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Abstract: The growth of information technologies has driven the development of the transportation 
sector, including connected and autonomous vehicles. Due to its communication capabilities, the 
controller area network (CAN) is the most widely used in-vehicle communication protocol. However, 
CAN lacks suitable security mechanisms such as message authentication and encryption. This makes 
the CAN bus vulnerable to numerous cyberattacks. Not only are these attacks a threat the information 
security and privacy, but they can also directly affect the safety of drivers, passengers and the 
surrounding environment of the moving vehicles. This paper presents CAN-CID, a context-aware 
intrusion detection system (IDS) to detect cyberattacks on the CAN bus, which would be suitable for 
deployment in automobiles including military vehicles, passenger cars, commercial vehicles and other 
CAN-based applications such as aerospace, industrial automation and medical equipment. CAN-CID 
is an ensemble model of a gated recurrent unit (GRU) network and a time-based model. A GRU 
algorithm works by learning to predict the centre ID of a CAN ID sequence, and ID-based probabilistic 
thresholds are used to identify anomalous IDs, whereas the time-based model identifies anomalous IDs 
using time-based thresholds. The number of anomalies compared to the total number of IDs over an 
observation window is used to classify the window status as anomalous or benign. The proposed model 
uses only benign data for training and threshold estimation, avoiding the need to collect realistic attack 
data to train the algorithm. The performance of the CAN-CID model was tested against three datasets 
over a range of 16 attacks, including fabrication and more sophisticated masquerade attacks. The CAN-
CID model achieved an F1-Score of over 99% for 13 of those attacks and outperformed benchmark 
models from the literature for all attacks, with near real-time detection latency. 
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1.  INTRODUCTION 
 
Modern automobiles are becoming complex and highly connected to provide safe, efficient and 
intelligent services to users. To facilitate these services, automobiles are equipped with multiple 
networks and communication devices and a range of sensors, actuators, cameras and microprocessor-
based electronic control units (ECUs) [1]. Modern vehicles run software that exceed 100 million lines 
of code, and future vehicles will require 200 to 300 million lines of code [2]. These software run on up 
to 100 ECUs [3] that are connected to a controller area network (CAN) which is considered to be the 
de-facto network protocol for in-vehicle communication [1]. The CAN bus is a message-based protocol 
commonly used in vehicles, aerospace, industrial automation and medical equipment due to several 
benefits such as being low cost, speedy, lightweight and robust [4]. Despite these benefits, the CAN 
bus lacks security measures, especially given the absence of authentication, an ID-based priority 
system, broadcast transmission and lack of encryption. Increased connectivity and complexity and 
CAN bus security flaws have made modern vehicles vulnerable to cyberattacks. In fact, security 
researchers have demonstrated the capability of attacks against modern vehicles by compromising the 
CAN networks of various vehicle brands [5], [6], [7]. These researchers have shown that it is possible 
to implement CAN message injection attacks remotely and take physical control of these vehicles. An 
attacker obtaining physical control of a moving vehicle will directly affect the safety of drivers, 
passengers and the surrounding environment of the vehicle. The security of modern automobiles is a 
major concern for automotive manufacturers; therefore, they are seeking security measures to protect 
against such attacks [8], [9].  
 
Developing an in-vehicle IDS for widespread adoption with a high detection capability is challenging 
due to the lack of knowledge about the CAN data specifications [10]. Generally, specifications of CAN 
messages are stored in a database-like file known as the database CAN (DBC), a confidential source 
of proprietary information, access to which is usually restricted to the vehicle manufacturer. Depending 
on the number of ECUs, the CAN bus transmits about 2000 frames per second [11]. This demands an 
IDS with real-time or near real-time detection capability under a computationally constrained 
environment. Cyberattackers could use various types of attacks (e.g. injection and masquerade attacks) 
that alter the different data fields of CAN messages to compromise the in-vehicle network. This is 
another challenge that limits the detection and generalization capabilities of an IDS. In addition, many 
events that arise in a vehicle could be considered anomalies despite being legitimate driving scenarios. 
For example, an emergency brake or sudden steering wheel turn while driving at 70 mph would be 
considered anomalous in normal driving scenarios. These kinds of benign anomalous behaviours could 
produce a significant number of false positives. Hence, knowledge of the context of the CAN sequences 
is vital to distinguish benign anomalies from potential attack scenarios. To successfully deal with the 
aforementioned challenges, this paper proposes CAN-CID (CAN Centre ID prediction) a novel 
context-aware ensemble IDS for the CAN bus based on natural language processing (NLP) and time-
based techniques. 
 
The main contributions of this paper can be summarized as follows. 
 

