1,277 research outputs found

    Using A One-Class Compound Classifier To Detect In-Vehicle Network Attacks

    Get PDF
    The Controller Area Network (CAN) in vehicles provides serial communication between electronic control units that manage en- gine, transmission, steering and braking. Researchers have recently demonstrated the vulnerability of the network to cyber-attacks which can manipulate the operation of the vehicle and compromise its safety. Some proposals for CAN intrusion detection systems, that identify attacks by detecting packet anomalies, have drawn on one-class classi cation, whereby the system builds a decision surface based on a large number of normal instances. The one-class approach is discussed in this paper, together with initial results and observations from implementing a classi er new to this eld. The Compound Classier has been used in image processing and medical analysis, and holds advantages that could be relevant to CAN intrusion detection.<br/

    AI-based intrusion detection systems for in-vehicle networks: a survey.

    Get PDF
    The Controller Area Network (CAN) is the most widely used in-vehicle communication protocol, which still lacks the implementation of suitable security mechanisms such as message authentication and encryption. This makes the CAN bus vulnerable to numerous cyber attacks. Various Intrusion Detection Systems (IDSs) have been developed to detect these attacks. However, the high generalization capabilities of Artificial Intelligence (AI) make AI-based IDS an excellent countermeasure against automotive cyber attacks. This article surveys AI-based in-vehicle IDS from 2016 to 2022 (August) with a novel taxonomy. It reviews the detection techniques, attack types, features, and benchmark datasets. Furthermore, the article discusses the security of AI models, necessary steps to develop AI-based IDSs in the CAN bus, identifies the limitations of existing proposals, and gives recommendations for future research directions

    Keep the moving vehicle secure: context-aware intrusion detection system for in-vehicle CAN bus security.

    Get PDF
    The growth of information technologies has driven the development of the transportation sector, including connected and autonomous vehicles. Due to its communication capabilities, the controller area network (CAN) is the most widely used in-vehicle communication protocol. However, CAN lacks suitable security mechanisms such as message authentication and encryption. This makes the CAN bus vulnerable to numerous cyberattacks. Not only are these attacks a threat to information security and privacy, but they can also directly affect the safety of drivers, passengers and the surrounding environment of the moving vehicles. This paper presents CAN-CID, a context-aware intrusion detection system (IDS) to detect cyberattacks on the CAN bus, which would be suitable for deployment in automobiles, including military vehicles, passenger cars and commercial vehicles, and other CAN-based applications such as aerospace, industrial automation and medical equipment. CAN-CID is an ensemble model of a gated recurrent unit (GRU) network and a time-based model. A GRU algorithm works by learning to predict the centre ID of a CAN ID sequence, and ID-based probabilistic thresholds are used to identify anomalous IDs, whereas the time-based model identifies anomalous IDs using time-based thresholds. The number of anomalies compared to the total number of IDs over an observation window is used to classify the window status as anomalous or benign. The proposed model uses only benign data for training and threshold estimation, avoiding the need to collect realistic attack data to train the algorithm. The performance of the CAN-CID model was tested against three datasets over a range of 16 attacks, including fabrication and more sophisticated masquerade attacks. The CAN-CID model achieved an F1-Score of over 99% for 13 of those attacks and outperformed benchmark models from the literature for all attacks, with near real-time detection latency

    Beyond vanilla: improved autoencoder-based ensemble in-vehicle intrusion detection system.

    Get PDF
    Modern automobiles are equipped with a large number of electronic control units (ECUs) to provide safe driver assistance and comfortable services. The controller area network (CAN) provides near real-time data transmission between ECUs with adequate reliability for in-vehicle communication. However, the lack of security measures such as authentication and encryption makes the CAN bus vulnerable to cyberattacks, which affect the safety of passengers and the surrounding environment. Detecting attacks on the CAN bus, particularly masquerade attacks, presents significant challenges. It necessitates an intrusion detection system (IDS) that effectively utilizes both CAN ID and payload data to ensure thorough detection and protection against a wide range of attacks, all while operating within the constraints of limited computing resources. This paper introduces an ensemble IDS that combines a gated recurrent unit (GRU) network and a novel autoencoder (AE) model to identify cyberattacks on the CAN bus. AEs are expected to produce higher reconstruction errors for anomalous inputs, making them suitable for anomaly detection. However, vanilla AE models often suffer from overgeneralization, reconstructing anomalies without significant errors, resulting in many false negatives. To address this issue, this paper proposes a novel AE called Latent AE, which incorporates a shallow AE into the latent space. The Latent AE model utilizes Cramér's statistic-based feature selection technique and a transformed CAN payload data structure to enhance its efficiency. The proposed ensemble IDS enhances attack detection capabilities by leveraging the best capabilities of independent GRU and Latent AE models, while mitigating the weaknesses associated with each individual model. The evaluation of the IDS on two public datasets, encompassing 13 different attacks, including sophisticated masquerade attacks, demonstrates its superiority over baseline models with near real-time detection latency of 25ms

    BAARD: Blocking Adversarial Examples by Testing for Applicability, Reliability and Decidability

