
An Integrated Architecture for Shallow and Deep Processing

Berthold Crysmann, Anette Frank, Bernd Kiefer, Stefan Müller,
Günter Neumann, Jakub Piskorski, Ulrich Schäfer, Melanie Siegel, Hans Uszkoreit,

Feiyu Xu, Markus Becker and Hans-Ulrich Krieger
DFKI GmbH

Stuhlsatzenhausweg 3
Saarbrücken, Germany
whiteboard@dfki.de

Abstract

We present an architecture for the integra-
tion of shallow and deep NLP components
which is aimed at flexible combination
of different language technologies for a
range of practical current and future appli-
cations. In particular, we describe the inte-
gration of a high-level HPSG parsing sys-
tem with different high-performance shal-
low components, ranging from named en-
tity recognition to chunk parsing and shal-
low clause recognition. The NLP com-
ponents enrich a representation of natu-
ral language text with layers of new XML
meta-information using a single shared
data structure, called the text chart. We de-
scribe details of the integration methods,
and show how information extraction and
language checking applications for real-
world German text benefit from a deep
grammatical analysis.

1 Introduction

Over the last ten years or so, the trend in application-
oriented natural language processing (e.g., in the
area of term, information, and answer extraction)
has been to argue that for many purposes, shallow
natural language processing (SNLP) of texts can
provide sufficient information for highly accurate
and useful tasks to be carried out. Since the emer-
gence of shallow techniques and the proof of their
utility, the focus has been to exploit these technolo-

gies to the maximum, often ignoring certain com-
plex issues, e.g. those which are typically well han-
dled by deep NLP systems. Up to now, deep natural
language processing (DNLP) has not played a sig-
nificant role in the area of industrial NLP applica-
tions, since this technology often suffers from insuf-
ficient robustness and throughput, when confronted
with large quantities of unrestricted text.

Current information extractions (IE) systems
therefore do not attempt an exhaustive DNLP analy-
sis of all aspects of a text, but rather try to analyse or
“understand” only those text passages that contain
relevant information, thereby warranting speed and
robustness wrt. unrestricted NL text. What exactly
counts as relevant is explicitly defined by means
of highly detailed domain-specific lexical entries
and/or rules, which perform the required mappings
from NL utterances to corresponding domain knowl-
edge. However, this “fine-tuning” wrt. a particular
application appears to be the major obstacle when
adapting a given shallow IE system to another do-
main or when dealing with the extraction of com-
plex “scenario-based” relational structures. In fact,
(Appelt and Israel, 1997) have shown that the cur-
rent IE technology seems to have an upper perfor-
mance level of less than 60% in such cases. It seems
reasonable to assume that if a more accurate analy-
sis of structural linguistic relationships could be pro-
vided (e.g., grammatical functions, referential rela-
tionships), this barrier might be overcome. Actually,
the growing market needs in the wide area of intel-
ligent information management systems seem to re-
quest such a break-through.

In this paper we will argue that the quality of cur-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14523591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

rent SNLP-based applications can be improved by
integrating DNLP on demand in a focussed manner,
and we will present a system that combines the fine-
grained anaysis provided by HPSG parsing with a
high-performance SNLP system into a generic and
flexible NLP architecture.

1.1 Integration Scenarios

Owing to the fact that deep and shallow technologies
are complementary in nature, integration is a non-
trivial task: while SNLP shows its strength in the
areas of efficiency and robustness, these aspects are
problematic for DNLP systems. On the other hand,
DNLP can deliver highly precise and fine-grained
linguistic analyses. The challenge for integration is
to combine these two paradigms according to their
virtues.