1. CAN-CID uses only benign data to train the model and estimate thresholds. This avoids the 
need to collect real attack data to train the algorithm. It is significantly easier and safer to 
collect benign CAN data from real vehicles than to collect attack data. Further, using only 
benign data (one-class) during the training process improves the generalization capability of 
the algorithm. 

2. Probability-based thresholds were estimated for each ID using only benign training data. 
Minimum thresholds were selected with the aim to minimize false positives which will help to 
improve the overall accuracy of the ensemble model. 

3. CAN-CID uses a one-layer shallow GRU network to detect anomalous ID sequences. Hence 
it is lightweight, and detection latency is very low (10 ms for a 100 ms window). This makes 
the proposed solution suitable to deploy in real vehicles. 

 



 
 

The rest of this paper is structured as follows: Section 2 presents the related work. Section 3 provides 
the background, including CAN data analysis. The proposed algorithm is explained in section 4. In 
section 5, the experiment results and performance evaluations are presented. Finally, section 6 
concludes the paper. 
 

2.  RELATED WORKS 
 
Recent experiments focusing on attacks against modern automobiles [5], [6] have motivated research 
into countermeasures against in-vehicle network attacks. The majority of these works have focused on 
securing the CAN bus, as notable experimental attacks targeted the vulnerabilities of the CAN bus [6], 
[7]. In [11], the authors proposed a specification-based IDS for in-vehicle network intrusion detection 
by extracting design specifications of CAN messages. The IDS proposed in [12] used unique voltage 
signals generated by ECUs as features of the deep support vector domain description model. However, 
both of these models [11], [12] have a low generalization capability as they require specific knowledge 
of CAN data. A one-class compound classifier was used in [13] to detect CAN bus attacks. But this 
detected only 45–65% of attacks. The authors then suggested an ensemble of detection methods to 
overcome the problems that arise when using only one classifier. In [14], the authors proposed a long 
short-term memory (LSTM) autoencoder to detect CAN bus anomalies. This was trained using a 
payload of legitimate CAN frames. Reconstruction error was used to distinguish benign from malicious 
frames. A major limitation of this model, however, was the slow computation time due to the complex 
model architecture. LSTM-based deep learning model, which utilized the linear embedding of the CAN 
payload, was used in [15] to detect contextual anomalies in the payload. The authors examined the 
effect of context by removing the embedding layer of the proposed model. They observed that context 
and embedding helped to slightly improve the performance. However, this model recorded only around 
95% accuracy for all attacks on one dataset. CAN payload signals were selected as the features of the 
deep learning-based IDS proposed in [16]. Similarly, the authors in [17] used sensor values in their 
deep neural network-based IDS. However, both of these approaches [16], [17] require the DBC files 
or knowledge about the CAN payload, which could limit the generalization capability of the proposed 
algorithms. 
 
Frequency or time-based IDSs utilize the timing of CAN frames or the sequential nature of the IDs. In 
[18], the authors developed a context-aware anomaly detector for monitoring cyberattacks on the CAN 
bus using sequence modelling. The authors of [19] proposed an anomaly detection algorithm by 
modelling the normal behaviour of the CAN bus considering the recurring pattern of CAN IDs. This 
is equivalent to 2-grams in the N-gram based model used in [18]. While N-gram based algorithms can 
capture the context, this often leads to high computational overhead as N increases. A time-based IDS 
was proposed by [20] to detect CAN injection attacks. In [21], the authors used an LSTM model to 
predict the next ID and compare it with the actual ID to identify anomalous frames. However, this 
approach achieved only 60% accuracy. A CAN bus attack detection framework was proposed by [22] 
utilising both a rule-based and a supervised LSTM model. This ensemble model outperformed the 
individual models. In general, the deep learning-based IDSs discussed above demonstrated a higher 
detection capability than the other models. However, supervised learning-based models might have 
low generalization capability to other attacks and vehicles as they learn the attack pattern of the 
particular dataset. Further, these models have high detection latency due to their complex deep learning 
architecture. To address these problems, this work presents a lightweight ensemble model that uses a 
shallow neural network. 
 



 
 

