
RAJAPAKSHA, S., KALUTARAGE, H., AL-KADRI, M.O., PETROVSKI, A. and MADZUDZO, G. 2023. Beyond vanilla:
improved autoencoder-based ensemble in-vehicle intrusion detection system. Journal of information security and

applications [online], 77, article number 103570. Available from: https://doi.org/10.1016/j.jisa.2023.103570

This document was downloaded from
https://openair.rgu.ac.uk

Beyond vanilla: improved autoencoder-based
ensemble in-vehicle intrusion detection system.

RAJAPAKSHA, S., KALUTARAGE, H., AL-KADRI, M.O., PETROVSKI, A. and
MADZUDZO, G.

2023

https://doi.org/10.1016/j.jisa.2023.103570

Journal of Information Security and Applications 77 (2023) 103570

A
2

B
d
S
G
a

b

c

A

K
C
M
A
D
A
A

1

a
p
l
m
n
c
e
s
a
m
d

a

h

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

eyond vanilla: Improved autoencoder-based ensemble in-vehicle intrusion
etection system
ampath Rajapaksha a,∗, Harsha Kalutarage a, M. Omar Al-Kadri b, Andrei Petrovski a,
arikayi Madzudzo c

Robert Gordon University, Aberdeen, UK
University of Doha for Science and Technology, Doha, Qatar
Horiba Mira Ltd, Nuneaton, UK

R T I C L E I N F O

eywords:
ontroller Area Network (CAN)
achine learning
utomotive cybersecurity
eep learning
utoencoder
nomaly detection

A B S T R A C T

Modern automobiles are equipped with a large number of electronic control units (ECUs) to provide safe,
driver assistance and comfortable services. The controller area network (CAN) provides near real-time data
transmission between ECUs with adequate reliability for in-vehicle communication. However, the lack of
security measures such as authentication and encryption makes the CAN bus vulnerable to cyberattacks,
which affect the safety of passengers and the surrounding environment. Detecting attacks on the CAN bus,
particularly masquerade attacks, presents significant challenges. It necessitates an intrusion detection system
(IDS) that effectively utilizes both CAN ID and payload data to ensure thorough detection and protection against
a wide range of attacks, all while operating within the constraints of limited computing resources. This paper
introduces an ensemble IDS that combines a gated recurrent unit (GRU) network and a novel autoencoder
(AE) model to identify cyberattacks on the CAN bus. AEs are expected to produce higher reconstruction errors
for anomalous inputs, making them suitable for anomaly detection. However, vanilla AE models often suffer
from overgeneralization, reconstructing anomalies without significant errors, resulting in many false negatives.
To address this issue, this paper proposes a novel AE called Latent AE, which incorporates a shallow AE
into the latent space. The Latent AE model utilizes Cramér’s statistic-based feature selection technique and
a transformed CAN payload data structure to enhance its efficiency. The proposed ensemble IDS enhances
attack detection capabilities by leveraging the best capabilities of independent GRU and Latent AE models,
while mitigating the weaknesses associated with each individual model. The evaluation of the IDS on two
public datasets, encompassing 13 different attacks, including sophisticated masquerade attacks, demonstrates
its superiority over baseline models with near real-time detection latency of 25ms.
. Introduction

Modern automobiles are becoming highly autonomous to provide
more comfortable, safe and convenient experience to drivers and

assengers [1]. This includes services such as adaptive cruise control,
ane departure warning, automated parking assistance, and infotain-
ent systems. To provide these services, automobiles are equipped with
umerous microprocessor-based ECUs, such as engine and transmission
ontrol units. These ECUs need to communicate with each other to
xchange various information. This demands a unified network which
upports near real-time data transmission with sufficient bandwidth
nd adequate reliability [2]. The CAN bus, a message-based protocol,
eets these requirements and is therefore considered the de facto stan-
ard for in-vehicle communication. However, even though the CAN bus

∗ Corresponding author.
E-mail addresses: s.rajapaksha@rgu.ac.uk (S. Rajapaksha), h.kalutarage@rgu.ac.uk (H. Kalutarage), omar.alkadri@udst.edu.qa (M.O. Al-Kadri),

.petrovski@rgu.ac.uk (A. Petrovski), garikayi.madzudzo@horiba-mira.com (G. Madzudzo).

provides the required communication capabilities, it lacks security fea-
tures such as encryption and authentication. These security flaws along
with ID-based priority mechanism and broadcast transmission make the
CAN bus vulnerable to cyberattacks. Many security researchers have
demonstrated that it is possible to attack modern automobiles by com-
promising the CAN bus. This can be achieved through obtaining access
to OBD-II port [3,4], over the air (OTA) updates or communication
channels such as Bluetooth, Wifi and cellular networks [5]. Attackers
could gain physical control and activate several vehicle systems such as
engaging the brakes, turning on the wind-shield wipers, activating the
locking mechanism, and changing the vehicle’s speedometer. In [6],
the authors used the head unit (radio) to gain remote access, which
resulted in obtaining physical control of the 2014 Jeep Cherokee model.
vailable online 14 August 2023
214-2126/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

ttps://doi.org/10.1016/j.jisa.2023.103570
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jisa
http://www.elsevier.com/locate/jisa
mailto:s.rajapaksha@rgu.ac.uk
mailto:h.kalutarage@rgu.ac.uk
mailto:omar.alkadri@udst.edu.qa
mailto:a.petrovski@rgu.ac.uk
mailto:garikayi.madzudzo@horiba-mira.com
https://doi.org/10.1016/j.jisa.2023.103570
https://doi.org/10.1016/j.jisa.2023.103570
http://creativecommons.org/licenses/by/4.0/

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.
Cyberattacks which provide physical control risk the safety of the
vehicle passengers.

Intrusion detection systems (IDSs) have been proposed to iden-
tify malicious activities in in-vehicle networks (IVNs) [7]. IDSs can
be categorized as signature-based and anomaly-based detection [8].
Anomaly-based detection has gained the attention of researchers due
to the capability of novel attack detection. Anomaly-based CAN IDSs
can be further classified as statistical, machine learning (ML), rule-
based, and physical fingerprint methods [9,10]. ML-based CAN IDSs
have been proven to be effective than other approaches due to their
capability of handling large data volumes of CAN traffic with multiple
features [7,9]. However, the structure and semantics of CAN data are
not available to open access and are considered confidential proprietary
for vehicle manufacturers [7]. These specifications are stored in a
file known as CAN DataBase (DBC). This makes developing IDSs for
widespread adoption difficult and achieving full accuracy for some
attacks is unrealistic [11]. IDSs that utilize only the CAN ID field
effectively detect injection attacks with near real-time detection [12,
13]. However, time-series CAN payload data are critical for detecting
advanced attacks such as masquerade attack [14,15]. CAN payload field
support data up to 64 bits which can transmit different information
from one ECU to other ECUs [13,16]. Since a modern vehicle includes
up to 150 ECUs [17], this creates multi-variate time-series data for each
CAN ID. Additionally, the CAN bus transmits up to 2500 messages per
second [12]. These characteristics make the IVNs data highly complex.
Therefore, identifying a wide variety of attacks on the CAN bus is
challenging with a single IDS which uses part of the CAN frame.

AE-based IDSs are used for anomaly detection in many application
domains including IVNs [18–22]. It is generally assumed that recon-
struction errors are significantly higher for anomalous samples than
benign samples. However, AEs are prone to overgeneralization [23]
and this causes the reconstruction of the anomalous inputs without
higher reconstruction errors leading to many false negatives. This is
a critical issue for some cybersecurity problems such as IVN security.
To alleviate this problem and address the aforementioned challenges,
this paper proposes an ensemble IDS of a GRU network and a novel AE
model. The AE model modifies the latent space of the vanilla AE with
a novel feature selection technique to identify cyberattacks on the CAN
payload data in near real-time. The main contribution of this paper can
be summarized as follows:

1) This paper proposes an ensemble IDS by integrating a GRU-based
model [12] and an improved AE model to detect both point and
contextual anomalies in the CAN bus. The proposed AE model,
named as Latent AE, exploits the association of CAN payload
variables to identify anomalies. Latent AE address the issue of
overgeneralization of vanilla AEs for anomaly detection in the
CAN bus.

2) Latent AE is a lightweight model; Cramér’s statistic-based [24]
feature selection technique reduces the complexity of the data
by removing weakly associated features. This helps improve the
model’s computation efficiency and accuracy due to the removal
of noise data. Feature selection avoids the need for a large
dataset compared to the dataset requirement for a model with
all variables.

3) Latent AE is efficient and can be deployed in resource-efficient
edge devices. The proposed data structure incorporates CAN IDs
into the payload variable, allowing to use only one model for
all CAN IDs without building separate models for each CAN ID
compared to the existing proposals in the literature.

The rest of this paper is structured as follows: Section 2 provides
the background. Section 3 presents the related work. The proposed
algorithm is explained in Section 4. In Section 5, the experiment
results and performance evaluations are presented. Finally, Section 6
2

concludes the paper.
Fig. 1. CAN bus data frame with example values for ID and payload fields.

2. Preliminaries

2.1. Controller area network (CAN bus)

CAN is a lightweight broadcast-based communication protocol. A
CAN data frame consists of seven fields that support data transmission.
These are: start of frame (SOF), arbitration field (CAN ID), control field
(DLC), payload (data), cyclic redundancy code (CRC), acknowledge-
ment (ACK) and end of frame (EOF). These fields are depicted in Fig. 1
with the respective bit-lengths. CAN ID and payload are considered as
the most important fields of the CAN frame [25]. CAN ID is unique for
an ECU and two or more ECUs cannot use the same ID. ID represents
the identifier of the message and used to prioritize messaged based on
the ID values. Lower IDs get the higher priority, while higher IDs get
the lower priority. This is used to manage the concurrent messages in
the CAN bus. CAN payload values contain the information that must
be transmitted over the network. This supports up to 64bits (8 bytes)
of data transmission. Generally, both ID and payload are available
in hexadecimal format in raw CAN data. Specification related to the
CAN frame is available in DBC file, which is not publicly available.
These specifications change based on vehicle make, model, year and
trim [25].

2.2. Attacks on IVNs

ECUs in a vehicle typically transmit frames at a fixed interval [3,
12,26,27]. Due to the broadcast property of the CAN bus, all ECUs
receive unencrypted messages transmitted through the bus. This makes
the CAN bus vulnerable to a sniffing attack, where an attacker can listen
to all the messages and records them to analyse the CAN data. Due to
the lack of authentication, any node can transmit a frame to the CAN
network. This enables an attacker to inject malicious frames using a
compromised ECU. In addition to these vulnerabilities, an attacker can
use the ID-based priority mechanism to inject higher priority IDs and
create a denial-of-service (DoS) attack.

Attacks on IVNs can be mainly classified into three categories as
fabrication (injection), suspension and masquerade (impersonation)
attacks [14,15]. Fabrication attacks can be launched by inserting new
frames into the CAN bus. Some common fabrication attacks on IVNs
are DoS, fuzzing, replay and spoofing [10]. DoS attacks try to make
communication services unavailable by sending a large number of
high-priority IDs. In a fuzzing attack, the attacker sends frames with
randomly generated ID, DLC and payload values. Replay attacks record
the benign frames of the network and inject them at different times. For
instance, a frame that transmits vehicle RPM values can be injected
at a later stage making it appear in an unusual context. Spoofing
attacks, also known as targeted ID attacks, are somewhat similar to
fuzzing attacks but target specific IDs without randomly injecting them.
The payload of these frames changes into malicious values. Generally,
even though it is easy to implement fabrication attacks, it requires the
attacker to continuously inject these frames at a higher rate to override
the benign frames [15,26]. Suspension attacks remove benign frames.
This requires a weakly compromised ECU, preventing it from transmit-
ting some or all messages [15]. In a masquerade attack, a compromised
node impersonates another node. For example, the attacker can monitor
and learn about frames transmitted by ECU A. Then, the attacker can
stop ECU A by transmitting frames and instead use a compromised

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.
ECU B or new node to transmit ECU A frames with malicious data.
However, these sophisticated masquerade attacks require extremely
low-level access to the CAN transceiver and therefore more, difficult to
perform than simple injection attacks [26]. Masquerade attacks require
advanced detection methods as typically these are not changing the ID
frequency-related features.

3. Related work

Early experimental attacks [3,6] and more recent experiments such
as [28,29] motivated researchers toward implementing countermea-
sures against cyberattacks on the CAN bus. These attacks change the
CAN ID field, or CAN payload field patterns. Therefore, CAN ID-based
and CAN payload-based IDSs have been proposed in the literature
to detect IVN attacks. This section investigates the most recent and
relevant works in IVN attack detection and improved AEs for anomaly
detection.

3.1. CAN ID-based IDSs

Collecting attack data is more expensive and risky in vehicle net-
works than in benign data collection. Supervised learning approaches
might have a low generalization capability as these algorithms learn the
attack patterns specific to the used training dataset. Due to the nature
of this problem domain, repeating the same attack pattern in future
attacks is less probable. On the other hand, unsupervised approaches
learn the normal behaviour only using benign data and deviation
from these patterns identified as anomalous events. Therefore, unsuper-
vised (or one-class) anomaly detection is more appropriate for vehicle
networks to identify various attacks, including unknown ones [11].

