FILTERING AND PREPARATION MODULES 25

3.3 VEHICLE DYNAMICS EXTRACTION LAYER 25
3.3.1 BASIC LEVEL FEATURES . 26
3.3.2 ADVANCED LEVEL FEATURES . 27

3.4 APPLICATION PROGRAMMABLE INTERFACE (API) 28
3.5 APPLICATIONS . 28

vii

4. DATA PREPARATION AND PRE-PROCESSING. 30
4.1 INTRODUCTION . 30
4.2 LOW PASS FILTER . 30
4.3 COMPLEMENTARY FILTER . 30
4.4 ACCELEROMETER BIAS . 31
4.5 COORDINATE ALIGNMENT (UNICOOR FRAMEWORK) 34

4.5.1 PHONE VERSUS VEHICLE COORDINATES. 36
4.5.2 IMPACT OF COORDINATES . 37
4.5.3 SYSTEM DESIGN . 38
4.5.4 COORDINATES ALIGNMENT. 39
4.5.5 EVALUATION . 44
4.5.6 ACCURACY ENHANCEMENT . 46
4.5.7 CONCLUSION . 50

5. EXTRACTING VEHICLES DYNAMICS . 52
5.1 INTRODUCTION . 52
5.2 BASIC VEHICLE DYNAMICS . 52

5.2.1 FORWARD MOTION . 52
5.2.2 VERTICAL MOTION . 53
5.2.3 LATERAL MOTION . 54
5.2.4 YAW RATE . 54
5.2.5 PITCH RATE . 54
5.2.6 ROLL RATE . 55

5.3 ADVANCE FEATURES EXTRACTION . 55
5.3.1 STOP DETECTION . 55
5.3.2 SPEED ESTIMATION . 57
5.3.3 TURN DETECTION . 57
5.3.4 LANE SWITCH DETECTION . 58
5.3.5 ROAD-BUMP DETECTION . 58

6. SENSYS APPLICATION PROGRAMMABLE INTERFACE (API) 62
6.1 APPLICATION PROGRAMMING INTERFACE (API) 62

6.1.1 DATA COLLECTION APIS . 62
6.1.2 VEHICLE DYNAMICS APIS . 66
6.1.3 APPLICATION ADD-ON APIS . 67

7. PARKING SPACE IDENTIFICATION SYSTEM(PARKZOOM) 68
7.1 INTRODUCTION . 68
7.2 SYSTEM OVERVIEW . 69
7.3 TURN DETECTION . 72
7.4 FINDING THE PARKING SPOT . 73

7.4.1 EXPERIMENT . 74
7.4.2 ERROR CORRECTION . 75
7.4.3 RESULTS . 76

7.5 SYSTEM INTEGRATION AND RESULTS . 77

viii

7.6 RESULTS . 78
7.7 PARKZOOM API . 79
7.8 SUMMARY . 79

8. IN-LANE COMMUNICATION SYSTEM (INLANECOM) 81
8.1 INTRODUCTION . 81

8.1.1 USE CASES . 82
8.1.2 INLANECOM FRAMEWORK OVERVIEW 83

8.2 DATA PREPARATION . 86
8.2.1 DATA FILTERING . 86
8.2.2 LANE CHANGE DETECTION . 87
8.2.3 LANE SEGMENTATION . 88

8.3 FEATURE EXTRACTION . 89
8.3.1 PHYSICAL FEATURES . 90
8.3.2 TRAFFIC FEATURES . 90
8.3.3 SIGNATURE GENERATION . 91

8.4 RECEIVER MODULE . 93
8.4.1 SIGNATURE EXTRACTION . 93
8.4.2 SIMILARITY CHECK . 93
8.4.3 MORE WINDOWS . 94
8.4.4 WRONG DETECTION HANDLING . 94

8.5 PERFORMANCE EVALUATION . 94
8.5.1 EXPERIMENTS SETUP . 94
8.5.2 FREE DRIVING SCENARIOS . 95
8.5.3 DETECTING LANE CHANGE EVENT 96
8.5.4 LANE DETECTION . 96
8.5.5 LANE SIMILARITY . 98

8.6 DISCUSSION . 98
8.7 INLANECOM APIS . 100
8.8 SUMMARY . 101

9. FUEL CONSUMPTION AND CO2 EMISSION CALCULATOR
(GOGREEN) . 102
9.1 GOGREEN FRAMEWORK . 103

9.1.1 FUEL CONSUMPTION AND CO2 EMISSION CALCULA-
TION . 103

9.2 GOGREEN INTERFACE . 105
9.3 GOGREEN APIS . 105

10. VEHICLE TYPE DETECTION. 108
10.1 VEHICLE TYPE DETERMINATION SYSTEM OVERVIEW 108
10.2 SYSTEM ARCHITECTURE . 109

10.2.1 AXLE DETECTION . 109
10.2.2 WHEELBASE CALCULATION . 112

10.3 SYSTEM EVALUATION . 113

ix

10.3.1 RESULTS . 114
10.4 VEHICLE TYPE APIS . 115
10.5 SUMMARY . 116

11. CONCLUSION AND FUTURE WORK . 118
11.1 FUTURE WORK . 120

REFERENCES. 122

VITA. 134

x

LIST OF TABLES

Table Page

1 Injuries and fatalities caused by transportation [1]. 3

2 Related works that worked with the orientation problem. 15

3 Existing Smartphones ITS applications. 17

4 Description for some of the standard OBD requests 24

5 Accelerometer bias measured using different phones 33

6 The accelerometer bias for the same phone in different stops 33

7 Accumulated error between GPS speed and estimated speed using differ-
ent thresholds. 49

8 SenSys OBD APIs . 63

9 SenSys GPS APIs . 64

10 SenSys inertial sensors APIs . 65

11 SenSys camera APIs . 66

12 SenSys microphone APIs . 66

13 SenSys basic dynamics APIs . 66

14 SenSys advanced features APIs . 67

15 Error back-propagation . 75

16 SenSys ParkZoom APIs . 80

17 Accelerometer Bias . 86

18 Performance accuracy in different types of roads . 97

19 SenSys in-lane communication APIs . 101

20 Pollution by source [2] . 102

21 Vehicle constant values [3] . 104

xi

22 SenSys GoGreen APIs . 106

23 FHWA Vehicle Classes [4] . 111

24 The wheelbase calculation in the bus experiment . 115

25 SenSys vehicle type APIs . 116

xii

LIST OF FIGURES

Figure Page

1 The total wasted fuel as a result of congestion [5] . 2

2 ILD diagram. 9

3 Piezo electric detectors. 9

4 Pneumatic tubes. 10

5 SenSys Framework. 19

6 A two-axis accelerometer [6] . 21

7 Traditional Gyroscope vs MEMS Gyroscope [6] . 22

8 Using accelerometer to detect driving modes. 22

9 Basic motion dynamics the car can take. 26

10 Vehicle Coordinates. 27

11 Using low pass filter (moving average) to reduce the fluctuation 31

12 The complimentary filter diagram . 31

13 Calculated angle before and after removing the drift. 32

14 Accelerometer readings while the phone is placed on flat table. 32

15 GPS speed vs estimated speed before bias reduction using our algorithm,
vs using raw speed acceleration from the phone Z coordinate 34

16 Power Consumption in mW . 35

17 Coordinate systems. (a) Device Coordinate System, (b) Earth Coordinate
System, (c) Vehicle Coordinate System. 36

18 Phones are fixed on the windshield with different angles 38

19 Calculated speed using aligned phone . 39

20 Calculated speed using the tilted phone. 40

xiii

21 System framework. DFC: Device Frame Coordinate, EFC: Earth Frame
Coodrinate, VFC: Vehicle Frame Coordinate, theta : angle between the
direction of motion and the magnatic north, 2D: horizontal plane. 41

22 a) Transform sensors reading values from DFC to EFC. b) Transform
readings from EFC to VFC. 44

23 Roads driven in the experiments . 45

24 GPS speed vs estimated UniCoor speed. 46

25 Accelerations on the motion direction showing stopping patterns 47

26 Good confidence in the accuracy during high changes on the acceleration
in the motion direction . 48

27 Predicted angle variance vs GPS speed. 49

28 Speed estimation before and after the enhancement module 50

29 Coordinate systems. (a) Device Coordinate System, (b) Earth Coordinate
System, (c) Vehicle Coordinate System. 52

30 Stopping pattern . 56

31 Stop Detection . 56

32 Speed estimation before and after the enhancement module 57

33 Turns using side acceleration . 58

34 Lane switches using gyroscope . 59

35 Detecting 6 lane changes events in one trip. 60

36 Pothole . 60

37 Speed bump . 61

38 Raw accelerometer readings using . 61

39 Smartphone - Infrastructure information sharing . 70

40 ParkZoom system overview. 73

41 Distance calculation components. 74

42 Calculating the distance from the last turn . 77

xiv

43 Parking-lot diagram. 78

44 Accelerometer readings (x-axis) . 79

45 inLaneCom Framework . 84

46 Gyroscope readings for two different cars driving on the same lane 84

47 A vehicle changing its lane. It discards the old signature and starts a new
lane signature . 87

48 Lane Reset Event . 88

49 Vehicles in different locations have different lane segment representations . 89

50 The lane signature . 91

51 Dividing the Lane segment into windows . 92

52 The Receiver Module . 93

53 Experiments held in different types of roads. 95

54 Accelerometer Reading for the same vehicle/smartphone driving in 2 dif-
ferent lanes of the same road . 96

55 Standard deviation of the gyroscope data from sender vehicle. Y axis is
the gyroscope reading, X axis is sample id. 98

56 Standard deviation of the gyroscope data from moving window on the
receiver vehicle . 99

57 inLaneCom Communication Throughput . 100

58 CO2 emission calculation components. 103

59 Fuel Consumption comparison. 105

60 GoGreen interface. 106

61 GoGreen at the end of the trip. 107

62 FHWA Vehicle Classification [7] . 109

63 Wheelbase: The distance between the front and rear axles of a vehicle. . . 110

64 Speedbump effect on vertical acceleration. 110

xv

65 Vehicle type detection framework. 112

66 Bump detection modules in SenSys framework . 112

67 Wheelbase calculation while driving at speed of 6 mph 113

68 Wheelbase calculation while driving at speed of 15 mph 114

69 A Speed bump . 115

70 Wheelbase calculation for the Toyota Camry vehicle with wheelbase of
2.672 meters. 116

71 Wheelbase calculation for the Honda Odyssey vehicle with wheelbase of
3.002 meters. 117

1

CHAPTER 1

INTRODUCTION

Transportation is getting growing attention because of its impact on economy, en-

vironment and people’s health. A recent United States Department of Transporta-

tion (US-DOT) report “2015 Transportation statistics annual report” [1] revealed

that traffic congestion wastes around 3 billion gallons of fuel in 2014, and nearly 6.9

billion extra delay hours. A Texas A&M Transportation Institute (TTI) report [5]

titled “The 2015 urban mobility scorecard” predicted that the nationwide delay will

jump from 6.9 billion to 8.3 billion hours in 2020 and the total cost of congestion will

jump from $160 billion to $192 billion in 2020. On average, drivers spend over 40

hours stuck in traffic each year, while drivers on America’s 10 worst roads spent 84

hours or 3.5 days a year on average in gridlock. The problem becomes more severe

in areas with high population where vehicle commuters experienced an average of 63

hours of extra travel time. In addition, the total cost of the traffic accidents reached

about $794 billion dollars in 2012 and 45.7% of these accidents are speed related.

Figure 1 shows the total wasted fuel as a result of congestion since 1985.

The issues that face the transportation system can be summarized as the follow-

ing:

• Mobility: Drivers mobility is affected by the number of hours wasted on conges-

tion and accidents. For example, drivers wasted 6.8 billion hours in congestion

in 2014.

• Environment: It has been well documented that the main cause of today’s air

quality is the emissions generated by road transportation [8, 9, 10]. The studies

also showed that, road congestion is not the only threat to economic growth

but also a main contributor to global warming. Carbon emission is caused by

fuel consumption and the number of gallons wasted. In 2014, more than 3

billion gallons were wasted because of congestion only.

2

FIG. 1: The total wasted fuel as a result of congestion [5]

• Economy: The cost of the fuel and time wasted on congestion affects the econ-

omy. The total cost of congestion was 160 billion dollars in 2014, and the cost

of traffic accidents in 2012 reached 794 billion dollars.

• Safety: According to the National Highway Traffic Safety Administration

(NHTSA), more than 32,000 people died and more than 2.3 million were in-

jured in motor vehicle traffic crashes in 2013. Table 1 shows the number of

injuries and fatalities caused by transportation from 1990 to 2013.

1.1 INTELLIGENT TRANSPORTATION SYSTEMS

The Unites States government supports the development of technologies to reduce

the total cost of traffic congestion by improving safety on roads, reducing severity of

congestion, fuel consumption, carbon emission, traffic accidents, and travel delays.

Intelligent Transportation Systems (ITS) utilize various methods of data collection

and traffic monitoring using different technologies like inductive loop detectors, video

detection systems, and magnetometers to monitor and understand the traffic. ITS

systems utilize different technologies to collect traffic data from roads, drivers, and

vehicles. The collected data helped in finding solutions for many ITS challenges such

3

TABLE 1: Injuries and fatalities caused by transportation [1].

Injured Persons
by Transporta-
tion Mode

1990 2000 2009 2010 2012 2013

Air General avi-
ation

409 309 273 256

Highway 3,230,666 3,188,750 2,217,000 2,243,000 2,360,000 2,313,000
Railroad 22,736 10,424 7,227 7,376
Transportation
Fatalities
Air General avi-
ation

770 596 478 450

Highway (in ve-
hicle and non-
occupants)

44,599 41,945 33,883 32,885 33,782 32,719

Railroad 729 631 544 601

as designing better traffic light control systems, parking guidance and car naviga-

tion systems. ITS plays an important role in addressing environmental problems by

collecting and analyzing traffic data which can be used to control traffic regulations

which lead to reducing the emission produced.

Many applications developed using different ITS technologies, for example, safety

applications like the emergency vehicle notification system [11] which detects and

reports incidents in accurate and timely manner. Another example is the traffic

enforcement camera, which monitors, detects and identifies vehicles that offend the

traffic rules like over-speeding or crossing red light. One of the safety applications

used in modern trucks is the lane departure system [12] that notifies the driver

when he changes the lane without noticing. Other projects developed to help drivers

in reducing the carbon dioxide emissions like the “Driving Change” project that

provides feedback to drivers to change their driving behavior [13]. This project used

by employees of Denver’s city government in USA, and they were able to change

their driving styles to reduce 10% carbon dioxide emissions [13].

Challenges and Problems of ITS systems

Existing ITS Systems face different kinds of problems that need to be addressed:

4

• Privacy: Several data collection technologies like surveillance cameras and elec-

tronic tolling can track users and raise privacy concerns among drivers. Many

countries like Canada restrict the location of surveillance to only public areas

and specifies a specific zoom level that cannot be exceeded.

• Cost: The cost of the intelligent transportation system depends on the technol-

ogy used, and it varies from technology to another. Most existing technologies

require the installation of sensors and devices in roads, the equipment could

be too expensive in some cases. One of the most significant elements in the

choice of detection technology is the life-cycle cost. The total cost can include

the installation costs, maintenance costs, traffic control, driver delay and re-

lated additional fuel consumption, and additional pavement costs in case of

new pavement needed during installation and maintenance of some detectors.

• Deployment and maintenance: Most road detectors suffer from poor reliability

due to improper installation. Many detectors like inductive loops need to be

installed during road construction; the installation requires a saw cut to the

pavement and stopping the traffic during the time of installation and mainte-

nance. Because of the cost and the installation difficulty of installing new ITS

technologies, the authorities install these technologies in few selected places.

• Limited Data: The data collected from different technologies are limited to the

types of sensors used in that technology, for example, the data collected by

inductive loop detectors are vehicle passage, presence, count, and occupancy

and the data collected by cameras are limited to footage, plate numbers, traffic

density, and speed detection.

1.2 SMARTPHONES IN ITS

Traffic challenges are encouraging the ITS community to look for new technolo-

gies that can assist or replace the current systems. The high technology used in

smartphones and their rich features in terms of processors, sensors, communication

and memory encouraged the researchers to utilize them in enhancing the existing

ITS systems. US-DOT released the 2045 plan [1] about the future of ITS, the report

expected the smartphones to be an important factor in ITS because of their rich

sensors and accessories. Smartphones use has increased sharply in recent years, and

5

therefore more people are using them in their daily activities. According to AT&T

2014 sales report, 94% of their phone sales were smartphone devices [14]. This surge

in the number of smartphone users attracted developers to develop more than 1.3

million apps in Google Play [15] store and 1.2 million apps in Apple App Store as of

July 2014 [16]. This large spread of smartphones made it easy to deploy new low cost

technologies to collect data from drivers and vehicles. Current smartphones come

with different types of sensors like, inertial sensors, camera, microphone, and GPS.

The data derived from these sensors encourage researchers to develop different types

of applications in many domains like sports, health, localization, smart homes, and

ITS. ITS applications such as safety and navigation applications which utilize GPS,

OBD, and inertial sensors to study road traffic, driver behavior, and track vehicle’s

dynamics.

The existing smartphones based ITS applications use phone either for data col-

lection or to do one specific application. Developers face difficulties in developing

smartphone ITS applications because of the difficulty in processing the noisy data

produced by phones inertial sensors. More advanced smartphone-based ITS applica-

tions can be developed if there is a framework that does all the data processing and

the feature extraction. This motivated us to build a reliable smartphone based ITS

framework that reads, processes, filters the raw data and extracts different features

that can be used by developer to easily build different types of ITS applications.

This framework will be explained in detail in Chapter 3.

1.3 SENSYS FRAMEWORK

Smartphones can play important role in solving ITS challenges but they have

not been utilized completely by developers because there is no tool to help them to

create ITS applications. This motivated us to build an efficient framework (SenSys)

that can be used by developers to develop low cost and efficient ITS applications on

smartphones. The SenSys framework will save time, money, effort and resources by

providing a set of services that collects, filters, processes, analyzes and extracts the

data. This framework can always accommodate the new methods and algorithms

to extract driving and road features. Developers can use SenSys to utilize multiple

sensors and fuse their data to build efficient and accurate ITS applications. SenSys

framework scalable and expandable where new filters, services and data processing

algorithms can be added and integrated to the framework. SenSys framework will

6

enable developers to use multiple sensors at the same time, they can also choose what

sensors to use based on their application requirements and hardware limitations.

SenSys will have three layers, the first layer is responsible for collecting, fusing,

filtering sensors’ data. The second layer utilizes the filtered data and applies different

algorithms and optimization methods to extract vehicle’s motion dynamics. The

third layer is responsible for delivering the extracted features to the applications.

SenSys will provide a framework to be used by ITS smartphones developers with a

simple interface which hides behind it many filtering, fusing, features exaction and

optimization algorithms.

1.4 CONTRIBUTION

This thesis contributes the following:

• Design and development of SenSys framework that can be used by smartphone

developers to build ITS applications. No such framework is available today.

• Design and development of different algorithms to filter and fuse different sen-

sors to correct the faulty readings and extract informative data [17] [18].

• Design and development of a new method to align smartphone’s coordinates

with vehicle’s coordinates [17].

• Provide a set of APIs that can be used by smartphone developers to build ITS

applications.

• Evaluation of SenSys framework through developing a set of applications:

– Design and development of a new and accurate method to identify a ve-

hicle’s parking spot using smartphone’s inertial sensors only [19].

– Design and development of a new method that identifies vehicles in the

same lane using smartphone’s inertial sensors only [20].

– Design and development of a new method that detects vehicle’s number

of axles and class type using smartphone’s inertial sensors only.

7

1.5 ROAD MAP

The remainder of this thesis is organized as follows: in Chapter 2 we provide

a detailed background and literature review that goes through the existing works

on intelligent transportation system and the use of smartphones to solve the ITS

problems and enhance the traditional methods in collecting and analyzing traffic

data. In Chapter 3 we introduce the SenSys framework and its components. In

Chapter 4 we explain the data collection and preparation methods. In Chapter 5 we

explain the components of the basic and advance vehicle dynamics extraction module

and in Chapter 6 we describe the set of APIs provided by the SenSys framework.

Chapters 7,8,9, and 10 explain the ParkZoom, InLanCom, GoGreen, and the vehicle

type detection applications. Chapter 11 includes the conclusion and the future work.

8

CHAPTER 2

LITERATURE REVIEW

2.1 INTELLIGENT TRANSPORTATION SYSTEMS

Most of the conventional and current techniques in intelligent transportation sys-

tems are focusing in traffic data collections. Popular methods like inductive loops,

magnetometer, video image detection systems and others have their own challenges

and advantages which will be discussed thoroughly in this chapter.

2.1.1 INDUCTIVE LOOP DETECTORS

The most popular technology used in traffic data collection is the Inductive loop

detectors (ILD) (Figure 2). ILDs consist of one or more loops of wire embedded in

the pavement and connected to a control box. When a vehicle passes over or stops

on the loop, the inductance of the loop is reduced showing the presence of a vehicle

[21, 22]. Inductive loops can detect vehicle count, occupancy and traffic flow. The

data collected by inductive loops can be analyzed and used for congestion and inci-

dents detection. ILD can be unreliable and perform poorly because of the improper

installation which also leads to high maintenance (life-cycle) cost and inaccurate de-

tection. When installed and maintained properly the ILD will work in all weather

and light conditions and can be a very accurate detector in terms of vehicle counting.

2.1.2 MAGNETOMETER

Another popular technology used in traffic data collection is the magnetometer.

The magnetometer is an inroad sensor that detects the magnetic disturbances in the

earth’s field as a vehicle passes over. The magnetometers are only able to detect

vehicle presence, they are effective for counting vehicles and detecting rates. The

problem with this technology is the limited number of applications it can be used in

because of the limited data it provides. The magnetometer can be installed in places

where inductive loop detectors cannot be installed like bridges and the installation

9

FIG. 2: ILD diagram.

requires drilling a hole into the pavement.

FIG. 3: Piezo electric detectors.

2.1.3 PIEZOELECTRIC DETECTORS

Piezoelectric detectors (Figure 3) come in form of metal strips placed on road

surface. The piezoelectric detectors can transform the mechanical energy into elec-

trical energy each time a vehicle wheel passes over them. Such technology is used for

vehicle counting, classification and weighting. The data collected using this technol-

ogy is limited to vehicles’ detection and counting [23].

10

FIG. 4: Pneumatic tubes.

2.1.4 PNEUMATIC TUBES

Pneumatic tubes (Figure 4) are hollow rubber tubes placed over the roadway

where vehicle counts or speeds are needed. It is connected to a box that analyzes

the pulses to count vehicles and estimate their speeds. They are used for temporary

data collections because they can be removed and placed easily on road surfaces but

they can get easily damaged [23].

2.1.5 VIDEO IMAGE DETECTION SYSTEMS

Video Image Detection Systems (VIDS) uses computer vision technologies to ana-

lyze traffic data collected with video cameras. For example, [24] uses image processing

techniques to detect vehicles in videos. VIDS systems are used to monitor roads con-

ditions [25], control signals, detect incidents [26], and classify vehicles [27, 28]. Most

of the video networks used today by ITS community are using analog video systems

because they can get high quality videos in a relatively low cost. They can cover wide

areas with small number of cameras which make them efficient in detecting density,

queue lengths, and speed profiles. VIDS are used by law enforcement authorities to

detect license plates. Detecting license plates in two points can be used for speed

estimation and travel time calculation. The initial price of the VIDS hardware and

software is much higher than the other conventional methods like inductive loop de-

tectors. On the other hand, the installation and maintenance cost is lower in case

of video systems. The analog video systems are more used than the digital video

11

systems because of their high price which is three times more expensive than the

traditional digital systems. Weather conditions such as rain, snow, fog, or dust can

affect the quality of the video image and the performance of the system [29].

2.1.6 INFRARED AND LASER SENSORS

Active infrared sensors transmit low-energy laser beams to a target area on the

pavement and measure the time for the reflected signal to return to the sensor. The

presence of a vehicle is measured by the corresponding reduction in time for the

signal return [23]. However, weather conditions and lens clearance can affect the

performance of the infrared sensors.

2.1.7 RADAR SENSORS

Radar sensors use a continuous signal to determine the time delay of the return

signal, thereby calculating the distance to the detected vehicle. Radar sensors can

detect volume, presence, classification, speed and headway of vehicles. However,

radar sensors can experience dead detection zones and ghost vehicles when installed

in areas with barriers, fencing, or other obstructions [23].

2.1.8 MICROWAVE SENSORS

The microwave sensors transmit electromagnetic waves to detect the presence

of vehicles. The deployment of microwave sensors is easier than ILD and magnetic

sensors because they can be installed on top of traffic lights. On the other hand,

these sensors get affected by the interference from nearby microwave devices [30].

2.2 SMARTPHONES IN ITS

Smartphones sensors and computation ability attracted the ITS community to

develop ITS apps. The use of smartphones sensors in transportation has been dis-

cussed in many papers, many of them use the GPS like the APT project (Accurate

Pedestrian Tracking) [31] which uses the GPS to track outdoor pedestrian, while

others use the inertial sensors, microphone [32], camera [33], or Bluetooth to com-

municate with the on-board diagnostic device that connects the smartphone with

vehicle’s computer like [34]. Usually, developers use one or more of the sensors based

on the application’s requirements.