3.  BACKGROUND 

A. Controller Area Network (CAN Bus) 
CAN is a broadcast-based communication protocol developed by Bosch for in-vehicle communication 
[23]. ECUs of modern vehicles communicate using high-speed and low-speed CAN buses as their 
network protocol. Time-critical modules such as engine control and transmission control are connected 
to a high-speed CAN bus, whereas less time-critical modules such as door control and light control are 
connected to a low-speed CAN bus. A CAN bus data frame includes several fields: the CAN ID 
(arbitration field) is used to prioritize the messages and is capable of handling concurrent messages; a 
CAN payload contains the actual information (data) that is to be transmitted over the network; and 
other fields include start of frame (SOF), control field (DLC), cyclic redundancy code (CRC), 
acknowledge field (ACK), and end of frame (EOF). These fields are depicted in Figure 1, with their 
respective bit-lengths. When a node (ECU) is ready to transmit a frame, it checks the status of the bus, 
and if the bus is idle, it transmits the frame. The addresses of the transmitting node and the receiving 
node are not included in the frame. Instead, it uses CAN IDs unique to the transmitting nodes. As a 
result of the broadcast nature of the network, all nodes in the CAN network can receive the frame. 
Based on the ID of the frame, other nodes in the network decide to accept or ignore the frame. The 
priority-based arbitration scheme ensures that the highest priority IDs (lower IDs) get bus access when 
multiple nodes simultaneously transmit frames onto the CAN bus. The lowest priority IDs, on the other 
hand, must wait until the bus becomes idle. 
 

 

B. CAN Bus Vulnerabilities and Attacks 
The CAN bus is designed to provide robust, efficient, simple and low-cost in-vehicle communication 
without paying much attention to security-related features [13]. Therefore, by design, it is vulnerable 
to cyberattacks. Since the CAN bus uses no authentication, any node could transmit a message with an 
ID that belongs to another node. In addition, CAN frames are not encrypted due to real-time 
communication requirements. This allows attackers to collect and analyse CAN data (via sniffing). The 
broadcast nature of the CAN bus also transmits frames to all nodes connected to the CAN bus. 
Therefore, by utilising this property, a compromised ECU can not only monitor and listen to all CAN 
frames transmitted through the CAN bus but also send any frame to the network. Furthermore, attackers 
can use the ID-based priority scheme to inject their messages with the highest priority IDs to create a 
denial-of-service (DoS) attack, consequently making communication services unavailable to other IDs. 
 
Some of the common CAN attack types are: DoS [24], fuzzing [25], replay [24], spoofing [26] and 
masquerade attacks [27]. In a fuzzing attack, a large number of random frames are injected into the 
CAN bus. Replay attacks re-send previously recorded frames at different times. When an attacker 
targets (injects) frames with specific CAN IDs, it is called a spoofing attack. In a masquerade attack, a 
compromised node impersonates another node to send malicious frames. All of these attacks have the 
potential to cause unexpected or harmful effects to a vehicle depending on the attacker’s purpose. 

Figure 1: CAN bus data frame. Example values are given for ID, DLC and data fields 

 



 
 

C. CAN Bus Data Analysis 
We analysed CAN ID data to understand the anomalous traffic patterns, both benign and malicious. 
To do this, we used a publicly available dataset, the Real ORNL Automotive Dynamometer (ROAD) 
CAN Intrusion dataset [10]. Figure 2 shows a five-second snapshot of a targeted ID attack. In this 
attack, the targeted ID is 0D0. What stands out in this figure is the periodic behaviour of the IDs. Each 
node transmits frames at a fixed interval, as observed in [6]. In the ROAD dataset, 104 out of 106 IDs 
exhibit similar behaviour. However, the injected ID causes a change in this pattern during the targeted 
ID attack. This can be observed in the shaded area (attack period) for 0D0. This changes the fixed 
transmission interval of IDs compared to that of the period of normal driving. In addition, it could 
create new ID sequences resulting from new frames appearing in an unusual context. For example, it 
might introduce a new ID sequence, such as ‘6E0 0D0 0D0’, which was not observed during normal 
driving conditions. 
 

 
Figure 3 shows a five-second snapshot of a masquerade attack for the same ID (0D0). In this case, it 
does not significantly change the ID transmission frequency [10]. However, a masquerade attack might 
cause a slight deviation (shift of time) in the frame transmission time due to the difficulty of time 
synchronization with the legitimate ECU [28]. In addition, since a masquerade attack stops the frame 
transmission of a legitimate ECU, there might be a brief period where there is no frame transmitted 
with the targeted ID. A CAN bus transmits a large number of messages per second. Therefore, even a 
slight deviation from the normal driving scenario could create new ID sequences. For example, ID 0D0 
might have the sequence ‘ODO 6E0 0C0’ during normal driving, whereas a slight time shift or absence 
of frames could create a new sequence of ‘6E0 0D0 0C0’. This behaviour (frequency and sequence 
change) can be observed for all injection and masquerade attacks for the ROAD dataset. 

 
After analysing both benign and attack CAN traffic, our main finding is that most CAN IDs exhibit 
periodic behaviour that creates a finite set of ID sequences for a fixed window size (e.g. a window of 
ten consecutive IDs). Attacks on the CAN bus are likely to change the periodic behaviour of the IDs 

Figure 2: Frame transmission of a targeted ID (0D0) attack. The shaded area represents the attack period. This 
represents only a subset of the 106 CAN IDs 

 

Figure 3: Frame transmission of a masquerade attack (0D0). The shaded area represents the attack period. This 
represents only a subset of the 106 CAN IDs 



 
 

and hence create new sequences. In addition, injection attacks change the time between the consecutive 
attack IDs. Carefully trained machine learning algorithms can detect these subtle changes in CAN ID 
streams. These findings provide the basis for the proposed IDS. 
 