CAN ID-based IDSs use CAN ID sequences or time-related features to
detect attacks on the CAN bus. Long short-term memory (LSTM) based
IDS proposed in [30], predicted the next CAN ID and then compared
the predicted ID with the actual ID. This only achieved 60% accuracy.
Generative adversarial networks (GAN) and convolutional adversarial
AE-based model [31] was trained with unlabelled data to learn the
normal patterns. Experimental results showed that the proposed model
outperforms baseline models for detection rate and latency. However,
this work was only limited to message injection attack detection.
Context-aware anomaly detector proposed in [32], used the N-gram
distributions of CAN ID sequences. N-gram-based methods are capable
of capturing the context of CAN sequences. However, this often leads
to high computational overhead as 𝑁 increases. GRU and time-based
ensemble model was proposed in [10] to overcome the computational
inefficiency of N-gram based models and to detect a wide variety of
attacks. The GRU-based model predicted the next CAN ID, whereas the
time-based model monitored ID inter-arrival times to detect anomalies.
The major limitation of the CAN ID-based IDSs is the inability to detect
advanced attacks which only alter the CAN payload field patterns.

3.2. CAN Payload-based IDSs

ML-based classifiers such as one class support vector machine
(OCSVM), deep learning-based models such as AEs and LSTM have been
used to detect attacks on the CAN payload data. In [33], the authors
used one class compound classifier to detect fuzzing attacks in IVN.
They only considered three payload values relevant to three CAN IDs.
Evaluation results showed that the proposed model produced many
false positives. The authors then suggested an ensemble of detection
methods to overcome the problems that arise when using only one
classifier. In [11], the authors used an algorithm to concatenate the
adjacent payload values of each ID based on their value changes.
This reduces the dimensionality of the payload of each ID. Pearson
correlation was used to cluster the different fields and used the local
outlier factor, compound classifier and OCSVM algorithms for the
3

attack detection. However, the results were not acceptable to use in
real-world situations due to the high false positive rate.

In [34], the authors used a LSTM model to predict the next CAN
payload for each ID. Log loss of each bit was considered to form the
anomaly signal. A similar model was proposed by [35] to predict the
CAN measurements such as RPM and break positions. Access to these
measurements is challenging without having the DBC file. In [36], a
separate LSTM model was used to predict the next payload of each ID
and concatenated them using a joint latent vector. The authors used
a real vehicle dataset with 13 IDs and a synthetic dataset (SynCAN)
with 10 IDs for the performance evaluation. The used anomaly score
was only feasible with a limited number of signal values. To train
LSTM models, 5000 consecutive messages were considered. This will
be computationally expensive for modern vehicles with a large number
of ECUs. In [22], 81 payload signals were grouped into 32 subgroups
based on the signal relationships and trained AE models for each group.
However, it is important to note that this approach relied on pre-
identified signals as input features, which are typically not accessible
without obtaining the CAN DBC file. Similar GRU and LSTM AEs were
used in [18,19] to reconstruct the payload values of each ID. In [37],
the authors improved the GRU-based IDS [18] by replacing the GRU
with a LSTM and introducing a self-attention layer. In [38], the authors
introduced an IDS using a temporal convolutional neural network.
A decision tree-based classifier was used as the attack detector. All
of these models [18,19,37,38] trained separate models for each CAN
ID. However, a major limitation common to all of these models was
ignoring the interactions from other ID payload values. In particular,
this might limit the detection of contextual anomalies. Moreover, these
IDSs might require higher memory to store multiple IDSs trained for
each ID. It has shown that the association of payload data of different
IDs are useful in intrusion detection [19].

CANShield [39], a multiple convolutional AE-based ensemble model
only used high-priority signals to reduce the model complexity. This
showed a high detection rate for injection and masquerade attacks.
However, the signal selection depends on the semantic knowledge of
CAN payload and therefore, has low generalization capability for other
vehicles without having CAN DBC files. LSTM-based IDS proposed
in [40] trained separate models for each IDs. This model utilized
the current payload of the ID and the payload of other IDs which
belong to a selected time window. There is a risk of ignoring important
associations for a small time window due to specific IDs not being
included in the window. On the other hand, selecting a larger window
might increase the computational complexity and the variable noise
due to containing non-associated variables. Larger windows demand a
large number of data to learn all the variabilities. In general, AE-based
IDSs demonstrated a higher detection rate for payload attacks.

In general, CAN payload-based IDSs use two approaches [15]. The
first approach is the black-box approach, where the data frame is
considered as a string of bits without decoding the signals they rep-
resent. The second approach involves decoding the raw data field into
constituent signals and using the identified signal values as inputs. A
few IDSs have used the encoded signals as inputs [22,33,39] while the
majority of payload-based IDSs [11,18,19,34,35,37,38,40] have em-
ployed the black-box approach. A meta-analysis of a number of papers
of [10] also reveals that most payload-based IDSs use the payload
field without decoding it into signals. IDSs that utilized decoded signal
values either used CAN DBC files or reverse engineering approaches.
Although these models achieved higher attack detection rates due to
selecting only relevant signals, they were not vehicle agnostic [41]. On
the other hand, IDSs that used the black-box approach suffered from
low attack detection and high computational resource requirements as
they considered all features of the payload field. Therefore, there is a
clear need for a vehicle-agnostic and lightweight payload-based model
to detect advanced attacks such as masquerade attacks. This work

focuses on utilizing raw payload values without decoding them into

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.
actual signal values, allowing the proposed solution to be readily adapt-
able across car makes and models. Additionally, by focusing only on
important features, the proposed payload-based model is lightweight.
Hence, the payload-based model of the proposed IDS is distinct and
unique compared to existing payload-based IDSs.

3.3. Improved autoencoders for anomaly detection

AEs have been used for anomaly detection in many cybersecurity
applications such as IoT security [42] and IVN security [18]. Gener-
ally, it is assumed that AEs trained on benign data produce higher
reconstruction errors for anomalous data. However, this assumption
does not always hold in practice due to the overgeneralization [23,43].
To mitigate this drawback, a few improved AEs are proposed in the
literature. In [23], the authors proposed a memory augment AE by
adding a memory module to the vanilla AE. The memory module was
used to store the prototypical elements of normal data during the
model training. Instead of the latent vector produced by the encoder,
they used the most relevant memory items of the latent vector as the
input to the decoder. This approach requires having separate memory
modules when normal datasets have different groups such as CAN IDs
in CAN data, due to different data patterns. Also, some datasets might
demand a large memory to store prototypical elements [44]. Latent
space distribution was used in [45] to detect the anomalies. Usage of 𝑘
nearest neighbour calculation demands higher computational resources
for successful anomaly detection. In [46], a set of multi-layer percep-
tron (MLP) was used in the latent space to predict each latent space
element and used the predicted array as the input to the decoder. None
of these approaches is suitable to deploy in IVN for anomaly detection
due to the limited computational resources.

4. Methodology

This section explains the selected datasets and attacks, implementa-
tion details of CAN ID-based model, CAN payload-based model with the
proposed improved AE architecture to improve the anomaly detection
of the vanilla AE. Furthermore, we discuss the integration of both CAN
ID-based detection and payload detection within the ensemble model.

4.1. Threat model and datasets

In this work, we use two publicly available datasets, The Real ORNL
Automotive Dynamometer (ROAD) CAN intrusion dataset [15] and
SynCAN [36] to evaluate the proposed model. ROAD dataset is the
most realistic CAN attack dataset with verified attacks [12,39]. It was
collected via OBD-II port under fully compromised ECU mode. This
consists of 12 benign datasets encompassing a diverse range of driving
activities, including driving, accelerating, decelerating, braking, and
reversing, spanning a duration of 3 hours. The details of these datasets
are presented in Table 1. ROAD dataset consists of fabrication and
masquerade attacks. A fabrication attack uses a strongly compromised
ECU to inject malicious frames which alter the ID and payload fields.
This includes fuzzing and targeted ID attacks. In contrast, masquerade
attack is the most sophisticated type of attack which uses a strongly
compromised ECU to inject malicious messages without changing the
CAN ID sequences. In ROAD dataset, this was created during the post-
processing by removing the legitimate target ID frames relevant to
each injected frame. Masquerade attacks were created for each type
of targeted ID attack. The attacks shown in Table 2 selects for the
performance evaluation.

Unlike the ROAD dataset which has raw CAN data with up to 64 bits
payload for each CAN ID, the SynCAN dataset is a synthetic dataset
available in normalized signal level. The benign dataset comprises
24 hours of driving data, divided into four separate datasets. It contains
10 CAN IDs and 20 signals. Signals for an ID range from one to
four. This includes five types of advanced attacks performed during
4

Fig. 2. GRU-based model architecture.

the post-processing. These attacks are summarized in Table 3. Even
though SynCAN dataset and attacks are synthetic, this is a good dataset
to evaluate the proposed IDS as each attacks targets multiple signals
during different time intervals.

4.2. CAN ID-based detection

This section discusses the design details of the CAN ID-based model
with the anomaly detection procedure.

4.2.1. GRU-based model
This work uses the GRU-based model proposed in [12] as the CAN

ID-based model. By utilizing the sequential behaviour of the CAN
frames, CAN intrusion detection can be formulated as the next CAN ID
prediction task. Given a context of 𝑛 IDs from the left side (pre-context)
of a CAN sequence, it can predict the next CAN ID with a 𝑝 probability.
This is similar to the next word prediction task in a natural language
processing (NLP) model. If the predicted next CAN ID’s probability
is below a certain pre-defined threshold, then it can be identified as
an anomalous frame in the given context. Therefore, this can detect
contextual anomalies. However, due to the randomness incurred from
jitters and ID-based priority, there might be a large number of possible
next CAN-IDs for the given context. As a solution, both the left side and
right side (post-context) contexts can be used to reduce the possible
CAN-IDs. This is equivalent to the continuous bag-of-words (CBOW)
model architecture proposed in [47] where it learns the word vectors
representing the middle word’s meaning and the context words. Given
the context from both sides of an ID reduces the number of possible
distinct centre IDs. GRU-based model utilized the centre ID prediction
to improve the IVN intrusion detection.

The model architecture of this method is depicted in Fig. 2. A sliding
window of size 𝑛 is selected to get the context for a CAN ID. Let 𝑁 be
the total number of unique CAN IDs. First, this uses an embedding layer
which takes the input of vectorized benign CAN ID sequences of size
𝑛 − 1. The objective here is to learn accurate word vectors that encode
semantic relationships for all the IDs in the CAN bus. Then GRU layer
is used to capture the temporal pattern of the sequential data. GRU is
a variant of LSTM with only two gates: reset and update. Therefore,
GRU is more computationally efficient with low memory overhead.
A dropout layer is used to overcome the model overfitting. Finally, a
dense layer of size 𝑁 is used as the classification layer with the softmax
activation function to get the probability for each CAN ID. The overall
objective of this model is to learn to predict the centre ID given the

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.

t
t
l
i
o
w
c
o
e
(
𝑀
s
𝜔
b
a

4

i
c
d
s
W
t
i

Table 1
Description of ROAD benign datasets.

Dataset Driving activities Driving
time (s)

Basic long Basic driving activities 1250
Basic short Basic driving activities 444
Reverse Basic reverse activities 51
Benign anomaly Driving while trying to cause benign anomalies 456
Extended long Basic driving activities and more complex/one-off activities 657
Extended short Basic driving activities and more complex/one-off activities 359
Radio infotainment Playing with radio and infotainment unit while idling and driving 390
Idle radio infotainment Playing with radio and infotainment unit while idling 660
Drive winter driving and accelerating in colder conditions 47
Exercise all bits Trying to exercise full range of all signals 2172
Highway street driving Drive in parking lots, city streets and highways 469
Highway street driving long Drive in parking lots, city streets and highways 3764
O

1
1
1
1
1
2

Table 2
Description of ROAD attack datasets.

Attack Description

Correlated
signal

Inject false speed values to stop the car

Max
speedometer

Change a payload byte to display false speedometer value

Reverse light
on and off

Change a payload bit to change reverse light status

Table 3
Description of SynCAN attack datasets.

Attack Description

Plateau Change signal value into a constant value
Continuous Change signal value so that it slowly drifts away from

its actual value
Playback Change signal value to a recorded value
Suppress Prevent an ECU sending messages
Flooding Inject selected IDs with high frequency

(𝑛−1)∕2 pre and post-context. This can be achieved by minimizing the
objective function of categorical cross-entropy. This is given by:

𝐸 = −
𝑁
∑

𝑖=1
𝑦𝑖𝑙𝑜𝑔(𝑦𝑖) (1)

where 𝑦𝑖 is the true label and 𝑦𝑖 is the predicted softmax probability for
he 𝑖th class. Weights 𝑊1,𝑊2, and 𝑊3 are learned using backpropaga-
ion during the model training GRU-model is trained with a sufficiently
arge benign dataset to learn benign sequences. During the inference,
ncorrect classification can be identified as anomalous frames based
n a pre-defined anomaly threshold. Counting weak anomalies over a
indow help to minimize the false positives. Therefore, this approach

onsiders a small observation window of time 𝑇 to identify anomalous
r benign status. This procedure is shown in Algorithm 1. First, this
xtracts the context IDs (𝑥), centre ID (𝑦) and associated time stamp
𝑡) from streaming CAN data 𝐹 . Using the trained GRU-based model

, softmax probability for the centre ID is predicted. If the predicted
oftmax probability for the centre ID is less than a pre-defined threshold
, the frame is declared as a weak anomaly. These anomalous and
enign frames in the observation window are used to detect the window
s anomalous or benign based on a window threshold of 𝜓 .