12

GPS is the most popular sensor used by developers to build ITS applications

because of its simplicity and the rich information it provides. Many navigation,

safety and communication ITS applications use GPS in smartphones like Cai et al.

[35] which uses the GPS only to find the optimal driving speed to avoid red traffic

lights. Other projects combined the GPS readings with readings from other sensors

like Fazzen et al. [36] which uses the GPS and the accelerometer to detect hazardous

driving behaviors. Ruta et al. [37] uses GPS, OBD (On-board diagnostics) and the

web to build a knowledge-based real-time car monitoring system. The problem with

GPS is the high power consumption when compared to other sensors and its weak

signals in tunnels and near tall buildings.

Another major method of data collection used by many ITS applications is the

OBD which can be connected by Bluetooth to access the information provided by

vehicles computer. The work of Choi et al. [38] and Shaout et al. [39] used smart-

phone to communicate with the OBD to analyze and classify driver’s behavior. Their

systems use the speed to detect the unsafe driving behavior. OBD data also used in

assisting the driving behavior to make it more environment friendly like the Artemisa

project [40] which encourage drivers to reduce their fuel consumption by showing

them their instant fuel consumption. Smartphones and OBD are also used for car

diagnosis like OBDDoctor[41], Torque[42] and many other applications which com-

municate with the on-board computer and read the warnings codes. OBD tend to

provide instant and accurate data, but it is limited to the data provided by the

on-board computer which is not enough to detect all vehicle dynamics and driving

behaviors.

Smartphone cameras have been utilized in many projects using computer vision

algorithms, for example, SmartLDWS project [43] uses smartphones camera to cre-

ate a lane departure warning system which imitates the built-in systems that come

with some newer cars and trucks. SmartLDWS uses the camera to detect the lines

between lanes and alarm the driver if he passes over these lines. Singh et al. [44]

used the camera in detecting the unintended maneuvers. In addition to the previous

examples, cameras are used in other applications that intended to assist the drivers

like Ling et al. [45] that recognizes traffic lights and Munoz et al. [46] which calcu-

lates the optimal decelerating pattern to stop in traffic light. The common problem

with camera based applications is that the performance drops in inclement weather

conditions and bad lighting.

13

2.2.1 INERTIAL SENSORS IN ITS

Smartphones’ inertial sensors value has been recognized by motion detection sys-

tems, driver behavior systems and navigation systems. For example, WreckWatch

[34] uses inertial sensors to detect accidents in real time, Thompson et al. [47] and

the MotoSafe project [48] detect accidents and provide situation awareness to emer-

gency responders. WreckWatch and MotoSafe use inertial sensors to detect the shock

caused by the accident.

Because of the inertial sensors ability to read shocks caused by vehicles move-

ments, they have been used on motion mode detection. For example, Bedogni et

al. [49] classifies the motion mode into car mode and train mode based on the ac-

celerometer readings. Hemminki et al. [50] used accelerometer readings to detect

the transportation mode, the study was able to differentiate between car, train, bike,

waking an running modes based on the readings variance.

Inertial sensors also used in road and traffic monitoring, for example, NeriCell

[51] uses smartphone inerital sensor and GPS to monitor road traffic conditions,

and Eriksson [52] used mobile sensor network in monitoring road surface. Inertial

sensors readings can be processed and used for feature extraction. Three types of

features can be extracted regardless of the signal source: statistical-based features like

mean, and variance, time-based features like integrals, and frequency-based features

like FFT and wavelet [50]. Transportation mode detection approaches can mix and

match the previous features to extract road specific ones. For example, segment-

based features that characterize a road section based on patterns of acceleration and

deceleration that defines how the road looks like, as stated in NeriCell project [51]

or how different motion modes behave as Hemminki et al. discussed in their paper

[50]. Road structure creation is another use for smartphone sensors in ITS. Bumps

and potholes detection depends on detecting low speed zones, then using a high-pass

filter to remove low frequency components, and finally detecting peak acceleration

in the gravity direction [52, 53]. For road surfaces monitoring, Strazdins et al. [54]

used pothole detection algorithms over the cloud servers to monitor road surfaces.

One of the main problems that face smartphones developers is aligning the de-

vice’s coordinates with the vehicle’s coordinates. This problem is explained in detail

in Chapter 4. The readings of the sensors are referenced to the phone’s frame not

the vehicle’s frame. Therefore developers created applications that force drivers to

fix the orientation of the phone as the Parkzoom project [19], Fazeen et al. [36] and

14

Eren et al. [55]. Fazeen et al. [36] designed an Android application that uses the

accelerometer readings to analyze hazardous driver behaviors, but they had to fix the

phone in a fixed orientation where the phone’s Y axis is pointing toward the front

and the screen is facing the roof. The problem with this solution is that, it forces the

driver to fix the phone on the windshield with specific orientation, and it prevents

the driver from using or moving the phone from its original orientation.

Other solutions used application specific solutions like Aldunate et al. [56] which

process the inertial sensors to satisfy their applications’ requirements, the problem

with their solution is that it is not generic and cannot used by other applications.

Almazan et al. [57] used the GPS to get the moving direction, but GPS is not the

optimal solution in aligning the readings references because of the power consuming,

low reading rate, and unavailability near high buildings or during cloudy weather.

SenSys framework uses inertial sensors based solution to handle this problem but the

option of using the GPS or other sensors is still available to users.

There are other solutions that worked on other domains, like estimating the head-

ing of a walking person. For example LaneQuest [58] estimated the heading of a

walking person using principal component analysis (PCA) and sensor fusion to de-

tect phone orientation and heading direction by using the pendulum movement of

the user’s arm to find the direction of motion. Another work by Kunze et al. [59]

proposed a method that estimates the orientation of the phone when it is in the

users pocket while walking. Developers of Padati [60] used the gyroscope and mag-

netometer to recognize users’ activity while phone is located in their pocket. Morales

et al. [61] went an extra step to calculate the acceleration in the motion direction

using PCA; this increased the accuracy in detecting users’ activities. However, all

these works consider the periodic movements of the human, which is not the case for

transportation.

Unlike other works, SenSys aligns the readings by using the accelerometer read-

ings caused by the vehicle’s acceleration and deceleration on the direction of motion

to estimate the vehicle’s heading. The data preparing module takes the readings and

maps them to the Earth coordinate to remove the gravity accelerations and then

apply the PCA in the two dimension plane. Since the PCA works well with people

movement it needs extra processing and filtering to make it work with vehicles which

will be done in the SenSys framework.

15

TABLE 2: Related works that worked with the orientation problem.

Project GPS OBD Inertial
Sensors

Ordination Domain

Vehicle
Dynamics[62]

No No Yes Limited scenar-
ios and perfor-
mance

Vehicular

Drunk driver de-
tection [63]

No No Yes Fixed Vehicular

CityDrive [64] Yes No Yes Flexible, needs
GPS

Vehicular

Safe driving [36] No No Yes Fixed Vehicular
Patrol[52] No No Yes Fixed Vehicular
Wreckwatch [34] No Yes Yes Flexible, needs

OBD
Vehicular

Nericell[51] Yes No Yes Flexible, needs
GPS

Vehicular

Apt [31] Yes No Yes Flexible, need
GPS

Vehicular

Parkzoom[19] No No Yes Fixed Vehicular
SenSpeed [65] No No Yes Fixed Vehicular
Projects [58] [59]
[60]

Yes No Yes Flexible Human

UniCoor No No Yes Flexible/
Generic

Vehicular

Smartphones sensors also used in vehicles localization like finding a vehicle in a

large parking lot. There are Smartphone apps like Find My Car app [66] and MyCar

Locator [67] which use GPS to locate cars in big parking lots. Such applications have

a large demand by people based on their pages on Google Play store where each app

is installed more than 500,000 times. Although the existing solutions are popular,

they come with set of problems. First they depend only on GPS, so if GPS signal is

weak then the app is not going to work and this applies to all indoor parking lots.

Second the accuracy of the current outdoor applications goes up to 50 meters away

from the exact location [68]. Patwari et al. [69] targeted the indoor localization by

using sensors’ network to find the relative location of a sensor or object to the other

sensors, but such solution need a pre-fixed framework and the accuracy depends on

the number of prior sensors installed. Our solution is different, it can work indoor

and outdoor, and it uses smartphones only with no extra equpments installed on

16

vehicles or parking-lots and it can identify the parking spot taken by the veihcle.

Inertial navigation systems (INS) have been used in locating moving objects like

ships, airplanes, submarines, robots [70, 71], and humans. Such systems use iner-

tial sensors with other inputs to estimate the correct location for a moving object.

Davidson et al. [72] combined the low cost INS with the GPS to estimate the location

of a car in places where the GPS reception is weak. In times when the GPS goes off,

the INS is used to trace the movement of the vehicle, but this will cause an accumu-

lated error in calculating the speed from an accelerometer reading. Systems in [72]

use the GPS to correct the readings periodically using the Kalman filter while other

systems use the vehicle speedometer like Georgy et al. and Iozan et al. [73, 74] to

get the speed, and uses INS to detect turns and other activities. Reinstein et al. [71]

uses special sensors placed on the wheel to detect the speed, and uses INS to detect

turns. For contentious positioning, Zaho et al. [75] used the Extended-Kalman filter

to update the inertial sensors with the GPS readings periodically.

SenSys framework uses inertial sensors to extract vehicles movement which can

be used by developers to estimate vehicle’s location without using the GPS or other

external sensors. Each project in the existing solution discussed in the previous sec-

tions are designed and built to solve a specific problem. Unlike others, SenSys is

a generic framework that can be used to build smartphones applications for ITS.

Conventional ITS solutions are expensive to install, maintain, and give limited in-

formation, while SenSys is easy to use and access solution that can be used to build

low cost, accurate, and high performance ITS solutions. Table 3 summarizes some

of the existing ITS smartphone applications.

17

TABLE 3: Existing Smartphones ITS applications.

Project Sensors Used Summary

CityDrive [64] GPS,INS,
Crowed-source

Uses the information collected from other
smartphones suggest proper speed for
drivers so that they arrive at intersections
in green phase. It needs a server to collect
and process the data.

Safe driving [36] GPS,Acc. Detecting hazardous driving behaviors.
The phone has to be in a fixed orientation

Patrol [52] GPS,GSM,INS Using a mobile sensor network for road
surface monitoring. The phone has to be
in a fixed Oriantation

Wreckwatch [34] OBD, INS Accident detection and notification
Nericell [51] GPS, INS Monitor road traffic using GPS
Apt [31] GPS Outdoor pedestrian tracking, suffers from

low accuracy in urban areas
MotoSaf [48] GPS, INS Detect high risk maneuver for motorcycle’s

riders
SMaRTCar [43] OBD,GPS Uses OBD and GPS for data collection,

and traffic monitoring. Connected to Ar-
duino board.

18

CHAPTER 3

SENSYS FRAMEWORK

3.1 OVERVIEW

This chapter will describe the SenSys framework design and its layers. The

framework is divided into three main layers, the data collection and preparation

layer, features’ extraction layer, and the application interface layer. Figure 5 shows

an overview of the framework. The first layer is the “Sensors data collection and

preparation layer” which reads the raw data directly from sensors and sends them

to different modules for processing and filtration. The second layer is the “Vehicle

Dynamics Extraction layer” which extracts two types of features, basic features that

represent the basic movement of a vehicle and the advanced features that represent

the advanced movements. The third layer is the “Application Interface layer” which

contains different types of applications that can be built on top of the previous two

layers and provide useful information for developers that can be used on various do-

mains. All these layers and modules will be explained in more detail in this chapter.

3.2 DATA COLLECTION AND PREPARATION LAYER

The data collection and preparation layer collects and prepares the data to be

ready for analysis and feature extraction. It contains two types of modules, the data

collection modules which are responsible for collecting real-time data from the various

sensors and the data filtering and preparation modules which filters and prepares the

data for further processing. The data collection modules communicate directly with

different sources, OBD, GPS, and phones sensors. The data collected will be sent to

the data preparation modules where the raw data will be filtered and processed to

be used by the Vehicle Dynamics extraction layer.

3.2.1 DATA COLLECTION

Modern mobile phones come with a variety of sensors that can be utilized to

analyze and understand the activities in the surrounding environment. This module

19

FIG. 5: SenSys Framework.

20

manages the coordination between available sensors and the framework, and sets the

sensors configuration.The smartphone sensors used in the Data Collection module

are inertial sensors, GPS, OBD, camera, microphone and other sensors. In case of

new sensors and technologies, the framework enables new modules to be added to

this layer. The rest of this section will explain in more detail the list of sensors used

for data collection and how they work.

The first type of sensors are the inertial sensors. Most modern smartphones come

with a set of inertial sensors (accelerometer, gyroscope and magnetometer). These

sensors can be used to understand phone’s movements, fixing screen’s orientation,

and in games and different types of applications. Inertial sensors sense the motion

over the phone 3-axes. Figure 10 shows the axes of the phone in the local frame.

Accelerometer

The first and most used inertial sensor is the accelerometer which measures

the acceleration forces along phone’s local frame axes. These forces could be dy-

namic forces caused by moving the phone, or static like the gravity constant force.

Accelerometers used in smartphones are small Micro Electro-Mechanical Systems

(MEMS) designed to be sensitive only to one direction on the plane. Modern smart-

phones combine 3 accelerometers perpendicular to each other to measure the ac-

celeration on the three dimensions. Figure 6 shows a 2-axis accelerometer. The

accelerometer measures the time rate of change of velocity in m/s2. The data gener-

ated from the accelerometer is vector having three axes (x,y,z). The vector’s readings

represent two types of accelerations: Gravity acceleration which points toward the

center of Earth with a value of 9.81 m/s2, and Other accelerations caused when

moving or vibrating the phone.

Gyroscope

The second inertial sensors is the Gyroscope which is a device for measuring the

angular rotational velocity. 3-axis gyroscope generates three readings; each reading

is the angular velocity that indicates how fast the phone is rotating around a partic-

ular axis. Gyroscope used to detect the change in phone’s orientation and the spin

movement. Unlike accelerometers, gyroscope is not affected by gravity.

Accelerometers can be effected by vehicle’s motion. Figure 8 shows the vertical

accelerometer readings while the smartphone was placed on different vehicles.

21

FIG. 6: A two-axis accelerometer [6]

The traditional mechanical gyroscope in Figure 7 consists of a spinning wheel

mounted on two gimbals which allow rotation along the three axes. Smartphones

use MEMS gyroscopes, Micro-Electro-Mechanical Systems (MEMS) is a technology

used to create tiny integrated devices or systems that combine electrical and me-

chanical components. Compared to traditional gyroscopes, MEMS gyroscopes have

smaller sizes, lower costs, higher precision and easier to integrate. There are differ-

ent types of MEMS gyroscopes that are using different technologies, like the Tuning

Fork Gyroscopes, Vibrating-Wheel Gyroscope, Wine Glass Resonator Gyroscopes,

and Foucault Pendulum Gyroscopes. Gyroscopes that come with smartphones re-

turn three values per reading, each value represent the change of rate around one of

the axes. The values returned are in Radians/second. To calculate the total angle of

rotation, we need to integrate the values over the time taken.

Magnetometer

The third inertial sensor that comes with most smartphones is the Magnetome-

ter (Compass). Magnetometer is a micro-electro-mechanical device for measur-

ing magnetic field. Magnetometer sensors are made using different approaches like

Lorentz force based MEMS sensor, Electron Tunneling based MEMS sensor, and

22

FIG. 7: Traditional Gyroscope vs MEMS Gyroscope [6]

FIG. 8: Using accelerometer to detect driving modes.

MEMS compass. MEMS magnetometer sensors are smaller in size than the tradi-

tional magnetometers so they can be integrated to many devices. Moreover, MEMS

magnetometers have a very low price comparing to traditional magnetometer, which

enable including it in most devices. The magnetometer readings are a vector of

the measurements of the component of the magnetic field in a particular direction,

in reference to the device’s local frame orientation. Three-axis magnetometers use

three orthogonal sensors to measure the components of the magnetic field in all three

dimensions. The data returned from the magnetometer readings are in micro-tesla.

Global Positioning System (GPS)

The second type of sensors used in this framework is the Global Positioning

System (GPS). GPS chips come with most modern smartphones. The GPS receiver

23

needs a clear line of sight with three GPS satellites to calculate the 2-D location

(latitude and longitude), and 4 different GPS satellites to compute the 3-D location

of the phone (latitude, longitude and altitude). The GPS unit can use the computed

user’s position to calculate the speed, bearing, trip distance, distance to destination

and more. GPS unit are very useful in smartphones because it can determine user’s

location with one second sampling rate, calculates and provides other information

such as speed and bearing. It is available in most smartphones and used in many

types of applications.

But the GPS units are known to have some drawbacks that affect their accuracy

and reliability. For example, GPS needs line of sight with 3 or 4 different GPS

satellites to be able to calculate the current location. In smartphones, the average

location calculation error is around 10 meters, which can be not reliable for many

applications. Moreover, GPS does not work properly near tall buildings, trees, inside

tunnels, or indoors. In Android smartphones, the GPS unit updates user’s location

every one second, and based on that the GPS speed, bearing, and time is updated

every one second.

On-board diagnostics (OBD)

Another sensor that is used in transportation is the On-Board Diagnostics

(OBD). In the 1970s and early 1980s manufactures started to use electronic tool to

diagnose engine problems and to control engine functions. The On Board Diagnostic

systems standards have been developed and resulted in the OBD standard which

introduced in the 1990s. This new standard granted more engine control and the

ability to monitor many devices in the car. In 1996 the OBD standard is made

mandatory for all cars manufactured in the United States. In addition to identifying

malfunctions within the vehicle the OBD provides a real time data about the vehicle

current status.

In SenSys, the data-collecting module establishes a Bluetooth connection between

the phone and the OBD device. The module sends set of queries to the OBD to

establish and configure the connection and to retrieve real-time vehicle’s data in

an agreed rate. OBD enables users to query the on board computer for specific

information, the query includes the Parameter ID (PID). The standard defines many

PIDs, but the manufacturers also have many PIDs specific to their vehicles. Table 4

shows some of the standard OBD PIDs.

24

TABLE 4: Description for some of the standard OBD requests

PID Bytes Description Min Max Unite Formula
0A 1 Fuel pressure 0 765 kPa A*3
0C 2 Engine RPM 0 16,383 rpm ((A*256)+B)/4
0D 1 Vehicle Speed 0 255 km/h A
0F 1 Intake air tem-

perature
-40 215 C A-40

11 1 Throttle position 0 100 % A*100/255
1F 2 Run time since

engine start
0 65,535 seconds (A*256)+B

31 2 Distance trav-
eled since codes
cleared

0 65,535 km (A*256)+B

Other sensors

In addition to all the previous sensors, modern smartphones come with variety

of sensors like camera, light sensor, proximity sensor, barometer, camera and micro-

phone. This framework is built to be expendable and reliable, so it can accommodate

new sensors and include more features.

The Camera is an important sensor that is used by variety of applications. ITS

systems used cameras for a longtime in traffic-lights scheduling, and lane departure

systems. Typically, cameras are mounted on structures above or adjacent to the

roadway. Cameras in smartphones can be used if mounted on vehicle’s windows;

many applications can be built using the videos or pictures captured by smartphone’s

camera.

Microphone is a common sensor used by different domains. It has been used in

some ITS applications like a roadside-installed microphone picks up the audio that

compares the various vehicle noises was used in [76] to measure the traffic density on a

road. In the same manner, without the need of installing a roadside microphone, the

microphones within smartphones can be used to receive the audio signals generated

by tire noise, engine noise, honks, and air turbulence noise.

Another set of uncommon sensors that are rarely used in ITS applications are

the Proximity sensor and the Light sensor. The proximity sensor is provided

to estimate the distance between the face of a device and an object, manufacturers

include the proximity sensors in their hand-held devices to determine when a handset

25

is being held close to a user’s face.

The Light sensor is used by most devices to control the screen brightness. Light

sensors can be used by developers to understand the environment around the driver.

3.2.2 DATA FILTERING AND PREPARATION MODULES

In this module, the collected data will go through multiple steps of fusion, noise

reduction, and filtering. Sensors raw data are noisy and meaningless if they are not

filtered. Accelerometer data carry biased values and they can get affected easily

by small shocks, while gyroscope data are more stable but suffer the drift problem.

Magnetometer data get affected by the surrounding environment and they are known

to produce inaccurate data indoors. GPS is not reliable indoors, in tunnels or near

tall buildings, also in case of good signal reception the error can go up to 15 meters.

The framework fused the raw readings from multiple sensors to get more accurate

sensors data.

This module applies different types of filtering and processing techniques to the

raw data. These techniques will be applied to different type of sensors. For example,

detecting and fixing the accelerometer bias and fluctuating problem. The accuracy

of accelerometers can be tested by conducting a simple experiment, by placing a

smartphone on a flat surface and read the accelerometer data. The readings are

expected to be constant, since the phone and the surface are not moving, but the

readings will keep fluctuating as if the phone is moving. Each axis in the accelerome-

ter has bias value that needed to be detected and removed. This module will be also

responsible for fixing gyroscope drift problem. Gyroscope is important in detecting

lane switches, turns and calculating turns’ angles. Gyroscope readings suffer from

the drift problem, the need to be fixed using the other more stable sensors. One of

the most important modules in this layer is the module responsible of making the

readings orientation independent. Readings of inertial sensors are referenced to the

phone’s local frame, where the X axis points to the side of the screen, the Y axis

points to the top of the screen, and the Z axis is perpendicular to X and Y. To use

the readings of the inertial sensors we need to relate the readings to the vehicle’s

frame. To do this, the framework translates the data from the phone’s local frame

to the vehicle’s frame.

26

3.3 VEHICLE DYNAMICS EXTRACTION LAYER

This layer reads sensor readings and extract different features from them. The

features extracted in this module are divided into two categories, the basic level

features and the advanced level features.

3.3.1 BASIC LEVEL FEATURES

Basic level features are the features that explain vehicle’s basic motion dynamics

as described in [77], [78], [79], [62].

FIG. 9: Basic motion dynamics the car can take.

Works that studied the basic vehicles motion dynamics have all agreed that vehi-

cles have six basic motion dynamics. First the vertical motion which is vertical to the

ground, where the force is positive if upward and negative if downward. The vertical

motion is also called the vertical force or the vertical load. The second is the lateral

motion which is the motion toward the side of the vehicle. It is generated when the

vehicle takes a turn or a lane switch. The third motion is the forward motion that

is generated when a vehicle is driving in a straight line, either forward or backward.

It is positive if the vehicle is moving forward and negative if the vehicle is moving

backward. The fourth motion called the yaw rate which is the movement about the

z-axis. It can be used to calculate the turning angle. The fifth motion is the pitch

27

(F) Forward

(S) Side

(V) Vertical

FIG. 10: Vehicle Coordinates.

rate. It is the lateral movement about the y-axis. The sixth and last motion is the

roll rate which is the movement around the x-axis.

3.3.2 ADVANCED LEVEL FEATURES

The other category of features is the advanced features which contains five mod-

ules. Previous work [37,38,39,41,45] has focused on vehicles dynamics and road traf-

fic, and they are collectively trying to extract different motion features using GPS,

road-infrastructure, OBD and other means to collect different dynamics. In this

work we find the activities that are related to vehicle’s dynamics and included them

in the SenSys framework, given that, the framework is expandable and can accept

new activities.

The first module in the advance features category is the speed estimation. Vehi-

cle’s speed estimation is very important feature that is needed by many applications.

Speed can be retrieved directly from OBD or GPS units. This feature become hard

to calculate when the applications depend on the inertial sensors only, this feature

is needed since more application tend to overcome the unavailability of the OBD

devices and the GPS signals by depending on the inertial sensors only. The second

module is the turn detection, where turns can be detected using GPS, OBD, and

inertial sensors. In addition to unavailability and the accuracy problem, GPS is late

and not sensitive to small turns. SenSys can detect turns and angles taken using

inertial sensors. Inertial sensors are sensitive and more accurate in detecting turns

28

and lane switches. The third module is the stop detection module. Stops can be

detected by retrieving the speed from GPS and OBD, but experiments showed that

GPS and OBD are not very accurate in very low speeds, thus cannot detect the exact

time when the stopping event occurred. Some applications need the exact start and

end time of the stops to calculate the fuel consumption, queue length, and waiting

time in intersections. The lane-switch detecting module uses inertial sensors to de-

tect lane changes. GPS and OBD are not sensitive to detect lane switches. The 10

meters GPS accuracy is not enough to detect the change in vehicles lane. SenSys

uses inertial sensors to detect lane switch, it can differentiate between lanes switched

and turns. This can be used to enhance navigation systems, guide emergency cars,

and identify vehicle’s lane. The fifth module is responsible for bumps and potholes

detection. This module can provide the developers with information about roads

surface, bumps and potholes that are detected by SenSys. It can be used by many

applications to understand roads surfaces and to enhance the navigation systems and

the safety on the road.

The developers can specify the sensors that can be used to extract the features

based on the application requirements. Since some applications might use inertial

sensors only while other applications can use other sensors like OBD or GPS. The

methods of extracting the features will differ based on the sensors used. For example

while the speed estimation is straight forward using the OBD or GPS, it is com-

plicated using the inertial sensors only. Many developers prefer to use the inertial

sensors only because of their availability, since GPS is not available in some cases

and the OBD needs an extra device which is not available with most drivers.