Probably the most straightforward way to inte-
grate the two is an architecture in which shallow and
deep components run in parallel, using the results of
DNLP, whenever available. While this kind of ap-
proach is certainly feasible for a real-time applica-
tion such as Verbmobil, it is not ideal for processing
large quantities of text: due to the difference in pro-
cessing speed, shallow and deep NLP soon run out
of sync. To compensate, one can imagine two possi-
ble remedies: either to optimize for precision, or for
speed. The drawback of the former strategy is that
the overall speed will equal the speed of the slow-
est component, whereas in case of the latter, DNLP
will almost always time out, such that overall preci-
sion will hardly be distinguishable from a shallow-
only system. What is thus called for is an integrated,
flexible architecture where components can play at
their strengths. Partial analyses from SNLP can be
used to identify relevant candidates for the focussed
use of DNLP, based on task or domain-specific crite-
ria. Furthermore, such an integrated approach opens
up the possibility to address the issue of robustness
by using shallow analyses (e.g., term recognition)
to increase the coverage of the deep parser, thereby
avoiding a duplication of efforts. Likewise, integra-
tion at the phrasal level can be used to guide the
deep parser towards the most likely syntactic anal-
ysis, leading, as it is hoped, to a considerable speed-
up.

shallow
NLP

components

NLP
deep

components internal repr.

layer
multi

chart

annot.

XML

external repr.
generic OOP

component
interface

WHAM

application

specification
input and

result

Figure 1: The WHITEBOARD architecture.

2 Architecture

The WHITEBOARD architecture defines a platform
that integrates the different NLP components by en-
riching an input document through XML annota-
tions. XML is used as a uniform way of represent-
ing and keeping all results of the various processing
components and to support a transparent software
infrastructure for LT-based applications. It is known
that interesting linguistic information —especially
when considering DNLP— cannot efficiently be
represented within the basic XML markup frame-
work (“typed parentheses structure”), e.g., linguistic
phenomena like coreferences, ambiguous readings,
and discontinuous constituents. The WHITEBOARD

architecture employs a distributed multi-level repre-
sentation of different annotations. Instead of trans-
lating all complex structures into one XML docu-
ment, they are stored in different annotation layers
(possibly non-XML, e.g. feature structures). Hyper-
links and “span” information together support effi-
cient access between layers. Linguistic information
of common interest (e.g. constituent structure ex-
tracted from HPSG feature structures) is available in
XML format with hyperlinks to full feature struc-
ture representations externally stored in correspond-
ing data files.

Fig. 1 gives an overview of the architecture of
the WHITEBOARD Annotation Machine (WHAM).
Applications feed the WHAM with input texts and
a specification describing the components and con-

figuration options requested. The core WHAM en-
gine has an XML markup storage (external “offline”
representation), and an internal “online” multi-level
annotation chart (index-sequential access). Follow-
ing the trichotomy of NLP data representation mod-
els in (Cunningham et al., 1997), the XML markup
contains additive information, while the multi-level
chart contains positional and abstraction-based in-
formation, e.g., feature structures representing NLP
entities in a uniform, linguistically motivated form.

Applications and the integrated components ac-
cess the WHAM results through an object-oriented
programming (OOP) interface which is designed
as general as possible in order to abstract from
component-specific details (but preserving shallow
and deep paradigms). The interfaces of the actu-
ally integrated components form subclasses of the
generic interface. New components can be inte-
grated by implementing this interface and specifying
DTDs and/or transformation rules for the chart.

The OOP interface consists of iterators that walk
through the different annotation levels (e.g., token
spans, sentences), reference and seek operators that
allow to switch to corresponding annotations on a
different level (e.g., give all tokens of the current
sentence, or move to next named entity starting
from a given token position), and accessor meth-
ods that return the linguistic information contained
in the chart. Similarily, general methods support
navigating the type system and feature structures of
the DNLP components. The resulting output of the
WHAM can be accessed via the OOP interface or as
XML markup.

The WHAM interface operations are not only
used to implement NLP component-based applica-
tions, but also for the integration of deep and shallow
processing components itself.

2.1 Components

2.1.1 Shallow NL component

Shallow analysis is performed by SPPC, a rule-
based system which consists of a cascade of
weighted finite–state components responsible for
performing subsequent steps of the linguistic anal-
ysis, including: fine-grained tokenization, lexico-
morphological analysis, part-of-speech filtering,
named entity (NE) recognition, sentence bound-

ary detection, chunk and subclause recognition,
see (Piskorski and Neumann, 2000; Neumann and
Piskorski, 2002) for details. SPPC is capable of pro-
cessing vast amounts of textual data robustly and ef-
ficiently (ca. 30,000 words per second in standard
PC environment). We will briefly describe the SPPC
components which are currently integrated with the
deep components.