.2.2. Threshold estimation
CAN ID-based detection uses two thresholds. Since the model train-

ng procedure totally depends on benign data, all thresholds must be
hosen based on the benign datasets. Therefore, a separate benign
ataset is used to estimate both thresholds. For anomaly threshold 𝜔,
oftmax probabilities were calculated for all IDs in the benign sample.
hile the minimum values of each ID are ideal as the threshold values

o minimize the false positives, there might be unseen benign sequences
n the threshold estimation benign dataset, which were not observed
5

Algorithm 1 CAN GRU-based anomaly detection
Input: Streaming CAN data 𝐹 , Anomaly threshold 𝜔, Window

threshold 𝜓 , Time window 𝑇 , Trained model 𝑀
utput: Anomaly status for each window

1: while 𝐹 is not empty do
2: read 𝑥, 𝑦, time_stamp 𝑡, 𝑡_𝑚𝑖𝑛
3: while 𝑡 − 𝑡_𝑚𝑖𝑛 ≤ 𝑇 do
4: Init: Benign count 𝐶𝑏 = 0 , Anomaly count 𝐶𝑎 = 0
5: �̂� =𝑀(𝑥)
6: if �̂� < 𝜔 then ⊳ for 𝑖𝑑 𝑦
7: Declare 𝑦 as a weak anomaly
8: 𝐶𝑎 = 𝐶𝑎 + 1
9: else

10: Declare 𝑦 as a benign
11: 𝐶𝑏 = 𝐶𝑏 + 1
12: end if
13: end while
14: if 𝐶𝑎/(𝐶𝑎 + 𝐶𝑏)> 𝜓 then
5: Return Anomaly
6: else
7: Return Benign
8: end if
9: 𝑡_𝑚𝑖𝑛 ← 𝑡
0: end while

in the training dataset. As a result of this, these benign frames tend to
get lower probabilities. Therefore, we consider the 𝑁th lowest quantile
values as the anomaly thresholds. Fig. 3 shows a softmax probability
distribution for a selected ID. Window threshold 𝜓 is defined in a way
that it produces a minimum false positive rate for a fixed window size
of time 𝑇 . For example, if benign windows produce an average of two
false positives, then at least three anomalous frames should be there
to consider the window status as anomalous. This helps to reduce the
false positives of the proposed model.

The GRU-based model which only utilizes the CAN ID field is
suitable for detecting injection attacks as CAN frame injection intro-
duces the new CAN ID sequences for observation windows. However,
this might not be suitable for detecting some attacks which target
the payload field. This is due to some sophisticated attacks such as
masquerade attacks might not disrupt the frequency or ID distribu-
tions [15]. Instead, such attacks require an IDS which utilizes the
payload data.

4.3. CAN Payload-based detection

This section provides a comprehensive overview of the proposed
novel AE-based model and its anomaly detection procedure.

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.

𝜑

Fig. 3. Softmax probability distribution of ID 580.

4.3.1. Data pre-processing
CAN data can be considered as time series data as only one frame

transmits at a given time due to the priority-based arbitration mecha-
nism. Sequential behaviour of CAN frames led previous research [18,
34,36] to use deep learning models which can process sequential data.
These models include recurrent neural networks (RNNs) such as LSTM
and GRU. Despite the high detection rates provided by RNN-based deep
learning models, there are a few drawbacks of using these models for
CAN intrusion detection. Typically LSTM or GRU nodes have a higher
number of trainable parameters and are therefore, computationally
expensive than feed-forward neural networks with the same number
of nodes. This is one major disadvantage for CAN bus considering the
computational resource availability in IVNs. Additionally, it has shown
that the association of payload data of other IDs are very important for
CAN intrusion detection [19]. In this case, the input sequence should
be large enough to capture important associations from other IDs. This
also increases the computational complexity of the model and the input
frame might include a large number of unassociated variables, which
might cause overfitting. This will lead to reduce the detection capability
of the model in a real-world deployment.

To address these problems, we transform CAN payload data into
a format suitable for anomaly detection. First, hexadecimal 64 bits
CAN payload splits into eight bytes and converts into integer values.
These eight features might include constant/empty, categorical and
numerical discrete variables ranging from 0 to 255. All features are
normalized to lie between zero to one using ID feature-wise min–max
scaling. This helps to avoid slow, unstable training and the problem
of exploding gradients. One dimensional array is used to hold the most
recent values of other CAN IDs along with the current ID. This preserves
the sequential property of the CAN data and allows to learn the context
of payload values. This approach is different to the approach used
in [39]. It only considered a few pre-identified variables and created
2-D frames for a specific time window. In contrast, the proposed data
structure in this work, consider the context from all other IDs as time
based window selection might ignore the association from some IDs.
Further, the proposed approach assume no prior knowledge of CAN
specification which is not available for open access. Table 4 shows a
subset of CAN IDs and features to illustrate the data transformation.
Table 4 shows CAN transmission between 77.04383 s and 77.04387 s
for four CAN IDs. D1 and D2 represent the first and second features of
CAN payload. Each ID has up to eight features (D1...D8). Table 4 shows
the snapshot of the transformed data. Each array (row) is updating with
the current ID payload values. For example, ID 125 transmission at
77.04387 s, results in an array update for feature 125_D1 and 125_D2
whereas other feature in the array hold the previous array values.
These features serve as the contextual information for CAN ID 125,
6

representing the most recent transmitted values on the CAN bus. An
array holds the most recent values for all the feature of the current ID
and associated variables for the ID.

The ROAD dataset incorporates zero padding to fill empty variables,
resulting in a 64-bit payload field. In the transformed data structure,
variables that maintain a value of zero across the entire dataset are
considered to be instances where zero padding was employed. As a
result, these variables are omitted from the data structure. On the other
hand, the SynCAN dataset does not require any preprocessing since
variable values are already normalized and empty variables are not
present. Nevertheless, for realistic CAN data that resembles the format
of the ROAD dataset, it is crucial to apply these preprocessing steps. The
transformed data structure supports implementing one model to detect
the anomalies in all CAN IDs without implementing separate models
for each CAN ID.

4.3.2. Feature selection
A modern vehicle could include up to 150 IDs, with around 150

ECUs. Based on this, the transformed data structure in Table 4 could
have up to 8N features, where 𝑁 is the total number of IDs. Including
all these features can significantly increase the complexity and com-
putational cost of the IDS. Alternatively, focusing on essential features
can reduce complexity and offer a practical solution with near real-time
detection. However, determining the importance of features for each ID
is challenging without knowledge of the CAN specification. One viable
approach is to utilize feature associations to identify the important
features. Previous works [11,14,48] used the Pearson correlation coef-
ficient to identify important variables clusters while [39,49] employed
feature correlation to identify anomalies. In [11], the authors utilized
the raw payload values as features, whereas others focused on the
decoded signal values. As per the analysis in Section 5.1.2, the majority
of payload features have only a limited number of unique categorical
values. In the case of nominal categorical features such as the 3rd byte
of ID 0D0, the Pearson correlation may not be suitable for estimating
feature associations. Consequently, the use of Pearson correlation can
restrict the identification of associated features in CAN payload data.
For instance, in [48], one of the selected sensor values was the Gear.
This particular sensor exhibited the lowest Pearson correlation with
other sensor values. Notably, the Gear sensor had only 7 possible
values, similar to a nominal categorical variable. Consequently, the
Pearson correlation failed to capture the highly associated variables in
this case.

Pearson’s chi-squared statistic based Cramér’s 𝑉 statistic measures
the strength of the association between two discrete variables which
have two or more levels [50]. This is calculated using:

𝑉 =

√

𝜑2

𝑚𝑖𝑛(𝑘 − 1, 𝑟 − 1)
=

√

𝜒2∕𝑛
𝑚𝑖𝑛(𝑘 − 1, 𝑟 − 1)

(2)

where 𝜑 is the phi coefficient, 𝜒2 is the chi-square statistic, 𝑛 is the
total number of observations, 𝑘 is the number of columns and, 𝑛 is
the number of rows of the contingency table. However, Cramér’s 𝑉
can have a large bias for finite samples. Bias correction was proposed
by [51] to mitigate this issue and the corrected value is given by:

𝑉 =

√

�̂�2

𝑚𝑖𝑛(�̂� − 1, �̂� − 1)
(3)

where,

̂ 2 = 𝑚𝑎𝑥
(

0, 𝜑2 −
(𝑘 − 1)(𝑟 − 1)

𝑛 − 1

)

and

�̂� = 𝑘 −
(𝑘 − 1)2

𝑛 − 1
, �̂� = 𝑟 −

(𝑟 − 1)2

𝑛 − 1
Cramér’s V statistic ranges from 0 to 1, with 0 indicating no associ-

ation between variables and 1 indicating a perfect association between

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.
Table 4
Data transformation from normalized CAN payload to amalgamated CAN payload (N.B. Only a subset of IDs and features are shown).

(a) Snapshot of the normalized CAN payload. This
represents only four CAN IDs and two features
(D1, D2) out of eight features.

Time CAN ID D1 D2

77.04383 125 0.1142 0.0000
77.04384 354 1.0000 0.4481
77.04385 5E1 0.1574 1.0000
77.04386 0A7 0.3333 0.8470
77.04387 125 0.1152 0.3278

(b) Snapshot of the transformed CAN payload. Each row represents the change in the variables over time as each
CAN ID transmits. Variable values of current ID is shown in bold.

Time CAN ID 125_D1 125_D2 354_D1 354_D2 5E1_D1 5E1_D2 0A7_D1 0A7_D2

77.04383 125 0.1142 0.0000 0.2000 0.4481 0.1574 1.0000 0.1759 0.9803
77.04384 354 0.1142 0.0000 1.0000 0.4481 0.1574 1.0000 0.1759 0.9803
77.04385 5E1 0.1142 0.0000 1.0000 0.4481 0.1574 1.0000 0.1759 0.9803
77.04386 0A7 0.1142 0.0000 1.0000 0.4481 0.1574 1.0000 0.3333 0.8470
77.04387 125 0.1152 0.3278 1.0000 0.4481 0.1574 1.0000 0.3333 0.8470
Fig. 4. Overview of the Latent AE.(The black line indicates the training process while the blue line indicates the inference process) (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
𝑥

variables [52]. This paper uses corrected Cramér’s 𝑉 statistic to identify
the associated features for all IDs. The associated feature selection
procedure is shown in Algorithm 2. First, this algorithm selects the
features 𝑋1 of an ID and calculates the strength of associations 𝑉 with
the feature 𝑋2 of other IDs using the contingency tables. The objective
of this is to remove unassociated features from the other IDs. Therefore,
association calculation between features of the same ID is not necessary
as all features of the ID is keep in the array without removing them.
Threshold 𝜆 is used to control the number of feature selections based
on the desired strength of associations. If a feature does not have highly
associated features with over 𝜆, then the feature with the highest 𝑉 is
selected as the associated feature for the particular feature. This ensures
that the model considers all features in the dataset with at least one
associated feature. Based on this algorithm, unassociated features of the
transformed CAN payload (Table 4) are removed using zero padding.
This converts the dense array to a sparse array. As a result of this
feature selection approach, it reduces the dataset size, which requires
learning the benign variable pattern compared to having all associated
and non-associated features. In a production environment, previous
frame values of the transform CAN payload and the list of associated
variables of a ID could be used to update the latest array. Therefore,
it only requires storing the latest dense frames and associated feature
dictionary in memory.
7

4.3.3. Vanilla AE
AE is a feed-forward neural network which trains to reconstruct the

input as the output. Generally, the vanilla AE consists of two parts, an
encoder 𝑓𝜙 and decoder 𝑔𝜃 . The encoder maps the input space 𝑥 to
a lower dimensional hidden representation known as the latent space
𝑧. The decoder does the opposite by mapping the latent space to the
output space �̂� by approximating it to the original input space 𝑥. This
procedure can be formulated as follows:

𝑧 = 𝑓𝜙(𝑥) (4)

̂ = 𝑔𝜃(𝑓𝜙(𝑥)) = 𝑔𝜃(𝑧) (5)

The objective of the AE is to train encoder 𝑓𝜙 and decoder 𝑔𝜃 to
minimize the difference between input space 𝑥 and output space �̂�
(reconstruction error). This is given by:

𝑚𝑖𝑛𝜙,𝜃‖𝑥 − 𝑔𝜃(𝑓𝜙(𝑥))‖ (6)

where ‖.‖ denotes the 𝑙2-norm. AE-based anomaly detection assumes
that benign data have a smaller reconstruction error due to the learned
patterns and anomalous data have a large reconstruction error. There-
fore, in vanilla AE, reconstruction error is used as the anomaly score
to distinguish benign and anomalous samples. However, as mentioned
before, this assumption does not always valid in practice. In some cases,

AEs generalize very well that they can reconstruct anomalies. This

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.

O

1

1

2

O

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2

Algorithm 2 Associated feature selection procedure
Input: CAN ID list 𝐿, Features 𝑋, Threshold 𝜆
utput: Associated feature dictionary 𝐷, Unassociated feature dictio-

nary 𝐷′

1: Init: 𝐷 = { }
2: for 𝑖𝑑 ∈ 𝐿 do
3: Init: Feature list 𝐹 = []
4: Select 𝑋1 = [𝑥1, ..., 𝑥8] ⊂ 𝑋,𝑋1 ∈ 𝑖𝑑
5: Select 𝑋2 = [𝑥9, ..., 𝑥𝑛] ⊂ 𝑋,𝑋2 ∉ 𝑖𝑑
6: for 𝑖 ∈ 𝑋1 do
7: Init: Highest associated feature 𝑋ℎ = 0
8: for 𝑗 ∈ 𝑋2 do
9: Create contingency table T
0: Compute 𝑛, 𝑘, 𝑟, 𝜒2 ⊳ Using T

11: Compute 𝑉
12: Update 𝑋ℎ
3: if 𝑉 > 𝜆 then

14: 𝐹 .𝑎𝑝𝑝𝑒𝑛𝑑[𝑗]
15: end if
16: end for
17: if 𝑙𝑒𝑛[𝐹] = 0 then
18: 𝐹 .𝑎𝑝𝑝𝑒𝑛𝑑[𝑋ℎ]
19: end if
20: end for
21: 𝐷[𝑖𝑑] = 𝐹
22: 𝐷′[𝑖𝑑] = 𝐹 ′ ⊳ 𝐹 ′ is the complement of 𝐹
3: end for

causes to have a reconstruction error which is not significantly large
enough to detect them as anomalies, leading to many false negatives.

