
A Machine Learning Approach to POS Tagging

LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

{lluism,padro,horacio}@lsi.upc.es

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya
c/ Jordi Girona 1–3. Barcelona 08034, Catalonia
Tel: +34 3 4015652 Fax: +34 3 4017014

Editor:

Abstract. We have applied inductive learning of statistical decision trees and relaxation labelling
to the Natural Language Processing (NLP) task of morphosyntactic disambiguation (Part Of
Speech Tagging). The learning process is supervised and obtains a language model oriented to
resolve POS ambiguities. This model consists of a set of statistical decision trees expressing
distribution of tags and words in some relevant contexts. The acquired language models are
complete enough to be directly used as sets of POS disambiguation rules, and include more
complex contextual information than simple collections of n–grams usually used in statistical
taggers. We have implemented a quite simple and fast tagger that has been tested and evaluated
on the Wall Street Journal (WSJ) corpus with a remarkable accuracy. However, better results can
be obtained by translating the trees into rules to feed a flexible relaxation labelling based tagger.
In this direction we describe a tagger which is able to use information of any kind (n–grams,
automatically acquired constraints, linguistically motivated manually written constraints, etc.),
and in particular to incorporate the machine learned decision trees. Simultaneously, we address
the problem of tagging when only small training material is available, which is crucial in any
process of constructing, from scratch, an annotated corpus. We show that quite high accuracy
can be achieved with our system in this situation.

Keywords: Part of speech tagging, corpus–based and statistical language modeling, decision
trees induction, constraint satisfaction, relaxation labelling.



2 LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

1. Introduction

Part of Speech (POS) Tagging is a very well known Natural Language Processing
(NLP) problem which consists of assigning to each word of a text the proper mor-
phosyntactic tag in its context of appearance. The base of POS tagging is that
being many words ambiguous regarding their POS, in most cases they can be com-
pletely disambiguated taking into account an adequate context. For instance, in
the sample sentence presented in table 1, the word shot is disambiguated as a past
participle because it is preceded by the auxiliary was. Although in this case the
word is disambiguated simply by looking at the preceding tag, it must be taken into
account that the preceding word could be ambiguous, or that the necessary context
could be much more complicated than merely the preceding word. Even, there are
cases in which the ambiguity is non resolvable using only morphosyntactic features
of the context, and require semantic and/or pragmatic knowledge.

Table 1. A sentence and its POS ambiguity –appearing tags, from the
Penn Treebank corpus, are described in appendix A–.

The DT first JJ time NN he PRP was VBD shot VBN in IN the DT

hand NN as IN he PRP chased VBD the DT robbers NNS outside RB . .

first time shot in hand as chased outside

JJ NN NN IN NN IN JJ IN
RB VB VBD RB VB RB VBD JJ

VBN RP VBN NN
RB

1.1. Existing Approaches to POS Tagging

Starting with the pioneer tagger TAGGIT (Greene & Rubin 1971), used for an
initial tagging of the Brown Corpus (BC), a lot of efforts have been devoted to
improve the quality of the tagging process in terms of accuracy and efficiency.
Existing taggers can be classified into three main groups according to the kind of
knowledge they use: linguistic, statistic and machine–learning family. Of course
some taggers are difficult to classify into these classes and hybrid approaches must
be considered.

Within the linguistic approach most systems codify the involved knowledge as a
set of rules (or constraints) written by linguists. The linguistic models range from a
few hundreds to several thousands of rules, and they usually require years of labor.
The work of the TOSCA group (Oostdijk 1991) and more recently the development
of Constraint Grammars in the Helsinki University (Karlsson et al. 1995) can be
considered the most important in this direction.

The most extended approach nowadays is the statistical family (obviously due
to the limited amount of human effort involved). Basically it consists of building
a statistical model of the language and using this model to disambiguate a word



A MACHINE LEARNING APPROACH TO POS TAGGING 3

sequence. The language model is coded as a set of co-occurrence frequencies for
different kinds of linguistic phenomena.