Each token identified by a tokenizer as a poten-
tial word form is morphologically analyzed. For
each token, its lexical information (list of valid read-
ings including stem, part-of-speech and inflection
information) is computed using a fullform lexicon
of about 700,000 entries that has been compiled out
from a stem lexicon of about 120,000 lemmas. Af-
ter morphological processing, POS disambiguation
rules are applied which compute a preferred read-
ing for each token, while the deep components can
back off to all readings. NE recognition is based on
simple pattern matching techniques. Proper names
(organizations, persons, locations), temporal expres-
sions and quantities can be recognized with an av-
erage precision of almost 96% and recall of 85%.
Furthermore, a NE–specific reference resolution is
performed through the use of a dynamic lexicon
which stores abbreviated variants of previously rec-
ognized named entities. Finally, the system splits
the text into sentences by applying only few, but
highly accurate contextual rules for filtering implau-
sible punctuation signs. These rules benefit directly
from NE recognition which already performs re-
stricted punctuation disambiguation.

2.1.2 Deep NL component

The HPSG Grammar is based on a large–scale
grammar for German (Müller, 1999), which was
further developed in the VERBMOBIL project for
translation of spoken language (Müller and Kasper,
2000). After VERBMOBIL the grammar was adapted
to the requirements of the LKB/PET system (Copes-
take, 1999), and to written text, i.e., extended with
constructions like free relative clauses that were ir-
relevant in the VERBMOBIL scenario.

The grammar consists of a rich hierarchy of
5,069 lexical and phrasal types. The core grammar
contains 23 rule schemata, 7 special verb move-
ment rules, and 17 domain specific rules. All rule
schemata are unary or binary branching. The lexicon

contains 38,549 stem entries, from which more than
70% were semi-automatically acquired from the an-
notated NEGRA corpus (Brants et al., 1999).

The grammar parses full sentences, but also other
kinds of maximal projections. In cases where no full
analysis of the input can be provided, analyses of
fragments are handed over to subsequent modules.
Such fragments consist of maximal projections or
single words.

The HPSG analysis system currently integrated
in the WHITEBOARD system is PET (Callmeier,
2000). Initially, PET was built to experiment
with different techniques and strategies to process
unification-based grammars. The resulting sys-
tem provides efficient implementations of the best
known techniques for unification and parsing.

As an experimental system, the original design
lacked open interfaces for flexible integration with
external components. For instance, in the beginning
of the WHITEBOARD project the system only ac-
cepted fullform lexica and string input. In collabora-
tion with Ulrich Callmeier the system was extended.
Instead of single word input, input items can now
be complex, overlapping and ambiguous, i.e. essen-
tially word graphs. We added dynamic creation of
atomic type symbols, e.g., to be able to add arbitrary
symbols to feature structures. With these enhance-
ments, it is possible to build flexible interfaces to
external components like morphology, tokenization,
named entity recognition, etc.

3 Integration

Morphology and POS The coupling between the
morphology delivered by SPPC and the input needed
for the German HPSG was easily established. The
morphological classes of German are mapped onto
HPSG types which expand to small feature struc-
tures representing the morphological information in
a compact way. A mapping to the output of SPPC
was automatically created by identifying the corre-
sponding output classes.

Currently, POS tagging is used in two ways. First,
lexicon entries that are marked as preferred by the
shallow component are assigned higher priority than
the rest. Thus, the probability of finding the cor-
rect reading early should increase without excluding
any reading. Second, if for an input item no entry is

found in the HPSG lexicon, we automatically create
a default entry, based on the part–of–speech of the
preferred reading. This increases robustness, while
avoiding increase in ambiguity.

Named Entity Recognition Writing HPSG gram-
mars for the whole range of NE expressions etc. is
a tedious and not very promising task. They typi-
cally vary across text sorts and domains, and would
require modularized subgrammars that can be easily
exchanged without interfering with the general core.
This can only be realized by using a type interface
where a class of named entities is encoded by a gen-
eral HPSG type which expands to a feature structure
used in parsing. We exploit such a type interface for
coupling shallow and deep processing. The classes
of named entities delivered by shallow processing
are mapped to HPSG types. However, some fine-
tuning is required whenever deep and shallow pro-
cessing differ in the amount of input material they
assign to a named entity.