4.3.4. Latent AE - Improved autoencoder architecture
This paper addresses the issue of overgeneralization of vanilla AE

by training another small AE model in the latent space. Previous
studies [23,45,46] employed the latent space to enhance anomaly
detection. However, none of these studies incorporated an additional
AE within the latent space, which sets our model apart. The proposed
model, Latent AE includes three components: an encoder, a decoder and
a latent space AE. As shown in Fig. 4, the black line indicates the train-
ing process, whereas the blue line shows the inference process. First,
given an input 𝑋, the encoder obtains the latent space 𝑧. The decoder
uses the latent space to reconstruct the input. Parallelly, another small
AE trains to reconstruct the obtained latent space 𝑧. During training,
the encoder, decoder and latent space AE parameters are adjusted to
minimize the reconstruction errors through the backpropagation and
gradient descent. Both AEs train to reconstruct the benign samples with
low reconstruction errors 𝐸1 and 𝐸2. During the inference, shown in the
blue line, encoded input 𝑧 is used as an input to the latent space AE
model to reconstruct the latent input. Reconstruction error 𝐸2 tends to
be small for the benign samples and large for the anomalous samples.
If 𝐸2 exceed a pre-defined latent threshold 𝜇, then reconstructed latent
input �̂� uses as the input to the decoder 𝑔𝜃 . This enforces reconstructing
the original input with a significant reconstruction error for anomalous
samples. In contrast, if the 𝐸2 below the pre-defined latent threshold 𝜇,
then the original encoded input 𝑧 uses as the input to the decoder 𝑔𝜃 .

The anomaly detection procedure of the Latent AE is shown in
Algorithm 3. This procedure is similar to the CAN GRU-based anomaly
detection algorithm. Input frame 𝑥, and threshold values are specific
to the Latent AE model. First, this calculates the input reconstruction
error 𝐸1 using both AEs. It then declares weak anomaly or benign
status based on a pre-defined anomaly threshold 𝜔 for each frame in
the observation window. Then, a pre-defined window threshold 𝜓 and
count of anomalous frames over the total number of frames use to
8

identify the window status as benign or anomalous.
Algorithm 3 Latent AE anomaly detection
Input: Streaming CAN data 𝐹 , Latent threshold 𝜇, Anomaly threshold

𝜔, Window threshold 𝜓 , Time window 𝑇
utput: Anomaly status for each window

1: while 𝐹 is not empty do
2: read 𝑥, time_stamp 𝑡, 𝑡_𝑚𝑖𝑛
3: while 𝑡 − 𝑡_𝑚𝑖𝑛 ≤ 𝑇 do
4: Init: Benign count 𝐶𝑏 = 0 , Anomaly count 𝐶𝑎 = 0
5: 𝑧 = 𝑓𝜙(𝑥)
6: �̂� = 𝑓𝛽 (𝑓𝛼(𝑧))
7: Compute 𝐸2 = ||𝑧 − �̂�||
8: if 𝐸2 > 𝜇 then
9: 𝑧← �̂�
0: end if
1: �̂� = 𝑔𝜃(𝑧)
2: Compute 𝐸1 = ||𝑥 − �̂�||
3: if 𝐸1 > 𝜔 then
4: Declare 𝑥 as a weak anomaly
5: 𝐶𝑎 = 𝐶𝑎 + 1
6: else
7: Declare 𝑥 as a benign
8: 𝐶𝑏 = 𝐶𝑏 + 1
9: end if
0: end while
1: if 𝐶𝑎/(𝐶𝑎 + 𝐶𝑏)> 𝜓 then
2: Return Anomaly
3: else
4: Return Benign
5: end if
6: 𝑡_𝑚𝑖𝑛 ← 𝑡
7: end while

4.3.5. Thresholds estimation
Latent AE requires to have three thresholds. Similar to the GRU-

based model threshold estimation, a separate benign dataset is used to
estimate all three thresholds. The latent threshold 𝜇 is the threshold
used to distinguish benign and anomalous frames in the latent space.
This (𝜇) can be estimated considering the highest reconstruction errors
𝐸2 for the chosen benign dataset. Similarly, the anomaly threshold 𝜔
can be estimated considering the highest reconstruction errors 𝐸1 for
the input benign data. Payload values depend on the associated IDs.
Therefore, both the latent and anomaly thresholds are estimated for
each CAN ID. This helps identify anomalies specific to each ID rather
than considering a common threshold for all IDs. While the highest
reconstruction errors are ideal as the threshold values to minimize
the false positives, there might be few benign frames in the threshold
estimation benign dataset which were not observed during the training
phase. As a result of this, these benign frames tend to get higher recon-
struction errors. Therefore, we consider the Nth highest quantile values
as the anomaly thresholds 𝜇, 𝜔 by allowing a very small percentage
for benign anomalies. Window threshold 𝜓 is defined in a way that
it produces a minimum false positive rate for a fixed window size of
time 𝑇 .

CAN payload-based IDSs can effectively detect both injections and
masquerade attacks as both might change the payload field patterns.
However, due to the complexity of the payload field compared to the
ID field, it requires selecting important payload features to achieve
near real-time detection in a resource-constrained environment. This
feature selection might ignore some important features as CAN data
specifications are unknown.

4.4. Ensemble IDS

Ensemble models in ML combine the predictions from multiple

models and improve the overall performance. Therefore, an ensemble

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.
Table 5
Summary of thresholds used in CAN ID and payload-based models.

Model Notation Meaning Description

ID-based 𝜔 Anomaly threshold The trained model is used to compute the softmax probabilities for each CAN ID in a
benign sample. Then calculate the 𝑁th lowest quantile values for each CAN ID.

𝜓 Window threshold The trained model is used to determine the anomalous or benign status of each frame in
a benign dataset using the calculated 𝜔. The average false positive rate is then
computed for each time window 𝑇 , and this value is set as the threshold.

Payload-based
𝜆 Feature selection This is used to control the number of associated feature selections. Start with a higher

association threshold, such as 0.95, and gradually reduce it until the majority of
features have at least one highly associated feature.

𝜇 Latent threshold This is used to distinguish benign and anomalous frames in the latent space. The latent
space AE is utilized to compute the reconstruction errors for all IDs in a benign dataset.
The 𝑁th highest quantile values are then calculated for each CAN ID.

𝜔 Anomaly threshold The reconstruction errors for all IDs are calculated using the Latent AE for a benign
dataset. Subsequently, the 𝑁th highest quantile values are calculated for each CAN ID.

𝜓 Window threshold The trained Latent AE is used to determine the anomalous or benign status of each
frame in a benign dataset using the calculated 𝜔. The average false positive rate is then
computed for each time window 𝑇 , and this value is set as the threshold
IDS of CAN ID and payload-based models can be used to overcome the
limitation of the individual models. For example, suppose an injection
attacks change payload values with a slight deviation compared to
benign values. In that case, Latent AE might not detect such changes
as these will not create a significant reconstruction error. GRU model
can still detect these attacks through the ID sequence change. On the
other hand, a sophisticated masquerade attack might not change the ID
sequences and therefore the GRU model fails to detect such attacks. In
contrast, Latent AE has the capability to detect these attacks. Therefore
an ensemble of these two models can increase the attack detection
capability.

The proposed CAN ID-based model and payload-based models iden-
tify the benign and anomalous windows for streaming CAN data. These
predictions can be used to obtain the ensemble prediction as shown in
Algorithm 4. Algorithms 1 and 3 run parallelly, and the output status
of both algorithms are used with an OR operator to get the prediction
for the ensemble IDS.

Algorithm 4 Ensemble IDS anomaly detection
Input: Streaming CAN data 𝐹
Output: Anomaly status for each window
1: while 𝐹 is not empty do
2: 𝑜𝑢𝑡𝑝𝑢𝑡_1 ← 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 1
3: 𝑜𝑢𝑡𝑝𝑢𝑡_3 ← 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 3
4: if 𝑜𝑢𝑡𝑝𝑢𝑡_1 𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡_3 = Anomaly then
5: Return Anomaly
6: else
7: Return Benign
8: end if
9: end while

CAN ID-based model and payload based model use different thresh-
olds. These are summarized in Table 5.

5. Experiments

This section presents the CAN bus data analysis, feature association,
parameters of the algorithms and performance evaluation. Our ex-
periment code is available at https://github.com/sampathrajapaksha/
EnsembleIDS.git

5.1. CAN bus data analysis

We analyse CAN ID and payload field data to understand the
benign traffic patterns. To this end, we use the ROAD CAN intrusion
dataset [15]
9

Fig. 5. The top 20 CAN ID sequences for five consecutive IDs.

5.1.1. CAN ID field
The sequential behaviour of CAN frames creates a finite set of CAN

ID sequences for a fixed window size. Fig. 5 shows the frequency for
the top 20 sequences for five consecutive IDs. A benign data sample
of 30 min drive of the ROAD dataset is selected for this analysis.
According to this, some sequences appear in high frequency, whereas
others appear less in frequency. During an injection attack, this could
create new CAN ID sequences that cannot be observed during benign
driving periods. In these new sequences, injected CAN IDs appear in
unusual contexts. This property is utilized in the GRU-based model to
identify anomalous frames. However, there might be a large number
of possible CAN IDs for a given context. This can be explained using
Fig. 6(a), which shows the number of possible distinct CAN IDs given
two pre-context IDs as the context. For example, given the context as
’69E 125’, 100 CAN IDs can appear as the next ID. This number can
be reduced by giving the context from both sides of the ID. As shown
in Fig. 6(b), given the pre-context of ’69E 125’ and post-context of
’2E1 354’, there are only 40 CAN IDs that can appear as the centre
ID. Increasing the context size further reduces the number of eligible
IDs in the centre. This helps achieve better predictability and detect
anomalous frames with higher certainty. Therefore, CAN GRU-based
model uses the pre and post-context to predict the centre ID.

5.1.2. CAN Payload field
CAN payload supports up to 64 bits of data and decoding informa-

tion is proprietary. DBC files include details such as signal definition,
message transmission frequency, and ECU information [25]. Based on
the defined specifications, the payload field might include sensor data,

https://github.com/sampathrajapaksha/EnsembleIDS.git
https://github.com/sampathrajapaksha/EnsembleIDS.git
https://github.com/sampathrajapaksha/EnsembleIDS.git

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.
Fig. 6. Top 10 distinct next and centre ID counts for the given context.

category data, constant data or cyclical counter data [11]. Reverse en-
gineering of CAN payload also identified the physical values, constants,
and counter or CRC values [53]. In [54], the authors identified these
fields as constant, multi-value and sensor values. Since the boundaries
of these fields are unknown, the majority of previous works discussed
in Section 3 converted 64 bits CAN payload into 8 bytes and treated
each byte as a variable (feature). Each feature value ranges from 0 to
255. IDs with a shorter payload of less than 64 bits have empty features.
This paper uses the same conversion and analyse the CAN payload to
understand the benign traffic patterns.

The ROAD dataset includes 106 CAN IDs in which 64 bits binary
to decimal conversion creates 848 (106 × 8) features. This dataset
has used zero padding for empty features. The combined dataset of
all the benign datasets listed in Table 1 is utilized for the analysis
of payload field data. Fig. 7 shows the unique value distribution of
these 848 features. Based on this distribution, 249 (29%) features are
either constants or empty, whereas 321 (37%) features have unique
values between 1 to 9. In contrast, 40 (0.08%) features have 256 unique
values. These are the features which take every discrete value between
0 to 255. Features which are not constant or empty can be treated as
either nominal or ordinal categorical features. For example, the 3rd
byte of ID 0D0 communicates the signal light status. This has only
two possible values of 4 and 12 to indicate the reverse light on and
off status. This can be treated as a nominal categorical feature. In
contrast, the 6th byte of 0D0 communicates the speedometer signal,
which can take any value between 0 to 255. This might have a clear
ordering of categories. Therefore, it can be considered as an ordinal
categorical feature. Other features also show similar constant, ordinal
and nominal variable patterns. However, without having the DBC file
or the aforementioned information, it is challenging to distinguish the
nominal and ordinal status of the categorical features with higher ac-
curacy. Attackers could target any feature and therefore, the capability
to detect attacks on different types of features is an important property
of a CAN payload-based IDS.

5.2. Feature association

To identify the highly associated features for a particular feature,
threshold 𝜆 should be selected carefully. Small 𝜆 values select too many
10
Fig. 7. Unique value distribution for ROAD dataset features.

Fig. 8. ROAD dataset variable associations. The 𝑥-axis is the time, and 𝑦-axis is the
normalized variable value.