4.  PROPOSED CAN-CID MODEL 

A. Threat Model and Datasets 
In this work, we used the ROAD [10] dataset to test the proposed model. Additionally, to evaluate the 
generalization capability of the model, we used two other publicly available datasets, the car-hacking 
dataset for intrusion detection (HCRL CH) [29] and the survival analysis dataset for automobile IDS 
(HCRL SA) [30]. The ROAD dataset is considered the first open CAN bus dataset with advanced types 
of real attacks that have physically verified effects on the vehicle [10]. Data was collected through the 
OBD-II port in a fully compromised ECU mode while driving the vehicle on a dynamometer or on the 
road. The dataset includes 12 ambient (benign) datasets representing different driving activities, 
including drive, accelerate, decelerate, reverse, brake, cruise control, turn signals and anomalous but 
benign driving activities such as unbuckling a seatbelt and opening doors while driving. Attacks are 
categorized as fabrication attacks, suspension attacks and masquerade attacks. Fabrication attacks 
include fuzzing and targeted ID attacks. Attacks shown in Table I were selected to investigate the 
algorithm’s detection capability. 
 
Table I: High-frequency injection (fabrication) attacks on the ROAD dataset 

Attack Attack technique Consequence 
Fuzzing  Inject random IDs and arbitrary 

payloads 
Wide variety of unexpected 
results 

Correlated signal attack  Inject false wheel speed values (ID -
6E0) 

Stop the car due to different 
pairwise wheel speeds 

Max speedometer attack Change one byte of payload to 
maximum (FF) value (ID-0D0) 

Display false speedometer 
value  

Reverse light on attack  Change one bit of payload (ID-0D0) Reverse lights do not reflect 
what gear the car is using 

Reverse light off attack  Change one bit of payload (ID-0D0) Reverse lights do not reflect 
what gear the car is using 

 
For fabrication attacks, the attacker injects a frame with a targeted ID immediately after a legitimate 
frame appears. The aim of this is to get the vehicle to ignore the legitimate message and accept the 
injected frame to change the vehicle state. In addition to the above attacks, this dataset includes a 
masquerade version of each ID fabrication attack. The masquerade version removes the legitimate 
target ID frames relevant to each injected frame in post-processing to simulate a masquerade attack. 
These realistic attacks required message injections for each attack. Such an approach was trialled by 
[6] in their experimental attacks. Message injections lead to changes in the transmission interval of the 
targeted ID and new sequences being created. Hence, even a payload attack might require an attacker 
to inject frames into the CAN bus [6]. This requirement makes an ID sequence or frequency-based 
model suitable for detecting the majority of payload attacks without using the payload related features. 
The HCRL CH dataset includes DoS, fuzzy and spoofing (RPM and gear) attacks, whereas the HCRL 
SA (KIA Soul) dataset includes flooding, fuzzy and malfunction (targeted ID) attacks. 

B. CAN Centre ID Prediction Task  
This work is inspired by the work of [18] and the continuous bag-of-words (CBOW) model architecture 
proposed by [31]. In [18], the authors used N-gram distributions to build the CAN ID sequence model. 
The underlying concept of this work is a mathematical model (n-gram) that can be trained to learn the 



 
 

CAN message sequences and predict subsequent elements in the sequence. The authors showed that 
the occurrence of an event (ID) can be determined based on a short history. However, this might depend 
on the number of nodes in the network (equivalent to the number of unique words in a language). Thus 
for a larger number of nodes, a longer history may be required as a larger number of unique sequences 
could be created for the selected window size. N-gram models are inefficient for higher values of N 
because this will result in more combinations. This approach [18] is similar to the next word prediction 
task of NLP given the previous words (context). The Word2vec model proposed by [31] learns the 
word vectors (word embeddings) by learning to predict the centre (target) word given the context. This 
model architecture is shown in Figure 4. The CBOW model is expected to learn the word vectors 
representing the middle word’s meaning and the context words. However, the main objective of the 
CBOW model is not to predict the words but to learn accurate word vectors that encode semantic 
relationships for all the words in the corpus. Then, the learned word vectors can be used in many 
language models with specific deep learning architectures. 
 
