48 research outputs found

    Heterogeneous Wireless Networks QoE Framework

    Get PDF
    With the appearance of small cells and the move of mobile networks towards an all-IP 4G network, the convergence of these with Wi-Fi becomes a possibility which at the same time opens the path to achieve what will become 5G connectivity. This thesis describes the evolution of the different mainstream wireless technologies deployed around the world and how they can interact, and provides tools to use this convergence to achieve the foreseen requirements expected in a 5G environment and the ideal user experience. Several topics were identified as needing attention: handover between heterogeneous networks, security of large numbers of small cells connected via a variety of backhaul technologies to the core networks, edge content distribution to improve latency, improvement of the service provided in challenging radio environments and interference between licensed and unlicensed spectrum. Within these topics a contribution was made to improve the current status by analysing the unaddressed issues and coming up with potential improvements that were tested in trials or lab environment. The main contributions from the study have been: 1. A patent in the wireless security domain that reuses the fact that overlapping coverage is and will be available and protects against man in the middle attacks (Section 5.3). 2. A patent in the content distribution domain that manages to reduce the cost to deliver content within a mobile network by looking for the shortest path to the requested content (Section 6.3). 3. Improvements and interoperability test of 802.21 standard which improves the seamlessness of handovers (Section 4.2). 4. 2 infill trials which focus on how to improve the user experience in those challenging conditions (Sections 7.2 and 7.3). 5. An interference study with Wi-Fi 2.4GHz for the newly allocated spectrum for 4G (Section 8.2). This thesis demonstrates some of the improvements required in current wireless networks to evolve towards 5G and achieve the coverage, service, user experience, latency and security requirements expected from the next generation mobile technology

    Cooperation Strategies for Enhanced Connectivity at Home

    Get PDF
    WHILE AT HOME , USERS MAY EXPERIENCE A POOR I NTERNET SERVICE while being connected to their 802.11 Access Points (APs). The AP is just one component of the Internet Gateway (GW) that generally includes a backhaul connection (ADSL, fiber,etc..) and a router providing a LAN. The root cause of performance degradation may be poor/congested wireless channel between the user and the GW or congested/bandwidth limited backhaul connection. The latter is a serious issue for DSL users that are located far from the central office because the greater the distance the lesser the achievable physical datarate. Furthermore, the GW is one of the few devices in the home that is left always on, resulting in energy waste and electromagnetic pollution increase. This thesis proposes two strategies to enhance Internet connectivity at home by (i) creating a wireless resource sharing scheme through the federation and the coordination of neighboring GWs in order to achieve energy efficiency while avoiding congestion, (ii) exploiting different king of connectivities, i.e., the wired plus the cellular (3G/4G) connections, through the aggregation of the available bandwidth across multiple access technologies. In order to achieve the aforementioned strategies we study and develop: • A viable interference estimation technique for 802.11 BSSes that can be implemented on commodity hardware at the MAC layer, without requiring active measurements, changes in the 802.11 standard, cooperation from the wireless stations (WSs). We extend previous theoretical results on the saturation throughput in order to quantify the impact in term of throughput loss of any kind of interferer. We im- plement and extensively evaluate our estimation technique with a real testbed and with different kind of interferer, achieving always good accuracy. • Two available bandwidth estimation algorithms for 802.11 BSSes that rely only on passive measurements and that account for different kind of interferers on the ISM band. This algorithms can be implemented on commodity hardware, as they require only software modifications. The first algorithm applies to intra-GW while the second one applies to inter-GW available bandwidth estimation. Indeed, we use the first algorithm to compute the metric for assessing the Wi-Fi load of a GW and the second one to compute the metric to decide whether accept incoming WSs from neighboring GWs or not. Note that in the latter case it is assumed that one or more WSs with known traffic profile are requested to relocate from one GW to another one. We evaluate both algorithms with simulation as well as with a real test-bed for different traffic patterns, achieving high precision. • A fully distributed and decentralized inter-access point protocol for federated GWs that allows to dynamically manage the associations of the wireless stations (WSs) in the federated network in order to achieve energy efficiency and offloading con- gested GWs, i.e, we keep a minimum number of GWs ON while avoiding to create congestion and real-time throughput loss. We evaluate this protocol in a federated scenario, using both simulation and a real test-bed, achieving up to 65% of energy saving in the simulated setting. We compare the energy saving achieved by our protocol against a centralized optimal scheme, obtaining close to optimal results. • An application level solution that accelerates slow ADSL connections with the parallel use of cellular (3G/4G) connections. We study the feasibility and the potential performance of this scheme at scale using both extensive throughput measurement of the cellular network and trace driven analysis. We validate our solution by implementing a real test bed and evaluating it "in the wild, at several residential locations of a major European city. We test two applications: Video-on-Demand (VoD) and picture upload, obtaining remarkable throughput increase for both applications at all locations. Our implementation features a multipath scheduler which we compare to other scheduling policies as well as to transport level solution like MTCP, obtaining always better result