Fig. 9. Association between id5_D1 and id4_D1 in SynCAN dataset. The 𝑥-axis is the
time, and 𝑦-axis is the normalized variable value.

features and make the model complex. Larger 𝜆 values only select the
highly associated features and help to make the model less complex.
It is important to identify at least one highly associated features for
each feature in the payload. Having a higher number of associated
variables for a specific variable enhances the detection capability for
attacks on that variable. This is because the presence of additional
associated variables can disrupt the multiple expected associations and
result in higher reconstruction errors. To determine the appropriate
threshold 𝜆, We selected 0.95 as the initial number and then keep
reducing it with 0.05 and at 𝜆 is 0.8 it identified at least one highly
associated variables for 98% variables. For the remaining variables,
we selected the highest associated variable below the threshold of 0.8.
The majority of variables included two or more associated variables.
While it is possible to further decrease the threshold to discover more
associated variables, doing so would increase the computational cost
of the IDS. Hence, we strike a balance between capturing important
associations and maintaining computational efficiency. Therefore 0.8 is
used as the 𝜆 for the ROAD dataset. Since the SynCAN dataset includes
only 20 signals, 𝜆 is set to 0.5 based on the above method to capture
more associated variables. Reverse light on and off attacks in ROAD
dataset targets one bit of the third byte of ID 0D0. As mentioned in
Section 5.1.2, feature 0D0_D3 can be considered as a nominal categor-
ical feature as it has only 2 values. Algorithm 2 identifies 4 features

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.

0
w
w
p
I
0
a
u
v
c
d
d
F
t

t
o
a
r

that exhibit a high level of association with the feature 0D0_D3, with
a correlation coefficient (𝑉) exceeding 0.99. Specifically, the feature
D0_D3 shows a strong association of 0.998 with the feature 0C0_D1,
hich has 4 distinct values. The value change of the feature 0C0_D1
ith respect to 0D0_D3 is depicted in Fig. 8(a), clearly illustrating the
erfect association between these two nominal categorical features.
n contrast, the Pearson correlation coefficient between 0C0_D1 and
D0_D3 is moderate at 0.59. Furthermore, the feature 0D0_D3 exhibits
strong association of 0.999 with the feature 274_D7, which has 16

nique values. The Pearson correlation coefficient between these two
ariables is −0.35. Similar patterns can be observed for other nominal
ategorical variables as well. On the other hand, the feature 0D0_D6
isplays an ordinal categorical behaviour with 63 distinct values. It
emonstrates the highest association (0.998) with the feature 498_D6.
ig. 8(b) visualizes the association between these two features, while
he Pearson correlation coefficient between them is 0.996.

Similarly, corrected Cramér’s statistic identifies the associated fea-
ures in the SynCAN dataset. Fig. 9, depicts the higher association
f 0.876 𝑉 between id5_D1 and id4_D1 features. Similar types of
ssociations can be observed for all features in both datasets. These
esults indicate that 𝑉 is capable of identifying both ordinal and

nominal categorical associations and is more appropriate than Pearson
correlation to identify the associated features in the CAN payload. AEs
can learn feature associations during the training phase and detect
abnormal associations during the testing phase. Without knowing of the
exact CAN data specifications, it is extremely difficult for an attacker
to manipulate all highly associated features to keep same level of as-
sociations during the attack. Therefore, the proposed method is highly
effective in identifying attacks on CAN bus.

5.3. Experimental setup

ROAD dataset. Since the dataset includes the different contexts of
benign driving behaviours, first, each benign dataset listed in Table 1
except the basic short, splits into two parts: training (70%) and thresh-
old estimation (30%) while preserving the temporal behaviour of the
CAN data. Subsequently, the training splits are combined into a single
dataset for model training, while the threshold estimation splits are
combined into a separate dataset for anomaly and latent threshold
estimation purposes. Basic short dataset is used as the benign dataset
sample to estimate the window threshold. Using a good representative
sample of benign data for the threshold estimation is important as the
false positive and negative rate is highly dependent on the selected
anomaly thresholds. Symmetric AE architecture is used for both AEs.
The transformed data structure includes 655 variables after removing
the empty variables. To make the model lightweight, the encoder is
restricted to having only two hidden layers, including the latent layer.
Grid search is used to find out the optimum nodes for hidden layers.
The parameter space for the first hidden layer consists of 64, 128, 256,
and 512 nodes, while the latent space parameters include 5, 10, 20, 30,
40, 50 and 60 nodes.

Fig. 10(a) shows the reconstruction error for the validation dataset
(validation loss) for different latent sizes for a different number of
hidden nodes in the first hidden layer. Validation loss rapidly decreases
up to 10 latent sizes for all nodes in the first layer. After that, it slightly
reduces up to 50 latent sizes depending on the number of nodes in
the first layer. Generally, 10–50 yields with the lowest validation loss.
A higher number of nodes in an AE can lead to overgeneralization,
making it less suitable for anomaly detection tasks. Simply minimizing
the validation loss does not guarantee the highest anomaly detection
performance. Conversely, a simplistic AE structure may struggle to
capture the variability in the data and may not be powerful enough
to accurately reconstruct the inputs. Therefore, it is crucial to carefully
choose the number of nodes in an AE. To help determine the optimal
11

latent size for anomaly detection, Principal Component Analysis (PCA) u
can serve as a guiding factor due to certain similarities between AEs
and PCA [55]. PCA aims to identify orthogonal axes that align with the
directions of greatest variability in the data [55]. By analysing the PCA
variance explained graph, we can identify the number of components
that explain different levels of variability in the dataset. The range
of 10–50 latent space size of the AE corresponds to the number of
principal components (PCs) in PCA that explain the variability of the
input data, ranging from 80% to 99%. In other words, if we use 10–50
principle components in PCA, then it can explain 80%–99% variability
of the input data. Latent size 10 explains the 80% variability, whereas
20 and 47 explain the 90% and 99% variability, respectively. This is
depicted in Fig. 10(b). Considering that 10 principal components only
explain 80% of the data variability, using a latent size of 10 in the AE
may not be suitable as it may fail to capture the complexity of the data.
This is evident in Fig. 10(a), where a large number of nodes in the first
layer is required for a latent size of 10 to achieve a small reconstruction
loss. In contrast, with 20 principal components explaining 90% of the
variability, using 20 nodes in the latent space of the AE only requires
128 nodes in the first layer to achieve a low validation loss. Therefore,
considering the model complexity, 128 and 20 are selected as the
number of nodes for hidden layers. For the latent space AE, we use
a shallow network with only one hidden layer. Since this is a shallow
network, the latent size is set to 99% PC variability size allowing fair
reconstruction of latent input data. Based on this, the latent space AE
includes 18 nodes in latent space with 20 as the input dimension. The
latent space AE is much smaller compared to the vanilla AE due to
the small input size. Considering the frame transmission rate of around
2000 frames per second, attack datasets split into 25-milliseconds win-
dows to identify attack windows. This can be considered as a smaller
window for near real-time prediction. The window threshold is set to
0.03 based on the lowest false positive rate (average) for the benign
dataset. Additionally, latent and anomaly thresholds are calculated for
each CAN ID considering the reconstruction errors for the input frames.
Allowing a small margin to unseen benign data, 99.9th quantile values
are considered for these thresholds.

SynCAN dataset. Same approach is used to select the parameters
for the SynCAN dataset. Accordingly, 32 and 15 nodes are selected
for the vanilla AE with input size of 20. The parameter space for
the first hidden layer consists of 8, 32, 64, and 128 nodes, while
the latent space parameters include 5, 10, 15, and 20 nodes. For the
latent space AE, 11 nodes are selected for the latent layer. Unlike the
real ROAD dataset, this dataset includes only 10 CAN IDs with lower
transmit rates. Therefore, 100-milliseconds windows are considered
with the 0.02 window threshold. This results in around 100 CAN IDs
per window and requires to detect at least two anomalous frames to
consider the window as anomalous. For model training, three datasets
were combined and used as the training datasets. While a separate
dataset was employed for threshold estimation.

For the performance evaluation, for both datasets, we consider the
window as anomalous (ground truth) if at least one frame is anomalous.
All AEs train for 100 epochs with a batch size of 128. Early stopping
is used to avoid overfitting. The learning rate sets to 0.0001 with the
Adam optimizer. The Relu activation function is used as the activation
function for all layers except the last layers. The proposed algorithm
is implemented using Python 3.8 with Tensorflow and Keras library.
KerasTuner is used for the grid search. All experiments run on a
MacBook M1 Pro with 16 GB RAM.

5.4. Performance evaluation - CAN Payload-based Detection

We compare the proposed model Latent AE with vanilla AE and two
variants of the Latent AE: Latent AE-ND (Non-Decoder) and Latent AE-
NT (Non-Threshold). Latent AE-ND only uses the encoder of the vanilla
AE and the latent space AE . Latent space AE’s reconstruction error 𝐸2 is

sed to identify anomalies. In contrast, Latent AE-NT removes the latent

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.
Fig. 10. Latent space size selection.

threshold 𝜇 and sends the reconstructed latent space �̂� to the decoder of
the vanilla AE. These two models are used to evaluate the effectiveness
of the latent space AE. Additionally, OCSVM and a RNN-based model
are used to compare Latent AE. To this end, we use INDRA [18]
as the RNN-based model. This model architecture is similar to the
model proposed in [19]. INDRA used a GRU network to reconstruct
the input frame of size 20. This paper uses their network architecture
to train one model for each CAN ID. The optimized parameter for the
ROAD dataset includes sequence of 30 messages as the input frame.
Optimized hyperparameters of OCSVM model are 0.0001 gamma and
0.1 nu values for the SynCAN dataset and 0.01 gamma and 0.001
nu values for the ROAD dataset. To evaluate the model performance,
this paper use macro averaged F1-Score (F1), true-positive rate (TP),
true-negative rate (TN), false-positive rate (FP) and false-negative rate
(FN). The evaluation metrics in this approach are calculated based on
the observation windows, as outlined in Algorithm 3. Specifically, the
benign counts and anomaly count over these observation windows are
utilized to derive the evaluation metrics. Considering that our training
dataset consists solely of benign data and the test datasets are composed
of attack data, employing cross-validation is not feasible in this context.
Instead, we conduct multiple independent experiments, averaging the
results from 10 different realizations, to ensure unbiased and reliable
performance evaluation.

5.4.1. ROAD dataset attack detection
Table 6 shows the detection results of Latent AE and its variants

compared to OCSVM and baseline model INDRA. Correlated signal
attack targets the ID 6E0 which communicates the four wheels’ speeds.
This attack changes all payload values into malicious values. Therefore
correlated signal attack creates both point and contextual anomalies
which can easily be detected by learning the benign ranges. As ex-
pected, all models detect this attack with a higher detection rate. Latent
AE and its variants achieve a 100% detection rate (TP). The same
detection level is observable for the masquerade version of the attack
12
Fig. 11. Max speedometer attack true and predicted values. Shaded area represents
the attack period.

Fig. 12. Max speedometer attack reconstruction errors. 𝐸2 and 𝐸1 represents latent
and vanilla AE reconstruction errors respectively.

as it only removes benign samples of the targeted ID during the attack.
However, OCSVM shows a higher false positive rate for both attacks.
OCSVM is highly sensitive to gamma and nu parameters and these can
be used to change the decision boundaries. But we observe the higher
FN and hence lower F1 score for other gamma and nu values. The
large and high dimensionality of the dataset could be a reason for the
comparatively low performance of OCSVM model.

Max speedometer attack changes the 6th byte of ID 0D0 into its
maximum value (255). This is a nominal categorical variable. GRU-
based INDRA can learn the signal pattern and detect the sudden sig-
nificant value increment as anomalous because it uses signal level
thresholds. OCSVM also shows a better detection performance than
correlated signal attack detection. In contrast, Latent AE and its variants
can detect this attack in two aspects: significant value change and
change of feature associations. This can be explained using Fig. 11
which shows a few-second snapshot of the attack dataset. During the
attack period, spikes represent the attack frames whereas normal values
represent benign frames. AE fails to reconstruct the spikes with the
same magnitude as it has not seen these large spikes in benign training
data. Therefore, variable 0D0_D6 creates a large reconstruction error as
shown in Fig. 11(a). On the other hand, 0D0_D6 has a higher associ-
ation with the feature 498_D6. As a result of this learned association,

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.
Table 6
Comparison of Latent AE, Latent AE variants and baseline models detection performance of ROAD dataset.

Attack Model F1 TP TN FP FN

Correlated signal

OCSVM 89.3% 100% 67.9% 32.1% 0.0%
INDRA 99.3% 100% 98.8% 1.2% 0.0%
Vanilla AE 100% 100% 100% 0.0% 0.0%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Correlated signal masquerades

OCSVM 89.3% 100% 67.9% 32.1% 0.0%
INDRA 99.3% 100% 98.8% 1.2% 0.0%
Vanilla AE 100% 100% 100% 0.0% 0.0%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Max speedometer

OCSVM 93.5% 100% 89.6% 10.3% 0.0%
INDRA 99.6% 100% 99.3% 0.7% 0.0%
Vanilla AE 100% 100% 100% 0.0% 0.0%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Max speedometer masquerades

OCSVM 93.5% 100% 89.6% 10.3% 0.0%
INDRA 99.6% 100% 99.3% 0.7% 0.0%
Vanilla AE 100% 100% 100% 0.0% 0.0%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Reverse light on

OCSVM 33.1% 0.0% 96.2% 3.7% 100%
INDRA 33.8% 0.0% 99.1% 0.9% 100%
Vanilla AE 34.0% 0.0% 100% 0.0% 100%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Reverse light on masquerade

OCSVM 33.1% 0.0% 96.2% 3.7% 100%
INDRA 33.8% 0.0% 99.1% 0.9% 100%
Vanilla AE 34.0% 0.0% 100% 0.0% 100%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Reverse light off

OCSVM 38.1% 0.0% 97.1% 2.9% 100%
INDRA 40.2% 0.0% 99.7% 0.3% 100%
Vanilla AE 36.0% 0.0% 100% 0.0% 100%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Reverse light off masquerade

OCSVM 38.1% 0.0% 97.1% 2.9% 100%
INDRA 40.2% 0.0% 99.7% 0.3% 100%
Vanilla AE 36.0% 0.0% 100% 0.0% 100%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%
AE tries to reconstruct the feature 498_D6 in a way that it keeps the
same level of association with the feature 0D0_D6. However, since
the true value of 498_D6 does not change due to this attack, this
creates a significant reconstruction error. Since vanilla AE, Latent AE,
and its variants consider ID-based message level reconstruction error,
collectively, these signals create significant reconstruction error which
helps to detect this attack easily. Attack detection is shown in Fig. 12.
As shown in Fig. 12(a), both vanilla AE and latent space AEs are capable
enough to detect this attack alone. Therefore, vanilla AE, Latent AE-ND
and Latent AE-NT show a 100% detection rate. Fig. 12(b) shows that
Latent AE increases the anomaly reconstruction error and improves the
likelihood of attack detection. Similar performance can be observed for
masquerade attack as well.