    Full text link
    Adversarial defenses protect machine learning models from adversarial attacks, but are often tailored to one type of model or attack. The lack of information on unknown potential attacks makes detecting adversarial examples challenging. Additionally, attackers do not need to follow the rules made by the defender. To address this problem, we take inspiration from the concept of Applicability Domain in cheminformatics. Cheminformatics models struggle to make accurate predictions because only a limited number of compounds are known and available for training. Applicability Domain defines a domain based on the known compounds and rejects any unknown compound that falls outside the domain. Similarly, adversarial examples start as harmless inputs, but can be manipulated to evade reliable classification by moving outside the domain of the classifier. We are the first to identify the similarity between Applicability Domain and adversarial detection. Instead of focusing on unknown attacks, we focus on what is known, the training data. We propose a simple yet robust triple-stage data-driven framework that checks the input globally and locally, and confirms that they are coherent with the model's output. This framework can be applied to any classification model and is not limited to specific attacks. We demonstrate these three stages work as one unit, effectively detecting various attacks, even for a white-box scenario

    EVScout2.0: Electric Vehicle Profiling Through Charging Profile

    Full text link
    EVs (Electric Vehicles) represent a green alternative to traditional fuel-powered vehicles. To enforce their widespread use, both the technical development and the security of users shall be guaranteed. Privacy of users represents one of the possible threats impairing EVs adoption. In particular, recent works showed the feasibility of identifying EVs based on the current exchanged during the charging phase. In fact, while the resource negotiation phase runs over secure communication protocols, the signal exchanged during the actual charging contains features peculiar to each EV. A suitable feature extractor can hence associate such features to each EV, in what is commonly known as profiling. In this paper, we propose EVScout2.0, an extended and improved version of our previously proposed framework to profile EVs based on their charging behavior. By exploiting the current and pilot signals exchanged during the charging phase, our scheme is able to extract features peculiar for each EV, allowing hence for their profiling. We implemented and tested EVScout2.0 over a set of real-world measurements considering over 7500 charging sessions from a total of 137 EVs. In particular, numerical results show the superiority of EVScout2.0 with respect to the previous version. EVScout2.0 can profile EVs, attaining a maximum of 0.88 recall and 0.88 precision. To the best of the authors' knowledge, these results set a new benchmark for upcoming privacy research for large datasets of EVs

    Robust and secure resource management for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.Modern vehicles are examples of complex cyber-physical systems with tens to hundreds of interconnected Electronic Control Units (ECUs) that manage various vehicular subsystems. With the shift towards autonomous driving, emerging vehicles are being characterized by an increase in the number of hardware ECUs, greater complexity of applications (software), and more sophisticated in-vehicle networks. These advances have resulted in numerous challenges that impact the reliability, security, and real-time performance of these emerging automotive systems. Some of the challenges include coping with computation and communication uncertainties (e.g., jitter), developing robust control software, detecting cyber-attacks, ensuring data integrity, and enabling confidentiality during communication. However, solutions to overcome these challenges incur additional overhead, which can catastrophically delay the execution of real-time automotive tasks and message transfers. Hence, there is a need for a holistic approach to a system-level solution for resource management in automotive cyber-physical systems that enables robust and secure automotive system design while satisfying a diverse set of system-wide constraints. ECUs in vehicles today run a variety of automotive applications ranging from simple vehicle window control to highly complex Advanced Driver Assistance System (ADAS) applications. The aggressive attempts of automakers to make vehicles fully autonomous have increased the complexity and data rate requirements of applications and further led to the adoption of advanced artificial intelligence (AI) based techniques for improved perception and control. Additionally, modern vehicles are becoming increasingly connected with various external systems to realize more robust vehicle autonomy. These paradigm shifts have resulted in significant overheads in resource constrained ECUs and increased the complexity of the overall automotive system (including heterogeneous ECUs, network architectures, communication protocols, and applications), which has severe performance and safety implications on modern vehicles. The increased complexity of automotive systems introduces several computation and communication uncertainties in automotive subsystems that can cause delays in applications and messages, resulting in missed real-time deadlines. Missing deadlines for safety-critical automotive applications can be catastrophic, and this problem will be further aggravated in the case of future autonomous vehicles. Additionally, due to the harsh operating conditions (such as high temperatures, vibrations, and electromagnetic interference (EMI)) of automotive embedded systems, there is a significant risk to the integrity of the data that is exchanged between ECUs which can lead to faulty vehicle control. These challenges demand a more reliable design of automotive systems that is resilient to uncertainties and supports data integrity goals. Additionally, the increased connectivity of modern vehicles has made them highly vulnerable to various kinds of sophisticated security attacks. Hence, it is also vital to ensure the security of automotive systems, and it will become crucial as connected and autonomous vehicles become more ubiquitous. However, imposing security mechanisms on the resource constrained automotive systems can result in additional computation and communication overhead, potentially leading to further missed deadlines. Therefore, it is crucial to design techniques that incur very minimal overhead (lightweight) when trying to achieve the above-mentioned goals and ensure the real-time performance of the system. We address these issues by designing a holistic resource management framework called ROSETTA that enables robust and secure automotive cyber-physical system design while satisfying a diverse set of constraints related to reliability, security, real-time performance, and energy consumption. To achieve reliability goals, we have developed several techniques for reliability-aware scheduling and multi-level monitoring of signal integrity. To achieve security objectives, we have proposed a lightweight security framework that provides confidentiality and authenticity while meeting both security and real-time constraints. We have also introduced multiple deep learning based intrusion detection systems (IDS) to monitor and detect cyber-attacks in the in-vehicle network. Lastly, we have introduced novel techniques for jitter management and security management and deployed lightweight IDSs on resource constrained automotive ECUs while ensuring the real-time performance of the automotive systems
    corecore