An alternative strategy is used for complex syn-
tactic phrases containing NEs, e.g., PPs describ-
ing time spans etc. It is based on ideas from
Explanation–based Learning (EBL, see (Tadepalli
and Natarajan, 1996)) for natural language analy-
sis, where analysis trees are retrieved on the basis
of the surface string. In our case, the part-of-speech
sequence of NEs recognised by shallow analysis is
used to retrieve pre-built feature structures. These
structures are produced by extracting NEs from a
corpus and processing them directly by the deep
component. If a correct analysis is delivered, the
lexical parts of the analysis, which are specific for
the input item, are deleted. We obtain a sceletal
analysis which is underspecified with respect to the
concrete input items. The part-of-speech sequence
of the original input forms the access key for this
structure. In the application phase, the underspeci-
fied feature structure is retrieved and the empty slots
for the input items are filled on the basis of the con-
crete input.

The advantage of this approach lies in the more
elaborate semantics of the resulting feature struc-
tures for DNLP, while avoiding the necessity of
adding each and every single name to the HPSG lex-
icon. Instead, good coverage and high precision can
be achieved using prototypical entries.

Lexical Semantics When first applying the origi-
nal VERBMOBIL HPSG grammar to business news
articles, the result was that 78.49% of the miss-
ing lexical items were nouns (ignoring NEs). In
the integrated system, unknown nouns and NEs can
be recognized by SPPC, which determines morpho-
syntactic information. It is essential for the deep sys-
tem to associate nouns with their semantic sorts both
for semantics construction, and for providing se-
mantically based selectional restrictions to help con-
straining the search space during deep parsing. Ger-
maNet (Hamp and Feldweg, 1997) is a large lexical
database, where words are associated with POS in-
formation and semantic sorts, which are organized in
a fine-grained hierarchy. The HPSG lexicon, on the
other hand, is comparatively small and has a more
coarse-grained semantic classification.

To provide the missing sort information when re-
covering unknown noun entries via SPPC, a map-
ping from the GermaNet semantic classification to
the HPSG semantic classification (Siegel et al.,
2001) is applied which has been automatically ac-
quired. The training material for this learning pro-
cess are those words that are both annotated with se-
mantic sorts in the HPSG lexicon and with synsets
of GermaNet. The learning algorithm computes a
mapping relevance measure for associating seman-
tic concepts in GermaNet with semantic sorts in the
HPSG lexicon. For evaluation, we examined a cor-
pus of 4664 nouns extracted from business news
that were not contained in the HPSG lexicon. 2312
of these were known in GermaNet, where they are
assigned 2811 senses. With the learned mapping,
the GermaNet senses were automatically mapped to
HPSG semantic sorts. The evaluation of the map-
ping accuracy yields promising results: In 76.52%
of the cases the computed sort with the highest rel-
evance probability was correct. In the remaining
20.70% of the cases, the correct sort was among the
first three sorts.

3.1 Integration on Phrasal Level

In the previous paragraphs we described strategies
for integration of shallow and deep processing where
the focus is on improving DNLP in the domain of
lexical and sub-phrasal coverage.

We can conceive of more advanced strategies for
the integration of shallow and deep analysis at the

length cover- complete LP LR 0CB
�

2CB
age match�

40 100 80.4 93.4 92.9 92.1 98.9�
40 99.8 78.6 92.4 92.2 90.7 98.5

Training: 16,000 NEGRA sentences
Testing: 1,058 NEGRA sentences

Figure 2: Stochastic topological parsing: results

level of phrasal syntax by guiding the deep syntac-
tic parser towards a partial pre-partitioning of com-
plex sentences provided by shallow analysis sys-
tems. This strategy can reduce the search space, and
enhance parsing efficiency of DNLP.

Stochastic Topological Parsing The traditional
syntactic model of topological fields divides basic
clauses into distinct fields: so-called pre-, middle-
and post-fields, delimited by verbal or senten-
tial markers. This topological model of German
clause structure is underspecified or partial as to
non-sentential constituent boundaries, but provides
a linguistically well-motivated, and theory-neutral
macrostructure for complex sentences. Due to its
linguistic underpinning the topological model pro-
vides a pre-partitioning of complex sentences that is
(i) highly compatible with deep syntactic structures
and (ii) maximally effective to increase parsing ef-
ficiency. At the same time (iii) partiality regarding
the constituency of non-sentential material ensures
the important aspects of robustness, coverage, and
processing efficiency.