This statistical acquisition is usually found in the form of n-gram collection, that
is, the probability of a certain sequence of length n is estimated from its occurrences
in the training corpus.

In the case of POS tagging, usual models consist of tag bi–grams and tri–grams
(possible sequences of two or three consecutive tags, respectively). Once the n–gram
probabilities have been estimated, new examples can be tagged by selecting the tag
sequence with highest probability. This is roughly the technique followed by the
widespread Hidden Markov Model taggers. Although the form of the model and
the way of determining the sequence to be modeled can also be tackled in several
ways, most systems reduce the model to unigrams, bi–grams or tri–grams. The
seminal work in this direction is the CLAWS system (Garside et al. 1987), which
used bi–gram information and was the probabilistic version of TAGGIT. It was
later improved in (DeRose 1988) by using dynamic programming. The tagger by
(Church 1988) used a trigram model. Other taggers try to reduce the amount of
training data needed to estimate the model, and use the Baum-Welch re-estimation
algorithm (Baum 1972) to iteratively refine an initial model obtained from a small
hand–tagged corpus. This is the case of the Xerox tagger (Cutting et al. 1992)
and its successors. Those interested in the subject can find an excellent overview
in (Merialdo 1994).

Recent works try to not to limit the model to a fixed order n–gram by combin-
ing different order n–grams, morphological information, long–distance n–grams, or
triggering pairs (Rosenfeld 1994, Ristad & Thomas 1996, Saul & Pereira 1997).

Other works that can be placed in the statistical family are those of (Schmid 1994a)
which performs energy–function optimization using neural nets. Comparisons be-
tween linguistic and statistic taggers can be found in (Chanod & Tapanainen 1995,
Samuelsson & Voutilainen 1997).

Although the statistic approach involves some kind of learning, supervised or
unsupervised, of the parameters of the model from a training corpus, we place in
the machine-learning family only those systems that include more sophisticated
information than a n–gram model. Brill’s tagger (Brill 1992, Brill 1995) automat-
ically learns a set of transformation rules which best repair the errors commited
by a most–likely–tag tagger, (Samuelsson et al. 1996) acquire Constraint Grammar
rules from tagged corpora, (Daelemans et al. 1996) apply instance–based learning,
and finally, the work that we present here –based on (Màrquez & Rodŕıguez 1997)–
uses decision trees induced from tagged corpora, and combines the learned knowl-
edge in the hybrid approach described in (Padró 1996) which consists of applying
relaxation techniques over a set of constraints involving statistical, linguistic and
machine–learning–obtained information.

The accuracy reported by most statistic taggers overcomes 96–97% while linguistic
Constraint Grammars overcome 99% allowing a residual ambiguity of 1.026 tags per
word. These accuracy values are usually computed on a test corpus which has not
been used in the training phase. Some corpora commonly used as test benches are



4 LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

the Brown Corpus, the Wall Street Journal (WSJ) corpus and the British National
Corpus (BNC).

1.2. Motivation and Goals

Taking the above accuracy figures into account one may think that POS tagging
is a solved and closed problem being this accuracy perfectly acceptable for most
NLP systems. So why wasting time in designing yet another tagger? What does
an increasing of 0.3% in accuracy really mean?

There are several reasons for thinking that there is still work to do in the field of
automatic POS tagging.
When processing huge running texts, and considering an average length per sen-

tence of 25–30 words, if we admit an error rate of 3–4% then it follows that, on
average, each sentence contains one error. Since POS tagging is a very basic task
in most NLP understanding systems, starting with an error in each sentence could
be a severe drawback, specially considering that the propagation of this errors
could grow more than linearly. Other NLP tasks that are very sensitive to POS
disambiguation errors can be found in the domain of Word Sense Disambigua-
tion (Wilks & Stevenson 1997) and Information Retrieval (Krovetz 1997).