Figure 4: Continuous bag-of-words (CBOW) architecture to predict the centre word given the previous and 
next words as the context 

 
 
Using the target word’s historical and future words as the input words improved the centre word 
prediction [31]. We expect the same behaviour for CAN ID sequences. To elaborate on this, as an 
example, take a driving scenario of a right-hand turn at an intersection. Possible events in the vehicle 
are activate signal lights, decelerate (apply brake), stop, accelerate and turn right. If we want to predict 
the third event, which is stop in this case, we can use only previous events as the context or use previous 
and future events as the context. These two tasks can be formulated as follows: 

 
𝑥! = {𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒	𝑠𝑖𝑔𝑛𝑎𝑙	𝑙𝑖𝑔ℎ𝑡𝑠, 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒}, 𝑦 = {𝑠𝑡𝑜𝑝}      (1) 
 
𝑥" = {𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒	𝑠𝑖𝑔𝑛𝑎𝑙	𝑙𝑖𝑔ℎ𝑡𝑠, 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒, 𝑡𝑢𝑟𝑛	𝑟𝑖𝑔ℎ𝑡}, 𝑦 = {𝑠𝑡𝑜𝑝}  (2) 
 
The second task (equation 2) can be used to make the prediction (stop) with higher accuracy, as the 
number of possible events for the centre (middle) event will be equal to or fewer compared to the first 
task. For example, ‘accelerate’ would be another probable prediction for equation 1. But in the second 
task, given accelerate in the context, it will make the prediction of ‘stop’ more accurate. Therefore, we 
use the CBOW architecture to infer the context for CAN ID sequences. One limitation of the CBOW 
approach is that it must wait for a few messages to see if the target (centre) ID is malicious. However, 
considering the CAN ID transmission rate, this will be a minimal amount of time (around a 0.005 s 
delay for 10 IDs). Additionally, continuous message injections are required to execute such an attack 



 
 

[6], which increases the chances of detecting the attack before the attacker can take physical control of 
the vehicle. Hence, CBOW is a viable option for detecting attacks in CAN ID sequences. 

C. CAN-CID Architecture 
The order of the words is not considered in the CBOW model. However, the order is highly important 
to identify anomalous frames in CAN ID sequences. A recurrent neural network (RNN) model can 
capture the temporal patterns of sequential data [32]. But RNN models do not have a long-term memory 
due to the vanishing gradient problem. To address this issue, LSTM was introduced. LSTM consists 
of three gates: input, forget, and output. In contrast, GRU is a variant of LSTM with only two gates: 
reset and update. The simple structure reduces the matrix multiplication, making GRU more 
computationally efficient with low memory overhead [32]. Due to these properties, which are ideal for 
resource-constrained environments, we use a GRU layer to capture the temporal pattern of CAN ID 
sequences. 
 
Figure 5 represents the architecture of the proposed model. We use a sliding window of size 𝑛 (number 
of IDs) within a large sliding window of size 𝑇 (time), where 𝑛 is an odd number. Let 𝑁 be the total 
number of unique IDs. For the GRU-based model, the input to the embedding layer is a sequence of 
vectorised CAN IDs of size (𝑛 − 1). The centre (middle) ID (𝑛 + 1) 2⁄  is used as the target of the 
prediction. As mentioned earlier, a single GRU layer is used as the hidden layer to learn the temporal 
patterns. A dropout layer is used to reduce the overfitting and improve the model generalization 
capability. The output layer is a dense layer that outputs softmax probabilities for 𝑁 IDs. During the 
training, 𝑊! , 	𝑊" , and 𝑊#  are updated using backpropagation. 𝑃$  which represents the softmax 
probability of the target ID (A) is compared with the pre-defined ID-based threshold. If the predicted 
probability is less than the threshold, the target ID is flagged as a weak anomaly; otherwise it is flagged 
as a benign ID. In the same way, the time-based model compares the time between two consecutive 
target IDs (𝛿𝑡$) with the pre-defined time-based thresholds (minimum and maximum time). If 𝛿𝑡$ is 
outside the thresholds, the current ID is flagged as a weak anomaly; otherwise it is flagged as a benign 
ID. This process continues for all IDs in window 𝑇. The OR operator is used to combine the two models 
as an ensemble model. Finally, an anomaly threshold is used to classify the window of time 𝑇 as a 
malicious sequence or a benign sequence. This process continues for all IDs in the CAN ID stream by 
sliding the window of time 𝑇. The sliding window overlaps for (𝑛 − 1) IDs, to make predictions for 
the missing IDs from the previous window. 
 
Figure 5: Ensemble model architecture 

 
 
 



 
 

D. Threshold Estimation 
The proposed model uses three thresholds. 
1) ID-Based Threshold 

A sample of the benign dataset was used to estimate thresholds. Softmax probabilities were 
calculated for all IDs in the benign sample. The minimum values of each ID were selected as the 
ID-based thresholds to minimize the false positives of the ensemble model. We assumed a zero 
probability of values less than the minimum values for benign data. Figure 6 shows a softmax 
probability distribution for a selected ID. 
 