In (Becker and Frank, 2002) we present a corpus-
driven stochastic topological parser for German,
based on a topological restructuring of the NEGRA
corpus (Brants et al., 1999). For topological tree-
bank conversion we build on methods and results
in (Frank, 2001). The stochastic topological parser
follows the probabilistic model of non-lexicalised
PCFGs (Charniak, 1996). Due to abstraction from
constituency decisions at the sub-sentential level,
and the essentially POS-driven nature of topologi-
cal structure, this rather simple probabilistic model
yields surprisingly high figures of accuracy and cov-
erage (see Fig.2 and (Becker and Frank, 2002) for
more detail), while context-free parsing guarantees
efficient processing.

The next step is to elaborate a (partial) map-
ping of shallow topological and deep syntactic struc-
tures that is maximally effective for preference-gui-

Topological Structure:
CL-V2

VF-TOPIC LK-FIN MF RK-t

NN VVFIN ADV NN PREP NN VVFIN

[�������	� [��
�����	����� Peter] [������
���� ißt] [��
 gerne Würstchen mit Kartoffelsalat] [������ -]]

Peter eats happily sausages with potato salad

Deep Syntactic Structure:

[��� [��� Peter] [��� [� ißt] [�	� gerne [��� [��� Würstchen [��� mit [��� Kartoffelsalat]]] [� ��� -]]]]]

Mapping:
CL-V2 ! CP, VF-TOPIC ! XP, LK-FIN ! V, " LK-FIN MF RK-t #�! C’, " MF RK-t #�! VP, RK-t ! V-t

Figure 3: Matching topological and deep syntactic structures

ded deep syntactic analysis, and thus, efficiency im-
provements in deep syntactic processing. Such a
mapping is illustrated for a verb-second clause in
Fig.3, where matching constituents of topological
and deep-syntactic phrase structure are indicated by
circled nodes. With this mapping defined for all sen-
tence types, we can proceed to the technical aspects
of integration into the WHITEBOARD architecture
and XML text chart, as well as preference-driven
HPSG analysis in the PET system.

4 Experiments

An evaluation has been started using the NEGRA
corpus, which contains about 20,000 newspaper sen-
tences. The main objectives are to evaluate the syn-
tactic coverage of the German HPSG on newspaper
text and the benefits of integrating deep and shallow
analysis. The sentences of the corpus were used in
their original form without stripping, e.g. parenthe-
sized insertions.

We extended the HPSG lexicon semi-
automatically from about 10,000 to 35,000
stems, which roughly corresponds to 350,000 full
forms. Then, we checked the lexical coverage
of the deep system on the whole corpus, which
resulted in 28.6% of the sentences being fully
lexically analyzed. The corresponding experiment
with the integrated system yielded an improved
lexical coverage of 71.4%, due to the techniques
described in section 3. This increase is not achieved
by manual extension, but only through synergy
between the deep and shallow components.

To test the syntactic coverage, we processed the
subset of the corpus that was fully covered lexically
(5878 sentences) with deep analysis only. The re-
sults are shown in table 4 in the second column. In

order to evaluate the integrated system we processed
20,568 sentences from the corpus without further ex-
tension of the HPSG lexicon (see table 4, third col-
umn).

Deep Integrated
sentences 20,568
avg. sentence length 16.83
avg. lexical ambiguity 2.38 1.98
avg. # analyses 16.19 18.53
analysed sentences 2,569 4,546
lexical coverage 28.6% 71.4%
overall coverage 12.5% 22.1%

Figure 4: Evaluation of German HPSG

About 10% of the sentences that were success-
fully parsed by deep analysis only could not be
parsed by the integrated system, and the number of
analyses per sentence dropped from 16.2% to 8.6%,
which indicates a problem in the morphology inter-
face of the integrated system. We expect better over-
all results once this problem is removed.