3.4 APPLICATION PROGRAMMABLE INTERFACE (API)

The API layer provides a set of calls that can be used by developers to access the

different features of the framework. This layer acts as an interface between the data

processing and features extraction layers and the application layer. Applications

use the calls from the API layer to access the filtered sensors data and vehicle’s

dynamics features. The API calls provided by SenSys can be used by different

types of applications, for example: navigation application, road safety applications,

applications that analyze road traffic, applications that test the driver behavior,

application that test road surface conditions, and others.

This layer can be expanded by adding new API calls from new applications.

29

3.5 APPLICATIONS

The application layer consists of different types of applications that use the infor-

mation provided by the API layer. These applications will provide developers with

rich set of information that can be used by many ITS applications.

SenSys application layer implemented a set of applications, for example an In-lane

communication system which uses the services provided by different layers of SenSys

to extract road and traffic features of a lane. This will help a vehicle to identify

and communicate with all other vehicles within the same lane. Another application

which is part of the SenSys is the ParkZoom which is a parking spot identification

system. This system uses the turn detection and speed estimation services provided

by SenSys to estimate the exact parking spot. This system helps drivers to find a

free parking spot in a large crowded parking lot, it also help them to find their car

in the parking lot.

Fuel consumption and CO2 Emission Calculator(GoGree) uses inertial sensors to

calculate the fuel consumption and the CO2 emission. Giving a real-time feedback

to drivers about their fuel consumption and CO2 emission will help them to change

their driving behavior to be environment friendly.

Vehcile type esitmator detects the number of vehicle’s axles and the distance

between its axles to estimate its class. FHWA has divided the classes into 13 class

based on the number of axles and the size of the vehicle. All of these applications

will be explained in detail in Chapters 7,8,9 and 10.

30

CHAPTER 4

DATA PREPARATION AND PRE-PROCESSING

4.1 INTRODUCTION

In this chapter we will explain the set of modules used to filter and prepare the

raw data in the data preparation layer. First, it will start with filters applied to

individual sensors like low pass filter, complementary filter and accelerometer bias

filter. Then, it will explain in detail in the coordinate alignment module.

4.2 LOW PASS FILTER

The first filter we apply to the raw data is the low pass filter [80]. It is needed

because low cost accelerometers used in smartphones are considered noisy and their

readings are fluctuating all the time. If we put the phone on a fixed surface we will get

continuous fluctuating readings even if neither the phone nor the table are moving.

The algorithm we are designing is sensitive to changes in accelerometer readings.

Therefore we used a moving average low pass filter to remove this fluctuating. Figure

11 shows the accelerometer readings in the direction of motion before and after

applying the filter. From the figure we can see that all activities like accelerating,

decelerating, stops, and others still exist and the readings are smoother and easier

to analyze.

4.3 COMPLEMENTARY FILTER

The goal of this filter is to correct the gyroscope drifting problem. The gyroscope

has to be used to calculate the change in the angle taken over time, but because of the

integration over time, the angle calculated will drift from the original position. Since

the gyroscope data is precise and reliable in the short term but tends to drift in the

long term, it can be corrected by the accelerometer readings that do not drift over the

long term. Correcting the gyro’s drift by more reliable source can be done by either

complementary filter [81] or Kalman filter [82]. SenSys uses the complementary filter

31

FIG. 11: Using low pass filter (moving average) to reduce the fluctuation

because it is simpler to implement and has the same accuracy as the Kalman filter.

Figure 12 shows the complimentary filter diagram.

FIG. 12: The complimentary filter diagram

In the diagram θa = arctan(ay/az) and θg is the dynamic tilt angle calculated by

integrating the angular velocity (gyroscope reading), and θ = θ
′
g + θ

′
a.

Although the gyroscope is more stable and less noisy than the accelerometer in

detecting the changes in small intervals, but in the long run, the gyroscope will drift

and therefore needs calibration. We built the complementary filter in a similar way

to [81]. Figure 13 shows the calculated angle in degrees before and after the drift

correction.

4.4 ACCELEROMETER BIAS

32

FIG. 13: Calculated angle before and after removing the drift.

In smartphones, accelerometers are very sensitive in a way that they can detect

small changes in the acceleration, but these readings could be inaccurate. Accelerom-

eter readings add additional offset to each axis of the phone’s coordinates, this value

will be referred to as the accelerometer bias. To study this bias and calibrate it, we

obtained a simple test to measure the accuracy of the accelerometer in smartphones.

We collected the accelerometer readings from a Samsung Galaxy smartphone placed

on a flat table and show the results in Figure 14.

FIG. 14: Accelerometer readings while the phone is placed on flat table.

In Figure 14 the average value of the Y axis readings is 0.39 and the average value

33

in the X axis is -0.14. Since the phone was stable and placed on a flat surface, the

readings are expected to be zero on both axes. The values read by the accelerom-

eter in this situation represent the accelerometer bias. This test showed that the

accelerometers readings are biased and each axis has different bias value. In addition

to that, when studying the values produced by other phones as shown in Table 5 we

found that the bias differs from phone to phone, even for the phones with the same

model and operating system, also the bias differs from axis to axis within the same

phone.

TABLE 5: Accelerometer bias measured using different phones

Phone X axis Y axis Z axis

Galaxy S4 -0.14 0.39 9.84
Galaxy Note 1(1) 0.79 0.09 9.87
Galaxy Note 1(2) 0.24 -0.07 9.85
Nexus 4 0.44 0.21 9.81

To study if the bias is consistent per phone, or if it changes from stop to stop, we

applied another experiment where we placed a Galaxy S4 phone on the windshield,

drove a car for 60 minutes and collected the readings during the multiple stops we

did through the experiment. Table 6 shows the bias readings for the same phone in

different stops. In each axis the bias is almost constant.

TABLE 6: The accelerometer bias for the same phone in different stops

Phone X axis Y axis Z axis

Stop 1 0.245 9.78 0.188
Stop 2 0.239 9.79 0.179
Stop 3 0.232 9.81 0.191
Stop 4 0.244 9.83 0.187

Since the bias is constant per phone, we can calibrate for this bias by measuring

such bias for each sensor offline and then apply a compensation to the raw readings

of the sensor to counter the bias. Figure 15 shows the speed calculated before the

accelerometer bias calibration process and after the calibration process. The figure

shows the importance of the bias calibration process in increasing the accuracy of the

readings. To calculate the speed using inertial sensors, we integrate the acceleration

over driving time. The bias is included in the calculation, so, overtime, this will

increase the error in the speed as shown in Figure 15. To remove the bias from the

34

accelerometer readings, we calculate it offline where we position the phone in different

orientations where readings along axes are expected to be zero. After removing the

bias from the accelerometer readings, the comparison will be more reasonable as seen

in Figure 15. The calibrated speed is calculated using the following formula:

Speedi+1 = Speedi + (Ai − bias) ∗ dt (1)

where A is the acceleration, dt is 0.1 second, and the sampling rate is 10 readings per

second. Our previous work [18] explains in detail how to detect stops using inertial

sensors only.

FIG. 15: GPS speed vs estimated speed before bias reduction using our algorithm,
vs using raw speed acceleration from the phone Z coordinate

4.5 COORDINATE ALIGNMENT (UNICOOR FRAMEWORK)

Translating sensor readings from phone to vehicle context is one of the challenges

faced in using smartphones inertial sensors for ITS applications. Existing solutions

for this challenge are divided into three approaches, the first approach used in [19, 36,

55] avoids the problem by fixing the phone on a car mount and sets its orientation

to be aligned with the vehicle coordinate system. Adapting this approach limits

the driver from using his phone while driving; also, it could produce inaccurate

readings if the phone’s orientation tilts because of a hard break or a road bump. The

second approach used in [56] is an application specific solution. The methods used in

the second approach work only with specific applications and specific scenarios and

cannot be used in other applications. The third approach used in [57] utilizes the

GPS to recognize the vehicle’s direction of motion.

35

Although GPS readings could be used to estimate vehicle’s direction of motion,

GPS readings suffer from several limitations. One major limitation is the high power

consumption associated with GPS readings. Moreover, GPS readings are not avail-

able or have very high inaccuracy in tunnels, indoor parking-lots, and urban areas

with tall buildings and trees. Figure 16 shows the power consumed in a trip. In the

first half, the first application used the inertial sensors only to estimate the motion

direction, and in the second half the application used the GPS only to estimate the

motion direction. The experiment shows that the GPS average power consumption

is 1917 mW and the power consumption using the inertial sensors only is 1321 mW,

which is about 30% reduction in power consumption. Therefore, our approach in

this work is to utilize phone inertial sensors only without any help from the GPS or

the OBD.

FIG. 16: Power Consumption in mW

In this section we explain, develop, and evaluate a reliable framework (UniCoor)

that uses inertial sensors only to map the inertial sensors readings from the device

coordinates to the vehicle coordinates. This framework will enhance the accuracy of

36

tracking and analyzing various vehicle dynamics such as vehicle stops, lane changes

and accurate vehicle speed calculation that, in turn, will enable development of new

ITS applications and services. As a proof of concept of our framework, we use our

framework in estimating a vehicle’s speed using the forward acceleration. We use the

GPS speed as the ground truth to evaluate our framework accuracy in estimating

vehicle speed.

4.5.1 PHONE VERSUS VEHICLE COORDINATES

FIG. 17: Coordinate systems. (a) Device Coordinate System, (b) Earth Coordinate
System, (c) Vehicle Coordinate System.

Figure 17 shows the three types of coordinate systems used in the framework:

Device Frame Coordinate (DFC) is relative to the screen of the smartphone.

As shown in Figure 17(a) the X axis points to the right of the screen, Y axis points

toward the top of the screen, and Z axis is perpendicular to X and Y, it goes through

the screen and points toward the front face of the screen. Inertial sensor readings

are in reference to the device coordinates. Since the device’s axes are relative to the

phone’s frame, the X axis will keep pointing toward the side of the screen even when

the orientation changes.

Earth Frame Coordinate (EFC) corresponds to the Geographic Coordinate Sys-

tem. It consists of the Gravity axis (G) that points toward the center of the earth,

the North axis (N) that points toward the magnetic north, and the East axis (E)

which points toward the east direction and is perpendicular to Gravity and North,

37

as shown in Figure 17(b).

Vehicle Frame Coordinate (VFC) is shown in Figure 17(c), as is composed of

the Forward axis (F) which points toward the direction of motion, Side axis (S), and

the Vertical axis (V) which is perpendicular to F and S and points downward. Iner-

tial sensor readings in VFC reference are aligned with vehicle movement. Therefore,

these readings could be utilized in extracting accurate vehicle dynamics.

Mobile smartphones come with inertial (motion) sensors, typically, 3D-

accelerometer, 3D-magnetometer and 3D-gyroscope. All inertial sensors have sense

of the three dimension space, therefore each sensor will produce three readings and

each reading is in reference to one of the device’s axes. For example, the acceleration

sensor produces 3 reading values in X, Y, and Z axes. The acceleration in X axis

is corresponding to the phone acceleration along the device X axis in m/s2, which

represents the acceleration toward the side of the phone. Another example is X read-

ing of the gyroscope sensor, which is corresponding to the rotation velocity of the

device around the X axis in radians per second. Sensors reading values are relative

to phone’s coordinate; therefore, a simple change in phone orientation while it is in

a moving vehicle would affect significantly the inertial sensor readings.

4.5.2 IMPACT OF COORDINATES

Aligning device and vehicle coordinate systems has a great impact on sensor

readings. The raw readings detect the motion of the phone in reference to its local

axes. If a vehicle is moving and its coordinates are not aligned with the phones’

coordinates, then all readings will recognize the device’s motion but not the vehicle’s

motion.

To show the coordinates’ impact, we conducted an experiment with two phones;

the first one was placed in an arbitrary orientation, while the second phone was

aligned with the vehicle coordinate (i.e., DFC is aligned with VFC). Figure 18 shows

that the Z axis of the second phone is aligned with the vehicle’s F (Forward) axis.

Accelerometer readings were used to calculate the speed of the car in both phones.

GPS speed is collected to be used as ground truth. Figure 19 shows how the speed

calculated using the aligned phone matches the speed collected by the GPS, while

Figure 20 shows the speed calculated by the tilted phone does not match the GPS

speed. The results of this experiment shows the importance of aligning device’s

coordinate with vehicle’s coordinate and how sensors’ readings in aligned phones can

38

FIG. 18: Phones are fixed on the windshield with different angles

be utilized to detect vehicle’s dynamics like speed calculation, detecting stops, and

turns. The graph also shows the speed calculated using the three axes X,Y, and Z

after removing the gravity.

4.5.3 SYSTEM DESIGN

In this section, we describe our framework and its different components.

UniCoor Framework

UniCoor (Unified Coordinate System) is a framework that aims to transform the

sensor readings to a unified coordinate system that would be useful in transportation.

The most appropriate coordinate system in transportation is the vehicle coordinate

system and hence the goal of UniCoor framework is to transform the readings from

the phone coordinate to vehicle coordinate. In the UniCoor framework, sensors

data goes through multiple modules to be mapped to vehicle coordinate as shown

in Figure 21. Sensor raw readings go to the data filtering module which filters noisy

sensors readings and prepares them for processing in the next modules. Filtered

39

0

20

40

60

80

100

120

140

160

0
.5

1
1

.0
1

1
.5

1
2

.0
0

2
.5

0
3

.0
1

3
.5

0
4

.0
0

4
.5

0
4

.9
9

5
.4

9
5

.9
9

6
.4

7
6

.9
7

7
.4

7
7

.9
6

8
.4

6
8

.9
6

9
.4

5
9

.9
6

1
0

.4
6

1
0

.9
5

1
1

.4
5

1
1

.9
5

1
2

.4
4

1
2

.9
4

1
3

.4
3

1
3

.9
3

1
4

.4
3

1
4

.9
3

Sp
e

e
d

 m
/s

Time (minutes)

Aligned phone

GPS speed

Estimated speed using Acc(Z)

Estimated speed using Acc(XYZ)

FIG. 19: Calculated speed using aligned phone

data will be sent to the next module (DFC to EFC) which maps the readings from

device frame coordinate to the Earth frame coordinate. The DFC-to-EFC module

filters out the gravity vector and sends a 2D vector that represents the readings

in the horizontal plane. The next module consists of three submodules; the first

submodule takes the 2D vector and divides it into small windows. The second sub-

module (Angle estimation) applies the principle component analysis (PCA) on each

window separately to find the angle between the earth coordinate and the coordinate

with the highest variance in acceleration. And the third sub-module is the accuracy

enhancement sub-module which takes the estimated angles and analyzes them to

filter out the inaccurate estimations. The enhanced estimated angles will be used in

the (DFC-to-VFC) module to map the data from the Earth coordinate to the vehicle

coordinate. The output of this framework will be the sensors readings in reference

to vehicle coordinate system that can be used by other developers to create ITS

applications

4.5.4 COORDINATES ALIGNMENT

The filtered data will be sent to the next modules to align the readings with

the desired orientation. This section explains the three modules that transform the

readings from DFC to VFC. First, readings get mapped to EFC to find the gravity

coordinate and get the readings in horizontal 2D-plane without the gravity effect.

The data in 2D horizontal coordinates will be sent to the PCA module which finds

40

-600

-400

-200

0

200

400

600

800

1000

1200

0
.5

3

1
.0

4

1
.5

6

2
.0

7

2
.5

9

3
.1

0

3
.6

2

4
.1

3

4
.6

5

5
.1

6

5
.6

7

6
.1

8

6
.7

0

7
.2

0

7
.7

2

8
.2

4

8
.7

5

9
.2

6

9
.7

7

1
0

.3
0

1
0

.8
0

1
1

.3
2

1
1

.8
3

1
2

.3
5

1
2

.8
6

1
3

.3
8

1
3

.8
9

1
4

.4
1

1
4

.9
2

Sp
e

e
d

 m
/s

Time (minutes)

Tilted phone

GPS speed

Estimated speed using Acc(Z)

Estimated speed using Acc(XYZ)

FIG. 20: Calculated speed using the tilted phone.

the direction of motion that would be used to detect the vehicle coordinates.

Device Coordinate to Earth Coordinate (DFC to EFC)

This module maps accelerometer readings from device coordinate to Earth coor-

dinate. It uses the accelerometer, gyroscope, and magnetometer sensors to detect

the gravity coordinate that represents the vertical motion. It assumes the other two

dimensions represent the horizontal motion of the car. The horizontal motion is the

motion in the forward and side directions as in Figure 17.

This module and the next modules depend mostly on the accelerometer readings,

and the following sub-modules will explain the steps taken to map the coordinate

from DFC to VFC.

The accelerometer readings in DFC and EFC will be represented in the following

matrices:

ADFC =

Ax

Ay

Az

 , AEFC =

AN

AE

AG

 (2)

where Ax is the acceleration along the X axis, and X, Y, and Z are the device’s

axes. N, E, and G are the Earth coordinates North, East and Gravity.

To transform the readings from device coordinate to Earth coordinate, we should

find the rotation matrix needed to map the DFC to EFC. To do that, multiply the

41

FIG. 21: System framework. DFC: Device Frame Coordinate, EFC: Earth Frame
Coodrinate, VFC: Vehicle Frame Coordinate, theta : angle between the direction of
motion and the magnatic north, 2D: horizontal plane.

DFC readings by the rotation matrix using the following equation:
AN

AE

AG

 =

Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

 ∗

Ax

Ay

Az

 (3)

where R is the rotation matrix returned by getRotationMatrix, AE, AN are the hori-

zontal axes, and AG is the gravity axis.

The DFC to EFC module uses set of functions provided by the Android API.

Android provides set of functions that can be used to determine the phone orienta-

tion and to detect the changes in the orientation. These functions are mostly used

to adjust the view based on the screen orientation. The system uses the Android

function getRotationMatrix that takes the readings from the accelerometer and the

42

magnetometer as parameters. This function produces the rotation matrix which will

be used to transform the raw readings of an inertial sensor (e.g., accelerometer) from

the device coordinate reference to the earth coordinate reference.

The output of this module will be sent to the next module that applies the PCA

to find the vehicle’s direction of motion.

Applying PCA

The PCA module takes the horizontal 2D-plane of the Earth coordinate of the

accelerometer readings and applies on them the principle component analysis (PCA)

to find the direction that has the highest variance in acceleration. This direction

will be aligned with the forward motion direction of the vehicle. The goal of this

module is to detect the angle between the direction of motion and the EFC. This

angle would be used to map the readings from horizontal earth frame coordinate

(EFC) to to vehicle frame coordinate (VFC).

This module is divided into three sub-modules:

• The data framing sub-module which divides the input stream into windows.

• Angle estimation sub-module which applies the PCA and calculates the angle

between the two coordinates in the current window.

• The accuracy enhancement sub-module which analyzes and corrects the calcu-

lated angle because each window will have different accuracy. The techniques

used in this sub-module explained in details in the evaluation section.

Data framing: Before applying the PCA on the data, the system divides the

input stream into windows, each window consists of 20 readings. It is important

to calculate the orientation angle more frequently to detect any change in the ori-

entation in a short time. In the other hand, the PCA needs more time to collect

enough data to calculate the new angle. To solve this contradiction, the algorithm

splits the data into windows; each window will represent part of the readings, which

is almost two to three seconds per window. In each window, the algorithm reads the

two vectors that represent the accelerometer readings in the horizontal plane after

removing the gravity vector. For each window the PCA module will produce the

43

angle between the calculated coordinate and the Earth coordinate.

Angle Estimation: The angle estimation algorithm is applied to each window

separately, the resulting angles of each window would be sent to the next module for

processing and filtering. The angle between two 2D horizontal coordinates is needed

to transform the readings from one coordinate to another. The EFC coordinate is

known, but the vehicle coordinate is not known up to this point. The VFC coordinate

consist of the forward axis, side axis, and vertical axis. The vertical axis is known

because it matches the gravity axis in the EFC. Detecting one of the remaining coor-

dinates will give the other one because the angle between them is always 90 degrees

on the horizontal plane. PCA uses the high variance caused by the acceleration and

deceleration to detect the direction of motion and therefore the VFC.

PCA calculation steps:

• For each window

– Calculate the co-variance matrix:

cov(X, Y) =

∑n
i=1(X −X−)(Y − Y −)

(n− 1)
(4)

C =

[
cov(x, x) cov(x, y)

cov(y, x) cov(y, y)

]
(5)

– Calculate the eigenvectors of the covariance matrix.

– Choose the eigenvector that correspond to the highest eigenvalue. If A is

a square matrix, B is an eigenvector of A if there is an eigenvalue v such

that: AB=vB

The output of the PCA procedure will be the angle between the eigenvector

coordinate and the EFC, this angle could be used to remap from one coordinate

to another. The next step is to send the results to the accuracy enhancement sub

module.

Accuracy Enhancement: The accuracy enhancement sub-module takes the

estimated angles calculated by the PCA to enhance the accuracy of the estimation.

It filters the data by analyzing the relation between sensors readings and the resulted

44

angles. This step is needed because of the high variance of the calculated angles

in each window, this variance happens even if the vehicle is driving in a straight

line. The accuracy enhancement sub-module is explained in detail in the evaluation

section.

Earth Coordinate to Vehicle Coordinate (EFC to VFC)

The final step is to map the readings from EFC to VFC. This step is straight-

forward given the angles between the coordinates. Figure 22(a) shows the the map-

ping from DFC to EFC, in this step the earth’s gravity axis will be matching the

vehicle’s vertical axis. The vertical axis is not needed to detect the horizontal axes.

In Figure 22(b) the PCA estimates the angle between vehicle’s horizontal coordinates

and Earth’s horizontal coordinates.

FIG. 22: a) Transform sensors reading values from DFC to EFC. b) Transform
readings from EFC to VFC.

4.5.5 EVALUATION

45

The approach used to evaluate the accuracy of this framework is using the ac-

celeration in the direction of motion to calculate the speed and then compare it to

the actual speed collected by the GPS. Getting the correct speed means that the

mapping from the arbitrary orientation to the vehicle orientation is successful.

Basic Experiments

Experiment Setup

To test the framework, we developed an Android application that collects, filters,

and processes the raw readings from inertial sensors with a 10Hz rate. In addition,

it collects the GPS readings to be used as ground truth values during the evaluation

process. The phones used in the experiments are Samsung Galaxy S4 with Android

4.4, Samsung Galaxy Note 1 with Android 4.2, and Samsung Galaxy S with Android

4.2. The cars used are Toyota Camry 2001, Honda Accord 2006 and Honda CR-V

2003. The phones were placed in arbitrary orientations in the cars. The cars driven

for more than 30 miles and covered different types of roads as seen in the map shown

in Figure 23.

FIG. 23: Roads driven in the experiments

46

Results

To evaluate the framework, the acceleration in the direction of motion is used to

calculate the speed. The calculated speed is compared with the collected GPS speed.

After putting the phone in an arbitrary orientation in the car, the algorithm has been

used to find the acceleration in the direction of motion and used it to calculate the

speed. Figure 24 shows that the estimated speed is matching the GPS speed with

92.7% accuracy, which proves the good accuracy of the algorithm. This accuracy can

be enhanced using the accuracy enhancement module.

FIG. 24: GPS speed vs estimated UniCoor speed.

Figures 26 and 28 show the results of other trips. The matching between the

UniCoor speed and GPS speed proves the successful mapping of the readings from

DFC to VFC.

The accuracy of the algorithm depends on many factors, therefore, we explored

different methods to test and enhance the accuracy of the framework.

4.5.6 ACCURACY ENHANCEMENT

The accuracy enhancement sub-module is responsible for studying the relation

between the acceleration patterns and angle estimation accuracy to enhance the

overall accuracy. Experiments showed that each window produces a different angle

between the two coordinates (EFC and VFC). To enhance the accuracy of the angle

estimation, the system analyzes the relation between the produced angles. Calculat-

ing the correct angle between the vehicle coordinate and the Earth coordinate can

47

be affected by many factors like the noise of the sensors which can affect the DFC to

EFC transformation. In addition, the motion status of the vehicle can greatly affect

the PCA estimation since it bases its calculation on the variance of the acceleration

on the direction of motion. For this reason, different windows will have different

accuracy in predicting the correct angle between the coordinates, and the goal of

the accuracy enhancement sub-module is to decide if the window has a good or bad

accuracy, and based on that, the system can enhance or skip the windows with bad

accuracy. Experiments showed that PCA works fine when there is a high and fre-

quent change in the acceleration in the direction of motion like speeding up or down.

PCA works fine when the highest variance in the acceleration is in the direction of

FIG. 25: Accelerations on the motion direction showing stopping patterns

motion, the ideal case is when a car that drives in a flat straight line goes through

multiple changes in speed, because deceleration and acceleration patterns produce

a high variance. Figure 25 shows the stopping patterns and Figure 26 shows the

variance before, during, and after the stopping activity.

The relation between the translation accuracy and the acceleration of

the vehicle: First, we show the relation between the accuracy produced and the

acceleration of the vehicle. Figure 26 shows the speed collected by GPS and the

speed calculated using the acceleration in the direction of motion.

