3,033 research outputs found

    Using a Probabilistic Class-Based Lexicon for Lexical Ambiguity Resolution

    Full text link
    This paper presents the use of probabilistic class-based lexica for disambiguation in target-word selection. Our method employs minimal but precise contextual information for disambiguation. That is, only information provided by the target-verb, enriched by the condensed information of a probabilistic class-based lexicon, is used. Induction of classes and fine-tuning to verbal arguments is done in an unsupervised manner by EM-based clustering techniques. The method shows promising results in an evaluation on real-world translations.Comment: 7 pages, uses colacl.st

    A Machine learning approach to POS tagging

    Get PDF
    We have applied inductive learning of statistical decision trees and relaxation labelling to the Natural Language Processing (NLP) task of morphosyntactic disambiguation (Part Of Speech Tagging). The learning process is supervised and obtains a language model oriented to resolve POS ambiguities. This model consists of a set of statistical decision trees expressing distribution of tags and words in some relevant contexts. The acquired language models are complete enough to be directly used as sets of POS disambiguation rules, and include more complex contextual information than simple collections of n-grams usually used in statistical taggers. We have implemented a quite simple and fast tagger that has been tested and evaluated on the Wall Street Journal (WSJ) corpus with a remarkable accuracy. However, better results can be obtained by translating the trees into rules to feed a flexible relaxation labelling based tagger. In this direction we describe a tagger which is able to use information of any kind (n-grams, automatically acquired constraints, linguistically motivated manually written constraints, etc.), and in particular to incorporate the machine learned decision trees. Simultaneously, we address the problem of tagging when only small training material is available, which is crucial in any process of constructing, from scratch, an annotated corpus. We show that quite high accuracy can be achieved with our system in this situation.Postprint (published version

    An integrated architecture for shallow and deep processing

    Get PDF
    We present an architecture for the integration of shallow and deep NLP components which is aimed at flexible combination of different language technologies for a range of practical current and future applications. In particular, we describe the integration of a high-level HPSG parsing system with different high-performance shallow components, ranging from named entity recognition to chunk parsing and shallow clause recognition. The NLP components enrich a representation of natural language text with layers of new XML meta-information using a single shared data structure, called the text chart. We describe details of the integration methods, and show how information extraction and language checking applications for realworld German text benefit from a deep grammatical analysis
    corecore