Another issue refers to the need of adapting and tuning taggers that have acquired
(or learned) their parameters from a specific corpus onto another one –which may
contain texts from other domains– trying to minimizing the cost of transportation.
The accuracy of taggers is usually measured against a test corpora of the same

characteristics than the corpus used for training. Nevertheless, no serious attempts
have been performed to evaluate the accuracy of taggers corpora with different
characteristics, or even domain-specific.

Finally, some specific problems must be addressed when applying taggers to other
languages than English. Beside the problems derived from the richer morphology
of some particular languages, there is a more general problem consisting of the lack
of large manually annotated corpora for training.
Although a bootstrapping approach can be carried out, using a low-accurate

tagger for producing annotated text that could be used then for learning a more
accurate model, the results of such approach are dubious and methods are needed
which achieve high accuracy, both on known and unknown words, with a small
high-quality training corpus.
In this direction, we are involved in a project for tagging Spanish and Catalan

corpora (over 5M words) with limited linguistic resources, that is, departing from
a manually tagged core of a size not greater than 50,000 words.
For the sake of comparability the experiments reported here are performed over a

reference corpus of English. However we fairly believe that qualitative results could
be extrapolated to Spanish or Catalan.

The paper is organized as follows: In section 2 we describe the application domain,
the language model learning algorithm and the model evaluation. In sections 3 and
4 we describe the language model application through two taggers: A decision tree



A MACHINE LEARNING APPROACH TO POS TAGGING 5

based tagger and a relaxation labelling based tagger, respectively. Comparative
results between them in the special case of using a small training corpus are reported
in section 5. Finally, the main conclusions and an overview of the future work can
be found in section 6.

2. Language Model Acquisition

To enable a computer system to process natural language, it is required that lan-
guage is modeled in some way, that is, that the phenomena occurring in language
are characterized and captured, in such a way that it can be used to predict or rec-
ognize future uses of language: (Rosenfeld 1994) defines language modeling as the
attempt to characterize, capture and exploit regularities in natural language, and
states that the need of language modeling arises from the great deal of variability
and uncertainty present in natural language.

As described in section 1, language models can be hand written, statistically
derived, or machine learned. In this paper we present the use of a machine learned
model combined with statistically acquired models. A testimonial use of hand
written models is also included.

2.1. Description of the Training Corpus and the Word Form Lexicon

We have used a portion of 1, 170, 000 words of the WSJ, tagged according to the
Penn Treebank tag set, to train and test the system. Its most relevant features are
the following.

The tag set contains 45 different tags1. About 36.5% of the words in the corpus are
ambiguous, with an ambiguity ratio of 2.44 tags/word over the ambiguous words,
1.52 overall.

The corpus contains 243 different ambiguity classes, but they are not all equally
important. In fact, only the 40 most frequent ambiguity classes cover 83.95% of
the occurrences in the corpus, while the 194 most frequent cover almost all of them
(>99.50%).

The training corpus has also been used to create a word form lexicon — of 49,206
entries — with the associated lexical probabilities for each word. These probabilities
are estimated simply by counting the number of times each word appears in the
corpus with each different tag. This simple information provides an heuristic for
a very naive disambiguation algorithm which consists of choosing for each word
its most probable tag according to the lexical probability. Figure 1 shows the
performance of a most–likely–tag tagger on the WSJ domain for different sizes of
the training corpus.

The reported figures refer to ambiguous words and they can be taken as a lower
bound for any tagger. More particularly, it is clear that for a training corpus bigger
than 400,000 words, the accuracy obtained is around 81–83%. However it is not
sensible to think that it could raise significantly by just adding more training corpus
for better estimating the lexical probabilities.