The upper section of Figure 26 shows the GPS collected speed compared with

the estimated UniCoor speed. The PCA speed shows estimation accuracy of 92.2%

corresponding to the GPS speed. The green line shows the windows where the

PCA generates good accuracy estimations. The figure clearly shows the relation

between the changes in the speed and the good accuracy where the green line marks

the windows before and after the stops. The lower section of the figure shows the

48

FIG. 26: Good confidence in the accuracy during high changes on the acceleration
in the motion direction

acceleration in the motion’s direction of the same trip along with the lines that mark

windows with good accuracy. The figure shows a tight relation between the change

in acceleration and the PCA estimation accuracy. The accuracy is high during high

changes in acceleration and low during stops and near constant acceleration.

The relation between the translation accuracy and the variance of the

calculated angles: Since acceleration in the speed of direction is not known yet, in

this case it cannot be used to filter the data produced by the PCA. So we studied the

variance in the calculated angles. Looking at Figure 27, we found that the estimated

angle between Earth and vehicle coordinates in each window is fluctuating but when

there is a high acceleration in the direction of motion the fluctuating is reduced.

Figure 27 shows that the estimated angles variance is lower than 10 degrees when

there is a high change in the acceleration. And it goes to above 30 degrees in case

of near-constant acceleration. From this figure, we conclude that, the estimation

is expected to have a good accuracy if the variance for the estimated angles is less

than specific threshold. Table 7 shows the accumulated error after applying different

thresholds on the data, and then calculated the accumulated error between the GPS

speed and the calculated speed.

49

FIG. 27: Predicted angle variance vs GPS speed.

TABLE 7: Accumulated error between GPS speed and estimated speed using differ-
ent thresholds.

Threshold No thresh-
old

Threshold
5◦

Threshold
10◦

Threshold
15◦

Threshold
30◦

Trip 1 8221 10023 7813 7421 8047
Trip 2 15854 13087 12479 10322 11698
Trip 3 9862 9781 8567 8752 10172
Trip 4 16214 19965 14158 12779 14863

Table 7 shows the minimum accumulated error calculated after using the thresh-

old angle of 15 degrees. Applying a very small threshold like 5 degrees makes the

error surprisingly high because it skips lots of important data. A threshold of 30

degrees generates a higher error because it includes more data with low accuracy

that could be affected by turns, bumps or any other noise. Therefore, the algorithm

uses the calculated angle when the confidence in the algorithm is high. The table

shows that the confidence is high when the variance of the estimated angles is less

than the 15 degrees threshold if no turns are detected by the gyroscope readings.

The effect of applying the enhancement methods on coordinates trans-

lation: Figure 28 shows the results of speed estimation using UniCoor framework

before and after the enhancement process. The figure shows that the accuracy of

50

the average estimated speed after the enhancement is 97.3% corresponding to the

ground truth speed from GPS and 85.1% before the enhancement.

0

5

10

15

20

25

30

0.0 0.8 1.5 2.2 2.9 3.7 4.4 5.1 5.9 6.6 7.3 8.0 8.8 9.5 10
.2

11
.0

11
.7

12
.4

13
.1

13
.9

14
.6

15
.4

16
.1

16
.8

17
.5

18
.3

19
.0

19
.7

20
.5

21
.2

21
.9

22
.7

23
.4

Sp
ee

d m
/s

Time [m]

GPS speed
Estimated speed before enhancement
Estimated speed after enhancement

FIG. 28: Speed estimation before and after the enhancement module

Creating a unified coordinate system is a complicated problem because of the

nature of the phone sensors and their noisy readings. Smartphones have different

types of sensors and manufacturers, and typically sensors used in the phones are

small and low-cost, therefore it is expected to find noisy data, and thus the accuracy

of the reading values change from one phone to another.

Fixing near constant acceleration: The phone’s orientation mapping algorithm

depends on the acceleration and deceleration in the motion’s direction, and as a

result, the accuracy of calculating the right orientation in near-constant acceleration

is very low. That is why the algorithm recognizes the intervals when the acceleration

is near-constant and uses the angles calculated in previous intervals that have a high

variance in the acceleration values. During near-constant acceleration intervals, the

variance of the acceleration is very low, so these intervals could be detected and

replaced with the angle estimated in the previous interval.

Correct the readings in turns and curves: The acceleration during curves and

turns is distributed in the 2D-horizontal direction but not in the forward direction,

this will confuse the PCA because this side acceleration might be taken as the mo-

tion’s direction especially if the change in speed is small. In this case, the system uses

the gyroscope to detect turns and then uses the orientation estimation calculated in

the last trusted interval.

Overall, in more than 30 miles of driving, the average estimated speed was 96.4%

accurate corresponding to the ground truth speed from GPS. The accuracy dropped

to 86.3% when we use the algorithm without the enhancement and to 9.7% if the

algorithm was not used at all and calculated the speed using the raw readings.

51

4.5.7 CONCLUSION

UniCoor is a framework that transforms the sensor readings from device local

coordinate to vehicle coordinate. The output of this framework is useful in trans-

portation since it enables the inertial sensors to recognize the vehicle’s dynamics. In

this framework, we use smartphone’s inertial sensors only, without the use of the

GPS in finding the direction of motion because the GPS is not available all the time,

in addition to its high battery consumption. UniCoor framework applies the PCA

that uses the changes in the acceleration and deceleration of the vehicle to detect

the direction of motion. The evaluation of the system showed a very good accuracy,

especially while driving in straight lines. UniCoor is part of the SenSys framework

and it can be used by developers to develop ITS applications that use smartphone’s

inertial sensors to recognize vehicle dynamics.

52

CHAPTER 5

EXTRACTING VEHICLES DYNAMICS

5.1 INTRODUCTION

This chapter explains the modules in the Vehicle Dynamics Extraction layer.

Vehicle dynamics can be divided into two main categories. The first category is the

set of basic motion dynamics of the vehicle [77, 78, 79, 62]. The second category is

the advanced features and motion dynamics that can be extracted given the set of

input provided by the data preparing module. The basic vehicle dynamics include

movement or force toward each axis of the vehicle axes and the rotation or the

movement about each axis of the vehicle’s axes.

5.2 BASIC VEHICLE DYNAMICS

This section explains the basic motion dynamics for a vehicle. There are six

vehicle dynamics needed to understand the vehicle movement. These movements are

referenced to the vehicle axes showed in Figure 29.

FIG. 29: Coordinate systems. (a) Device Coordinate System, (b) Earth Coordinate
System, (c) Vehicle Coordinate System.

5.2.1 FORWARD MOTION

53

The forward motion is the motion generated when a vehicle drives in a straight

line, either forward or backward. It is positive if the vehicle is moving forward and

negative if the vehicle is moving backward. According to Figure 29 the forward

motion is the motion along the X axis. It can be used to calculate the speed and

distance in the forward direction.

f speedi = f speedi−1 + Accelerometer(forward) ∗ dt
distancei = distancei−1 + f speedi ∗ dt

where f speed is the forward speed.

This motion can be used to calculate the speed of the car and the distance trav-

eled. GPS and OBD can get the speed of the car and calculate the distance traveled

using the detected speed. But OBD and GPS are not available all the time, and they

cannot detect the sudden force applied to the car along its X axis. Inertial sensors

are available in smartphones all the time, and they can measure the small shakes

and forces applied on moving or stopped vehicles. Using inertial sensor, the forward

force can be used to calculate speed and distance of the car. In addition to that it

can be used in studying the driving behavior, detecting accidents, detecting stops,

and many other applications that can use the acceleration of the car along the X axis

(forward axis).

Forward motion can be detected using the accelerometer data in the forward

direction, given the phone data is aligned with the vehicle coordinates using the

modules in Chapter 4. Figure 30 shows a phone’s accelerometer readings of the

forward axis recorded while driving on a small trip. The graph shows how these

readings can tell when a car accelerates, decelerates, stops, or is driving at a constant

speed.

5.2.2 VERTICAL MOTION

The vertical motion is the motion that is vertical to the ground. The force is

positive if upward and negative if downward. According to Figure 29 the vertical

motion is the force applied along the Z axis (vertical axis). The car moves vertically

if it is climbing a bridge, hill, or a road bump. GPS can detect the change in altitude

but the average error is 15 meters [83]. GPS cannot detect small changes in vertical

motion like bumps, small bridges, or ramps and the OBD does not calculate the

vertical motion of the vehicle. Inertial sensors are the best choice to calculate the

vertical force applied to the Y axis. The vertical motion used to calculate the slope of

54

the road and to detect road bumps and potholes. To calculate the distance traveled

vertically we use the following equations:

v speedi = v speedi−1 + Accelerometer(vertical) ∗ dt
distancei = distancei−1 + v speedi ∗ dt

where v speed is the vertical speed.

5.2.3 LATERAL MOTION

The lateral motion is the motion toward the side of the vehicle. It is generated

when the vehicle takes a turn or a lane switch. This motion is caused by the force

applied to the Y axis according Figure 29 and it can be called the side axis. GPS

can tell if the car is taking a turn, also OBD can use the data coming from the

wheel steering to calculate the taken angle. But both GPS and OBD do not measure

the small side movements like lane switch or a shake caused by a bump or pothole.

Inertial sensors can use the accelerometer to calculate the acceleration of the car

along the side axis. This acceleration can be used to calculate the distance or the

displacement of the car toward one of its sides. The side displacement can be used to

accurately detect lane switches, estimate driving behavior, and detect drunk drivers

[63]. To calculate the vehicle’s side displacement we use the following equations. It

can be used to calculate the speed and distance in the forward direction.

Side speedi = Side speedi−1 + Accelerometer(side) ∗ dt
displacementi = displacementi− 1 + side speedi ∗ dt

5.2.4 YAW RATE

Yaw rate represents the movement about the z-axis (vertical axis). Yaw rate can

be used to calculate the turning angle and lane changes. Gyroscope sensor measures

the vehicle’s angular velocity around its vertical axis. It is the angular velocity of

the rotation, or rate of change of the heading angle. It is commonly measured in

degrees per second or radians per second. If the phone Z axis is the vertical axis

(g) then the rotation around its Z axis can be used to calculate the vehicle’s angular

velocity around the vertical axis. To calculate yaw and yaw rate we use the following

formulas:

yaw rate = gyroscope(vertical)

yawi = yawi−1 + yaw ratei ∗ dt

55

5.2.5 PITCH RATE

Pitch rate is the movement about the y-axis (side axis). This can be affected by

any change in road slope, bumps, and potholes. The pitch rate is calculated using

the gyroscope readings in the side direction.

After preparing the data in the data preparation module, sensors’ data will be

aligned with the vehicle body. The gyroscope readings in the side direction will be

used to calculate pitch rate after removing the gyro-drift using complementary filter

in Chapter 4. Given that, gyroscope reading will be integrated to indicate the change

in the pitch angle.calculation before and after the filtering process. To calculate pitch

and pitch rate we use the following formulas:

pitch rate = gyroscope(side)

pitchi = pitchi−1 + pitch ratei ∗ dt

5.2.6 ROLL RATE

The roll rate is the rate of change in the movement around the x-axis or the

forward axis. Similar to yaw-rate and pitch rate, roll rate will be calculated using the

filtered and aligned gyroscope readings. Roll rate happens when a vehicle is driving

on unpaved or uneven road. To calculate roll and roll rate we use the following

formulas:

roll rate = gyroscope(forward)

rolli = rolli−1 + roll ratei ∗ dt

5.3 ADVANCE FEATURES EXTRACTION

Basic features are the features defined by vehicle dynamics papers that needed

to understand vehicle’s motion. The basic features can be used to detect and under-

stand more advanced motion dynamics like detecting stops, speed estimation, turn

detection, detecting lane switches and detecting bumps and potholes.

5.3.1 STOP DETECTION

Stops can be detected using GPS and OBD by considering vehicles to be in

stopping mode when the detected speed equals zero. GPS is not very accurate in

low speeds, and driving in a very low speed can be detected as stops using the GPS-

speed based methods. The most responsive input will be the accelerometer readings

56

because they can detect the exact moment when a vehicle stopped moving and the

moment when a vehicle starts moving again. Figure 30 shows the stopping pattern

recorded by the accelerometer. The pattern shows the three stages of the stopping

pattern, deceleration, waiting, and acceleration.

FIG. 30: Stopping pattern

A stop is defined as when a vehicle decelerates, then remains constant with low

variance, and accelerates after that which means the car starts moving again as shown

in Fig. 31a. This is detected by monitoring the variance of the acceleration feature,

when it drops to almost zero, then increases significantly. Figure 31b depicts the

effect of stops on the acceleration’s variance compared to the ground truth GPS.

(a) Vehicle Stop pattern from raw accelerometer
data

(b) Stop detection using the variance of acceler-
ation compared to GPS as ground truth

FIG. 31: Stop Detection

57

Stops can be detected using variance, patterns or other machine learning tech-

niques like hidden Markov model [18].

5.3.2 SPEED ESTIMATION

A vehicle’s speed can be retrieved directly from OBD and GPS. GPS speed is

provided by GPS chip which updates the speed every one second. In addition to

that the on-board computer OBD provides the real-time speed which is based on

the average of the number of wheels’ rotations and the size of the wheel. Although

speeds from GPS and OBD are very accurate, they do not match each other and

they tend to have lower accuracy in low speeds. Figure 32 shows the speed of a

vehicle using GPS and OBD compared to the ground truth. Overall, GPS and OBD

have high speed estimation accuracy, but the accuracy goes down in the case of very

low speeds. In addition to that, GPS speed is not available when the GPS signal is

weak, in case of indoors, near tall buildings or through tunnels. Inertial sensors can

be used to estimate the speed with higher frequency and detect the small changes in

speed that happened in short intervals.

Speed calculation is explained in Chapter 4 as a method of evaluating the co-

ordinates alignment algorithm. The acceleration in the motion direction is used in

calculating the speed.

speed[i] = speed[i− 1] + acc[i] ∗ dt (6)

distance[i] = distance]i− 1] + speed[i] ∗ dt (7)

where acc is the acceleration in the forward direction and dt is the time interval

since the last reading. Figure 32 shows the calculated speed after applying the data

processing and filtering methods in Chapter 4.

0

5

10

15

20

25

30

0.0 0.8 1.5 2.2 2.9 3.7 4.4 5.1 5.9 6.6 7.3 8.0 8.8 9.5 10
.2

11
.0

11
.7

12
.4

13
.1

13
.9

14
.6

15
.4

16
.1

16
.8

17
.5

18
.3

19
.0

19
.7

20
.5

21
.2

21
.9

22
.7

23
.4

Sp
ee

d m
/s

Time [m]

GPS speed
Estimated speed before enhancement
Estimated speed after enhancement

FIG. 32: Speed estimation before and after the enhancement module

58

5.3.3 TURN DETECTION

Detecting turns is very important feature needed to track vehicle movement. GPS

can detect turns by using the turn detection algorithms used by navigation systems

which are relative to the road network represented by the geographic database. In-

ertial sensors can be used to detect turns.

Turns can be detected using different methods and sensors. Figure 33 shows a

turn detected using the acceleration in the side coordinate. The system learns the

threshold of the acceleration when the car turns and use it to detect the turns.

FIG. 33: Turns using side acceleration

Gyroscope is more accurate than accelerometer in detecting turns. Gyroscope are

more stable and they only change during turns then go back to zero.

5.3.4 LANE SWITCH DETECTION

Although GPS can detect vehicle’s heading and turns, it does not have the enough

accuracy to detect a lane switch. Lane switch is very important motion activity that

needs detection. Lane switch detection can be important in safety and navigation sys-

tems. SenSys uses the gyroscope (vertical) and accelerometer (side) for lane switches

detection.

The side acceleration can be used to calculate the side displacement to calculate

the number of lanes passed during a lane change. Figure 35 depicts the vertical axis

gyroscope readings used to detect 6 of the encountered lane changes.

5.3.5 ROAD-BUMP DETECTION

Detecting road bumps is an important issue in transportation, there are many re-

searches such as [84] that have used smartphones to study road roughness conditions.

Such information can be used by governments to monitor the current condition of

59

FIG. 34: Lane switches using gyroscope

the infrastructures and help them in making maintenance decisions.

In addition to monitoring the pavement condition, road bumps can be used in

different applications for localization, estimating vehicle speed, and detecting vehicle

type. Using road bumps, we have built a vehicle type detection application that

detect vehicle axles and then measures the distances between the detected axles.

Vehicle type detection application is explained in detail in Chapter 10. We also used

road bumps and pavement condition as part of a project that detects if two vehicles

are driving in the same lane.

Typically, vehicle’s horizontal movement is represented by forward and side mo-

tions. Vertical acceleration is expected to be stable with a very small variance if the

pavement condition is smooth. When a vehicle passes over a road bump, speed bump,

or pothole it generates a sudden change in the vertical acceleration reading. This

change in the acceleration reading can be used to detect speedbumps and potholes.

SenSys uses Dynamic time warping (DTW) [85] to neutralize the speed effect

on the bump detection process. The experiments showed that for SUV and sedan

vehicles, when a vehicle passes over a bump, its vertical acceleration exceeds the

threshold of 6 m/s2 for at least 1 second.

Figure 38 shows the accelerometer raw readings for a vehicle driving at a near

constant speed on a smooth road while driving over a speed bump. The figure shows

how the speed bump generates a shock on the car which affected the acceleration

60

FIG. 35: Detecting 6 lane changes events in one trip.

FIG. 36: Pothole

on all directions specifically the vertical acceleration. In an experiment testing the

bump detection using the vertical accelerometer, we used 3 different cars to drive

over 6 different speed bumps with different widths and heights. The system was able

to detect 100% of the bumps from the data collected.

61

FIG. 37: Speed bump

FIG. 38: Raw accelerometer readings using

62

CHAPTER 6

SENSYS APPLICATION PROGRAMMABLE

INTERFACE (API)

In this chapter we explain the application interface, the methods provided by the

SynSys library, and some applications built on top of the the SenSys framework.

SenSys provides an interface to be used by developers and give them the ability to

select the sensors to be used. Developers can select the sensors they want to enable

and the data sampling rate. The framework gives the access to the raw and filtered

data as well as the ability to add more features to the framework. Developers and

researchers can utilize the data provided by the framework to build many types of

applications. To test the framework and its features, different applications have been

built on top of the SenSys framework and were embedded in the application interface

to be used by other developers. The rest of this chapter will focus on the methods

provided by the API and some of these applications.

6.1 APPLICATION PROGRAMMING INTERFACE (API)

This section describes the methods and the API calls provided by the SenSys

library. SenSys API calls are divided into three groups, the data collection methods,

the vehicle dynamics methods, and the add-in application methods. The data collec-

tion methods are responsible for communicating with the sensors that are collecting

the data and accessing their collected data. This will enable the developers to access

each sensor and retrieve its readings directly. Also, it will allow developers to enable,

disable, and configure specific sensors based on their requirements.

6.1.1 DATA COLLECTION APIS

SenSys has a set of APIs associated with OBD, GPS, inertial sensors, camera,

and microphone. Those are the most common sensors available in smartphones but

other sensors can be added with their own set of methods in future updates.

63

OBD APIs

Communicating with OBD is a pull-based mechanism where developers send com-

mands to the OBD and wait for the response. At first, the developer needs to estab-

lish a Bluetooth connection with the OBD. After establishing the connection, the user

specifies the signaling protocol which will be used to communicate with the vehicle.

There are five signaling protocols permitted with ODB-II interface, and most vehicles

implement only one of the protocols. SenSys detects the protocol automatically and

starts the communication process with the vehicle’s engine control unit (ECU). The

signaling protocols are SAE J1850 PWM used by Ford motor company, SAE J1850

VPW used by General Motors, ISO 9141-2 used by Chrysler, European, and Asian

vehicles, ISO 14230 KWP2000, and ISO 15765 CAN. As of 2008 all vehicles sold in

the US are required to implement CAN as one of their signaling protocols.

The OBD-II standard defines a list of parameter identification numbers (PIDs)

that can be sent to the ECU for requesting various data. Once the connection has

been established and the protocol has been selected successfully, the OBD is ready

to respond to requests from the phone. Table 8 shows a list of API calls that are

provided by SenSys to communicate with the vehicle’s ECU.

TABLE 8: SenSys OBD APIs

API call (import SenSys.OBD.*) Description

bool SenSys.OBD.isConnected() Returns true if the connection is on and
false if the connection is off.

int SenSys.OBD.connect(rate) Establishes a new connection. The “rate”
parameter is the number of requests per
second.

int SenSys.OBD.stop() Stops the current connection.
int SenSys.OBD.getProtocol() Returns the signaling protocol.
double SenSys.OBD.getSpeed() Returns the current speed in MPH.
double SenSys.OBD.getRPM() Returns the engine revolutions per minute.
double SenSys.OBD.getFuelLevel() Returns the current fuel level.
double SenSys.OBD.getPID(PID) Enables the developer to send any stan-

dard PID.

isConnected() returns TRUE if the Bluetooth connection between the phone and

the OBD is on, and FALSE if the connection has not been established yet. con-

nect(rate) is used to establish the connection with the OBD and set the signaling

64

protocol, it takes the reading rate as a parameter. stop() is used to stop the Blue-

tooth connection between the phone and the OBD. getProtocol() returns the signaling

protocol used by the vehicle. getSpeed() returns the current vehicle’s speed in MPH.

getRPM() returns the engine revolutions per minute. getFuelLevel() returns the cur-

rent fuel level of the car, but this method does not work in all cars because it is

not one of the OBD-II standard PIDs. Other PIDs can be called using the method

getPID(PID).

GPS APIs

Android’s location manager provides a set of methods to communicate with the

GPS on the phone. SenSys uses this library to communicate with the GPS and then

provides the following methods to present the retrieved data. To access the GPS

data using SenSys you have to import the GPS library listed in Table 9.

TABLE 9: SenSys GPS APIs

API call (import SenSys.GPS.*) Description

bool SenSys.GPS.Enabled() Returns true if the GPS is on.
int SenSys.GPS.start() Enables the GPS.
int SenSys.GPS.stop() Disables the GPS.
double SenSys.GPS.getSpeed() Gets vehicle’s speed in m/s.
double SenSys.GPS.getTime() Gets GPS time in a Unix time-stamp for-

mat.
double SenSys.GPS.getLongitude() Returns the current longitude.
double SenSys.GPS.getAltitude() Returns the current altitude.
double SenSys.GPS.getLatitude() Returns the current latitude.

isConnected() can be called to check if the GPS is on or not. It returns TRUE

if its connected and FALSE if it is not. If the GPS is not on, you can start it using

the start() method which enables the GPS on the phone and starts listening to it.

stop() is used to stop the GPS and disable it. getSpeed() gets the vehicle’s speed in

m/s and getTime() gets the GPS time in a Unix timestamp format. The methods

getLongitude(), getAltitude(), getLatitude() retrieve the current longitude, altitude,

and latitude of the moving vehicle. Android’s GPS updates its readings with 1Hz

frequency.

65

Inertial sensors APIs

Inertial or motion sensors are important part of SenSys framework, because using

them will avoid using the OBD that is not available with most drivers and the GPS

which has some accuracy and availability issues as discussed earlier. The three motion

sensors are the acclerometer, gyroscope, and magnetometer. Table 10 shows SenSys

API calls for inertial sensors.

TABLE 10: SenSys inertial sensors APIs

API call (import Sen-
Sys.motionSensor.*)

Description

setRate(rate) Sets the reading rate.
read(senseroName) Reads the sensor in a frequency specified

by the setRate() method.
Sensors name:
accelerometer.[axis]
gyroscope.[axis]
magnetometer.[axis]
X,Y,Z,Forward,Side,Vertical

Developers can use SenSys to either access the sensors’ raw data or access the

vehicle’s aligned readings. setRate(rate) specifies the rate of the readings (number

of readings per second). The method read(sensorName) takes the sensor name as a

parameter which consists of the sensor type and the coordinate like accelerometer.X

for the phone’s X axis or accelerometer.Forward for the vehicle’s forward axis. The

sensor name could be any of the following combinations:

accelerometer.X,Y,Z,Forward,Side,Vertical

gyroscope.X,Y,Z,Forward,Side,Vertical

magnetometer .X,Y,Z,Forward,Side,Vertical

Other sensors

The camera and microphone can be used in many types of applications, and

accessing them is easy using SenSys framework where developers can start recording

the video and the audio with a simple command. Tables 11 and 12 list the camera

and microphone API calls that enable the developers to easily access the microphone

and camera.

66

TABLE 11: SenSys camera APIs

API call (import SenSys.camera.*) Description

camera.video.startRecording(fileName) Starts recording the video into a file
camera.video.stopRecording() Stops the recording and save the file.
camera.takePic(filename) Takes a picture and save it in the file
camera.setCamera(camera) Sets the camera he parameter could be

front or back

TABLE 12: SenSys microphone APIs

API call (import Sen-
Sys.microphone.*)

Description

microphone.startRecording(filename) Starts recording the audio into a file
microphone.stopRecording(); Stops the recording and save the file.

Future updates

SenSys can accommodate new sensors, where developers can create the needed

classes to communicate, read, and filter new sensors data and add those methods to

the SenSys library.