Reverse light on attack targets one bit of the 3rd byte of ID 0D0.
This attack turns on the reverse light while the vehicle is in the drive
gear. Unlike other attacks mentioned above, reverse light on attack
does not change the feature value into an unseen value as 0D0_D3 takes
only two values. Hence, this attack can only be detected by identifying
the mismatch of feature associations. INDRA has individual models for
each CAN IDs and does not consider the associated features from other
13
Fig. 13. Reverse light on attack true and predicted values.

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.
Fig. 14. Reverse light on attack reconstruction errors.

IDs. Therefore, it cannot exploit the feature dependencies and fails to
identify such sophisticated attacks. OCSVM also has limited capability
to detect these attacks. On the other hand, vanilla AE which utilized
our transformed data structure, should be capable enough to detect the
attack. However, this also fails to detect signal light on attack.

Fig. 13 explains the reason for this. Signal light on attack creates a
very small reconstruction error for attack feature 0D0_D3 (Fig. 13(a))
and associated feature 0C0_D1 (Fig. 13(b)). A similar pattern can be
observed for all other associated features of 0D0_D3. This could be due
to the vanilla AE suffering from the well-known problem of overgen-
eralization and reconstructing anomalous data as well. We limit our
model architecture to a simple architecture by using a limited number
of nodes in hidden layers. 0D0_D3 and all its associated features have
a limited number of unique values in the range of 2–10. Therefore,
it is likely that vanilla AE still generalizes so well for features which
have a limited number of unique values. We observe this behaviour for
different simple and complex model architectures. In contrast, Latent
AE and both of its variants detect reverse light on and masquerade at-
tacks with 100% detection rate. Fig. 14(a) illustrates the reconstruction
errors for vanilla AE and latent space AEs. vanilla AE creates a small
reconstruction error that is not significant enough to detect anomalous
messages. However, the latent space AE creates a large reconstruction
error and thus detects the attacks. Latent AE further increases this
reconstruction error due to anomalous input to the decoder of vanilla
AE as shown in Fig. 14(b). This result indicates that the vanilla AE is
overgeneralized during the decoding phase and these attacks can still
be detected in the latent space using the latent space AE. A limited
number of layers and nodes in the decoder of vanilla AE does not
prevent overgeneralization as it also fails to reconstruct benign frames.
During the attack periods, unassociated features reconstruct the inputs
well similar to benign periods. Therefore, non of the features create
FPs. Similar level of detection is achieved for the reverse light off and
its masquerade attack version.

CAN payload data analysis in Section 5.1.2 shows that the majority
of CAN features include only a limited number of unique values (Fig. 7).
As shown above, vanilla AE fails to detect attacks on these features
due to overgeneralization. Therefore, Latent AE is highly effective in
detecting a wide variety of attacks on the CAN bus. Additionally,
regardless of the precise overlapping with the actual payload features,
Latent AE detected all attacks with 100% detection rate with the
selected eight-byte features.

5.4.2. Syncan dataset attack detection
As opposed to the ROAD dataset which targeted one ID payload

during a particular attack, the SynCAN dataset targets different ID
14
Fig. 15. Plateau attack reconstruction errors.

payloads in different attack periods that lasted 2–3 s with various
magnitudes. Furthermore, the majority of these attacks are very similar
to the true signal values. These make detecting the majority of these
attacks extremely difficult. Flooding and suppress attacks are simple
injection attacks which change the transmission rate of IDs. Table 7
presents the results for the SynCAN dataset. OCSVM fails to identify
the majority of these attacks. This might be due to the slight change of
values not lie outside the decision boundaries. INDRA also shows a low
F1 and detection rate for all attacks. This is mainly because INDRA uses
signal-level intrusion scores and cannot utilize the feature associations.
Due to this, only the targeted signal creates a small reconstruction error
which might not be enough to exceed the defined threshold. Vanilla
AE outperforms both OCSVM and INDRA for all attacks, exploiting
the feature association and creating higher reconstruction errors for
attacks. Latent AE outperforms all other models, including its variants
for all attacks. This detection improvement is explained in Fig. 15,
which shows a few seconds snapshot of the plateau attack. As shown in
Fig. 15(a), none of the reconstruction errors of vanilla AE exceeds the
anomaly threshold. However, the latent space AE detects around 70%
of the attack period. Therefore, Latent AE detects the majority of the
attack window (Fig. 15(b)). However, Latent AE variants do not show
a promising detection for the synCAN dataset similar to ROAD dataset
attack detection. This is because, for some attack periods, vanilla AE
creates a higher reconstruction error, whereas, for other attack periods,
latent space AE creates a higher reconstruction error. This depicts in
Fig. 16. This prevents Latent AE variants from outperforming vanilla
AE. These results show that the Latent AE has a better generaliza-
tion capability than its variants. Even though Latent AE outperforms
all models, it still misses some anomalies. This is expected because
manipulated signals are almost similar to the actual signal values for
some attacks and still labelled as anomalies. These might not create any
anomalous status in real vehicles as they do not change any benign
CAN payload data. Additionally, SynCAN labelled all frames within
the attack period as anomalous even though it only includes limited
anomalous frames.

Fig. 17 depicts how variable association of the SynCAN dataset helps
to create higher reconstruction errors. Fig. 17(a) shows the true and
predicted values of feature id3_D3 during an attack period. During this
period, it targets the id3_D3 with a continuous attack which slowly
drifts away from its true value. Therefore, AE fails to create this signal
and predicts the value with a higher reconstruction error towards the
end of the attack period. Feature id0_D0 is a highly associated feature
for id3_d3. Therefore, to keep the learned association, AE reconstructs
the id0_D3 by drifting away from its true value. This is shown in

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.
Table 7
Comparison of Latent AE, Latent AE variants and baseline models detection performance of SynCAN dataset.

Attack Model F1 TP TN FP FN

Plateau

OCSVM 57.0% 19.6% 92.4% 7.5% 80.3%
INDRA 70.2% 39.7% 94.8% 5.1% 60.2%
Vanilla AE 88.1% 70.5% 99.3% 0.7% 29.4%
Latent AE-ND 88.1% 66.6% 99.7% 0.2% 33.3%
Latent AE NT 84.3% 72.4% 94.8% 5.1% 27.5%
Latent AE 92.6% 76.4% 99.3% 0.7% 23.5%

Continuous

OCSVM 53.7% 12.0% 93.6% 6.3% 87.9%
INDRA 82.0% 56.2% 98.7% 1.2% 43.7%
Vanilla AE 93.0% 81.7% 99.0% 0.9% 18.2%
Latent AE-ND 91.4% 72.3% 99.8% 0.1% 27.6%
Latent AE-NT 90.2% 85.8% 96.8% 3.2% 14.2%
Latent AE 95.4% 84.1% 99.1% 0.8% 15.8%

Playback

OCSVM 49.8% 4.3% 97.0% 2.9% 95.6%
INDRA 81.2% 48.5% 98.4% 1.6% 51.4%
Vanilla AE 96.3% 91.7% 93.3% 0.6% 8.2%
Latent AE-ND 95.4% 84.3% 99.8% 0.1% 15.6%
Latent AE-NT 95.7% 93.2% 98.2% 1.7% 6.7%
Latent AE 98.2% 92.5% 99.4% 0.5% 7.8%

Suppress

OCSVM 49.7% 6.6% 95.1% 4.8% 93.3%
INDRA 74.3% 38.7% 96.3% 3.7% 61.2%
Vanilla AE 84.3% 59.9% 99.9% 0.1% 40.0%
Latent AE-ND 76.0% 41.3% 99.8% 0.1% 58.6%
Latent AE-NT 85.4% 66.6% 97.5% 2.4% 33.3%
Latent AE 87.6% 64.2% 99.9% 0.1% 35.7%

Flooding

OCSVM 48.8% 4.1% 96.2% 3.7% 95.8%
INDRA 74.6% 44.2% 96.6% 3.4% 66.7%
Vanilla AE 90.0% 74.5% 99.9% 0.1% 25.4%
Latent AE-ND 87.6% 62.8% 99.8% 0.1% 37.1%
Latent AE-NT 89.0% 77.3% 97.2% 2.7% 22.6%
Latent AE 91.3% 75.9% 99.9% 0.1% 24.0%
Fig. 16. SynCAN reconstruction errors.

Fig. 17(b). Both of these errors aid in creating a higher reconstruction
error at the message level. Moreover, this attack shows the anoma-
lous value similarity to the true signal value at the beginning of the
attack period which causes the higher FN rate for point level and
small window-level attack detection. These experimental results show
the effectiveness of the proposed feature selection, transformed data
structure and improved AE, Latent AE for attack detection in the CAN
bus.

5.5. Performance evaluation - Ensemble IDS

The ensemble IDS integrates GRU model and Latent AE model
to improve the overall attack detection. GRU model used the same
experimental settings which used in [12] with 25-milliseconds windows
to align with the Latent AE model. Same model parameters is used for
the SynCAN dataset with 100-milliseconds windows.

5.5.1. ROAD and SynCAN Attack Detection
Table 8 shows the detection performance of the ensemble IDS

compared to GRU and Latent AE models for the ROAD dataset attacks.
GRU model fails to detect the correlated signal and correlated signal
masquerade attacks with a high detection rate. This is likely because
this attack targets the second most frequent ID, which has a slightly
random transmission rate compared to other IDs. Therefore, it creates
15
Fig. 17. SynCAN feature association.

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.
Table 8
Comparison of GRU, Latent AE and Ensemble IDS detection performance of ROAD dataset.

Attack Model F1 TP TN FP FN

Correlated signal
GRU 82.1% 83.8% 100% 0.0% 16.2%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Correlated signal masquerades
GRU 86.7% 85.6% 100% 0.0% 14.4%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Max speedometer
GRU 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Max speedometer masquerades
GRU 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Reverse light on
GRU 99.1% 99.0% 100% 0.0% 1.0%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Reverse light on masquerade
GRU 99.4% 99.3% 100% 0.0% 0.7%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Reverse light off
GRU 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Reverse light off masquerade
GRU 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%
Table 9
Comparison of GRU, Latent AE and Ensemble IDS detection performance of SynCAN dataset.

Attack Model F1 TP TN FP FN

Plateau
GRU 46.0% 0.0% 100% 0.0% 100%
Latent AE 92.6% 76.4% 99.3% 0.7% 23.5%
Ensemble IDS 92.6% 76.4% 99.3% 0.7% 23.5%

Continuous
GRU 47.1% 0.0% 100.0% 0.0% 100%
Latent AE 95.4% 84.1% 99.1% 0.8% 15.8%
Ensemble IDS 95.4% 84.1% 99.1% 0.8% 15.8%

Playback
GRU 47.4% 0.0% 100% 0.0% 100%
Latent AE 98.2% 92.5% 99.4% 0.5% 7.8%
Ensemble IDS 98.2% 92.5% 99.4% 0.5% 7.8%

Suppress
GRU 99.9% 99.9% 99.9% 0.1% 0.0%
Latent AE 87.6% 64.2% 99.9% 0.1% 35.7%
Ensemble IDS 99.9% 100% 99.8% 0.1% 0.0%

Flooding
GRU 100% 100% 100% 0.0% 0.0%
Latent AE 91.3% 75.9% 99.9% 0.1% 24.0%
Ensemble IDS 99.9% 100% 99.9% 0.1% 0.0%
more sequences, which results in more valid sequences being created,
even for attack frames. However, Latent AE detects all attacks with
100% detection rate. Since none of the individual models produces false
positives, the ensemble model of GRU and Latent AE achieves the best
performance of the Latent AE model.

Table 9 shows the detection performance of the ensemble IDS com-
pared to GRU and Latent AE models for the SynCAN dataset attacks.
Unlike ROAD attacks, masquerade attacks of the SynCAN dataset do
not change the CAN ID sequences. Thus, as expected, the GRU model
fails to detect these attacks. Flooding and suppress attacks change the
CAN ID sequences due to frame injections and frame suspension. As a
result of this change, the GRU model detects these two attacks with
100% detection rate (TP). Latent AE fails to achieve a high detection
rate for these two attacks. This might be due to very small changes to
signal values which do not create significant reconstruction errors. The
ensemble IDS achieves the performance of the best individual model
for all attacks. It is impotent to set anomaly and window thresholds to
optimal values using benign datasets to minimize false positives. This
is important to outperform the individual models.