6 LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

60

65

70

75

80

85

0 20 40 60 80 100

% of Training Corpus

%accuracy

Most-Likely Tagger

Figure 1. Performance of the most likely heuristic related to the training set size

Due to errors in corpus annotation, the resulting lexicon has a certain amount
of noise. In order to partially reduce this noise, the lexicon has been filtered by
manually checking the entries for the most frequent 200 words in the corpus —note
that the 200 most frequent words in the corpus represent over half of it—. For
instance the original lexicon entry (numbers indicate frequencies in the training
corpus) for the very common word the was:

the CD 1 DT 47715 JJ 7 NN 1 NNP 6 VBP 1,

since it appears in the corpus with the six different tags: CD (cardinal), DT (de-
terminer), JJ (adjective), NN (noun), NNP (proper noun) and VBP (verb–personal
form). It is obvious that the only correct reading for the is determiner.

2.2. Learning Algorithm

Choosing, from a set of possible tags, the proper syntactic tag for a word in a par-
ticular context can be seen as a problem of classification. In this case, classes are
identified with tags. Decision trees, recently used in several NLP tasks, such as tag-
ging (Schmid 1994b, Màrquez & Rodŕıguez 1995, Daelemans et al. 1996), parsing
(McCarthy & Lehnert 1995, Magerman 1996), sense disambiguation (Mooney 1996)
and information extraction (Cardie 1994), are suitable for performing this task.

2.2.1. Ambiguity Classes and Statistical Decision Trees It is possible to group
all the words appearing in the corpus according to the set of their possible tags (i.e.
adjective–noun, adjective–noun–verb, adverb–preposition, etc.). We will call this
sets ambiguity classes. It is obvious that there exists an inclusion relation between
these classes (i.e. all the words that can be adjective, noun and verb, can be, in
particular, adjective and noun), so the whole set of ambiguity classes is viewed as
a taxonomy with a DAG structure. In figure 2 there is represented a part of this
taxonomy together with the inclusion relation, extracted from the WSJ.



A MACHINE LEARNING APPROACH TO POS TAGGING 7

NN-NP-RBNN-RB-VB NN-RB-UH

NN-RB

2_ambiguity

3_ambiguity

4_ambiguity

5_ambiguity

DT-NN-NP-PDT-RB

... ...

JJ-NN-RB-VB

JJ-NN-RB-RP-VB

IN-JJ-NN-RB

JJ-NN-RB

DT-JJ-NN-PDT-RB

JJ-NN-NP-RB JJ-NN-RB-UH

Figure 2. A part of the ambiguity-class taxonomy for the WSJ corpus

In this way we split the general POS tagging problem into one classification
problem for each ambiguity class.

We identify some remarkable features of our domain, comparing with common
classification domains in Machine Learning field. Firstly, there is a very large
number of training examples: up to 60,000 examples for a single tree. Secondly,
there is a quite significant noise in both the training and test data: WSJ corpus
contains about 2–3% of mistagged words.
The main consequence of the above characteristics, together with the fact that

simple context conditions cannot explain all ambiguities —see (Voutilainen 1994)—
, is that it is not possible to obtain trees to completely classify the training examples.
Instead, we aspire to obtain more adjusted probability distributions of the words
over their possible tags, conditioned to the particular contexts of appearance. So we
will use Statistical decision trees, instead of common decision trees, for representing
this information.

The algorithm we used to construct the statistical decision trees is a non–incremen-
tal supervised learning–from–examples algorithm of the TDIDT (Top Down Induc-
tion of Decision Trees) family. It constructs the trees in a top–down way, guided
by the distributional information of the examples (Quinlan 1993).

2.2.2. Training Set and Attributes For each ambiguity class a set of examples is
built by selecting from the training corpus all the occurrences of the words belonging
to this ambiguity class. The set of attributes that describe each example refer to the
part–of–speech tags of the neighbour words and to the orthography characteristics
of the word to be disambiguated.
For the common ambiguity classes the set of attributes consists of a window

covering 3 tags to the left and 2 tags to the right —this size as well as the final set of
attributes has been determined on an empirical basis— and the word–form. Table 2
shows real examples from the training set for the words that can be preposition and
adverb (IN-RB ambiguity class).