6.1.2 VEHICLE DYNAMICS APIS

The vehicle dynamics module provides different APIs that sense the vehicle’s mo-

tion dynamics. Table 13 shows the APIs that retrieve the basic features from the

motion sensors:

TABLE 13: SenSys basic dynamics APIs

API call (import Sen-
Sys.microphone.*)

Description

SenSys.getYawRate() Returns current yaw rate.
getPitchRate() Returns current pitch rate.
getRollRate() Returns current roll rate.
getVerticalRate() Returns the current vertical acceleration.
getLateralRate() Returns the current lateral acceleration.
getForwardRate() Returns the current forward acceleration.

67

SenSys also provides more advanced features that understand the motion of the

vehicles in the road. Table 14 shows the advanced features APIs.

TABLE 14: SenSys advanced features APIs

API call Description

SenSys.getCurrentSpeed(Sensor) Returns the current speed in MPH.
getTurningAngle() Returns the vehicle’s turning angle
isMoving() Returns true if the vehicle is moving.
getSwitchingLane(seconds) Detects if the vehicle is switching lane and

returns the side (left, right)
getPavementStatus(seconds) Detects bumps and potholes

getCurrentSpeed() returns the current speed in MPH using the available sensors

and the inertial sensor. The parameter determines the sensor used to measure the

current speed. getTurningAngle() returns the vehicle’s turning angle in degrees.

isMoving() returns TRUE if the vehicle is moving and FALSE if a stopping event

was detected. getSwitchingLane(seconds) detects when a vehicle switches its lane

during the last number of seconds and returns LEFT when it does a left lane switch,

RIGHT when it does a right lane switch, and FALSE when SenSys did not detect a

lane switch. This function will check the interval given as a parameter and look for

a lane switching events within that interval. getPavementStatus(seconds) looks for a

pothole or bump during the last number of seconds given as a parameter. It returns

bump, pothole, or none in case it does not find any within the given interval.

The methods explained earlier in this section were enough to detect all vehicle’s

dynamics. Many applications can be built on top of them. The following chapters

will explain some applications that have been built on top of the SenSys and their

methods that have been added to the SenSys framework to enable developers to use

them in their applications.

6.1.3 APPLICATION ADD-ON APIS

SenSys was built to be expandable, it allows developers to add new methods to

the library. We have built four different applications on top of SenSys and then we

added their methods to be part of the SenSys library. Chapters 7, 8, 9, and 10 will

explain the methods provided by each application.

68

CHAPTER 7

PARKING SPACE IDENTIFICATION

SYSTEM(PARKZOOM)

Precise localization using smartphones in outdoor and indoor spaces is a chal-

lenging task. The widely used GPS is not designed for high accuracy applications

and yields accuracy levels not sufficient for lane or spot level localization. In ad-

dition, errors from inertial sensors accumulate with time due to integration drift.

ParkZoom introduces a smartphone based - infrastructure aided parking localization

system for estimating (zooming into) the precise parking spot location of a vehicle

during traversal in both indoor and outdoor parking lots. On the vehicle side, the

proposed method utilizes conventional smartphones for generating and transferring

continuous sensor data, such as accelerometer, gyroscope, and compass readings. On

the infrastructure side, ParkZoom employs statistical learning of accelerometer sig-

natures, pattern classification of data, constraint propagation, and error correction

for accurate parking spot identification.

7.1 INTRODUCTION

Traditional parking solutions are very cumbersome for the user. The driver has to

get out of the car, find the parking meter, forecast/input a tentative parking time, put

money into the meter (generally coins), get the ticket, go back to the car and put the

ticket in the dashboard. More advanced solutions offer the driver the possibility to

manually input the spot number where the car is parked, usually painted on the road

or on a road sign. These solutions can be further extended and allow users to speed up

the entire parking process with phone payment, e.g. the service offered by companies

such as ParkMobile or ParkNow. However, the user still has to know the parking

slot number in which the car is parked as the parking operator or system is unaware

of the location of the car until the user inputs that information in the system, either

with a call, SMS, or web form. A straight-forward solution to vehicle’s parking spot

identification would be the use of phone’s GPS readings, widely exploited in other

localization services, e.g. Origin-Destination Navigation, or geo-tagging of pictures.

69

The problem of parking spot localization is unique in that parking spots are small in

size and each parking spot is located next to several other parking spots, making the

spot localization and identification process difficult. Infrastructure-intensive parking

solutions offer spot by spot parking detection, thanks to the deployment of spot-level

sensors, e.g. Streetline parking sensor networks. Such systems are difficult to scale

and require a large investment in infrastructure deployment and support.

We envision a parking system able to detect the precise parking spot where a

vehicle is parked, with minimum infrastructure deployment costs and minimum user

interaction. Such a system would exploit the unique characteristics and maneu-

vers associated with parking, leveraging readings from standard smartphone sensors.

Sensors such as accelerometers, gyroscope, and orientation are able to explore the

physical characteristics and movement in the environment, which can be used to

uniquely characterize a spatial point. Our solution, ParkZoom, is based on the abil-

ity of smartphones inside vehicles to gather data from its sensors and communicate

this information to the infrastructure back end system, as shown in Figure 39. The

back end system filters and constrains the data based on the physical layout of the

parking lot to return with increased accuracy the position of the vehicle, eventually

detecting the parking spot or the zone where the car is parked.

ParkZoom uses only the smartphone’s inertial sensors to locate a vehicle’s parking

spot in a parking-lot. Parkzoom will not use GPS in its location estimation, because

we designed the system to be used in indoor parking lots and because the error

in smartphones’ GPS goes up to 10 meters [86]. Calculating the distance traveled

by vehicles has been a difficult problem because of the noise generated by inertial

sensors. Existing Android apps like greenMeter [87] calculate the distance traveled

using the accelerometer only but the error is significantly high and not practical. Step

length or wheel rotations have also been used to calculate speed in case of indoor

or robots localization [71]. ParkZoom uses only the smartphone’s inertial sensors to

locate a vehicle’s parking spot using the infrastructure of the parking lot.

7.2 SYSTEM OVERVIEW

There are two main challenges that prevent a straight-forward utilization of po-

sition and inertial sensors inside current smartphones:

• GPS errors: Current localization systems, such as GPS and Dead Reckoning,

are erroneous and have limited position accuracy. For instance, widely used

70

FIG. 39: Smartphone - Infrastructure information sharing

71

GPS is not designed for high accuracy applications, and yields an accuracy

level of 5 meters in open sky setting, 7 meters in young forest conditions and

10 meters under closed canopies [86]. In addition, GPS signal is not available

in indoor parking systems.

• Errors from inertial sensors accumulate with time: Inertial navigation systems

suffer from integration drift. The position at any point in time is the result

of double integrating the acceleration readings. Small errors in the estimation

of the latter would be added into increasingly larger errors in the former. In

addition, as every new position is based on the preceding calculated position

plus the integration of inertial sensor readings, errors increase as the object

moves towards its destination. Therefore, position must be periodically cor-

rected [88]. GPS systems or car speedometers are possible candidates, but

they do not fit our goal of designing a system that uses only sensors inside

today’s smartphones.

ParkZoom combines the smartphone’s inertial sensor information with constraint

propagation techniques and pattern matching algorithms at the infrastructure side.

The typical physical structure of a parking lot, represented in Figure 39, is composed

of aisles and turning points. Thus, parking maps can be represented as a graph

where the edges correspond to turning points. As the information gathered at the

infrastructure evolves over time, so does the car along the graph. As a consequence,

the localization problem can be divided into two subcomponents: turn detection and

distance calculation within an aisle.

The first subcomponent of the ParkZoom system, the turn detection and classi-

fication module, has the responsibility to process the signals sent by the vehicle and

apply learning-based signal processing techniques for recognizing and classifying the

different turns along the vehicle’s path. The physical movement through the park-

ing environment can be leveraged to uniquely characterize a spatial point. These

unique signatures or “Check Points” can be related to a specific maneuver, e.g. turn

[89], or encoded into the pavement via natural irregularities, e.g. bumps or potholes

[90, 52, 91], or artificial irregularities, e.g. “Braille-like” pavement stripes [92]. In

addition, other readings from alternative phone sensors, such as temperature, pres-

sure, sound or radio signal strength, could also be associated to specific zones in a

parking. For simplicity we will consider just “turns” as “check-points”.

72

The second subcomponent of our system, the distance calculation module, is

in charge of calculating the distance traveled on the last aisle and specifying the

parking spot. However, it does not only calculate the distance at the last aisle but

performs the distance calculation at any point in time and stores the value. Aisle

length and “Check-point” locations are known by the infrastructure. Before reaching

its destination, a car would traverse a random number of aisles and turns until it

finds an empty parking spot. “Check-Points” along the route also serve as “learning

points” where the real distance traveled can be compared with the calculated value.

The difference can then be taken into account in the last aisle distance calculation.

Figure 40 gives an overview of the logic behind our system. Periodically, the

smart-phone collects sensor data. The sampling frequency is limited to 50Hz, or

one sample every 20 milliseconds, due to software limitations. Sensor data is then

processed and segmented. The Turn Calculation module is in charge of detecting

the turns, classifying them and returning the turn angle, which will be used to

resolve the new aisle. The Distance Estimation module exploits the same sensor

data but computes the distance traveled instead. It also keeps track of the errors

in the past aisles. The Graph Matching module updates the position of car in the

graph according to the information from the Turn Calculation and the Distance

Calculation modules. Finally, once the system detects that the car has initiated the

parking maneuvers or it has already stopped, the Parking Spot Identification module

will estimate the parking location based on the current position in the graph and

external constraints.

7.3 TURN DETECTION

In this section, we describe the turn detection algorithm. Parkzoom relies on

two stages: (1) identification of the corridor the vehicle is in, through turn detection

in a constrained parking lot geometry; (2) calculation of the distance travelled to

estimate the exact spot the vehicle is at. Turn detection is an essential component

of our system, as it enables us to navigate through the logical parking lot diagram

in order to identify the exact corridor in which the vehicle is cruising. It does not

assume any infrastructure support and depends entirely on the built-in smartphone

sensors. Our proposed solution utilizes a mixture of these sensors in order to identify

(1) if there is a turn at a given time; (2) the degree of the turn; (3) the direction of

the turn (i.e. right or left). In the following sections, we will discuss these items in

73

FIG. 40: ParkZoom system overview.

more detail.

7.4 FINDING THE PARKING SPOT

After dividing the parking lot into aisles and turns, we calculate the distance

traveled in straight-line (e.g. from the beginning of an aisle to the parking space

or the end of the current aisle). We developed an Android application that logs

the inertial sensors plus the GPS and the video while driving in the parking lot.

Linear acceleration reading is calculated by taking out the gravity effect from the

acceleration as given by the Android APIs as follows:

V [i] = V [i− 1] + a[i] ∗ dt (8)

D[i] = D[i− 1] + V [i− 1] ∗ dt+ ∗ a[i] ∗ dt ∗ dt (9)

where A[i] is the linear acceleration at time i, D[i] is Distance traveled at time i, and

V[i] is velocity at time i. This will result in impractical error as the error accumulates

over time when calculating the speed using these equations only.

74

GPS, car speedometer, or special sensor installed on the wheels can be used to

correct the inertial sensors’ readings whenever available. In our case GPS will not

be used, because we expect the system to work indoors. Also we cannot use the car

speedometer or any external sensors that calculate speed because the system should

work on smartphones. Our method uses the fact that the exact location of the turns

in the parking lot and the length of every aisle are known. This allows us to correct

the accumulated error of the accelerometer. Because we know the geometry of the

parking lot, and we can detect the turns accurately, the challenge now is how to

calculate the distance travelled from the last turn to the next turn, and when the

driver parks.

Distance
calculation

V=v+at
D=d+vt+0.5at2

Distance
calculation

V=v+at
D=d+vt+0.5at2

Data
Clustering

Data
Clustering

Sensor data
Data
segmentation

Error
calculation

Error
calculation

Error
Correction

Error
Correction

Data
calcification

Sensor filtering and
calibration

Sensor filtering and
calibration

Linear
acceleration

Distance
(corrected)

Distance
(corrected)

FIG. 41: Distance calculation components.

7.4.1 EXPERIMENT

To minimize distance calculation error, we explored the relationship between

the acceleration pattern and the calculated error. To do that we performed our

experiment in a parking lot where we know the geometry, and divided each aisle into

multiple six-meter segments, we used visual landmarks every six meters and used

the video to detect them while driving. After that we drove ten rounds around the

75

parking lot to collect the data from all the available sensors and we used the video

to know the time taken in every segment. At the end of this experiment, we have

sets of segments; each segment has its accelerometer data, calculated distance and

the actual distance.

7.4.2 ERROR CORRECTION

For the six meter segments, we applied the Error Back-propagation on the results

of each segment using the existing trained data of the same segment. Table 15 shows

segments 1, 5, and 9 from a nine segmented aisle. It shows the segment calculation

before and after the back propagation in different rounds.

TABLE 15: Error back-propagation

Round S1 S1BP S5 S5BP S9 S9BP
Round1 2.7 4.6 4.3
Round2 3.2 7.11 5.3 6.9 4.9 6.8
Round3 3.4 6.37 5.5 6.2 3.8 4.6
Round4 3.3 5.82 3 5.7 4.9 7.7
Round5 3.2 5.81 5.1 5.78 4.5 5.5
Round6 2.9 5.4 4.9 5.7 4.1 5.4

As it is stated in Figure 41 we use the collected data to calculate the traveled

distance, so we trained our system with the collected data, and classified the seg-

mented acceleration into clusters where each cluster contains similar patterns of the

segmented acceleration.

The next step is using these clusters to calculate the estimated error for every

segment, and since there is no existing landmark to segment the live data into six-

meter segments, we divided the accelerometer data into two-second segments. After

that we send every segment to the classifier to see which group of patterns it matches.

Within the same cluster we compare the test segment with the trained segments to

choose the closest pattern to use its error per meter, which we calculated using the

estimated and the actual distance, to predict the segment length.

After analyzing the data of the aisles, we found that there are three driving modes

that get repeated in every aisle. The first mode is at the beginning of the aisle, where

the driver starts to accelerate, the second mode is in the middle of the aisle where the

driver drives in almost constant speed which makes the acceleration close to zero, and

76

the last mode is at the end of the aisle where the driver decelerates. And we found

that the error in calculating the distance relates to the mode of the acceleration, and

the ratio between the error in mode1 and the error in mode 2 is almost constant, and

the ratio between the error in mode 2 and mode 3 is almost constant. So we used

this information to get error in the first mode (e1), the error in the second mode

(e2), and the error in the third mode (e3).

(D1 +D1.e1) + (D2 +D2.e2) + (D3 +D3.e3) = Actual (10)

where D1 is the distance calculated in mode one, D2 is the distance calculated in

mode two,D3 is the distance calculated in mode three, and Actual is the actual

distance.

e1/e2 = c1 (11)

e2/e3 = c2 (12)

where c1 and c2 are constants. In the first run, we get c1 and c2 from the clusters in

the training set, and after solving the equations (10, 11, 12) we get e1, e2, e3, then

we can use them to calculate the distance in the next aisle. At the end of the next

aisle, we solve the same equations to get new error values that can be used for the

aisle after that.

7.4.3 RESULTS

Figure 42 shows the results after applying the distance calculation technique on

some experiments to calculate the traveled distance. In each experiment the car

drives in the parking lot, takes some turns before it stops in the parking space. The

system calculates and corrects the distance traveled while driving, and gives the

distance travelled between the last two turns, the turn of entering the aisle, and the

turn of entering the parking space.

The actual distance is the distance from the beginning of the aisle to the parking

space, the estimated distance is the calculated distance from the beginning of the aisle

after filtering and calibrating the accelerometer data, the corrected distance is the

traveled distance from the beginning of the aisle after applying the distance correction

techniques on the estimated distance, and the aisle error is the distance corrected

using the error per aisle. In the first ten meters, the estimated distance was less than

the actual distance by almost 3.3 meters, which goes up to two parking spaces. After

77

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50

Estimated

Actual

Corrected

Isle error

Actual Distance (m)

C
al

cu
la

te
d

 D
is

ta
n

ce
 (

m
)

FIG. 42: Calculating the distance from the last turn

correcting the distance, the error became around 1.7 meters. The results in Figure

42 show that the error in the corrected distance slightly increases while driving, while

the error of the estimated distance clearly increases by the distance traveled in the

aisle. The results also showed that if we want to maintain the error to be less than

two meters, then we need to put a landmark every four parking spaces. The landmark

can be a small bump on the aisle that can be detected by the inertial sensors, but

does not affect the driving behavior of the driver.

7.5 SYSTEM INTEGRATION AND RESULTS

Turn detection and distance calculation are the main components of the system.

To test the integration of the system we ran some experiments in a parking lot. We

divided the parking lot into turns and aisles, and labeled every parking space in the

parking lot.

In every experiment, we enter the parking lot from the main entrance (node A) as

78

G

E

C

A

F

H B

Node [Turn]

Edge [Aisle]

E4

E1 E9

E3

E2

E7

E6

E8

D

E5

Actual Path
Estimated Park
In-Aisle Landmark

FIG. 43: Parking-lot diagram

seen in Figure 43, and in case of multiple entrances, we assume that, every gate has

a unique signature of small bumps that can be detected by the application. Different

paths and parking spaces have been taken in different experiments. The system

processed the data of every experiment, where the turn detection module specifies

the aisle taken, and the distance calculator module calculate the distance traveled

on the aisle and specifies the parking space.

7.6 RESULTS

In Figure 44, the car entered the parking lot from the main entrance. From the

graph we can see that the car turned right, left, then left again, after that, the car

drove for a distance and stopped at parking space to the left. After processing the

data, the system was accurate in detecting all turns, and specifying exact aisle of the

vehicles’ parking spot.

After specifying the aisle correctly, the system calculated the distance driven in

the aisle before the car has stopped. Figure 43 shows the estimation after calculating

79

FIG. 44: Accelerometer readings (x-axis)

the distance of the journey. The green arrow shows that the estimated location is one

space to the right of the correct location, and the purple arrow shows the estimated

location if we place landmarks every 12 meters in the aisle.

7.7 PARKZOOM API

We added ParkZoom to the set of SenSys APIs. The ParkZoom APIs locate a

vehicle in the parking lot by detecting the vehicle’s turns and calculating distance

driven from turn to turn. They also match the detected vehicle movements with the

parking lot map to calculate the exact location of the vehicle. The following are the

methods used in ParkZoom and added to SenSys library to be used by developers.

ParkZoom APIs are listed in Table 16.

getMap() gets the map from the server once it enters the parking lot. setMap()

sets the map to be used by the application that requires it. getDistance() returns the

distance in meters driven since the last turn. getLocation() returns the location of

the vehicle on the map and setLocation(Location) sets the vehicle’s location on the

map.

80

TABLE 16: SenSys ParkZoom APIs

API call (import SenSys.parkZoom.*) Description

SenSys.parkZoom.getMap() Retrieves the map from the server
SenSys.parkZoom.setMap(map) Sets the map
SenSys.parkZoom.getDistance() Gets the distance traveled since the last

turn
SenSys.parkZoom.getLocation() Gets the parking spot
SenSys.parkZoom.setLocation(Location)Sets the parking spot
SenSys.parkZoom.reset() Resets the location, distance and map.

7.8 SUMMARY

Smartphones applications utilize embedded sensors for activity recognition and

positioning. Some activities can be detected with high accuracy, but on the other

side, inertial sensors are associated with noise that make them impractical to be

used in certain applications. To accurately determine a vehicle’s parking space using

INS only, we used the parking lot infrastructure to overcome the acceleration noise

problem. Turn detection locates the cars on turns, while error-corrected distance

calculation and matching with the parking geometry allows ParkZoom to identify

the parking spot. Real-world experiments with data collected from two simple and

regular parking geometries showed good accuracy in detecting turns and parking-

space determination.

81

CHAPTER 8

IN-LANE COMMUNICATION SYSTEM (INLANECOM)

8.1 INTRODUCTION

The smart cities concept is getting rising attention in the last decade, which has

led to more research and development in the field of Information and Communication

Technologies. An important aspect of these technologies is the intelligent transporta-

tion systems like Vehicle to Vehicle communication (V2V). V2V applications assume

general broadcast messages; however, there are several V2V scenarios that would

require exchanging information between vehicles on the same lane. For example, in

the case of an accident blocking a lane, cars on the front of the blocked lane can

notify the cars on the back to change the lane. In addition, cars on the other lanes

can be notified to expect traffic coming from the blocked lane. Exchanging such

messages will give the drivers extra time to prepare themselves to take the right

lane and avoid congestion. Another scenario is when a vehicle drives at a low speed

because of a mechanical problem; it can use the in-lane communication system to

notify the vehicles behind it. Exchanging messages between vehicles in the same

lane will open the door for many ITS applications to increase safety, better traffic

control, and improved navigation systems. For example, navigation applications can

use this information to enhance their systems redirect drivers from jammed lanes.

This system will require minimum interaction from the driver which will minimize

driver’s distraction. Furthermore, the in-lane communication system will reduce the

communication overhead when messages are sent to the desired vehicles only.

Enabling the in-lane communication to apply such scenarios and others will re-

quire us to identify vehicles in the same lane. The existing technologies are not able

to determine if two vehicles are in the same lane. Currently, drivers use GPS on a

daily basis. However, GPS still cannot support lane level accuracy [19]. Also, the use

of cameras for lane identification has performance problems [93] where the accuracy

drops in the bad weather, and it is limited to determine if the vehicle is within its

specified lane or is leaving the lane. We envision that supporting lane-level commu-

nication can enable a new spectrum of applications, and navigation enhancements.

82

The limitations in current technologies have led us to propose an in-lane com-

munication framework (inLaneCom). In this section, we introduce inLaneCom, a

framework to facilitate inter-communication between vehicles of the same lane. in-

LaneCom utilizes the inertial sensors of smartphones on the board of the vehicle

to extract two categories of features (i.e. road surface features (physical features),

and traffic features). The combination of features extracted will represent the signa-

ture of the lane and will be referred as lane signature. To perform the inLaneCom,

smartphones on board of transmitting vehicles collect inertial sensor readings, ana-

lyze them, extract features that uniquely express the current lane, and append them

to outgoing messages. Receiving vehicles perform a similar task, however, they com-

pare their generated signatures with incoming ones to either accept or reject incoming

messages. The rest of this chapter will provide technical details on inLaneCom per-

formance.

Lane features will be extracted from the raw readings of on-board smartphones’

sensors (e.g. Accelerometer, Gyroscope), out of which, inLaneCom extracts two types

of features out of those readings: physical, and traffic features. Physical features

represent the impact of the road surface (e.g. bumps, potholes) on the inertial sensors.

Traffic features express the status of the current traffic (e.g. average speed, number

of stops). Combining these features, inLaneCom creates a signature expressing the

vehicle’s lane. This signature is used to authenticate single lane communication.

We conducted many experiments using different vehicle types (SUV and full size)

driving more than 335 miles both in the city and on highways. The data collected

were used to generate lane signatures and to find the similarities between them.

Despite the variations of roads, vehicles, and drivers inLaneCom was able to detect

vehicles within the same lane with high accuracy.

In summary, this work makes the following contributions:

• Identify unique physical and traffic characteristics that uniquely distinguish

road lanes.

• Develop a novel solution for lane detection, and segmentation for V2V commu-

nications using smartphones.

• Evaluate inLaneCom using in-city and highway driving. Results show 94.5%

accuracy of lane detection.

83

8.1.1 USE CASES

Why is in-lane communication important? We envision in-lane as an im-

portant extension to V2V technology. Quick mobility in vehicular networks makes

it very hard to maintain IPs and send dedicated messages. Therefore, V2V depends

mainly on message broadcasting. Furthermore, wasting a portion of sparse commu-

nication time to decode an irrelevant message is not a good practice. However, Is

there a need to address a subset of the surrounding vehicles? This section

presents two scenarios where inLaneCom can make the difference. Obviously, the

smart traffic light scenario does not exist today as smart traffic lights are not avail-

able, but ITS researchers have been putting them as a goal that might show up soon.

We also envision our work to enhance other scenarios that were limited by the lack

of practical lane detection solutions.

The first use case is emergency vehicles like police cars or ambulances that use

sirens as their warning device through emergency cases. However, limitation shows

up in terms of noticeability range and the effect of the noise from outside or inside

the vehicle. Studies showed an average of 100 meters noticeability range [94, 95]. In

such a distance drivers should take a decision to clear a specific lane for emergency

vehicles to pass. In addition, this short distance does not allow drivers to smoothly

switch lanes, which might result in traffic congestion. V2V systems starting with

a 300m single hop (multihop can do much better) communication as specified by

DSRC can deliver a faster message. Furthermore, an in-lane system inform vehicles

which lane to clear to avoid incorrect decisions by drivers.

The second use case is smart traffic lights. Adaptive traffic control has been

a hot research topic for a long time[96]. In-lane communication can provide smart

traffic lights with per lane statistics. For example, the left most lane is congested

ahead, so increase the stop time for such a lane allowing opposite direction vehicles

to pass through.