    Cooperative Energy-efficient Management of Federated WiFi Networks

    Get PDF
    The proliferation of overlapping, always-on IEEE 802.11 access points (APs) in urban areas, can cause inefficient bandwidth usage and energy waste. Cooperation among APs could address these problems by allowing underused devices to hand over their wireless stations to nearby APs and temporarily switch off, while avoiding to overload a BSS and thus offloading congested APs. The federated house model provides an appealing backdrop to implement cooperation among APs. In this paper, we outline a distributed framework that assumes the presence of a multipurpose gateway with AP capabilities in every household. Our framework allows cooperation through the monitoring of local wireless resources and the triggering of offloading requests toward other federated gateways. Our simulation results show that, in realistic residential settings, the proposed framework yields an energy saving between 45 and 86 percent under typical usage patterns, while avoiding congestion and meeting user expectations in terms of throughput. Furthermore, we show the feasibility and the benefits of our framework with a real test-bed deployed on commodity hardware

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Collaborative Traffic Offloading for Mobile Systems

    Get PDF
    Due to the popularity of smartphones and mobile streaming services, the growth of traffic volume in mobile networks is phenomenal. This leads to huge investment pressure on mobile operators' wireless access and core infrastructure, while the profits do not necessarily grow at the same pace. As a result, it is urgent to find a cost-effective solution that can scale to the ever increasing traffic volume generated by mobile systems. Among many visions, mobile traffic offloading is regarded as a promising mechanism by using complementary wireless communication technologies, such as WiFi, to offload data traffic away from the overloaded mobile networks. The current trend to equip mobile devices with an additional WiFi interface also supports this vision. This dissertation presents a novel collaborative architecture for mobile traffic offloading that can efficiently utilize the context and resources from networks and end systems. The main contributions include a network-assisted offloading framework, a collaborative system design for energy-aware offloading, and a software-defined networking (SDN) based offloading platform. Our work is the first in this domain to integrate energy and context awareness into mobile traffic offloading from an architectural perspective. We have conducted extensive measurements on mobile systems to identify hidden issues of traffic offloading in the operational networks. We implement the offloading protocol in the Linux kernel and develop our energy-aware offloading framework in C++ and Java on commodity machines and smartphones. Our prototype systems for mobile traffic offloading have been tested in a live environment. The experimental results suggest that our collaborative architecture is feasible and provides reasonable improvement in terms of energy saving and offloading efficiency. We further adopt the programmable paradigm of SDN to enhance the extensibility and deployability of our proposals. We release the SDN-based platform under open-source licenses to encourage future collaboration with research community and standards developing organizations. As one of the pioneering work, our research stresses the importance of collaboration in mobile traffic offloading. The lessons learned from our protocol design, system development, and network experiments shed light on future research and development in this domain.Yksi mobiiliverkkojen suurimmista haasteista liittyy liikennemäärien eksponentiaaliseen kasvuun. Tämä verkkoliikenteen kasvu johtuu pitkälti suosituista videopalveluista, kuten YouTube ja Netflix, jotka lähettävät liikkuvaa kuvaa verkon yli. Verkon lisääntynyt kuormitus