8 LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

Table 2. Training examples of the preposition–adverb ambi-
guity class

tag
−3 tag

−2 tag
−1 <word,tag> tag+1 tag+2

RB VBD IN <“after”,IN> DT NNS

VB DT NN <“as”,IN> DT JJ

DT JJ NNS <“as”,RB> RB IN

JJ NN NNS <“below”,RB> VBP DT

...

A new set of orthographic features is incorporated in order to deal with a partic-
ular ambiguity class, namely unknown words, that will be introduced in following
sections. See table 3 for a description of the whole set of attributes.

Table 3. List of considered attributes

Attribute Values Number of values

tag
−3 any tag in the Penn Treebank 45

tag
−2 ” ”

tag
−1 ” ”

tag+1 ” ”
tag+2 ” ”
word form any word of the ambiguity class <847
first character any printable ASCII character <190
last character ” ”
last-1 character ” ”
last-2 character ” ”
capitalized? {yes,no} 2
other capital letters? ” ”
multi–word? ” ”
has numeric character? ” ”

Attributes with many values (i.e. the word–form and pre/suffix attributes used
when dealing with unknown words) are treated by dynamically adjusting the num-
ber of values to the N most frequent and joining the rest in a new otherwise value.
The maximum number of values is fixed to 45 (the number of different tags) in
order to have more homogeneous attributes.

2.2.3. Attribute Selection Function After testing several attribute selection func-
tions, with no significant differences between them, we used an attribute selec-
tion function due to (López de Mántaras 1991), belonging to the information–based
family, which showed a slightly higher stability than the others. Roughly speaking,
it defines a distance measure between partitions and selects for branching the at-
tribute that generates the closest partition to the correct partition, namely the one
that joins together all the examples of the same class.



A MACHINE LEARNING APPROACH TO POS TAGGING 9

2.2.4. Branching Strategy Usual TDIDT algorithms consider a branch for each
value of the selected attribute. However other solutions are possible. For instance,
some systems perform a previous recasting of the attributes in order to have binary–
valued attributes (Magerman 1996). The motivation could be efficiency (dealing
only with binary trees has certain advantages), and avoiding excessive data frag-
mentation (when there is a large number of values). Although this transformation
of attributes is always possible, the resulting attributes lose their intuition and
direct interpretation, and explode in number. We have chosen a mixed approach
which consists of splitting for all values and afterwards joining the resulting subsets
into groups for which we have not enough statistical evidence of being different
distributions. This statistical evidence is tested with a χ2 test at a 95% confidence
level, with a previous smoothing of data in order to avoid zero probabilities.

2.2.5. Pruning the Tree In order to decrease the effect of over-fitting, we have
implemented a post pruning technique. In a first step the tree is completely ex-
panded and afterwards is pruned following a minimal cost–complexity criterion
(Breiman et al. 1984), using a comparatively small fresh part of the training set.
The alternative of smoothing the conditional probability distributions of the leaves
using fresh corpus (Magerman 1996) has been left out because we also wanted to
reduce the size of the trees. Experimental tests have shown that in our domain
the pruning process reduces tree sizes up to 50% and improves their accuracy in a
2–5%.

2.2.6. An Example Finally, we present a real example of a decision tree branch
learned for the class IN-RB which has a clear linguistic interpretation.

word form

P(      ) = 0.19RB
P(      ) = 0.81IN

1st right tag

P(      ) = 0.83IN
P(      ) = 0.17RB

P(      ) = 0.87RB
P(      ) = 0.13IN

2nd right tag

P(      ) = 0.987RB
P(      ) = 0.013IN

RB

"as" "As"

. . .

. . .

others

IN

others

others

. . .