8.1.2 INLANECOM FRAMEWORK OVERVIEW

To create a framework that enables the communication between vehicles on the

same lane, first, we have to find a way to identify vehicles in those lanes. Different

lanes on the same road will have a lot of similarities but also will have many differences

in terms of road surface and traffic patterns. To find the differences between the lanes,

84

Signature

Generation

Sensing

Feature Extraction Feature Extraction

Stops Detector

Bumps Detector

Pothole Detector

Speed estimator

Physical features

Data Preparation Data Preparation

Orientation

Independent

Data Filtering

Lane Change

Detection

Lane

Segmentation Receiver

Module

Se
n

Sy
s

Se
n

Sy
s

Se
n

Sy
s

FIG. 45: inLaneCom Framework

we have studied two types of features: physical features and traffic features. Physical

features are related to the road surface structure like road bumps and potholes, and

traffic features are related to the traffic on the lane like speed, number of stops, time

between stops, etc.

All features will be detected and extracted using smartphones, because of the

widespread of smartphones and because of their rich set of sensors that can be used

to estimate vehicle’s motion. Motion sensors like accelerometer and gyroscope are

affected by road surface like pothole and bumps and vehicle motion like break and

acceleration. Features will be divided into two categories, the features that are

affected by road surface and features affected by road traffic.

FIG. 46: Gyroscope readings for two different cars driving on the same lane

We ran different experiments to see if sensor readings coming from vehicles driving

in the same lane will share similar features. In these experiments, we have a group

85

of cars driving on the same road. Figure 46 shows the gyroscope readings of different

vehicles driving on the same lane. The graph shows that the sensors on the two cars

have similar responses to road surface bumps and potholes. In addition, we made

some experiments in some busy roads and intersections with different types of cars

(e.g. SUVs, full size) and found that the speed and number of stops differ from lane

to lane within the same road. Those initial experiments led us to do detailed and

through experiments to study the features that can be used to identify vehicle’s lane.

In this chapter we propose an in lane communication framework inLaneCom that

uses the readings of onboard smartphones’ sensors to identify vehicles in the same lane

and allows messages exchanging between them. inLaneCom assumes the availability

of at least one smartphone per moving vehicle and targets a reliable communication

between vehicles commuting on the same lane. inLaneCom’s design comes in four

modules data preparation, feature extraction, signature generation, and receiver mode

as shown in Figure 45. The following is a brief explanation of the four modules. The

first module is the Data Preparation module which consists of four components.

The first component is the data filtering component that receives the raw sensing

data from smartphones and removes their noise (e.g. accelerometer bias, gyroscope

drifts) in order to express meaningful road information. The second component is

responsible for aligning the phone coordinates to the vehicle coordinates this will

be explained in more details in this chapter. The third and fourth components are

the lane-change detection and the lane segmentation modules; they are needed in

the signature generation to define lane limits and communication range. The second

module is the Feature Extraction module, which is responsible for extracting all

the available features from the data collected. It starts by retrieving raw sensing

data from the inertial sensors (e.g. accelerometer, and gyroscope), then extracting

their mathematical features in time (e.g. mean, std. deviation), and frequency (e.g.

energy, and amplitude of linear acceleration) domains. Moreover, inLaneCom uses

sensing data to infer two sets of data, physical features and traffic features. The third

module is the Signature Generation module, which uses all the collected features to

generate a unique signature for the current lane, append it the outgoing packet’s

payload, and initiate the transmission. And the fourth module is the receiver side.

This module takes the incoming message, extracts their signature from the payload,

and matches it to the locally generated signature. If they match the message is

accepted, otherwise discarded without further processing. The following four sections

86

TABLE 17: Accelerometer Bias

Exps P1.X P1.Y P1.Z P2.X P2.Y P2.Z
1 0.064 0.0403 0.137 0.0891 0.061 0.187
2 0.062 0.0398 0.140 0.0921 0.063 0.188
3 0.067 0.0410 0.139 0.0913 0.0594 0.191

will provide technical details on the inLaneCom modules respectively.

8.2 DATA PREPARATION

This section explains how to make the raw sensing data ready for feature extrac-

tion by adjusting the orientation, removing sensors’ bias, and segmenting the data.

8.2.1 DATA FILTERING

Smartphones come with low-cost inertial sensors which are known to be inaccu-

rate and noisy. To get accurate readings from phones inertial sensors, inLaneCom

filters and removes gyroscope drift, accelerometer bias, and outliers. Filtering smart-

phone’s sensors and preparing them for vehicular use has been discussed in [17] and

in Chapter 4 of this dissertation.

The accelerometer has a fixed bias added to the actual readings. This bias has an

accumulative effect when used to calculate the speed. To understand the nature of

that bias, we applied different experiments that read phones’ sensors in stationary

mode. Results in Table 17 shows the bias is almost constant per axis per phone.

Gyroscopes reading are used to calculate the angle taken around vehicle’s coordi-

nates. This is used to detect turns, lane switches, road bumps and potholes. Al-

though gyroscope is more stable and less noisy than the accelerometer in detecting

the changes in small intervals, in the long run, the gyroscope will drift, and therefore

needs a calibration. We built the complementary filter in a similar way to [81], which

uses the accelerometer readings to calibrate the gyroscope.

Figure 13 in Chapter 4 shows the calculated angle in degrees before and after the

drift correction.

87

The low pass filter was used to remove the outliers in the horizontal accelerom-

eter readings. It is important to preserve the waveform resulting from bumps and

potholes as inLaneCom uses them in generating lane signatures. On the other hand,

inLaneCom needs to remove the random noise that might affect speed or angle cal-

culation. Hence, low pass filter is applied to acceleration in the moving and side

directions only.

8.2.2 LANE CHANGE DETECTION

In this module, inLaneCom monitors data for lane change event. If not found

we append the incoming data to a stream that is forwarded to following modules.

Upon detecting a lane change event, the previous data is discarded from all system

modules, and a fresh stream is initiated.

In this work, the lane is defined as the path a vehicle takes until a lane reset event

FIG. 47: A vehicle changing its lane. It discards the old signature and starts a new
lane signature

is recognized. A lane reset event occurs with one of the following conditions turns

and lane switch as shown in Figure 47. Upon detecting either of them, inLaneCom

discards the previously collected data belonging to other lanes and starts a fresh

feature gathering for the new lane.

Turns and lane switches can be detected using the gyroscope, where its readings

are stable until a lane switch or a turn will cause a spike in its readings. inLaneCom

does not need to differentiate between turns and lane switches because both incidents

mean the vehicle will move to a new lane. From a smartphone’s perspective, vehicle’s

turn can be defined as an acceleration in the direction of turning either right or left

(x-axis) accompanied by spinning around the gravity direction (y-axis). The system

can use the gyroscope to detect the occurrence of turning events and to calculate the

88

(a) Gyroscope vertical readings used for turn detection. The Figure shows the gyroscope
vertical readings for three different vehicles (1 SUV, 2 Full size. From the readings you can
tell the cars are following each other.

Gyroscope (Vertical)
Gyroscope (V)

Lane
 change

Lane
 change

Lane
 change

Gyr
osc

ope
 (V)

(b) Lane switch patterns can be detected using Gyroscope vertical readings

FIG. 48: Lane Reset Event

rotation’s angle. Figure 48a shows a similar behavior by gyroscope data collected

from 3 cars following each other, and taking a turn one after another. The figure

depicts how results from 3 different cars show the same behavior representing a

turning event.

Smartphone sensors’ reaction to switching lanes depends on the driver’s habits,

which can vary from sharp to smooth. Sharp to moderate lane changes can be

detected the same way turns were detected as shown in Figure 48b. The smooth

switch can be confusing since the change in the side direction is small. Although our

experiments show high accuracy in detecting smooth lane switches, some switches

can be very smooth to be misleading. Decreasing the impact of those very smooth

ones is explained in our lane segmentation module.

8.2.3 LANE SEGMENTATION

This module receives data stream expressing a single lane. However, if a vehicle

drove in the same lane for a long time it will still be represented by only one section.

Given that, a single lane can have a different structure in its subsections. For example,

89

FIG. 49: Vehicles in different locations have different lane segment representations

a 1km lane can have totally different features on its limits based on the quality of

pavement, lane elevation, and other road conditions. This leads to poor feature

extraction and signature generation for such a long distance. Hence, inLaneCom

splits the same lane section into fixed shorter length segments (e.g. 200 meters) as

shown in Figure 49. Signature generation module will consider the last segment to

generate a unique ID for the current lane. This approach provides an up-to-date

signature representing the most recent lane features and discard older ones that are

likely to provide a poor representation of the current lane. Moreover, having such

small comparison segments will quickly recover from an undetected lane reset event,

which might occur due to a very smooth lane switching event.

8.3 FEATURE EXTRACTION

To identify a vehicle’s lane accurately, we have to determine the right set of

features that can represent a lane. To achieve that goal, we experimented using a

number of features using smartphones inertial sensors readings and the information

that can be extracted from them and found that there are two groups of features

that can be used together to identify a lane with a high accuracy. Lane identification

using these features is car-type independent and can work with SUVs and small cars.

In this work, inLaneCom expresses the lane in terms of two feature categories.

Physical features : extracted from the characteristics of the lane’s pavement and

uneven surface. Traffic features : extracted from traffic status. These features will

90

be explained in detail in this section.

8.3.1 PHYSICAL FEATURES

Physical features are extracted from characteristics of lane’s pavement structure

and uneven surface (e.g. potholes, and bumps). Feature extraction depends on mo-

tion sensor responses to the shaking caused by the road surface. Data segments

are used to extract the following features: Mean of the acceleration in the vertical

direction represents the roughness of the road. Potholes and bumps on the surface

will shake vehicles in the vertical (gravity) direction, which is detected by the ac-

celerometer. Standard deviation and Variance of the acceleration, and angular

velocity in the vertical direction, they vary per lane regardless of the absolute values.

Energy, taking the absolute value of the gravity acceleration, the uneven surface

affects the acceleration sensed on the gravity direction.

8.3.2 TRAFFIC FEATURES

Drivers have different behaviors in various situations. For example, the accelera-

tion/deceleration patterns vary dramatically between drivers to the extent of being

detected by a regular person in the passenger seat. These behaviors are sensed by the

smartphone’s inertial sensors. Out of which, inLaneCom uses the data segments to

extract speed-related features; acceleration, and deceleration habits; and the brakes

usage features to stop and go.

Speed related features (e.g. Average speed, Maximum, and Minimum speed):

Congestion levels have a direct impact on vehicle’s speed levels. Our experiment

showed that the speeds of vehicles across different lanes vary, especially during rush

hours. For example, the left-most lane is usually for speeding vehicles, while right

lanes are slow for turns, and exits. Speed features can be very useful in highways

with High occupancy lanes (HOV). Our experiments showed that driving on HOV

lanes are mostly faster and smoother, and cars in HOV lanes have a higher average

speeds and lower number of stops and waiting times.

Acceleration/Deceleration: inLaneCom detects vehicle’s acceleration, or de-

celeration through accelerometer readings in the direction of motion. Given the

varying acceleration reading from positive to negative, implying forward and back-

ward motion, inLaneCom takes a moving average, and checks the acceleration status

91

while changing between modes. For example, from accelerate to constant or decel-

erate. Then, inLaneCom embeds the number of each mode per time frame in the

signature.

Stops related features: In high traffic, vehicles are expected to go through

multiple stops. Our results showed that stops in different lanes have different pat-

terns. They might be having a different number of stops, waiting times, and time

between stops. Stops can be detected by video analytics [27], or by analyzing the

accelerometer data [18]. Using the technique explained in Chapter 5.3.1, inLaneCom

calculates the waiting time per stop, and time between stops, these two stop related

information are meaningful in explaining the nature the current lane’s traffic. It is

expected that, especially during rush hours, when one car stops, all cars behind it

in the same lane will stop. Experiments showed that the number of stops, relative

distance, and time between stops are more informative than waiting time, especially

at high traffic intersections.

Mean

Standard Deviation

Energy

Avg.
Speed

Max.
Speed

Min.
Speed

No. of
Stops

Waiting

Time
Between

stops

No. of
Acc.

No of

Dec.

Mean

Standard Deviation

Energy

Avg.
Speed

Max.
Speed

Min.
Speed

No. of
Stops

Waiting

Time
Between

stops

No. of
Acc.

No of

Dec.

Mean

Standard Deviation

Energy

Avg.
Speed

Max.
Speed

Min.
Speed

No. of
Stops

Waiting

Time
Between

stops

No. of
Acc.

No of

Dec.

Window 1 Window 2 Window 2

Lane Segment Signature

FIG. 50: The lane signature

8.3.3 SIGNATURE GENERATION

Lane signature is generated to represent the last driving segment (e.g. 200m) by

the vehicle. Each segment is divided into three equal windows. All features will be

extracted from each window separately, then these features will be combined in one

92

Sender data

Window A Window A

Window B Window B

Receiver data

Window C Window C

Window 1 Window 1

 2 2
 3 3

 4 4
 6 6

 7 7

Window 8 Window 8 Moving window. Compare them with sender
windows A,B,C

FIG. 51: Dividing the Lane segment into windows

lane signature representing the current lane of the vehicle as shown in Fig. 50.

All features explained in the physical features and traffic features subsections will

form the lane signature as shown in Figure 50. Mean, standard deviation and energy

will be represented as 20 values per window. This will generate a good representation

with lower resolution for each window. The number of values has been chosen to keep

the signature less than 1K Byte. Since all values are floating numbers, and the size

of each number in memory is 4 bytes, then the signature size will be the size of

three windows, each window contains the mean which is (20 * 4 bytes) plus standard

deviation(80 Bytes), and the energy which is (80 Bytes) plus 32 Bytes for the traffic

features per window. The total size will be 816 Bytes for the whole signature.

inLaneCom aims to facilitate smooth communication between multiple vehicles

in the same lane. Hence, signatures will be calculated and generated using the

same features and sensors on both senders and receiver sides. inLaneCom keeps

collecting, and calculating signature of the vehicle’s lane all the time The signature

should represent a portion of the lane that is long enough to calculate and extract

features, and short enough to include vehicles in the same. Based on the windowing

system used in the application, the last driving segment will be divided into smaller

windows, and each window will have its own features which will be processed at the

receiving side.

93

Our experiments show that vehicles have to drive for 60 meters to start calculating

representative features. Since the sender will divide the segment into three windows,

each segment will be at least 180 meters long. In order to include all vehicles within

the communication range, the window was increased to 75 meters, and the segment

length will be 200 meters with small overlapping between windows. Upon creating a

signature it is appended to the message payload, and transmitted with the outgoing

packets.

Signature
Generation	

Similarity
Check	

Signature
Extraction	

Read	 Discard	

More
Windows	

Receiver	Module	

N	

Y	

Y	

N	

FIG. 52: The Receiver Module

8.4 RECEIVER MODULE

Whenever a vehicle receives a packet, inLaneCom’s receiver module is initiated

to extract the signature, and compare it to available ones. Figure 52 shows details

of the receiver module presented in Figure 45.

8.4.1 SIGNATURE EXTRACTION

The received messages contain their lane signature. Hence, this module extracts

them for similarity check. Moreover, the signature comparison is done through a

moving window with the size of 75 meter that moves 5 meters at a time. This

module is also responsible for selecting the right window, then passing them to the

similarity check module.

8.4.2 SIMILARITY CHECK

Signatures fed to this module are either received or generated and they contain

plenty of features from the accelerometer and the gyroscope data as in Figure 50.

inLaneCom uses Dynamic Time Warping (DTW) to perform the similarity check [85].

After comparing all incoming signatures, the ones that show minimal normalized

94

DTW distance are considered from the same lane. Our experiments showed that

combining results from both accelerometer and gyroscope yields in better predictions

than using any of them separately.

8.4.3 MORE WINDOWS

In the case of signature comparison failure while the received data still have more

data to compare, then the window will move 5 more meters and sent back to the

signature extraction for further comparisons. If none of them matches, the whole

message is discarded.

8.4.4 WRONG DETECTION HANDLING

If a message is misclassified either false negative or positive will soon be corrected

by the following ones. On the other hand, the short window range of 200m limits the

lane length to handle long roads with different lane structures in various sections.

Our experiments show an acceptable performance in taking the correct decision as

shown later in the Section 8.5.

8.5 PERFORMANCE EVALUATION

We developed inLaneCom as an Android application to collect, and analyze the

readings from the phone’s sensors. inLaneCom App collects the readings from the

accelerometer, magnetometer, and GPS data. The App reads data from sensors at

10 Hz frequency. This is enough to get every small change on the phone’s sensors.

In city roads, the number of samples collected per sensor ranges from 150 samples to

800 samples depending on the speed of the vehicle, the number of stops, and waiting

time per stop.

Meanwhile, we collected the vehicle’s generated data through OBD-II interface, which

is mandatory in all vehicles according to U.S. Law since 1996. ODB-II adapters are

plugged into the interface and connected to the smartphones via Bluetooth to provide

plenty of vehicle’s information, out of which speed was our main concern.

8.5.1 EXPERIMENTS SETUP

We conducted a number of experiments to show the performance of inLanCom.

In these experiments, we used student volunteers to collect sensing data while driving

95

FIG. 53: Experiments held in different types of roads.

vehicles in controlled, and free driving modes. Free driving enables volunteers to col-

lect data while their regular commutes for a period of one month. OBD-II adapters

were used as ground truth to verify inLaneCom’s speed, turns, and stop detection

mechanisms. Controlled experiments, involved different types of vehicles following

each other while applying different scenarios that might happen like joining and leav-

ing the lane. The first vehicle sends a message along with its lane signature. Others

receive the messages, calculate their own lane signatures, and apply inLaneCom’s

matching techniques to decide to check whether they share the same lane or not. We

conducted different types of experiments that included different types of cars (i.e.

SUV, full-size sedan, minivan). The total driving distance in the controlled experi-

ment was 75 miles, part of it is in the red route shown in Figure 53, while the free

driving was 299 miles. The experiments were held in different types of city roads

and highways. Each vehicle carries a Samsung phone running Android Lollipop. All

vehicles have their phones fixed to the windshields in the same position to eliminate

the impact of different orientation. To relax the fixed orientation assumption we used

SenSys coordinate alignment feature.

8.5.2 FREE DRIVING SCENARIOS

As mentioned previously, we collected sensing information from volunteers’ nor-

mal commute over a month. Using OBD-II as a ground truth enabled evaluating

inLaneCom under unconstrained driving conditions. We collected data from 299

miles driving distance over one month, out of which OBD II detected 143 stops, 108

turns, and an average speed of 37.8mph. On the other hand, inLaneCom detected

138 stops, 107 turns, and average speeds of 38.3mph with an error of 4.5%, 4.7%,

and 5% respectively. Results in the remainder of this section are all derived from

96

FIG. 54: Accelerometer Reading for the same vehicle/smartphone driving in 2 dif-
ferent lanes of the same road

controlled experiments.

8.5.3 DETECTING LANE CHANGE EVENT

inLaneCom starts it work by lane segmentation as explained earlier through de-

tecting turns and lane switches to define the start, and end of each lane. Detecting

turns and switches are done by monitoring the vertical-axis gyroscope readings.

Turning Events: To test the turning detection, we used the data collected from

the 299 miles, the system was able to detect 107 turns out of 108 turns with 99.1%

accuracy. InLaneCom used SenSys turning detection method to detect turns.

Lane Switching: We drove two types of vehicles (i.e. SUV, full-size sedan), each

performed lane switching on different speeds 20 mph, 35 mph, and 50 mph. And

the accuracy of detecting the lane switches was 100%, 94%, and 100% respectively.

InLaneCom used SenSys lane-switch detection method to detect lane switches.

8.5.4 LANE DETECTION

For lane detection, we have vehicles drove in highways and in city roads.

In City Driving: A vehicle was driven around the city and the university campus

on a 2-lane road. The experiment was repeated twice with the same settings, each in

97

TABLE 18: Performance accuracy in different types of roads

Features In-City In-City
(traffic)

Highway Highway
(traffic)

Physical 83.1% 84.8% 63.7% 68.7%
Driving 78.2% 86.0% 76.1% 77.5%
Combination 89.8% 94.9% 81.1% 85.4%

a different lane to plot the differences. The collected data was divided to 14 segments,

out of which 12 came up to be different (86% accuracy). Figure 54 shows 2 windows

per lane, each row represents a lane. The firsts are different, while the seconds are

similar across both lanes.

Highway Driving In this experiment, we drove 8 vehicles over the red path shown

in Figure 53 for a distance of 36 miles. The collected data were subject to clean-

ing, and filtration procedures explained earlier. The results show that, on highways

especially during rush hours, the traffic features perform better. In city roads, the

road physical features are performing well along with the traffic features. In case

of high traffic the traffic features perform really well. inLaneCom, performs better

when the traffic is not normal, for example in case of blocked lane caused by accident,

malfunction vehicle, flood, working area, or congested exit. The accuracy gets higher

when the speeding and stopping patterns vary from lane to lane, number of stops

will increase, and the acceleration pattern changes frequently.

Based on this experiment, inLaneCom detected vehicles in the same lane in city

roads with an accuracy of 94.9% during rush hours, and 89.8% in regular traffic. The

combination of features will be used in our system to give the best accuracy it can

get to identify the vehicles in the same lane as shown in Table 18. In-city scenarios

provide an environment that is rich in features to grasp. Hence, inLaneCom has an

acceptable performance in cities.

On highways, inLaneCom has an accuracy of 81.1% without traffic, and 85.4% with

a high traffic during rush hours as shown in Table 18. As discussed earlier, the

accuracy changes from portion to portion based on the physical and traffic situation

on the road. In some segments of the highways, because of smooth pavement, and low

traffic, there were not enough physical or traffic features to collect. Clearly, traffic

98

added rich features to the driving patterns, especially number of stops, accelerations,

and deceleration patterns. Combining physical and traffic features increased the

accuracy of the system. However, inLaneCom’s accuracy on highways needs to be

enhanced to overcome the limited feature environment.

FIG. 55: Standard deviation of the gyroscope data from sender vehicle. Y axis is the
gyroscope reading, X axis is sample id.

8.5.5 LANE SIMILARITY

Roads physical features were extracted using mean, standard deviation, and en-

ergy of the the inertial sensors reading. Figures 55 and 56 shows the standard

deviation of the gyroscope in the side coordinate. Readings represent changes in the

spinning angle around the side axis. These values are part of the signature, so the

sender vehicle will divide its lane segment into three windows, and send them to the

receiver. Figure 55 shows the three windows in the sender lane segment. Figure 56

shows the standard deviation of the gyroscope in some of the moving windows from

the vehicle on the back that received the message. Vehicles in Figures 55 and 56

were driving in the same lane. Using dynamic time warping DTW, inLaneCom was

able to correlate between window 1 in the sender and window 8 in the receiver side,

and between the sender’s third window and the receiver’s seventh window.

8.6 DISCUSSION

Communication: inLaneCom utilizes the payload of 802.11 data frame for-

mats [97]. The payload is split into chunks of 2313 bytes to fit in the network data

field. The signature generation results in 816 bytes signature. In our frames, we

99

FIG. 56: Standard deviation of the gyroscope data from moving window on the
receiver vehicle

append the signature at the beginning of the outgoing message’s payload. In this

case, we decrease the packet throughput by 36%. However, the remaining amount of

the payload is sufficient for the V2V emergency messages.

In the case of non-emergency messages like commercial distribution, messages

require more than one packet. In this case, the signature overhead can be significant

as in Figure 57, especially if we considered the short communication time period

in V2V applications. Hence, we handle these messages in a different manner. In

the first packet, we send the signature preceded by 20-Byte SHA-1 hash value of the

signature [98]. The remaining packets’ payload will only carry the 20-Byte hash value.

Figure 57 depicts the effect of this approach on the communication throughput.

Lane Segments size: inLaneCom dissects every single lane to multiple segments

of smaller size to express the features of the surface. From our experiments, we saw

that extracting a single signature for the whole lane can be misleading and provides

low accuracy. This shows up clearly if the lane has a different surface structure at

the beginning and at the end. We solved this by splitting the lane into segments

with different signatures. Our experiments showed a 200-meter segment to give the

best accuracy.

Highway Scenarios: Experiments and features used shows inLaneCom to favor

100

FIG. 57: inLaneCom Communication Throughput

in-city scenarios over highways. The nature of highway’s smooth pavement and

motion patterns can hardly provide a clear evidence for lane’s classification. However,

there are candidate features that can increase inLaneCom’s accuracy on highways.

For example, lane curvature can differentiate between different road lanes. It was

initially estimated through mathematical models [99], video analysis techniques [100],

and recently there are few attempts to get it via inertial sensor readings [101]. Hence,

the challenge is how accurate can inertial sensors detect the lane curvature, and

whether this will enhance inLaneCom on highway scenarios.

8.7 INLANECOM APIS

The in-lane communication application allows vehicles in the same lane to com-

municate with each other. We used the inLaneCom functions to be added to the

SenSys framework as APIs. The new set of APIs will expand the usability and

functionality of SenSys APIs pool.

Table 19 shows the in-lane communication APIs. setWindowSize(size) method

101

TABLE 19: SenSys in-lane communication APIs

API call (import SenSys.LaneCom.*) Description

SenSys.LaneCom.setWindowSize(size) Determines the size of the window in me-
ters

SenSys.LaneCom.signature() Returns the lane signature for the last win-
dow size

SenSys.LaneCom.reset() Resets calculating the signature.
SenSys.LaneCom.sendTo(Msg,receivers)Sends the message to either “All” or

“Lane”

specifies the size of the window in meters that will be used to calculate the signature.

The developer uses sendTo(message, receiver) to send the message to either “All”

vehicles within the communication range or “lane” vehicles within the same lane.