Figure 6: Softmax probability distribution of ID 580 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2) Time-Based Threshold 
We used the training dataset to define the time-based threshold. For each ID, we calculated the 
time difference between two consecutive frames for the benign dataset. Then, the minimum and 
maximum values for each ID were used as the minimum and maximum thresholds. Figure 7 
shows an inter-arrival time distribution for a selected ID. 
 

 Figure 7: Inter-arrival time distribution for ID 580 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

3) Anomaly Threshold 
We used ID-based and time-based thresholds to identify weak anomalies. Counting weak 
anomalies over a window (𝑇) helps to minimize false positives. Hence, we defined the anomaly 
thresholds (ℇ) to identify the windows as attack or benign. We assigned labels for each window 
(0 for benign and 1 for attack) as the ground truth and used the same to evaluate the model 
performance. Equation 5 was used to calculate ground truth, and equation 6 was used for window 
prediction. The GRU-based model is likely to identify several frames besides the actual injected 
frame as weak anomalies because the injected frame might create several new (anomalous) CAN 
ID sequences. 
 
𝑋% =

&'()*+	-.	/00/12	.+/(*3	45	6
6-0/7	5'()*+	-.	.+/(*3	45	6

         (3) 
 
𝑋8 =

&'()*+	-.	8*/2	/5-(/74*3	45	6
6-0/7	5'()*+	-.	.+/(*3	45	6

       (4) 
 

𝐺𝑟𝑜𝑢𝑛𝑑	𝑡𝑟𝑢𝑡ℎ = H
1, 𝑋% ≥ ℇ
0, 𝑋% < ℇ        (5) 

 

𝑊𝑖𝑛𝑑𝑜𝑤	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = H1, 𝑋8 ≥ ℇ
0, 𝑋8 < ℇ       (6) 

 

5.  EXPERIMENT RESULTS AND PERFORMANCE EVALUATION 

A. Experimental Setting 
We selected ten benign datasets for training and two benign datasets for ID-based threshold estimation. 
To create the sliding window, ten IDs were selected from both sides of the target ID (𝑛 = 10). In 
addition, the attack datasets were split into 100-millisecond windows to identify attack windows, which 
can be considered smaller windows for near-real-time detection. This resulted in about 250 IDs per 
prediction window. To make the model more lightweight, only 32 GRU nodes were used in the hidden 
layer, followed by a 0.2 dropout layer. The ROAD, HCRL CH and HCRL SA datasets include 106, 27 
and 45 nodes respectively (𝑁). Based on a grid search, we observed that small anomaly thresholds 
(e.g. 0.01) work well with a large 𝑁 and large anomaly thresholds (e.g. 0.1) work well with a small 𝑁. 
Hence, for the ROAD dataset, we set the anomaly threshold to 0.01, and for the HCRL datasets, the 
threshold was set to 0.1. A grid search was used for hyperparameter optimization, and the same 
parameters used in the ROAD dataset were also used for both HCRL datasets. We selected the best 
smallest hyperparameters for 𝑛, the number of GRU nodes and the embedding size. The proposed 
algorithm was implemented using Python 3.8 with TensorFlow and the Keras library. Experiments 
were run on a MacBook Pro 2.2 GHz Intel Core i7 with 16 GB RAM. 
 
We compared CAN-CID with two baseline methods, that is, the N-gram-based model (N-gram) [18] 
and the transition matrix-based model (transition matrix) [19], where both models detect anomalies 
based on observed benign ID sequences. In addition, we used a variant of CAN-CID, referred to as 
CAN-NID (CAN Next ID prediction). CAN-NID is similar to CAN-CID, except the GRU model takes 
context IDs from one side (previous IDs). Optimized hyperparameters for the CAN-NID model include 
16 previous IDs as the context, two hidden GRU layers with 128 nodes and a dense output layer with 
a softmax activation function. We also fine-tuned both baseline models for each dataset for a fair 
comparison with our model. To evaluate the model performance, we used F1-Score, false-positive rate 
(FPR) and false-negative rate (FNR) [33]. 

B. Results and Discussion 
The detection accuracy of the GRU model of CAN-CID depends on the centre word prediction 
accuracy. We expect accurate predictions for benign frames and inaccurate predictions for attack 



 
 

frames to detect weak anomalies. To identify the optimum context from both sides of the centre ID, 
we tested various IDs by targeting the highest prediction accuracy for a sample from the benign dataset. 
Similarly, we tested a number of previous IDs for the CAN-NID GRU model. As shown in Figure 8, 
the CAN-CID model achieved 80% accuracy, whereas CAN-NID achieved a maximum of 61% 
accuracy for 16 context IDs. This highlights the effectiveness of the CBOW approach for CAN 
sequences. However, achieving 100% prediction accuracy is not realistic due to randomness incurred 
from jitters [28]. Considering the computational efficiency, we selected ten context words (79%) from 
each side for CAN-CID and 12 context words (60%) for CAN-NID. 
 