Figure 3. Example of a decision tree branch

We can observe in figure 3 that each node in the path from the root to the
leaf contains a question on a concrete attribute and a probability distribution. In
the root it is the prior probability distribution of the class. In the other nodes it
represents the probability distribution conditioned to the answers of the questions
preceding the node. For example the second node says that the word as is more
commonly a preposition than an adverb, but the leaf says that the word as is almost
sure an adverb when it occurs immediately before another adverb and a preposition
(this is the case of as much as, as well as, as soon as, etc.).



10 LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

3. A Tree–Based Tagger

Using the model described in the previous section, we have implemented a reduc-
tionistic tagger in the sense of Constraint Grammars (Karlsson et al. 1995). In a
initial step a word-form frequency dictionary constructed from the training cor-
pus provides each input word with all possible tags with their associated lexical
probability. After that, an iterative process reduces the ambiguity (discarding low
probable tags) at each step until a certain stopping criterion is satisfied. The whole
process is represented in figure 4. See also table 4 for the real process of disam-
biguation of a part of the sentence presented in table 1.

Raw Text Classify Update Filter

Tagging Algorithm

Tree Base

Tagged TextTokenizer /
Frequency lexicon

Language Model

Figure 4. Architecture of the Tree–based tagger

More particularly, at each step and for each ambiguous word the work to be done
in parallel is:

1. Classify the word using the corresponding decision tree. The ambiguity of the
context (either left or right) during classification may generate multiple answers
for the questions of the nodes. In this case, all the paths are followed and the
result is taken as a weighted average of the results of all possible paths.

2. Use the resulting probability distribution to update the probability distribution
of the word (the updating of the probabilities is done by simply multiplying
previous probabilities per new probabilities coming from the tree).

3. Discard the tags with almost zero probability, that is, those with probabilities
lower than a certain discard boundary parameter.

After the stopping criterion is satisfied some words could still remain ambiguous.
Then there are two possibilities: 1) Choose the most-likely tag for each still ambigu-
ous word to completely disambiguate the text. 2) Accept the residual ambiguity
(for treating it in successive stages).
Note that a unique iteration forcing the complete disambiguation is equivalent

to use directly the trees as classifiers and results in a very efficient tagger, while
performing several steps reduces progressively the efficiency but takes advantage of
the statistical nature of the trees to get more accurate results.



A MACHINE LEARNING APPROACH TO POS TAGGING 11

Table 4. Example of disambiguation

... as he chased the robbers outside .

it.0 IN:0.83 PRP:1 JJ:0.25 DT:1 NNS:1 IN:0.54 .:1

RB:0.17 VBD:0.28 JJ:0.36

VBN:0.57 NN:0.06

RB:0.04

it.1 IN:0.96 PRP:1 VBD:0.97 DT:1 NNS:1 IN:0.01 .:1

RB:0.04 VBN:0.03 JJ:0.01

RB:0.98

it.2 IN:1 PRP:1 VBD:1 DT:1 NNS:1 RB:1 .:1

stop

Another important point is to determine an appropriate stopping criterion. First
experiments seem to indicate than the performance increases up to a unique max-
imum and then softly decreases as the number of iterations increases. For the
experiments reported in the following sections, the number of iterations was simply
fixed to three.

3.1. Using the Tagger

We divided the WSJ corpus in two parts: 1, 120, 000 words were used as a train-
ing/pruning set, and 50, 000 words as a fresh test set. We used a lexicon —described
in section 2.1— derived from training corpus, containing all possible tags for each
word, as well as their lexical probabilities. For the words in the test corpus not
appearing in the training set, we stored all possible tags, but no lexical probability
(i.e. assigning uniform distribution). This approach corresponds to the assump-
tion of having a morphological analyzer that provides all possible tags for unknown
words. In following experiments we will treat unknown words in a less informed
way.

From the 243 ambiguity classes the acquisition algorithm learned a base of 194
trees covering 99.5% of the ambiguous words and requiring about 500 Kb of storage.
The first four columns of table 5 contain information about the trees learned for the
ten most representative ambiguity classes. They present figures about the number
of examples used for learning each tree, their number of nodes and the estimation
of their error rate when tested on a sample of new examples. This last figure could
be taken as a rough estimation of the error of the trees when used in the Tree–
based tagger, though it is not exactly true, since here learning examples are fully
disambiguated in their context, while during tagging both contexts –left and right–
can be ambiguous.