5 Applications

Since typed feature structures (TFS) in Whiteboard
serve as both a representation and an interchange
format, we developed a Java package (JTFS) that
implements the data structures, together with the
necessary operations. These include a lazy-copying
unifier, a subsumption and equivalence test, deep
copying, iterators, etc. JTFS supports a dynamic
construction of typed feature structures, which is im-
portant for information extraction.

5.1 Information Extraction

Information extraction in Whiteboard benefits both
from the integration of the shallow and deep analy-
sis results and from their processing methods. We
chose management succession as our application
domain. Two sets of template filling rules are
defined: pattern-based and unification-based rules.
The pattern-based rules work directly on the output
delivered by the shallow analysis, for example,

(1) Nachfolger von 1 $�%'&�(*)*+ +-,�./%10324
person out 1 5 .

This rule matches expressions like Nachfolger
von Helmut Kohl (successor of) which contains two
string tokens Nachfolger and von followed by a per-
son name, and fills the slot of person outwith the
recognized person name Helmut Kohl. The pattern-
based grammar yields good results by recognition
of local relationships as in (1). The unification-
based rules are applied to the deep analysis re-
sults. Given the fine-grained syntactic and seman-
tic analysis of the HPSG grammar and its robust-
ness (through SNLP integration), we decided to use
the semantic representation (MRS, see (Copestake
et al., 2001)) as additional input for IE. The reason
is that MRSs express precise relationships between
the chunks, in particular, in constructions involving
(combinations of) free word order, long distance de-
pendencies, control and raising, or passive, which
are very difficult, if not impossible, to recognize for
a pattern-based grammar. E.g., the short sentence
(2) illustrates a combination of free word order, con-
trol, and passive. The subject of the passive verb
wurde gebeten is located in the middle field and is
at the same time the subject of the infinitive verb
zu übernehmen. A deep (HPSG) analysis can recog-
nize the dependencies quite easily, whereas a pattern
based grammar cannot determine, e.g., for which
verb Peter Miscke or Dietmar Hopp is the subject.

(2) Peter Miscke following was Dietmar Hopp
asked, the development sector to take over.

Peter
Entwicklungsabteilung

Miscke
zu

zufolge
übernehmen.

wurde Dietmar Hopp

gebeten, die

“ According to Peter Miscke, Dietmar Hopp
was asked to take over the development
sector.”

We employ typed feature structures (TFS) as our
modelling language for the definition of scenario
template types and template element types. There-
fore, the template filling results from shallow and
deep analysis can be uniformly encoded in TFS. As a
side effect, we can easily adapt JTFS unification for
the template merging task, by interperting the par-
tially filled templates from deep and shallow anal-
ysis as constraints. E.g., to extract the relevant in-
formation from the above sentence, the following
unification-based rule can be applied:67777

8
PERSON IN �
DIVISION 9
MRS

68 PRED “übernehmen”
AGENT �
THEME 9

:;
:=<<<<;

5.2 Language checking

Another area where DNLP can support existing
shallow-only tools is grammar and controlled lan-
guage checking. Due to the scarce distribution of
true errors (Becker et al., to appear), there is a high
a priori probability for false alarms. As the num-
ber of false alarms decides on user-acceptance, pre-
cision is of utmost importance and cannot easily
be traded for recall. Current controlled language
checking systems for German, such as MULTILINT
(http://www.iai.uni-sb.de/en/multien.html) or FLAG
(http://flag.dfki.de), build exclusively on SNLP:
while checking of local errors (e.g. NP-internal
agreement, prepositional case) can be performed
quite reliably by such a system, error types involv-
ing non-local dependencies, or access to grammati-
cal functions are much harder to detect. The use of
DNLP in this area is confronted with several system-
atic problems: first, formal grammars are not always
available, e.g., in the case of controlled languages;
second, erroneous sentences lie outside the language
defined by the competence grammar, and third, due
to the sparse distribution of errors, a DNLP system
will spend most of the time parsing perfectly well-
formed sentences. Using an integrated approach, a
shallow checker can be used to cheaply identify ini-
tial error candidates, while false alarms can be elim-

inated based on the richer annotations provided by
the deep parser.