vaatii investointeja verkon laajentamiseksi. On tärkeää löytää kustannustehokkaita tapoja välittää suuressa mittakaavassa sisältöä ilman mittavia infrastruktuuri-investointeja. Erilaisia liikennekuormien ohjausmenetelmiä on ehdotettu ratkaisuksi sisällönvälityksen tehostamiseen mobiiliverkoissa. Näissä ratkaisuissa hyödynnetään toisiaan tukevia langattomia teknologioita tiedonvälityksen tehostamiseen, esimerkiksi LTE-verkosta voidaan delegoida tiedonvälitystä WiFi-verkoille. Useimmissa kannettavissa laitteissa on tuki useammalle langattomalle tekniikalle, joten on luonnollista hyödyntää näiden tarjoamia mahdollisuuksia tiedonvälityksen tehostamisessa. Tässä väitöskirjassa tutkitaan liikennekuormien ohjauksen toimintaa ja mahdollisuuksia mobiiliverkoissa. Työssä esitetään uusi yhteistyöpohjainen liikennekuormien ohjausjärjestelmä, joka hyödyntää päätelaitteiden ja verkon tilannetietoa liikennekuormien optimoinnissa. Esitetty järjestelmä ja arkkitehtuuri on ensimmäinen, joka yhdistää energiankulutuksen ja kontekstitiedon liikennekuormien ohjaukseen. Väitöskirjan keskeisiä tuloksia ovat verkon tukema liikennekuormien ohjauskehikko, yhteistyöpohjainen energiatietoinen optimointiratkaisu sekä avoimen lähdekoodin SoftOffload-ratkaisu, joka mahdollistaa ohjelmistopohjaisen liikennekuormien ohjauksen. Esitettyjä järjestelmiä arvioidaan kokeellisesti kaupunkiympäristöissä älypuhelimia käyttäen. Työn tulokset mahdollistavat entistä energiatehokkaammat liikennekuormien ohjausratkaisut ja tarjoavat ideoita ja lähtökohtia tulevaan 5G kehitystyöhön

    Intrusion detection and management over the world wide web

    Get PDF
    As the Internet and society become ever more integrated so the number of Internet users continues to grow. Today there are 1.6 billion Internet users. They use its services to work from home, shop for gifts, socialise with friends, research the family holiday and manage their finances. Through generating both wealth and employment the Internet and our economies have also become interwoven. The growth of the Internet has attracted hackers and organised criminals. Users are targeted for financial gain through malware and social engineering attacks. Industry has responded to the growing threat by developing a range defences: antivirus software, firewalls and intrusion detection systems are all readily available. Yet the Internet security problem continues to grow and Internet crime continues to thrive. Warnings on the latest application vulnerabilities, phishing scams and malware epidemics are announced regularly and serve to heighten user anxiety. Not only are users targeted for attack but so too are businesses, corporations, public utilities and even states. Implementing network security remains an error prone task for the modern Internet user. In response this thesis explores whether intrusion detection and management can be effectively offered as a web service to users in order to better protect them and heighten their awareness of the Internet security threat

    White Paper for Research Beyond 5G

    Get PDF
    The documents considers both research in the scope of evolutions of the 5G systems (for the period around 2025) and some alternative/longer term views (with later outcomes, or leading to substantial different design choices). This document reflects on four main system areas: fundamental theory and technology, radio and spectrum management; system design; and alternative concepts. The result of this exercise can be broken in two different strands: one focused in the evolution of technologies that are already ongoing development for 5G systems, but that will remain research areas in the future (with “more challenging” requirements and specifications); the other, highlighting technologies that are not really considered for deployment today, or that will be essential for addressing problems that are currently non-existing, but will become apparent when 5G systems begin their widespread deployment
    corecore