The tagging algorithm, running on a SUN UltraSparc2, processed the test set at
a speed of >300 words/sec. Obtained results can be seen at a different levels of
granularity.



12 LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

Table 5. Tree information and number and percentages of error for the most
difficult ambiguity classes

Amb. class #exs #nodes %error TT–errors(%) ML–errors(%)

VBD-VBN 25,902 844 7.53% 91 (6.47%) 267 (18.98%)
NN-VB-VBP 24,465 576 3.32% 51 (4.02%) 255 (20.10%)
VB-VBP 17,690 313 3.67% 46 (4.97%) 226 (24.42%)
IN-RB-RP 26,964 99 7.13% 164 (9.14%) 210 (11.70%)
DT-IN-RB-WDT 8,312 271 6.07% 56 (12.08%) 187 (40.34%)
JJ-VBD-VBN 11,346 761 18.75% 95 (16.70%) 180 (31.64%)
JJ-NN 16,922 680 16.30% 122 (14.01%) 144 (16.54%)
NN-VBG 9,503 564 16.54% 58 (10.84%) 116 (21.68%)
NNS-VBZ 15,233 688 4.37% 44 (6.19%) 81 (11.40%)
JJ-RB 8,650 854 11.20% 48 (10.84%) 73 (16.49%)
NN-VB 14,614 221 1.11% 12 (1.63%) 67 (9.10%)

Total 179,601 5,871 787 1,806

• The performance of some of the learned trees is shown in last two columns of
table 5. The corresponding ambiguity classes concentrate the 62.5% of the errors
commited by a most–likely tagger (ML column). TT column shows the number
and percentage of errors commited by our tagger. On the one hand we can
observe a remarkable reduction in the number of errors (56.4%). On the other
hand it is useful to identify some problematic cases. For instance, JJ-NN seems
to be the most difficult ambiguity class, since the associated tree obtains only a
slight error reduction from the most-likely baseline tagger (15.3%) —this is not
surprising since semantic knowledge is necessary to fully disambiguate between
noun and adjective—. Results for the DT-IN-RB-WDT ambiguity reflect an over
estimation of the generalization performance of the tree —predicted error rate
(6.07%) is much lower than the real (12.08%)—. This may be indicating a
problem of over pruning.

• Global results are the following: when forcing a complete disambiguation the
resulting accuracy was 97.29%, while accepting residual ambiguity the accuracy
rate increased up to 98.22%, with an ambiguity ratio of 1.08 tags/word over
the ambiguous words and 1.026 tags/word overall. In other words, 2.75% of
the words remained ambiguous (over 96% of them retaining only 2 tags). In
(Màrquez & Rodŕıguez 1997) it is shown that these results are, at least, as good
as the results of a number of the non linguistically motivated state–of–the–art
taggers.

In addition, we present in figure 5 the performance achieved by our tagger with
increasing sizes of the training corpus. Results in accuracy are taken over all words.
The same figure includes most-likely results, which can be seen as a lower bound.
Following the intuition, we see that performance grows as the training set size

grows. The maximum is at 97.29%, as previously said.
A particular case of our interest is the performance achieved when using only

50,000 training examples. In this case the accuracy rate is 95.69%. This figure



A MACHINE LEARNING APPROACH TO POS TAGGING 13

89

90

91

92

93

94

95

96

97

98

0 20 40 60 80 100

#words(x10000)

%accuracy
Tree-based Tagger

Most-Likely Tagger

Figure 5. Performance of the tagger related to the training set size

has been calculated as the average of the results obtained by repeating the exper-
iment ten times on completely different training material. This mean value has a
confidence interval of ±0.17%, at 95% confidence rate.