These results on ROAD and SynCAN attack datasets show the ensem-
ble IDS’s effectiveness in detecting a wide range of attacks with a higher
detection rate. Ensemble IDS increases the overall attack detection
16

while decreasing the weakness of individual models.
5.5.2. Comparison with baseline models
We compare the proposed ensemble IDS with two baseline mod-

els, namely INDRA [18], which is RNN-based, and CANShield [39],
which is a deep AE-based model designed with prior knowledge of the
CAN specification. However, due to the lack of details to reproduce
CANShield, we relied on comparing our results using the area under
the curve (AUC) score reported in their paper. In the case of the
ROAD dataset, masquerade attacks were not discussed in their results,
so we did not include a comparison for those attacks. Based on the
results, for the ROAD dataset, both the Ensemble IDS and CANShield
successfully detected all attacks, except for the reverse light off attack,
where CANShield achieved a slightly lower AUC score of 0.99. For
the SynCAN dataset, CANShield showed higher detection rates for
the plateau attack, while the ensemble IDS outperformed CANShield
for other attacks, except for the flooding attack, where both models
exhibited the same level of detection. INDRA, did not perform well for
either dataset, as it lacked the capability to detect contextual anomalies.
This comparison is presented in Table 10.

5.5.3. Model implementation on Raspberry Pi
To analyse the overhead in a computationally constrained envi-

ronment for the ensemble IDS, we deployed the GRU and Latent AE

models on a Raspberry Pi 4. The Raspberry Pi is a small single-board

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.
Table 10
Comparison with baseline models — AUC score.

Dataset Attack Ensemble IDS CANShield INDRA

ROAD

Correlated signal 1.00 1.00 0.98
Max speedometer 1.00 1.00 0.99
Reverse light on 1.00 1.00 0.67
Reverse light off 1.00 0.99 0.74

SynCAN

Plateau 0.93 0.96 0.72
Continuous 0.93 0.87 0.79
Playback 0.97 0.94 0.84
Suppress 0.99 0.98 0.75
Flooding 0.99 0.99 0.77
Fig. 18. The proposed ensemble IDS deployment in the CAN bus.

computer with limited memory and processing power. For this purpose,
we used the Raspberry Pi 4 Model B 8 GB version, along with a 16 GB
micro SD card. In order to optimize for on-device machine learning, we
converted the trained GRU and Latent AE models into TensorFlow Lite
(TFLite) versions. During this conversion, we also applied quantization
to reduce detection latency. Quantization is an optimization technique
that reduces the precision of model parameters by using 16 or 8-bit
numbers instead of the default 32-bit floating-point numbers. We opted
for 16-bit quantization as 8-bit quantization slightly reduced accuracy
in both models. The converted TFLite models were named GRU-TFLite
and Latent AE-TFLite. This conversion significantly reduced the model
size, with the Latent AE model going from 1145 KB to 745 KB, and
the GRU model decreasing from 233 KB to 49 KB. These TFLite models
were then deployed on the Raspberry Pi for overhead analysis.

The Raspberry Pi is capable of running both the Latent AE-TFLite
and GRU-TFLite lightweight models in parallel. However, when run-
ning them simultaneously, each model incurs a small additional time
compared to running only one model. During the inference process,
streaming CAN data is stored in a buffer, as streaming CAN data is
faster than data preprocessing. For ID-based model data preprocessing,
we use the Python double-ended queue (deque) due to its efficiency in
data append and pop operations. On the other hand, the payload-based
model utilizes NumPy arrays to optimize data preprocessing. The ID-
based model requires less time for data preprocessing and inference
compared to the payload-based model. Since both models use the
same window size 𝑇 , the Ensemble IDS predicts the window status
by considering the predictions from both the ID-based and payload-
based models. The Raspberry Pi device can be integrated into the CAN
bus through the OBD2-II or central gateways, acting as an additional
ECU as depicted in Fig. 18. This enables continuous monitoring of CAN
messages. This deployment strategy preserve the privacy of CAN data
since the data is not shared with a server for making predictions.

5.5.4. Overhead analysis
In addition to the detection rate, detection latency and memory are

also critical aspects of a CAN IDS. Table 11 shows the comparison
of payload-based and ID-based models for the number of trainable
model parameters, model size (KB) and average inference time (ms).
ROAD dataset is used for this analysis. As mentioned earlier, these are
evaluated on a MacBook M1 Pro with 16 GB RAM. The number of
parameters and model sizes are presented for one model.

In the case of the INDRA model, each CAN ID requires a separate
17

model, resulting in the largest memory requirement and the highest
inference time. Consequently, it is not suitable for a CAN IDS. Among
the payload-based models, Latent AE-ND demonstrates the best perfor-
mance in terms of memory and inference time. This is achieved by
removing the decoder component from the vanilla AE model. Latent
AE only requires an additional 0.05 ms for prediction compared to the
vanilla AE, with an average inference time of 0.18 ms per frame. The
Latent space AE model is much smaller than the vanilla AE due to
its limited number of input features and shallow model architecture.
On the other hand, the GRU model is significantly smaller and more
efficient than the payload-based models, as it solely utilizes the CAN
ID as the input feature.

Table 12 presents the average inference overhead, including CPU
utilization, memory usage (RAM), and inference time, for the deployed
TFLite models on Raspberry Pi. The ensemble IDS utilizes 82% of the
CPU and 94MB of RAM, with an inference time of 0.5 ms per CAN
frame. This is a small additional time compared to the Latent AE-TFLite
model. However, despite this slight increase in inference time, the en-
semble IDS remains a practical and deployable in-vehicle IDS due to its
comprehensive attack detection capabilities. The outputs of the TFLite
models on Raspberry Pi are comparable to the values obtained from
TensorFlow models, with negligible accuracy differences. Therefore,
the deployed models on Raspberry Pi exhibit the same detection capa-
bilities without any loss in accuracy. Overall, a 25 ms window includes
around 50 CAN frames in which ensemble IDS takes only 25 ms to
give the window prediction. Typically, the average driver’s response
time ranges from 0.7 s to 1.5 s [56]. Thus, the 25 ms detection time
is minimal compared to the driver’s response time. This enables the
driver or the vehicle itself to take appropriate countermeasures in near
real-time. Additionally, during a CAN bus attack, continuous message
injections are required to overwrite legitimate CAN frames [26]. This
increases the likelihood of detecting malicious frames even before the
attack has a significant impact. Therefore the proposed ensemble IDS
is suitable for detecting wide range of attacks on the CAN bus in near
real-time.

5.6. Limitations

Despite the superior attack detection capabilities exhibited by the
ensemble IDS, there are certain limitations associated with both the
GRU-based and payload-based models. Both the GRU-based and
payload-based models require a large benign dataset to effectively
capture a diverse range of benign driving behaviours to minimize the
occurrence of unseen data. For the payload-based model, each variable
must be normalized based on the observed minimum and maximum
values. However, if the training dataset does not include the true min-
imum and maximum values for each variable, any value falling below
the minimum or above the maximum during the inference stage could
potentially result in false positives. This limitation can be minimized by
utilizing a large and diverse training dataset. Nevertheless, there may
still exist some variable values such as engine temperature that do not
reach the maximum values during normal driving conditions.

A potential limitation of black-box approach-based models, com-
pared to signal value-based models, is that the payload features may

not precisely align with the signal values. Depending on the CAN data

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.

t
L
t
p
n
a
v
A

Table 11
Average detection latency and memory requirement.

Features Model Parameters Model size (KB) Inference time (ms)

Payload

INDRA 190728 3200 0.44
Vanilla AE 173731 882 0.13
Latent AE-ND 87306 697 0.11
Latent AE-NT 174489 1145 0.18
Latent AE 174489 1145 0.18

ID GRU 16945 233 0.08
D
a
C
P
G
&

D

c
i

D

A

G

R

Table 12
Average inference overhead on Raspberry Pi.

Model CPU (%) Memory (MB) Inference time (ms)

Latent AE-TFLite 38 58 0.4
GRU-TFLite 27 3 0.2
Ensemble IDS 82 94 0.5

specification for a particular vehicle model, signal values can span
multiple bytes with different byte ordering or may be represented by a
single bit. This means that a payload feature could include multiple
signal values or multiple payload features may represent a single
signal value. However, the Latent AE approach is designed to learn
feature association patterns for benign data and detect deviations from
these patterns as anomalies. Even with byte-level feature splitting, the
majority of these patterns can still be learned using Latent AE. Attacks
on the CAN payload disrupt these learned patterns, leading to high re-
construction error that can be detected. Therefore, if a payload feature
has at least one highly associated feature, the impact of not precisely
selecting the actual signal boundaries is minimized in the proposed
method for attack detection. In other words, even if a payload feature
includes multiple signal values, as long as it has a highly associated
feature, the method can identify the mismatch in association during an
attack. Similarly, if a signal is represented by multiple payload features
and any of these features has a highly associated feature, the method
can detect the association mismatch. For the ROAD dataset, 98% of
the features have at least one highly associated feature. However, if a
payload feature does not have a highly associated feature, it may result
in false negatives for the respective signals.

6. Conclusion

The CAN is the most widely used in-vehicle network due to several
benefits such as low cost and simplicity. Despite these benefits, CAN
bus is vulnerable to cyberattacks that directly affect vehicle passengers’
safety. Therefore, there is a clear need to implement an effective
detection mechanism against these attacks. IDSs that utilize only the
CAN ID field effectively detect injection attacks. However, time-series
CAN payload data are critical for detecting advanced attacks such as
masquerade attacks. Therefore, identifying a wide variety of attacks on
the CAN bus is challenging and requires an IDS that employs multiple
methods to cover a wide range of attacks with limited computing
resources.

Thus, we propose an ensemble IDS by integrating a GRU-based
model and a novel AE model. The GRU-based lightweight model uses
the CAN ID field, whereas the AE model uses the CAN payload field
to detect attacks. Latent AE, an improved AE-based model uses a
novel feature selection method based on Cramér’s 𝑉 statistics and a
ransformed CAN payload data structure to handle complex CAN data.
atent AE addresses the issue of high false negatives of vanilla AEs due
o overgeneralization by introducing a small latent space AE. CAN bus
ayload includes a higher number of categorical features with a limited
umber of unique values. Therefore, CAN payload-based vanilla AEs
re prone to overgeneralization and miss detecting attacks on those
ariables. Results from the experiment show the effectiveness of Latent
18

E for detecting sophisticated attacks on CAN payload in near real-time
by overcoming the limitation of vanilla AEs. Experiment results show
that the ensemble IDS improves attack detection while decreasing the
weakness of individual models. The inference overhead of the proposed
model is minimum and therefore, suitable to deploy in a real vehicle
to detect various attacks in near real-time. For future works, we plan
to deploy the ensemble IDS in a real vehicle and evaluate it with real
attacks with the help of project’s industrial partner, HORIBA MIRA Ltd
on their proving grounds.

CRediT authorship contribution statement

Sampath Rajapaksha: Conceptualization, Methodology, Software,
ata curation, Writing – original draft. Harsha Kalutarage: Conceptu-
lization, Supervision, Writing – review & editing. M. Omar Al-Kadri:
onceptualization, Supervision, Writing – review & editing. Andrei
etrovski: Conceptualization, Supervision, Writing – review & editing.
arikayi Madzudzo: Conceptualization, Supervision, Writing – review
editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgment

This work was supported by the School of Computing, Robert
ordon University and HORIBA MIRA Limited.

eferences

[1] Xun Y, Zhao Y, Liu J. Vehicleeids: A novel external intrusion detection system
based on vehicle voltage signals. IEEE Internet Things J 2021.

[2] Bi Z, Xu G, Xu G, Wang C, Zhang S. Bit-level automotive controller area network
message reverse framework based on linear regression. Sensors 2022;22(3):981.

[3] Miller C, Valasek C. Adventures in automotive networks and control units. Def
Con 2013;21(260–264):15–31.

[4] Checkoway S, McCoy D, Kantor B, Anderson D, Shacham H, Savage S, et al.
Comprehensive experimental analyses of automotive attack surfaces. In: 20th
USENIX security symposium. 2011.

[5] NasrEldin A, Bahaa-Eldin AM, Sobh MA. In-vehicle intrusion detection based on
deep learning attention technique. In: 2021 16th international conference on
computer engineering and systems. IEEE; 2021, p. 1–7.

[6] Miller C, Valasek C. Remote exploitation of an unaltered passenger vehicle. Black
Hat USA 2015;2015(S 91).

[7] Rajapaksha S, Kalutarage H, Al-Kadri M, Petrovski A, Madzudzo G, Cheah M.
AI-based intrusion detection systems for in-vehicle networks: A survey. ACM
Comput Surv 2023;55(11). http://dx.doi.org/10.1145/3570954

[8] Müter M, Asaj N. Entropy-based anomaly detection for in-vehicle networks. In:
2011 IEEE intelligent vehicles symposium. IEEE; 2011, p. 1110–5.

[9] Aliwa E, Rana O, Perera C, Burnap P. Cyberattacks and countermeasures for
in-vehicle networks. ACM Comput Surv 2021;54(1):1–37.

[10] Rajapaksha S, Kalutarage H, Al-Kadri MO, Petrovski A, Madzudzo G, Cheah M.
AI-based intrusion detection systems for in-vehicle networks: A survey. ACM

Comput Surv 2023;55(11). http://dx.doi.org/10.1145/3570954.

http://refhub.elsevier.com/S2214-2126(23)00154-0/sb1
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb1
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb1
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb2
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb2
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb2
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb3
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb3
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb3
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb4
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb4
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb4
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb4
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb4
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb5
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb5
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb5
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb5
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb5
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb6
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb6
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb6
http://dx.doi.org/10.1145/3570954
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb8
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb8
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb8
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb9
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb9
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb9
http://dx.doi.org/10.1145/3570954

Journal of Information Security and Applications 77 (2023) 103570S. Rajapaksha et al.
[11] Tomlinson A, Bryans J, Shaikh SA. Using internal context to detect automotive
controller area network attacks. Comput Electr Eng 2021;91:107048.