6 Discussion

In this paper we reported on an implemented sys-
tem called WHITEBOARD which integrates differ-
ent shallow components with a HPSG–based deep
system. The integration is realized through the
metaphor of textual annotation. To best of our
knowledge, this is the first implemented system
which integrates high-performance shallow process-
ing with an advanced deep HPSG–based analysis
system. There exists only very little other work that
considers integration of shallow and deep NLP using
an XML–based architecture, most notably (Grover
and Lascarides, 2001). However, their integration
efforts are largly limited to the level of POS tag in-
formation.

Acknowledgements

This work was supported by a research grant from
the German Federal Ministry of Education, Science,
Research and Technology (BMBF) to the DFKI
project WHITEBOARD, FKZ: 01 IW 002. Special
thanks to Ulrich Callmeier for his technical support
concerning the integration of PET.

References

D. Appelt and D. Israel. 1997. Building information ex-
traction systems. Tutorial during the 5th ANLP, Wash-
ington.

M. Becker and A. Frank. 2002. A Stochastic Topological
Parser of German. In Proceedings of COLING 2002,
Teipei, Taiwan.

M. Becker, A. Bredenkamp, B. Crysmann, and J. Klein.
to appear. Annotation of error types for german news-
group corpus. In Anne Abeillé, editor, Treebanks:
Building and Using Syntactically Annotated Corpora.
Kluwer, Dordrecht.

T. Brants, W. Skut, and H. Uszkoreit. 1999. Syntactic
Annotation of a German newspaper corpus. In Pro-
ceedings of the ATALA Treebank Workshop, pages 69–
76, Paris, France.

U. Callmeier. 2000. PET — A platform for experimenta-
tion with efficient HPSG processing techniques. Natu-
ral Language Engineering, 6 (1) (Special Issue on Ef-
ficient Processing with HPSG):99 – 108.

E. Charniak. 1996. Tree-bank Grammars. In AAAI-96.
Proceedings of the 13th AAAI, pages 1031–1036. MIT
Press.

A. Copestake, A. Lascarides, and D. Flickinger. 2001.
An algebra for semantic construction in constraint-
based grammars. In Proceedings of the 39th Annual
Meeting of the Association for Computational Linguis-
tics (ACL 2001), Toulouse, France.

A. Copestake. 1999. The (new) LKB system.
ftp://www-csli.stanford.edu/> aac/newdoc.pdf.

H. Cunningham, K. Humphreys, R. Gaizauskas, and
Y. Wilks. 1997. Software Infrastructure for Natu-
ral Language Processing. In Proceedings of the Fifth
ANLP, March.

A. Frank. 2001. Treebank Conversion. Converting
the NEGRA Corpus to an LTAG Grammar. In Pro-
ceedings of the EUROLAN Workshop on Multi-layer
Corpus-based Analysis, pages 29–43, Iasi, Romania.

C. Grover and A. Lascarides. 2001. XML-based data
preparation for robust deep parsing. In Proceedings of
the 39th ACL, pages 252–259, Toulouse, France.

B. Hamp and H. Feldweg. 1997. Germanet - a lexical-
semantic net for german. In Proceedings of ACL work-
shop Automatic Information Extraction and Building
of Lexical Semantic Resources for NLP Applications,
Madrid.

S. Müller and W. Kasper. 2000. HPSG analysis of
German. In W. Wahlster, editor, Verbmobil: Founda-
tions of Speech-to-Speech Translation, Artificial Intel-
ligence, pages 238–253. Springer-Verlag, Berlin Hei-
delberg New York.

S. Müller. 1999. Deutsche Syntax deklarativ. Head-
Driven Phrase Structure Grammar für das Deutsche.
Max Niemeyer Verlag, Tübingen.

G. Neumann and J. Piskorski. 2002. A shallow text pro-
cessing core engine. Computational Intelligence, to
appear.

J. Piskorski and G. Neumann. 2000. An intelligent text
extraction and navigation system. In Proceedings of
the RIAO-2000. Paris, April.

M. Siegel, F. Xu, and G. Neumann. 2001. Customiz-
ing germanet for the use in deep linguistic processing.
In Proceedings of the NAACL 2001 Workshop Word-
Net and Other Lexical Resources: Applications, Ex-
tensions and Customizations, Pittsburgh,USA, July.

P. Tadepalli and B. Natarajan. 1996. A formal frame-
work for speedup learning from problems and solu-
tions. Journal of AI Research, 4:445 – 475.