Figure 8: Comparison of centre ID (CAN-CID model) and next ID (CAN-NID model) prediction accuracy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Word embedding size is another critical factor for accuracy and computational efficiency. Therefore, 
we tested the CAN-CID model with different embedding sizes as shown in Figure 9. We observed that 
accuracy improved up to an embedding size of 50. Therefore, we used 50 as the embedding size for 
both GRU models. 
 
Figure 9: Accuracy improvement with word embedding size for the CAN-CID model 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

The F1-Scores, FPRs and FNRs of the CAN-CID and CAN-NID models and two baseline models are 
presented in Table II and III for the ROAD dataset. Table II and III report fabrication and masquerade 
attacks respectively, where the best performance (F1-Score) for each attack is shown in bold. As shown 
in the tables, the CAN-CID model outperforms the two baseline models for every attack and achieved 
a 100% F1-Score for six attacks. More importantly, this model achieved 0% or very small FPR and 
FNR values, which are critical aspects for an IDS. The CAN-NID model also outperformed baseline 
models for seven attacks. A fuzzing attack is relatively easy to detect due to illegal ID injection, and 
therefore, all models except the transition model achieved an F1-Score of 100%. However, correlated 
signal and correlated signal masquerade attack detection rates are low compared to other attacks. This 
might be because they target the second most frequent ID which has a slightly random transmission 
rate compared to other IDs. Therefore, it creates more sequences, which results in more valid sequences 
being created, even for attack frames. This is a limitation of the proposed model whereby it achieves a 
lower detection rate for attacks that target IDs with random transmission rates. However, a greater 
number of CAN IDs have fixed transmission rates [6], and therefore, CAN-CID can detect the majority 
of injection attacks. Further, since CAN IDs have fixed transmission rates, most ID sequences are likely 
to be independent of driving behaviours. This makes the model resilient to such changes. However, 
one of the limitations of the proposed model is that the CAN-CID model requires greater variety in the 
benign data to minimise the unseen CAN ID sequences and time intervals. 
 
Table II: Comparison of CAN-CID and CAN-NID models and baseline models detection performance of 
fabrication attacks (ROAD dataset) 

Attack  Model F1-Score FPR FNR 
Fuzzing Transition matrix 71% 48% 0% 

N-gram 100% 0% 0% 
CAN-NID 100% 0% 0% 
CAN-CID 100% 0% 0% 

Correlated signal Transition matrix 90% 10% 6% 
N-gram 27% 0% 100% 
CAN-NID 78% 21% 42% 
CAN-CID 91% 2% 12% 

Max speedometer Transition matrix 79% 27% 0% 
N-gram 89% 0% 28% 
CAN-NID 100% 0% 0% 
CAN-CID 100% 0% 0% 

Reverse light on Transition matrix 63% 57% 0% 
N-gram 87% 0% 29% 
CAN-NID 94% 1% 2% 
CAN-CID 100% 0% 0% 

Reverse light off Transition matrix 92% 9% 0% 
N-gram 94% 0% 16% 
CAN-NID 100% 0% 7% 
CAN-CID 100% 0% 0% 

 
 

 
 
 
 
 



 
 

Table III: Comparison of CAN-CID and CAN-NID models and baseline models detection performance of 
masquerade attacks (ROAD dataset) 

Attack  Model F1-Score FPR FNR 
Correlated signal masquerade Transition matrix 38% 10% 86% 

N-gram 27% 0% 100% 
CAN-NID 64% 22% 57% 
CAN-CID 89% 4% 10% 

Max speedometer masquerade Transition matrix 79% 27% 0% 
N-gram 99% 0% 1% 
CAN-NID 86% 0% 36% 
CAN-CID 100% 0% 0% 

Reverse light on masquerade Transition matrix 63% 57% 0% 
N-gram 87% 0% 29% 
CAN-NID 94% 1% 2% 
CAN-CID 99% 0% 1% 

Reverse light off masquerade Transition matrix 92% 9% 0% 
N-gram 94% 0% 16% 
CAN-NID 95% 0% 7% 
CAN-CID 100% 0% 0% 

 
Figure 10 and 11 present comparisons of the attack detection performance of time-based and GRU 
models. Figure 10 shows fabrication attacks, whereas Figure 11 shows masquerade attacks. Typically, 
the time-based model is capable of detecting fabrication attacks with a higher F1-Score, whereas it 
fails to detect masquerade attacks. In contrast, the GRU model is capable of detecting both types of 
attacks with a higher F1-Score. 
 