[12] Rajapaksha S, Kalutarage H, Al-Kadri MO, Madzudzo G, Petrovski AV. Keep the
moving vehicle secure: Context-aware intrusion detection system for in-vehicle
CAN bus security. In: 2022 14th international conference on cyber conflict: Keep
moving! vol. 700. IEEE; 2022, p. 309–30.

[13] Rajapaksha S, Kalutarage H, Al-Kadri MO, Petrovski A, Madzudzo G. Improving
in-vehicle networks intrusion detection using on-device transfer learning. In:
Symposium on vehicles security and privacy. 2023, http://dx.doi.org/10.14722/
vehiclesec.2023.23088.

[14] Moriano P, Bridges RA, Iannacone MD. Detecting CAN masquerade attacks with
signal clustering similarity. 2022, arXiv preprint arXiv:2201.02665.

[15] Verma ME, Iannacone MD, Bridges RA, Hollifield SC, Kay B, Combs FL. Road: The
real ornl automotive dynamometer controller area network intrusion detection
dataset (with a comprehensive can ids dataset survey & guide). 2020, arXiv
preprint arXiv:2012.14600.

[16] Stabili D, Marchetti M, Colajanni M. Detecting attacks to internal vehicle net-
works through hamming distance. In: 2017 AEIT international annual conference.
IEEE; 2017, p. 1–6.

[17] Number of automotive ECUs continues to rise. 2022, https://www.
eenewsautomotive.com/en/number-of-automotive-ecus-continues-to-rise/.
[Accessed 08 August 2022].

[18] Kukkala VK, Thiruloga SV, Pasricha S. Indra: Intrusion detection using recurrent
autoencoders in automotive embedded systems. IEEE Trans Comput-Aided Des
Integr Circuits Syst 2020;39(11):3698–710.

[19] Longari S, Valcarcel DHN, Zago M, Carminati M, Zanero S. CANnolo: An anomaly
detection system based on LSTM autoencoders for controller area network. IEEE
Trans Netw Serv Manag 2020;18(2):1913–24.

[20] Zhou W, Fu H, Kapoor S. CANGuard: Practical intrusion detection for in-vehicle
network via unsupervised learning. In: 2021 IEEE/ACM symposium on edge
computing. 2021, p. 454–8. http://dx.doi.org/10.1145/3453142.3493514.

[21] Lokman SF, Othman AT, Musa S, Abu Bakar MH. Deep contractive autoencoder-
based anomaly detection for in-vehicle controller area network (CAN). In:
Progress in engineering technology: Automotive, energy generation, quality
control and efficiency. Springer; 2019, p. 195–205.

[22] Novikova E, Le V, Yutin M, Weber M, Anderson C. Autoencoder anomaly
detection on large CAN bus data. In: Proceedings of DLP-KDD. 2020.

[23] Gong D, Liu L, Le V, Saha B, Mansour MR, Venkatesh S, et al. Memorizing nor-
mality to detect anomaly: Memory-augmented deep autoencoder for unsupervised
anomaly detection. In: Proceedings of the IEEE/CVF international conference on
computer vision. 2019, p. 1705–14.

[24] Bergsma W. A bias-correction for Cramér’s V and Tschuprow’s T. J Korean Stat
Soc 2013;42(3):323–8. http://dx.doi.org/10.1016/j.jkss.2012.10.002, Available:
https://www.sciencedirect.com/science/article/pii/S1226319212001032.

[25] Verma M, Bridges R, Hollifield S. ACTT: Automotive CAN tokenization and
translation. In: 2018 international conference on computational science and
computational intelligence. IEEE; 2018, p. 278–83.

[26] Miller C, Valasek C. Can message injection: Og dynamite edition. Tech. rep.,
2016.

[27] Suda H, Natsui M, Hanyu T. Systematic intrusion detection technique for an
in-vehicle network based on time-series feature extraction. In: 2018 IEEE 48th
international symposium on multiple-valued logic. IEEE; 2018, p. 56–61.

[28] Dürrwang J, Braun M, Kriesten R, Pretschner A. Enhancement of automotive
penetration testing with threat analyses results. SAE International Journal of
Transportation Cybersecurity and Privacy 2018 1(11-01-02-0005):91–112.

[29] Cai Z, Wang A, Zhang W, Gruffke M, Schweppe H. 0-days & mitiga-
tions: roadways to exploit and secure connected BMW cars. Black Hat USA
2019;2019:39.

[30] Desta AK, Ohira S, Arai I, Fujikawa K. ID sequence analysis for intrusion
detection in the can bus using long short term memory networks. In: 2020
IEEE international conference on pervasive computing and communications
workshops. IEEE; 2020, p. 1–6.

[31] Hoang T-N, Kim D. Detecting in-vehicle intrusion via semi-supervised
learning-based convolutional adversarial autoencoders. Veh Commun
2022;38:100520. http://dx.doi.org/10.1016/j.vehcom.2022.100520, Available:
https://www.sciencedirect.com/science/article/pii/S2214209622000675.
19
[32] Kalutarage HK, Al-Kadri MO, Cheah M, Madzudzo G. Context-aware anomaly
detector for monitoring cyber attacks on automotive CAN bus. In: ACM computer
science in cars symposium. 2019, p. 1–8.

[33] Tomlinson A, Bryans J, Shaikh SA. Using a one-class compound classifier to
detect in-vehicle network attacks. In: Proceedings of the genetic and evolutionary
computation conference companion. 2018, p. 1926–9.

[34] Taylor A, Leblanc S, Japkowicz N. Anomaly detection in automobile control
network data with long short-term memory networks. IEEE; 2016, p. 130–9.

[35] Tanksale V. Anomaly detection for controller area networks using long short-term
memory. IEEE Open J Intell Transp Syst 2020;1:253–65.

[36] Hanselmann M, Strauss T, Dormann K, Ulmer H. Canet: An unsupervised
intrusion detection system for high dimensional CAN bus data. IEEE Access
2020;8:58194–205.

[37] Kukkala VK, Thiruloga SV, Pasricha S. LATTE: L STM self-attention based
anomaly detection in embedded automotive platforms. ACM Trans Embed
Comput Syst (TECS) 2021;20(5s):1–23.

[38] Thiruloga SV, Kukkala VK, Pasricha S. TENET: Temporal CNN with attention for
anomaly detection in automotive cyber-physical systems. In: 2022 27th Asia and
South Pacific design automation conference. IEEE; 2022, p. 326–31.

[39] Shahriar MH, Xiao Y, Moriano P, Lou W, Hou YT. CANShield: Signal-based
intrusion detection for controller area networks. 2022, arXiv preprint arXiv:
2205.01306.

[40] Balaji P, Ghaderi M. NeuroCAN: Contextual anomaly detection in controller area
networks. In: 2021 IEEE international smart cities conference. IEEE; 2021, p. 1–7.

[41] Verma ME, Iannacone MD, Bridges RA, Hollifield SC, Moriano P, Kay B, et
al. Addressing the lack of comparability & testing in CAN intrusion detection
research: A comprehensive guide to CAN ids data & introduction of the ROAD
dataset. 2020, arXiv preprint arXiv:2012.14600.

[42] Yin C, Zhang S, Wang J, Xiong NN. Anomaly detection based on convolu-
tional recurrent autoencoder for IoT time series. IEEE Trans Syst Man Cybern
2020;52(1):112–22.

[43] Cheng Z, Wang S, Zhang P, Wang S, Liu X, Zhu E. Improved autoencoder for
unsupervised anomaly detection. Int J Intell Syst 2021;36(12):7103–25.

[44] Park H, Noh J, Ham B. Learning memory-guided normality for anomaly detec-
tion. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2020, p. 14372–81.

[45] Angiulli F, Fassetti F, Ferragina L. LatentOut: an unsupervised deep anomaly
detection approach exploiting latent space distribution. Mach Learn 2022;1–27.

[46] ElMorshedy MM, Fathalla R, El-Sonbaty Y. Feature transformation framework for
enhancing compactness and separability of data points in feature space for small
datasets. Appl Sci 2022;12(3):1713.

[47] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word
representations in vector space. 2013, arXiv preprint arXiv:1301.3781.

[48] Ganesan A, Rao J, Shin K. Exploiting consistency among heterogeneous sensors
for vehicle anomaly detection. Tech. rep., SAE Technical Paper; 2017.

[49] Li H, Zhao L, Juliato M, Ahmed S, Sastry MR, Yang LL. Poster: Intrusion detection
system for in-vehicle networks using sensor correlation and integration. In: Pro-
ceedings of the 2017 ACM SIGSAC conference on computer and communications
security. 2017, p. 2531–3.

[50] Acock AC, Stavig GR. A measure of association for nonparametric statistics. Soc
Forces 1979;57(4):1381–6.

[51] Bergsma W. A bias-correction for Cramér’s V and Tschuprow’s T. J Korean Stat
Soc 2013;42(3):323–8.

[52] Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med
2018;18(3):91–3.

[53] Marchetti M, Stabili D. READ: Reverse engineering of automotive data frames.
IEEE Trans Inf Forensics Secur 2018;14(4):1083–97.

[54] Markovitz M, Wool A. Field classification, modeling and anomaly detection in
unknown CAN bus networks. Veh Commun 2017;9:43–52.

[55] Ladjal S, Newson A, Pham C-H. A PCA-like autoencoder. 2019, arXiv preprint
arXiv:1904.01277.

[56] Droździel P, Tarkowski S, Rybicka I, Wrona R. Drivers ’reaction time research
in the conditions in the real traffic. Open Eng 2020;10(1):35–47. http://dx.doi.
org/10.1515/eng-2020-0004.

http://refhub.elsevier.com/S2214-2126(23)00154-0/sb11
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb11
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb11
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb12
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb12
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb12
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb12
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb12
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb12
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb12
http://dx.doi.org/10.14722/vehiclesec.2023.23088
http://dx.doi.org/10.14722/vehiclesec.2023.23088
http://dx.doi.org/10.14722/vehiclesec.2023.23088
http://arxiv.org/abs/2201.02665
http://arxiv.org/abs/2012.14600
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb16
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb16
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb16
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb16
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb16
https://www.eenewsautomotive.com/en/number-of-automotive-ecus-continues-to-rise/
https://www.eenewsautomotive.com/en/number-of-automotive-ecus-continues-to-rise/
https://www.eenewsautomotive.com/en/number-of-automotive-ecus-continues-to-rise/
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb18
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb18
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb18
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb18
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb18
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb19
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb19
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb19
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb19
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb19
http://dx.doi.org/10.1145/3453142.3493514
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb21
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb21
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb21
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb21
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb21
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb21
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb21
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb22
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb22
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb22
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb23
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb23
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb23
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb23
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb23
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb23
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb23
http://dx.doi.org/10.1016/j.jkss.2012.10.002
https://www.sciencedirect.com/science/article/pii/S1226319212001032
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb25
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb25
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb25
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb25
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb25
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb26
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb26
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb26
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb27
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb27
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb27
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb27
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb27
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb28
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb28
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb28
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb28
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb28
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb29
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb29
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb29
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb29
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb29
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb30
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb30
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb30
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb30
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb30
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb30
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb30
http://dx.doi.org/10.1016/j.vehcom.2022.100520
https://www.sciencedirect.com/science/article/pii/S2214209622000675
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb32
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb32
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb32
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb32
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb32
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb33
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb33
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb33
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb33
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb33
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb34
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb34
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb34
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb35
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb35
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb35
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb36
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb36
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb36
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb36
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb36
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb37
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb37
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb37
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb37
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb37
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb38
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb38
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb38
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb38
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb38
http://arxiv.org/abs/2205.01306
http://arxiv.org/abs/2205.01306
http://arxiv.org/abs/2205.01306
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb40
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb40
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb40
http://arxiv.org/abs/2012.14600
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb42
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb42
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb42
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb42
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb42
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb43
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb43
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb43
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb44
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb44
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb44
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb44
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb44
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb45
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb45
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb45
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb46
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb46
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb46
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb46
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb46
http://arxiv.org/abs/1301.3781
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb48
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb48
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb48
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb49
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb49
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb49
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb49
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb49
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb49
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb49
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb50
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb50
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb50
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb51
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb51
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb51
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb52
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb52
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb52
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb53
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb53
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb53
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb54
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb54
http://refhub.elsevier.com/S2214-2126(23)00154-0/sb54
http://arxiv.org/abs/1904.01277
http://dx.doi.org/10.1515/eng-2020-0004
http://dx.doi.org/10.1515/eng-2020-0004
http://dx.doi.org/10.1515/eng-2020-0004

	coversheet_template
	RAJAPAKSHA 2023 Beyond vanilla
	Beyond vanilla: Improved autoencoder-based ensemble in-vehicle intrusion detection system
	Introduction
	Preliminaries
	Controller Area Network (CAN bus)
	Attacks on IVNs

	Related work
	CAN ID-based IDSs
	CAN Payload-based IDSs
	Improved Autoencoders for Anomaly Detection

	Methodology
	Threat Model and Datasets
	CAN ID-based detection
	GRU-based model
	Threshold Estimation

	CAN Payload-based detection
	Data Pre-processing
	Feature Selection
	Vanilla AE
	Latent AE - Improved Autoencoder Architecture
	Thresholds Estimation

	Ensemble IDS

	Experiments
	CAN Bus Data Analysis
	CAN ID field
	CAN Payload field

	Feature Association
	Experimental Setup
	Performance Evaluation - CAN Payload-based Detection
	ROAD Dataset Attack Detection
	SynCAN Dataset Attack Detection

	Performance Evaluation - Ensemble IDS
	ROAD and SynCAN Attack Detection
	Comparison with Baseline Models
	Model Implementation on Raspberry Pi
	Overhead Analysis

	Limitations

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