8.8 SUMMARY

The in-lane communication system proposed a communication scheme between

vehicles in the same lane. On-board smartphones are used to detect the current

lane and inertial sensors are used to generate a signature for the current lane. The

signature is appended to the outgoing messages. Receivers decode the signature and

decide whether to accept or deny the message with 95% accuracy. Experimental

evaluation depicted how to extract lane’s features (physical, and traffic), generate

the signature, send it, and compare it at the receiver’s side. inLaneCom works with

different types and sizes of cars. It also works on different types of roads, and showed

the best performance in city roads.

Our future work includes expanding the system to establish a communication mean

between fixed infrastructure and on-board smartphones, in-lane communication is

needed in some places and intersections to enhance navigation, reduce traffic, and

increase road safety. In addition to that, we need to explore more features and sensors

to enhance highway lane identification accuracy. Since many applications can use the

inLaneCom framework, part of our future work is to build more systems that use

this framework to enhance road safety.

102

CHAPTER 9

FUEL CONSUMPTION AND CO2 EMISSION

CALCULATOR (GOGREEN)

Calculating vehicle’s fuel consumption and emission are important issues in trans-

portation. Table 20 shows that transportation and industrial processes are the major

sources of air pollution. Because vehicle emissions are a major source of air pollution,

they can impact the quality of air. According to [8] transportation is responsible for

about one third of the total emission of CO2. CO2 emission can be calculated by

knowing the fuel consumption rate and the fuel consumption can be calculated by

using the average speed [3, 102, 103].

TABLE 20: Pollution by source [2]

Pollutants Transportation Fuel com-
bustion

Industrial
processes

Miscellaneous

CO 87.6% 6.0% 5.4% 10.0%
Lead 13.1% 12.7% 74.2% -
NOx 53.3% 41.7% 3.7% 1.3%
VOC 43.5% 5.0% 47.2% 4.4%
PM10 25.4% 38.6% 36.0% -%
SO2 7.1% 85.1% 7.7% 0.1%

Calculating the fuel consumption can be used to find a relation between the

driving style and the amount of fuel consumed. Many researches such as [104, 105]

studied the relation between the driving style and fuel consumption. [105] shows

that the fuel consumption differences between a calm driver and an aggressive driver

can goes up to 40%.

Eco-driving is a driving style developed in the mid 1990s with set of rules and rec-

ommendations to drivers. Many research projects are updating the eco-driving rules

like the European Ecodriven project (European Campaign On improving DRIVing

behavior, ENergy-efficiency, and traffic safety [106]. In summary, the recommenda-

tions guide drivers to avoid unnecessary acceleration and breaking and to driving in

103

low speed when possible. The studies also have shown that adopting eco-driving led

to a deduction of 10% to 15% in fuel consumption.

Many projects used the smartphone’s GPS and OBD to calculate the fuel con-

sumption and CO2 emissions. We have built an application based on an accurate

model [3] and we used the inertial sensors to estimate the speeds in case if the GPS

and OBD are not available to the driver. Also, inertial sensors are known for their

ability to detect different driving activities like acceleration, deceleration, and brak-

ing. Having the fuel consumption, CO2 emission, and the driving style visible to

drivers will help them to alter their driving behaviors to adopt the eco-driving style

which is proven to be cost effective and better for the environment.

9.1 GOGREEN FRAMEWORK

Speed
estimation

Fuel
Consumption

CO2
Emission

Stop/move
detection

SenSys

Data
filtering

OBD

Inertial
sensors

GPS

FIG. 58: CO2 emission calculation components.

GoGreen uses SenSys to read and filter inertial, OBD, and GPS sensors. The

processed sensors’ readings will be sent to the other SenSys modules to estimate

the speed and detect the stops and moves events. The fuel consumption module

uses the calculated speed to estimate the fuel consumption which will be used in the

CO2 emission module. We used the model in [3] to calculate fuel consumption and

CO2 emission. The model based its calculations on vehicle speed. We developed an

Android app that uses SenSys library to get the speed of the vehicle using inertial

sensors, GPS, and OBD and show the average fuel consumption in liter per minute

to the driver. Figure 58 shows the framework of the GoGreen app.

104

9.1.1 FUEL CONSUMPTION AND CO2 EMISSION CALCULATION

The fuel consumption and CO2 emission calculations are based on the model in

[3]. Their model estimated CO2 within a 2% error range.

FC(t) =

α0 + α1P (t) + α2P (t)2 ∀ P(t) ≥ 0

α0 ∀ P(t)< 0
(13)

P (t) =

(
(R(t) + 1.04ma(t)

3600ηd

)
v(t) (14)

R(t) =
ρ

25.92
CDChAfv(t) + 9.8066m

Cr

1000
(C1v(t) + C2) + 9.8066mG(t) (15)

where FC(t) is the fuel consumption rate (liter/second) at time t, P(t) is the

power exerted by the vehicle driveline (kW) at time t, R(t) is the resistance force.

α0, α1, and α2 are vehicle-specific model constants that are calibrated for each vehicle,

m is the vehicle mass (kg), a(t) is the vehicle acceleration (m/s2) at time t, v(t) is

the vehicle speed (km/h) at time t, and ηd is the driveline efficiency. The constants

are different for every vehicle’s brand and model. Vehicle constants are explained in

Table 21. The example numbers shown in the table are for “2007 Saturn ION”.

TABLE 21: Vehicle constant values [3]

Constant Unit Example Description
CD unit-less 0.42 Vehicle drag co-

efficient
Ch unit-less 1 Correction fac-

tor for altitude
Af m2 3.058 Vehicle frontal

area
Cr unit-less 1.75 rolling resis-

tance(road
surface type)

C1 unit-less 0.328 rolling resis-
tance(road
condition)

C2 unit-less 4.575 rolling resis-
tance(vehicle
tire type

105

FIG. 59: Fuel Consumption comparison.

Figure 59 shows the fuel consumption calculated using inertial sensors, GPS, and

OBD. For this experiment we used the OBD to retrieve the fuel consumption directly

and used it as ground truth. Fuel consumption is not standard OBD call but some

manufacturers provide it in their new models.

9.2 GOGREEN INTERFACE

The app allows the driver to choose what sensor to use and shows the fuel con-

sumption rate per minute for the last five minutes as shown in Figure 60.

At the end of the trip GoGreen views trip summary that shows the average speed,

fuel consumption rate, distance, time, and the total fuel consumed in that trip as

shown in Figure 61.

9.3 GOGREEN APIS

GoGreen provides a set of APIs into the SenSys framework which enables ITS

apps developers to directly read the current fuel consumption and CO2 emission.

Table 22 shows the list of GoGreen APIs.

getCO2emission(time) gets the amount of CO2 emission in milligrams. getFuel-

Consumption(time) returns the total amount of fuel consumed within the last number

of seconds sent as a parameter in gallons. reset() resets the fuel consumption and

CO2 emission to zero to get ready for a new trip.

106

FIG. 60: GoGreen interface.

TABLE 22: SenSys GoGreen APIs

API call (import SenSys.GoGreen.*) Description

SenSys.GoGreen.getCO2emission(time
seconds)

Returns the CO2 emission in milligrams
during the last number of seconds.

SenSys.GoGreen.getFuelConsumption
(time seconds)

Returns the fuel consumption rate during
the last number of seconds.

SenSys.GoGreen.reset() Resets the calculation of fuel consumption
and CO2 emission

107

FIG. 61: GoGreen at the end of the trip.

108

CHAPTER 10

VEHICLE TYPE DETECTION

Although existing technologies provide some important information like vehicle

count, queue length, and vehicle weight, they cannot accurately provide some other

important information like vehicle’s type. Determining vehicle’s type is important for

enhancing transportation applications, generating traffic statistics and tolls revenue

auditing. For example, road tolls need to know number of axles on the passing

vehicle to determine the toll fees. The Federal Highway Administration (FHWA)

has classified road vehicles into 13 classes. This classification depends on the number

of vehicle’s axles, tiers and units. Based on the vehicle class, we can tell if the vehicle

is a motorcycle, passenger car, van, or truck.

The most common methods used for wheel and axle detection are based on sensors

installed in the roadway (pressure detectors) that require construction work to cut

the asphalt. But it is known that these sensors suffer from degradation which effects

there performance. To overcome the degradation problem, some solutions proposed

the use of optical sensors on the lateral side of the road lanes. But the problem with

the optical detection technology is its robustness against some weather conditions

like heavy rain, mud, and ice. The problems associated with current technologies

encouraged us to look for more reliable and cost effective solutions.

In this chapter we propose a new way of detecting vehicle’s axles and class using

smartphones. The high technology used in smartphones and their rich features in

terms of processors, sensors, communication, and memory encouraged the researchers

to utilize them in enhancing the existing ITS systems.

This work utilizes smartphones sensors to detect vehicle’s axles, wheelbase, and

determine its class. This solutions was built on top of SenSys framework which reads,

filters, and analyzes smartphone sensors readings.

10.1 VEHICLE TYPE DETERMINATION SYSTEM OVERVIEW

The Federal Highway Administration (FHWA) has classified road vehicles into 13

classes. The classes can be grouped into passenger cars, buses, and trucks. Figure

62 and Table 23 show the FHWA vehicle classes and their description.

109

FIG. 62: FHWA Vehicle Classification [7]

To determine vehicle’s class we need to know the number of axles and the distances

between them. The system uses the shocks generated when a vehicle passes over a

speed-bump. SenSys framework which will be explained in the next section is used

to detect the bumps which will be used later to calculate the wheelbase. Wheelbase

is the distance between front and rear axles of a vehicle as seen in Figure 63. Figure

64 shows how the speed-bump affect the vertical acceleration of a vehicle and how

its axles can be detected using the vertical acceleration. When the front axle passes

over the speed bump it generates a vertical acceleration at time (t1) and when the

rear axle passes the speed bump, it generates a vertical acceleration at time (t2),

knowing the speed of the vehicle which can be retrieved from the SenSys framework

or GPS we can calculate the wheelbase using the following equation:

Wheelbase = (t2− t1) ∗ Speed (16)

10.2 SYSTEM ARCHITECTURE

In this section we will go through the steps of determining vehicle class. The two

main steps to do that are axles’ detection and wheelbase calculation.

110

FIG. 63: Wheelbase: The distance between the front and rear axles of a vehicle.

-10
-5
0
5

10
15

CBA

Time [m]Acc
eler

atio
n m

/s2 Vertical Acceleration

A

C

B

FIG. 64: Speedbump effect on vertical acceleration.

111

TABLE 23: FHWA Vehicle Classes [4]

Class Axles Description
1 2 Motorcycles (Optional). All two- or three-wheeled

motorized vehicles.
2 2 Passenger cars
3 2 Other two-axle, four-tire single unit vehicles. Like

pickups and vans.
4 2 or more Buses. All vehicles manufactured as traditional

passenger-carrying buses with two axles and six
tires or three or more axles.

5 2 Two-axle, six-tire, single-unit trucks.
6 3 Three-axle single-unit trucks.
7 4 or more Four or more axle single-unit trucks.
8 4 or fewer Four or fewer axle single-trailer trucks. All vehicles

with four or fewer axles consisting of two units.
9 5 Five-axle single-trailer trucks. All five-axle vehicles

consisting of two units.
10 6 or more Six or more axle single-trailer trucks. All vehicles

with six or more axles consisting of two units.
11 5 or fewer five or fewer axle multi-trailer trucks. All vehicles

with five or fewer axles consisting of three or more
units.

12 6 Six-axle multi-trailer trucks. All six-axle vehicles
consisting of three or more units.

13 7 or more seven or more axle multi-trailer trucks. All vehicles
with seven or more axles consisting of three or more
units.

10.2.1 AXLE DETECTION

Axle detection is based on bump detection, and bump detection uses the vertical

acceleration. Vertical acceleration and bump detection are derived from the SenSys

framework. Figures 67, 68 show the vertical acceleration pattern of vehicle passes over

a speed bump in different speeds. The figures show that there are some differences

between the two patterns caused by the speed of the vehicle. The vehicle in Figure 67

was driving at speed of 6 mph, from the figure, point (A) represent the front axle is

over the speed bump, the point (B) when the front axle passed the bump, point (C)

when the rear axle is over the speed bump and point (D) when the rear axle passed

the bump. All these points are expected to be detected whenever a vehicle with two

112

Speed
estimation

Wheelbase
calculation

Vehicle
type

Bump/
pothole

detection
SenSys

Data
filtering

Inertial
sensors

GPS

FIG. 65: Vehicle type detection framework.

axles passes over a speed bump. But in case the vehicle is driving with higher speed,

and the speed bump is large, then the two points (B) and (C) could be combined

where the rear axle arrives the speed bump before the front axle passes it. Figure

68 shows the same car driving over the speed bump with higher speed, and point

(B) represents both the front axle leaving the bump and the rear axle passing over

it. Both events merged to form a high change in the vertical acceleration. Bumps

detection in SenSys framework goes through different modules as shown in Figure

66. First, the system collects the raw acceleration, then filters the outlines and align

its coordinates, then it extracts the vertical motion which will be used for bump

detection.

FIG. 66: Bump detection modules in SenSys framework

10.2.2 WHEELBASE CALCULATION

Wheelbase is the distance between the front and rear axles. The system records

the time when the front axle passes over the bump and then the time when the rear

axle passes over the bump. Given the speed of the vehicle, the system can calculate

the distance between the two axles. Figures 67, 68 shows the wheel base distance

113

-5

-4

-3

-2

-1

0

1

2

3

4

Ti
m

e

0
.0

0
0

0
.0

86

0
.1

68

0
.2

52

0
.3

36

0
.4

20

0
.5

04

0
.5

86

0
.6

66

0
.7

51

0
.8

36

0
.9

19

1
.0

03

1
.0

8
6

1
.1

71

1
.2

56

1
.3

38

1
.4

16

1
.5

02

1
.5

86

1
.6

70

1
.7

56

1
.8

42

1
.9

21

2
.0

06

2
.0

89

2
.1

76

2
.2

61

2
.3

41

2
.4

26

2
.5

09

2
.5

9
2

2
.6

76

2
.7

56

2
.8

40

2
.9

24

3
.0

06

(Wheelbase)

Vertical Acceleration

Time (m)

A
cc

el
er

at
io

n
 (

m
/s

2
)

A B C D

FIG. 67: Wheelbase calculation while driving at speed of 6 mph

between the two bumps. The wheelbase is calculated using the following equation:

Wheelbase = (t2− t1) ∗ Speed (17)

Where (t1) is the time when the front axle passes over the bump, and (t2) is the

time when the rear axle passes over the bump.

The following section evaluated the two main components of the system (Axle

detection and wheelbase calculation) using two different vehicles from two different

classes while driving in different speeds.

10.3 SYSTEM EVALUATION

To evaluate the system we ran many experiments, using a sedan vehicle from

class 2 and a van vehicle from class 3. We drove both vehicles in different speeds

over a speed bump as shown in Figure 69.

Experiments

To test the concept of detecting vehicle types we conducted number of experiments

using different types of vehicles. The vehicles used are a sedan Toyota Camry 2000,

a Honda Odyssey 2003 Van, 2009 Toyota Highlander and a 2013 Gillig Low Floor

bus. Each vehicle has two axles, the sedan has a 2.672 meters wheelbase, the van

114

-10

-5

0

5

10

15

Vertical Acceleration

A B C

Wheelbase

A
cc

el
er

at
io

n
(m

/s
2
)

Time (m)

FIG. 68: Wheelbase calculation while driving at speed of 15 mph

has 3.002 meters wheelbase, the SUV has a 2.8 meters wheelbase, and the bus has

a 7.07 meters wheelbase. We drove the cars in different speeds over a speed bump

as shown in Figure 69. For the bus we rode the bus for more than 85 minutes and

analyzed the data for potholes and bumps.

10.3.1 RESULTS

For each run over the speed bump the system calculates the wheelbase and com-

pares it to the ground truth. For the sedan Toyota Camry vehicle with 2.672 meters

wheelbase, Figure 70 shows result of seven runs over the speed bump with two dif-

ferent speeds of 5 MPH and 15 MPH. For the 5 MPH wheelbase calculation, the

average calculated wheelbase is 2.55 meters with 12 centimeters average error. The

average error increased to 17.3 centimeters when driving in 15 MPH speed. The

Honda Van has almost similar average error as shown in Figure 71. For the 5 MPH

speed, the average wheelbase is 2.87 meters and the average error is 12.5 centimeters.

For the 15 MPH speed, the average error increased to 19.5 centimeters with average

wheelbase of 3.195 meters. For the SUV, the accuracy of wheelbase calculation was

95.3% with average error of 13 centimeters. The results show that, the average error

was almost the same for the two vehicle types.

While riding the bus, the system detected several bumps and potholes. In the

115

FIG. 69: A Speed bump

experiment, the bus passed over the bumps with different speeds because we did

not have a control over the speed of the bus. For every event detected, the system

calculated the wheelbase and the class related, the results of this experiment are

shown in Table 24.

TABLE 24: The wheelbase calculation in the bus experiment

Event No. axles de-
tected (2)

Speed (MPH) Wheelbase (7.07
meter)

Bump 1 2 22.3 6.80
Bump 2 2 15.1 7.26
Bump 3 2 20.6 6.86
Bump 4 2 10.8 7.19
pothole 1 2 14.1 6.88
pothole 2 2 25.4 6.73
pothole 3 2 32.2 6.68

Table 24 shows that bumps and potholes can help detecting vehicle axles, al-

though the experiments showed that speed bumps performs better than potholes.

Bus wheelbase calculation gives better accuracy in lower speeds.

Small speed bumps can be placed on toll stations and the drivers could be directed

to drive at low speeds. The automatic vehicle type detection can detect the type of

the vehicle and calculates its tolls automatically.

10.4 VEHICLE TYPE APIS

116

FIG. 70: Wheelbase calculation for the Toyota Camry vehicle with wheelbase of
2.672 meters.

Vehicle type detection is an important issue in ITS and can be used in many

applications, therefore, SenSys provides a set of APIs that enable the developers to

detect the vehicle’s type and other features. Table 25 shows SenSys vehicle type

detection methods.

TABLE 25: SenSys vehicle type APIs

API call (import Sen-
Sys.vehicleType.*)

Description

SenSys.vehicleType.getWheelBase() Returns the distance between the front
and the back axles.

SenSys.vehicleType.getAxelsCount() Returns the number of axles detected.
SenSys.vehicleType.getType() Returns vehicle’s type

getWheelBase() returns the distance between the first and the second axles in

meters. getAaxelsCount() returns the number of axles detected. getType() returns

the class number as declared in [4].

10.5 SUMMARY

Automatic vehicle type detection is an example of traffic applications that can

use SenSys. The proposed automatic vehicle type detection uses smartphone inertial

117

FIG. 71: Wheelbase calculation for the Honda Odyssey vehicle with wheelbase of
3.002 meters.

sensors to detect the number of axles, and then calculates the distances between

them to determine vehicle’s class and type. The results show that the system was

able to detect the number of axles with 100% accuracy and calculate the wheelbase

with average error of 12.14 centimeters only for the cars and 24.4 centimeters for

buses with average speed of 20.02 MPH. The system shows promising results and it

can be enhanced to decrease the average error and to be tested with different types

of vehicles and trucks.

118

CHAPTER 11

CONCLUSION AND FUTURE WORK

The wide spread of smartphones and the rich set of sensors that come with mod-

ern smartphones have encouraged developers to build intelligent transportation ap-

plications. Developers face difficulties to filter, fuse, and process sensors data. This

motivated us to create SenSys framework that can process, filter, analyze, and under-

stand sensors’ readings in addition to the ability to extract vehicle dynamics. Many

transportation applications can be built on top of the SenSys framework. SenSys

was built to accommodate new sensors, filters, algorithms, and updates.

The existing ITS systems face many problems that need to be addressed, for ex-

ample, several data collection technologies like surveillance cameras can track users

and raise privacy concerns among drivers. Also, the cost of the intelligent transporta-

tion system varies from technology to another. Most existing technologies require the

installation of sensors and devices in roads, the equipment could be too expensive in

some cases. Some existing technologies like road detectors suffer from poor reliability

due to improper installation. Many detectors like inductive loops need to be installed

during road construction; the installation requires a saw cut to the pavement and

stopping the traffic during the time of installation and maintenance. Because of the

cost and the installation difficulty of installing new ITS technologies, the authorities

install these technologies in few selected places. The data collected from different

technologies are limited to the type of the sensor used in that technology, for ex-

ample, the data collected by inductive loop detectors are vehicle passage, presence,

count, and occupancy and the data collected by cameras are limited to footage, plate

numbers, traffic density, and speed detection.

Traffic challenges are encouraging researchers to look for new technologies that

can assist or replace the current systems. The high technology used in smartphones

and their rich features in terms of processors, sensors, communication, and memory

encouraged the researchers to utilize them in enhancing the existing ITS systems.

The large spread of smartphones made it easy to deploy new low-cost technologies

to collect data from drivers and vehicles. Current smartphones come with different

types of sensors like, inertial sensors, camera, microphone, and GPS. The data derived

119

from these sensors encourage researchers to develop different types of applications in

many domains like sports, health, localization, smart homes, and ITS.

The existing smartphones based ITS applications use phone either for data col-

lection or to do one specific application. Developers face difficulties in developing

smartphone ITS applications because of the difficulty in processing the noisy data

produced by phones inertial sensors. More advanced smartphone-based ITS appli-

cations can be developed if there is a framework that does all the data processing

and the feature extraction. This motivated us to build SenSys as a reliable smart-

phone based ITS framework that reads, processes, filters the raw data and extracts

different features that can be used by developers to easily build different types of

ITS applications.

Using SenSys set of APIs, we have built four ITS applications and included them

as part of the SenSys library. The four applications are the InLanCom app which

enables a vehicle to identify other vehicles in the same lane and exchange messages

with them, the in-lane communication system proposed a communication scheme

between vehicles in the same lane. On-board smartphones are used to detect the

current lane and inertial sensors are used to generate a signature for the current lane.

The signature is appended to the outgoing messages. Receivers decode the signature

and decide whether to accept or deny the message with 95% accuracy. Experimental

evaluation depicted how to extract lane’s features (physical, and traffic), generate

the signature, send it, and compare it at the receiver’s side. inLaneCom works

with different types and sizes of cars. It also works on different types of roads,

and showed the best performance in city roads. The scecond application is the

ParkZoom app which enables a vehicle to identify its exact parking spot in a parking

lot. To accurately determine a vehicle’s parking space using INS only, we used the

parking lot infrastructure to overcome the acceleration noise problem. Turn detection

locates the cars on turns, while error-corrected distance calculation and matching

with the parking geometry allows ParkZoom to identify the parking spot. Real-world

experiments with data collected from two simple and regular parking geometries

showed good accuracy in detecting turns and parking-space determination. The

third application is the GoGreen app which enables the driver to monitor the fuel

consumption and CO2 emission of his car, we developed an Android app that uses

SenSys library to get the speed of the vehicle using inertial sensors, GPS, and OBD

and show the average fuel consumption in liter per minute to the driver. The fourth

120

application is the vehicle type detection app which detects the type of the car based

on the FHWA classification. The automatic vehicle type detection is an example

of traffic applications that can use SenSys. The proposed automatic vehicle type

detection uses smartphone inertial sensors to detect the number of axles, and then

calculates the distances between them to determine vehicle’s class and type.

Now, the ITS researchers and developers who need to build a smartphone appli-

cations can use SenSys framework to read, filter, fuse, and analyze sensors’ readings.

SenSys provides them with a set of APIs that enable their applications to understand

vehcile’s movements. The APIs can be easly called which will enable new ideas and

applications in the ITS field.

In summary, this thesis contributes the following to the field of ITS: the design

and development of SenSys framework that can be used by smartphone developers to

build ITS applications since there is no such framework available today. SenSys uses

newly developed algorithms to filter and fuse different sensors to correct the faulty

readings and extract informative data. SenSys uses a new method to align smart-

phone’s coordinates with vehicle’s coordinates. SenSys provides a set of APIs that

can be used by smartphone developers to build ITS applications. SenSys framework

was used to design and develop a new and accurate method to identify a vehicle’s

parking spot using smartphone’s inertial sensors only. In addition to that, SenSys

framework was used to design and develop a new method that identifies vehicles

in the same lane using smartphone’s inertial sensors only, and a new method that

detects vehicle’s number of axles and class type using smartphone’s inertial sensors

only.

11.1 FUTURE WORK

Since SenSys is an expandable framework and important part of the future work

is to expand the framework with more filters and methods to deal with different types

of sensors. One of them is the microphone and the acoustic features extraction and

processing. Another important issue we are planning to explore is to know if the

phone is currently in use by the driver or not, and if the driver is using it for sending

text messages, browsing, calling, or any other activity. If the phone is currently in

use, can the algorithms still detects the vehicle dynamics like speed, turns, and stops?

In addition, the inLaneCom system needs to find new ways to increase its accuracy

on highways, there are few places that have a low accuracy because of the nature of

121

the traffic and roads. In addition to that, our future work includes expanding the

system to establish a communication mean between fixed infrastructure and on-board

smartphones, in-lane communication is needed in some places and intersections to

enhance navigation, reduce traffic, and increase road safety. In addition to that, we

need to explore more features and sensors to enhance highway lane identification

accuracy. Since many applications can use the inLaneCom framework, part of our

future work is to build more systems that use this framework to enhance road safety.