Figure 10: Time-based and GRU model detection performance for fabrication attacks 

 
 
 
 
 
 
 
 
 



 
 

Figure 11: Time-based and GRU model detection performance for masquerade attacks 

 
 
As mentioned earlier, we used two HCRL datasets to evaluate the generalization capability of the 
proposed model. The results from these two datasets are similar to the results we achieved from the 
ROAD dataset (see Table IV and V). The CAN-CID and CAN-NID models outperformed both baseline 
models. However, both baseline models showed comparatively better results for the HCRL datasets. 
This might be due to the HCRL datasets having a limited number of IDs, thus limiting the number of 
CAN ID sequences created compared to the ROAD dataset, which would help achieve higher 
predictability. 
 
Table IV: Comparison of attack detection performance of the CAN-CID and CAN-NID models and the 
baseline models for the HCRL CH dataset 

Attack  Model F1-Score FPR FNR 
DoS Transition matrix 75% 52% 0% 

N-gram 96% 10% 0% 
CAN-NID 97% 6% 0% 
CAN-CID 99% 1% 0% 

Fuzzy Transition matrix 91% 20% 0% 
N-gram 94% 14% 0% 
CAN-NID 97% 6% 0% 
CAN-CID 100% 0% 0% 

Gear Spoofing Transition matrix 98% 4% 0% 
N-gram 98% 4% 0% 
CAN-NID 99% 1% 1% 
CAN-CID 100% 0% 0% 

RPM Spoofing Transition matrix 86% 28% 0% 
N-gram 98% 4% 0% 
CAN-NID 99% 0% 2% 
CAN-CID 99% 0% 2% 

 
 

 



 
 

Table V: Comparison of attack detection performance of the CAN-CID and CAN-NID models and the baseline 
models for the HCRL SA dataset 

Attack  Model F1-Score FPR FNR 
Flooding Transition matrix 89% 28% 0% 

N-gram 99% 2% 0% 
CAN-NID 100% 0% 0% 
CAN-CID 100% 0% 0% 

Fuzzy Transition matrix 85% 28% 0% 
N-gram 99% 1% 0% 
CAN-NID 99% 1% 0% 
CAN-CID 100% 0% 0% 

Malfunction Transition matrix 68% 54% 0% 
N-gram 84% 28% 0% 
CAN-NID 91% 2% 17% 
CAN-CID 96% 0% 4% 

 

Detection latency is another criterion that we focused on improving as it is vital for moving vehicles. 
Table VI compares average detection latency for CAN-CID, CAN-NID and the two baseline models. 
The IDS monitors CAN traffic for 100 ms and gives the prediction in 10 ms. CAN-CID outperformed 
CAN-NID and the two baseline models. The small amount of time required for monitoring and 
prediction allows the vehicle driver or the vehicle itself to take appropriate countermeasures. Therefore, 
considering the detection capability and latency, the proposed algorithm is a practically deployable 
solution to detect cyberattacks on the CAN bus. Furthermore, using the CAN ID and time as the only 
features of the ensemble model improves the detection latency in a resource-constrained environment. 
Additionally, this model is likely to have a better generalization capability than a payload-based model 
as data (payload) specifications might change significantly across different vehicle makes and models. 
 
Table VI: Average detection latency comparison for a 100 ms prediction window 
 

Model Detection latency (ms) 

Transition matrix 36 
N-gram 452 
CAN-NID 12 
CAN-CID 10 

 
 

6.  CONCLUSION AND FUTURE WORKS 
Increased connectivity and complexity in modern automobiles create more attack surfaces that could 
allow attackers to take control of automobiles. Cyberattacks on moving vehicles are highly dangerous 
and could result in serious injury or even deadly consequences. Therefore, there is a dire need to 
implement defence mechanisms against these attacks. Due to the complexity of CAN data and the 
different characteristics of different types of potential attacks, this work demonstrates that the solution 
requires an ensemble model with an optimized model for each field of CAN data. 
 
Hence, we proposed CAN-CID, a novel context-aware ensemble IDS for CAN bus security. Our 
experiments showed that the ensemble model improved the overall attack detection performance and 
outperformed two baselines and a variant of the proposed model. Additionally, the proposed CAN-
CID model has a low detection latency, which is necessary for a deployable in-vehicle IDS. We also 



 
 

identified potential future work to improve the model. We propose adding another model to the 
ensemble model to monitor the CAN payload and thus detect more advanced attacks, which would not 
change ID sequences or frequencies. Secondly, the IDS should be capable of adapting to new data. 
Therefore, we plan to work on introducing streaming learning capability. Finally, we plan to deploy 
the IDS and test it under real-world conditions. These additions to the proposed model will help keep 
moving vehicles secure from an even wider range of in-vehicle network cyberattacks. 
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