The vehicle type application has limited its experiments to two types of vehicles.

More types of vehicles can be tested and analyzed to have more accurate vehicle type

detection SenSys can be expanded by using new sensors and algorithms. For example,

there are different applications that use the camera like the lane departure warning

applications, such applications use a rich set of image processing and computer vision

algorithms to process the videos. Such algorithms could be added to the framework.

The camera is part of the data collection layer, the image processing algorithms can

be added to the data preparation layer and vehicle dynamics extraction layer.

122

REFERENCES

[1] US-DOT, “2015 transportation statistics annual report,” 2015. [On-

line]. Available: http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/

TSAR 2015 final 0.pdf

[2] T. Mehta, H. S. Mahmassani, and C. R. Bhat, “Methodologies for evaluat-

ing environmental benefits of intelligent transportation systems,” Center for

Transportation Research, Bureau of Engineering Research, University of Texas

at Austin, Tech. Rep., 2001.

[3] H. A. Rakha, K. Ahn, K. Moran, B. Saerens, and E. Van den Bulck, “Virginia

tech comprehensive power-based fuel consumption model: model development

and testing,” Transportation Research Part D: Transport and Environment,

vol. 16, no. 7, pp. 492–503, 2011.

[4] FHWA, “FHWA vehicle classification definitions,” 2015. [Online].

Available: https://www.fhwa.dot.gov/publications/research/infrastructure/

pavements/ltpp/13091/002.cfm

[5] D. Schrank, B. Eisele, T. Lomax, and J. Bak, “2015 urban mobility scorecard,”

Annual Urban Mobility Scorecard, 2015.

[6] M. Dadafshar, “Accelerometer and gyroscopes sensors: operation, sensing, and

applications,” Maxim Integrated [online], 2014.

[7] FHWA, “FHWA vehicle classification,” 2015. [Online]. Avail-

able: http://onlinemanuals.txdot.gov/txdotmanuals/tri/vehicle classification

using fhwa 13category scheme.htm

[8] C. Yang, D. McCollum, R. McCarthy, and W. Leighty, “Meeting an 80% re-

duction in greenhouse gas emissions from transportation by 2050: A case study

in California,” Transportation Research Part D: Transport and Environment,

vol. 14, no. 3, pp. 147–156, 2009.

[9] M. Bell, “Environmental factors in intelligent transport systems,” in IEE

Proceedings-Intelligent Transport Systems, vol. 153, no. 2. IET, 2006, pp.

113–128.

123

[10] N. Lutsey and D. Sperling, “Greenhouse gas mitigation supply curve for the

united states for transport versus other sectors,” Transportation Research Part

D: Transport and Environment, vol. 14, no. 3, pp. 222–229, 2009.

[11] T. D. Johnson, “Emergency vehicle notification system,” July 8 2008, US

Patent 7,397,356.

[12] J. W. Lee, “A machine vision system for lane-departure detection,” Computer

vision and image understanding, vol. 86, no. 1, pp. 52–78, 2002.

[13] I. De Vlieger, D. De Keukeleere, and J. Kretzschmar, “Environmental effects

of driving behaviour and congestion related to passenger cars,” Atmospheric

Environment, vol. 34, no. 27, pp. 4649–4655, 2000.

[14] ATT, “AT&T quarterly earnings 4th quarter 2014,” 2014. [Online]. Available:

http://www.att.com/Investor/Earnings/4q14/slides 4q14.pdf

[15] Google, “Google play,” 2014. [Online]. Available: https://support.google.com/

googleplay

[16] Apple, “Quarterly earnings 3rd quarter 2014,” 2014. [Online]. Available:

http://www.apple.com/pr/library/2014/

[17] A. Alasaadi and T. Nadeem, “Unicoor: A smartphone unified coordinate sys-

tem for its apps,” in 2016 IEEE 13th International Conference on Mobile Ad

Hoc and Sensor Systems (MASS). IEEE, 2016.

[18] I. Ustin, A. Alasaadi, M. Cetin, and T. Nadeem, “Detecting vehicle stops from

smartphone accelerometer data,” in The 21st World Congress on Intellegent

Transportation Systems, ITSWC2014. ITSWC, 2014.

[19] A. Alasaadi, J. Aparicio, N. Tas, J. Rosca, and T. Nadeem, “Parkzoom: A

parking spot identification system,” in Intelligent Transportation Systems -

(ITSC), 2013 16th International IEEE Conference on, Oct 2013, pp. 702–707.

[20] A. Alasaadi and T. Nadeem, “In-lane communication framework using smart-

phone’s inertial sensors,” in Proceedings of the 20th annual international con-

ference on Mobile computing and networking. ACM, 2014, pp. 347–350.

124

[21] F. Amiri, E. Minge, and M. Culver, “Evaluation of non-intrusive technologies

for traffic detection,” IMSA Journal, vol. 39, no. 6, 2001.

[22] M. Dan, D. Jasek, and R. Parker, “Evaluation of some existing technologies

for vehicle detection,” TX: Texas Transportation Institute, Report FHWA/TX-

00/1715-S. College Station, 1999.

[23] E. Minge, J. Kotzenmacher, and S. Peterson, “Evaluation of non-intrusive tech-

nologies for traffic detection,” Minnesota Department of Transportation, Re-

search Services Section, Tech. Rep., 2010.

[24] P. G. Michalopoulos, “Vehicle detection video through image processing: the

autoscope system,” IEEE Transactions on vehicular technology, vol. 40, no. 1,

pp. 21–29, 1991.

[25] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, “A real-time computer

vision system for vehicle tracking and traffic surveillance,” Transportation Re-

search Part C: Emerging Technologies, vol. 6, no. 4, pp. 271–288, 1998.

[26] P. G. Michalopoulos, R. D. Jacobson, C. A. Anderson, and T. B. DeBruy-

cker, “Automatic incident detection through video image processing,” Traffic

engineering & control, vol. 34, no. 2, 1993.

[27] B. T. Morris and M. M. Trivedi, “Learning, modeling, and classification of ve-

hicle track patterns from live video,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 9, no. 3, pp. 425–437, 2008.

[28] G. Zhang, R. Avery, and Y. Wang, “Video-based vehicle detection and clas-

sification system for real-time traffic data collection using uncalibrated video

cameras,” Transportation Research Record: Journal of the Transportation Re-

search Board, no. 1993, pp. 138–147, 2007.

[29] A. De la Escalera, J. M. Armingol, and M. Mata, “Traffic sign recognition and

analysis for intelligent vehicles,” Image and vision computing, vol. 21, no. 3,

pp. 247–258, 2003.

[30] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: A review,” Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 28, no. 5, pp.

694–711, 2006.

125

[31] X. Zhu, Q. Li, and G. Chen, “Apt: Accurate outdoor pedestrian tracking

with smartphones,” in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp.

2508–2516.

[32] J. Yang, S. Sidhom, G. Chandrasekaran, T. Vu, H. Liu, N. Cecan, Y. Chen,

M. Gruteser, and R. P. Martin, “Detecting driver phone use leveraging car

speakers,” in Proceedings of the 17th annual international conference on Mobile

computing and networking. ACM, 2011, pp. 97–108.

[33] C.-W. You, M. Montes-de Oca, T. J. Bao, N. D. Lane, H. Lu, G. Cardone,

L. Torresani, and A. T. Campbell, “Carsafe: a driver safety app that detects

dangerous driving behavior using dual-cameras on smartphones,” in Proceed-

ings of the 2012 ACM Conference on Ubiquitous Computing. ACM, 2012, pp.

671–672.

[34] J. White, C. Thompson, H. Turner, B. Dougherty, and D. C. Schmidt, “Wreck-

watch: Automatic traffic accident detection and notification with smart-

phones,” Mobile Networks and Applications, vol. 16, no. 3, pp. 285–303, 2011.

[35] L. S. Cai and G. B. Ning, “Adaptive driving speed guiding to avoid red traffic

lights,” in Applied Mechanics and Materials, vol. 347. Trans Tech Publ, 2013,

pp. 3832–3836.

[36] M. Fazeen, B. Gozick, R. Dantu, M. Bhukhiya, and M. C. González, “Safe

driving using mobile phones,” Intelligent Transportation Systems, IEEE Trans-

actions on, vol. 13, no. 3, pp. 1462–1468, 2012.

[37] M. Ruta, F. Scioscia, F. Gramegna, G. Loseto, and E. Di Sciascio, “Knowledge-

based real-time car monitoring and driving assistance.” in SEBD, 2012, pp.

289–294.

[38] S. Choi, J. Kim, D. Kwak, P. Angkititrakul, and J. H. Hansen, “Analysis

and classification of driver behavior using in-vehicle can-bus information,” in

Biennial Workshop on DSP for In-Vehicle and Mobile Systems, 2007, pp. 17–

19.

[39] A. K. Shaout and A. E. Bodenmiller, “A mobile application for monitoring

inefficient and unsafe driving behaviour,” 2011.

126

[40] V. C. Magaña and M. M. Organero, “Artemisa: Using an android device as an

eco-driving assistant,” 2011.

[41] OBDdoctor, “Obddoctor app,” 2015. [Online]. Available: http://www.

obdautodoctor.com

[42] Torque, “Torque app,” 2015. [Online]. Available: http://torque-bhp.com

[43] M. Lan, M. Rofouei, S. Soatto, and M. Sarrafzadeh, “Smartldws: A robust and

scalable lane departure warning system for the smartphones,” in Intelligent

Transportation Systems, 2009. ITSC’09. 12th International IEEE Conference

on. IEEE, 2009, pp. 1–6.

[44] S. Singh, S. Nelakuditi, R. Roy Choudhury, and Y. Tong, “Your smartphone

can watch the road and you: mobile assistant for inattentive drivers,” in Pro-

ceedings of the thirteenth ACM international symposium on Mobile Ad Hoc

Networking and Computing. ACM, 2012, pp. 261–262.

[45] W. H. Ling and W. C. Seng, “Traffic sign recognition model on mobile device,”

in Computers & Informatics (ISCI), 2011 IEEE Symposium on. IEEE, 2011,

pp. 267–272.

[46] M. Munoz-Organero and V. C. Magana, “Validating the impact on reducing

fuel consumption by using an ecodriving assistant based on traffic sign detection

and optimal deceleration patterns,” Intelligent Transportation Systems, IEEE

Transactions on, vol. 14, no. 2, pp. 1023–1028, 2013.

[47] C. Thompson, J. White, B. Dougherty, A. Albright, and D. C. Schmidt, “Us-

ing smartphones to detect car accidents and provide situational awareness to

emergency responders,” in Mobile Wireless Middleware, Operating Systems,

and Applications. Springer, 2010, pp. 29–42.

[48] M.-H. L. N. Condro, M.-H. Li, and R.-I. Chang, “Motosafe: Active safe system

for digital forensics of motorcycle rider with android,” International Journal of

Information and Electronics Engineering, vol. 2, no. 4, pp. 612–616, 2012.

[49] L. Bedogni, M. Di Felice, and L. Bononi, “By train or by car? detecting the

user’s motion type through smartphone sensors data,” in Wireless Days (WD),

2012 IFIP, Nov 2012, pp. 1–6.

127

[50] S. Hemminki, P. Nurmi, and S. Tarkoma, “Accelerometer-based transportation

mode detection on smartphones,” in Proceedings of the 11th ACM Conference

on Embedded Networked Sensor Systems. ACM, 2013, p. 13.

[51] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: rich monitoring of

road and traffic conditions using mobile smartphones,” in Proceedings of the

6th ACM conference on Embedded network sensor systems. ACM, 2008, pp.

323–336.

[52] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan,

“The pothole patrol: using a mobile sensor network for road surface moni-

toring,” in Proceedings of the 6th international conference on Mobile systems,

applications, and services. ACM, 2008, pp. 29–39.

[53] J. Karuppuswamy, V. Selvaraj, M. M. Ganesh, and E. L. Hall, “Detection

and avoidance of simulated potholes in autonomous vehicle navigation in an

unstructured environment,” in Intelligent Systems and Smart Manufacturing.

International Society for Optics and Photonics, 2000, pp. 70–80.

[54] G. Strazdins, A. Mednis, G. Kanonirs, R. Zviedris, and L. Selavo, “Towards

vehicular sensor networks with android smartphones for road surface moni-

toring,” in 2nd International Workshop on Networks of Cooperating Objects

(CONET11), Electronic Proceedings of CPS Week, vol. 11, 2011.

[55] H. Eren, S. Makinist, E. Akin, and A. Yilmaz, “Estimating driving behavior by

a smartphone,” in Intelligent Vehicles Symposium (IV), 2012 IEEE. IEEE,

2012, pp. 234–239.

[56] R. G. Aldunate, O. A. Herrera, and J. P. Cordero, “Early vehicle accident

detection and notification based on smartphone technology,” in Ubiquitous

Computing and Ambient Intelligence. Context-Awareness and Context-Driven

Interaction. Springer, 2014.

[57] J. Almazán, L. M. Bergasa, J. J. Yebes, R. Barea, and R. Arroyo, “Full auto-

calibration of a smartphone on board a vehicle using imu and gps embedded

sensors,” in Intelligent Vehicles Symposium (IV), 2013 IEEE. IEEE, 2013,

pp. 1374–1380.

128

[58] H. Aly, A. Basalamah, and M. Youssef, “Lanequest: An accurate and energy-

efficient lane detection system,” arXiv preprint arXiv:1502.03038, 2015.

[59] K. Kunze, P. Lukowicz, K. Partridge, and B. Begole, “Which way am I facing:

Inferring horizontal device orientation from an accelerometer signal,” in Wear-

able Computers, 2009. ISWC’09. International Symposium on. IEEE, 2009,

pp. 149–150.

[60] D. Pai, M. Malpani, I. Sasi, N. Aggarwal, and P. Mantripragada, “Padati: A

robust pedestrian dead reckoning system on smartphones,” in Trust, Security

and Privacy in Computing and Communications (TrustCom), 2012 IEEE 11th

International Conference on. IEEE, 2012, pp. 2000–2007.

[61] J. Morales, D. Akopian, and S. Agaian, “Human activity recognition by smart-

phones regardless of device orientation,” in IS&T/SPIE Electronic Imaging.

International Society for Optics and Photonics, 2014, pp. 90 300I–90 300I.

[62] Y. Wang, J. Yang, H. Liu, Y. Chen, M. Gruteser, and R. P. Martin, “Sensing

vehicle dynamics for determining driver phone use,” in Proceeding of the 11th

annual international conference on Mobile systems, applications, and services.

ACM, 2013, pp. 41–54.

[63] J. Dai, J. Teng, X. Bai, Z. Shen, and D. Xuan, “Mobile phone based drunk

driving detection,” in Pervasive Computing Technologies for Healthcare (Perva-

siveHealth), 2010 4th International Conference on-NO PERMISSIONS. IEEE,

2010, pp. 1–8.

[64] Y. Zhao, Y. Zhang, T. Yu, T. Liu, X. Wang, X. Tian, and X. Liu, “Citydrive:

A map-generating and speed-optimizing driving system,” in INFOCOM, 2014

Proceedings IEEE. IEEE, 2014, pp. 1986–1994.

[65] H. Han, J. Yu, H. Zhu, Y. Chen, J. Yang, Y. Zhu, G. Xue, and M. Li, “Senspeed:

Sensing driving conditions to estimate vehicle speed in urban environments,”

in INFOCOM, 2014 Proceedings IEEE. IEEE, 2014, pp. 727–735.

[66] eLibera. Find my car app. [Online]. Available: https://play.google.com/store/

apps/details?id=com.elibera.android.findmycar

129

[67] J. Charles. Mycar locator app. [Online]. Available: https://play.google.com/

store/apps/details?id=com.nomadrobot.mycarlocatorfree

[68] J. Werb and C. Lanzl, “Designing a positioning system for finding things and

people indoors,” Spectrum, IEEE, vol. 35, no. 9, pp. 71–78, 1998.

[69] N. Patwari, A. O. Hero III, M. Perkins, N. S. Correal, and R. J. O’dea, “Rela-

tive location estimation in wireless sensor networks,” Signal Processing, IEEE

Transactions on, vol. 51, no. 8, pp. 2137–2148, 2003.

[70] H. H. Liu and G. K. Pang, “Accelerometer for mobile robot positioning,” In-

dustry Applications, IEEE Transactions on, vol. 37, no. 3, pp. 812–819, 2001.

[71] M. Reinstein and M. Hoffmann, “Dead reckoning in a dynamic quadruped

robot: Inertial navigation system aided by a legged odometer,” in Robotics

and Automation (ICRA), 2011 IEEE International Conference on. IEEE,

2011, pp. 617–624.

[72] P. Davidson, J. Hautamäki, J. Collin, and J. Takala, “Improved vehicle posi-

tioning in urban environment through integration of gps and low-cost inertial

sensors,” in Proceedings of the the European Navigation Conference (ENC09),

2009.

[73] J. Georgy, A. Noureldin, M. J. Korenberg, and M. M. Bayoumi, “Low-cost

three-dimensional navigation solution for riss/gps integration using mixture

particle filter,” Vehicular Technology, IEEE Transactions on, vol. 59, no. 2,

pp. 599–615, 2010.

[74] L. I. Iozan, J. Collin, and J. Takala, “Integrating mems sensors with gps tech-

nology for obtaining a continuous navigation solution in urban areas,” 2011.

[75] L. Zhao, W. Y. Ochieng, M. A. Quddus, and R. B. Noland, “An extended

kalman filter algorithm for integrating gps and low cost dead reckoning system

data for vehicle performance and emissions monitoring,” Journal of Navigation,

vol. 56, no. 2, pp. 257–275, 2003.

[76] V. Tyagi, S. Kalyanaraman, and R. Krishnapuram, “Vehicular traffic density

state estimation based on cumulative road acoustics,” IEEE Transactions on

Intelligent Transportation Systems, vol. 13, no. 3, pp. 1156–1166, 2012.

130

[77] R. N. Jazar, “Quarter car,” in Vehicle Dynamics: Theory and Application.

Springer, 2008, pp. 931–975.

[78] J. Wang and R. G. Longoria, “Coordinated and reconfigurable vehicle dynamics

control,” Control Systems Technology, IEEE Transactions on, vol. 17, no. 3,

pp. 723–732, 2009.

[79] J. He, D. Crolla, M. Levesley, and W. Manning, “Coordination of active steer-

ing, driveline, and braking for integrated vehicle dynamics control,” Proceed-

ings of the Institution of Mechanical Engineers, Part D: Journal of Automobile

Engineering, vol. 220, no. 10, pp. 1401–1420, 2006.

[80] G. Casiez, N. Roussel, and D. Vogel, “1 euro filter: A simple speed-based

low-pass filter for noisy input in interactive systems,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, ser. CHI

’12. New York, NY, USA: ACM, 2012, pp. 2527–2530. [Online]. Available:

http://doi.acm.org/10.1145/2207676.2208639

[81] P. Lawitzki, “Application of dynamic binaural signals in acoustic games,”

Stuttgart Media University, 2012.

[82] A. Mohamed and K. Schwarz, “Adaptive kalman filtering for INS/GPS,” Jour-

nal of geodesy, vol. 73, no. 4, pp. 193–203, 1999.

[83] J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, and A. M.

Bayen, “Evaluation of traffic data obtained via gps-enabled mobile phones: The

mobile century field experiment,” Transportation Research Part C: Emerging

Technologies, vol. 18, no. 4, pp. 568–583, 2010.

[84] V. Douangphachanh and H. Oneyama, “A study on the use of smartphones for

road roughness condition estimation,” Journal of the Eastern Asia Society for

Transportation Studies, vol. 10, no. 0, pp. 1551–1564, 2013.

[85] M. Müller, “Dynamic time warping,” Information retrieval for music and mo-

tion, pp. 69–84, 2007.

[86] M. G. Wing, A. Eklund, and L. D. Kellogg, “Consumer-grade global positioning

system (gps) accuracy and reliability,” Journal of Forestry, vol. 103, no. 4, pp.

169–173, 2005.

131

[87] C. Hunter. Green meter app. [Online]. Available: http://www.greenmeter.com/

[88] A. King, “Inertial navigation-past, present, and future,” in Airborne Navigation

Systems Workshop (Digest No. 1997/169), IEE Colloquium on. IET, 1997,

pp. 3–1.

[89] S. Boonmee and P. Tangamchit, “Portable reckless driving detection system,”

in Electrical Engineering/Electronics, Computer, Telecommunications and In-

formation Technology, 2009. ECTI-CON 2009. 6th International Conference

on, vol. 1. IEEE, 2009, pp. 412–415.

[90] P. Aksamit and M. Szmechta, “Distributed, mobile, social system for road

surface defects detection,” in Computational Intelligence and Intelligent In-

formatics (ISCIII), 2011 5th International Symposium on. IEEE, 2011, pp.

37–40.

[91] A. Mednis, G. Strazdins, R. Zviedris, G. Kanonirs, and L. Selavo, “Real time

pothole detection using android smartphones with accelerometers,” in Dis-

tributed Computing in Sensor Systems and Workshops (DCOSS), 2011 Inter-

national Conference on. IEEE, 2011, pp. 1–6.

[92] H. Claussen, J. Aparicio, J. Rosca, and N. C. Tas, “Ipass: Intelligent pavement

signaling system,” in Intelligent Transportation Systems (ITSC), 2012 15th

International IEEE Conference on. IEEE, 2012, pp. 666–671.

[93] Y. Wang, N. Dahnoun, and A. Achim, “A novel system for robust lane detection

and tracking,” Signal Processing, vol. 92, no. 2, pp. 319–334, 2012.

[94] R. A. De Lorenzo and M. A. Eilers, “Lights and siren: A review of emergency

vehicle warning systems,” Annals of emergency medicine, vol. 20, no. 12, pp.

1331–1335, 1991.

[95] C. Q. Howard, A. J. Maddern, and E. P. Privopoulos, “Acoustic characteristics

for effective ambulance sirens,” Acoustics Australia, vol. 39, no. 2, pp. 43–53,

2011.

[96] V. Gradinescu, C. Gorgorin, R. Diaconescu, V. Cristea, and L. Iftode, “Adap-

tive traffic lights using car-to-car communication,” in Vehicular Technology

Conference, 2007. VTC2007-Spring. IEEE 65th. IEEE, 2007, pp. 21–25.

132

[97] A. Hesham, A. Abdel-Hamid, and M. A. El-Nasr, “A dynamic key distribution

protocol for pki-based vanets,” in Wireless Days (WD), 2011 IFIP. IEEE,

pp. 1–3.

[98] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full sha-1,” in

Advances in Cryptology–CRYPTO 2005. Springer, 2005, pp. 17–36.

[99] V. Turri, A. Carvalho, H. E. Tseng, K. H. Johansson, and F. Borrelli, “Lin-

ear model predictive control for lane keeping and obstacle avoidance on low

curvature roads,” in 16th International IEEE Conference on Intelligent Trans-

portation Systems (ITSC 2013). IEEE, 2013, pp. 378–383.

[100] K.-Y. Chiu and S.-F. Lin, “Lane detection using color-based segmentation,”

in IEEE Proceedings. Intelligent Vehicles Symposium, 2005. IEEE, 2005, pp.

706–711.

[101] C. Shun-Hung, C.-W. Hsu, and Y. Po-Kai, “Lane curvature detection system

by utilizing vehicular and inertial sensing signals,” Feb. 17 2015, uS Patent

8,958,925.

[102] K. Ahn, H. Rakha, A. Trani, and M. Van Aerde, “Estimating vehicle fuel con-

sumption and emissions based on instantaneous speed and acceleration levels,”

Journal of transportation engineering, vol. 128, no. 2, pp. 182–190, 2002.

[103] R. Akcelik and M. Besley, “Operating cost, fuel consumption, and emission

models in aasidra and aamotion,” in 25th Conference of Australian Institutes

of Transport Research (CAITR 2003), 2003, pp. 1–15.

[104] J. Van Mierlo, G. Maggetto, E. Van de Burgwal, and R. Gense, “Driving

style and traffic measures-influence on vehicle emissions and fuel consumption,”

Proceedings of the Institution of Mechanical Engineers, Part D: Journal of

Automobile Engineering, vol. 218, no. 1, pp. 43–50, 2004.

[105] A. Alessandrini, A. Cattivera, F. Filippi, and F. Ortenzi, “Driving style influ-

ence on car co2 emissions,” in 2012 International Emission Inventory Confer-

ence, 2012.

133

[106] I. E. EUROPE, “European campaign on improving driving behaviour,

energy-efficiency and traffic safety (ecodriven),” 2015. [Online]. Available:

https://ec.europa.eu/energy/intelligent/projects/en/projects/ecodriven

134

VITA

Abdulla Ahmed Alasaadi

Department of Computer Science

Old Dominion University

Norfolk, VA 23529

EDUCATION:

2003: BSc in Copmuter Science, University of Bahrain, Bahrain.

2005: MSc in Advanced Computer Science, Lancaster University, Lancaster, Eng-

land.

2007: Postgraduate Certificate in Academic Practice PCAP,York St John University,

York, England.

	SenSys: A Smartphone-Based Framework for ITS applications
	Recommended Citation

	tmp.1523384206.pdf.K6nL_