We think this result is quite accurate. In order to corroborate this statement we
can compare our result on a training set of 100K examples (an accuracy of 96.16%)
with the figures reported by (Daelemans et al. 1996) for the IGTree Tagger (96.0%)
—IGTree system is a Memory–Based POS tagger which uses a tree representation
of the training set of examples—. So our results can be considered, at least, as
good as theirs.

Section 5 is devoted to further experiments on this issue.

3.2. Unknown words

Unknown words are those words not present in the lexicon (i.e. in our case, the
words not present in the training corpus). In the previous experiments we have
not considered the possibility of unknown words. Instead we have assumed a mor-
phological analyzer providing the set of possible tags with a uniform probability
distribution. However, this is not the most realistic scenario. Firstly, a morpho-
logical analyzer is not always present (due to the morphological simplicity of the
treated language, the existence of some efficiency requirements, or simply the lack
of resources). Secondly, if it is available, it surely has a certain error rate that
makes necessary to considered the noise it introduces. So it seems clear that we
have deal with unknown words in order to obtain more realistic figures about the
real performance of our tagger.

There exist several approaches to deal with real unknown words. On the one hand
one can assume that unknown words may potentially take any tag, excluding those
tags corresponding to closed categories (preposition, determiner, etc.), and try to
the disambiguate between them. On the other hand, other approaches includes a
pre–process that tries to guess the set of candidate tags for each unknown word to



14 LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

feed the tagger with this information. See (Padró 1997) for a detailed explanation
of the methods.

In our case we consider unknown words as words belonging to the ambiguity
class containing all possible tags corresponding to open categories (i.e. noun, proper
noun, verb, adjective, adverb, cardinal, etc.). The number of candidate tags sum to
20, so we state a classification problem with 20 different classes. We have estimated
the proportion of each of these tags appearing naturally in the WSJ as unknown
words and we have collected the examples from the training corpus according to
these proportions. The most frequent tag, NNP (proper noun), represents almost
30% of the sample. This fact establishes a lower bound for accuracy of 30% in this
domain (i.e. the performance that a most–likely–tag tagger would obtain).

We have used very simple information about the orthography and the context
of unknown words in order to improve these results. In particular, from an initial
set of 17 potential attributes, we have empirically decided the most relevant, which
turned out to be the following: 1) On the word form: the first letter, the last
three letters, and other four binary–valued attributes accounting for capitalization,
whether the word is a multi–word or not, and for the existence of some numeric
characters in the word. 2) On the context: just the preceding and the following
POS tags. Note that this set of attributes is fully described in table 3.

Table 6 shows the generalization performance of the trees learned from training
sets of increasing sizes up to 50,000 words. In order to compare these figures again
with the results of IGTree, we have implemented IGTree algorithms (including the
pruning step) and we have tested its performance exactly under the same condition
as ours. These results are also shown in table 6. Figures 6 and 7 contain the plots
corresponding to the same results.

Table 6. Generalization performance of the trees for
unknown words

#exs. Tree–based Tagger IGTree
accuracy(#nodes) accuracy(#nodes)

2,000 77.53% (224) 70.36% (627)

5,000 80.90% (520) 76.33% (1438)

10,000 83.30% (1112) 79.18% (2664)

20,000 85.82% (1644) 82.30% (4783)

30,000 87.32% (2476) 85.11% (6477)

40,000 88.00% (2735) 86.78% (8086)

50,000 88.12% (4056) 87.14% (9554)

Note that our system produces better quality trees than those of IGTree — we
measure this quality in terms of generalization performance (how well these trees fit
new examples) and size (number of nodes)—. On the one hand, we see in figure 6
that our generalization performance is better. On the other hand, figure 7 seems
to indicate that the growing factor in the number of nodes is linear in both cases,
but clearly lower in ours.



A MACHINE LEARNING APPROACH TO POS TAGGING 15

70

75

80

85

90

0 5 10 15 20 25 30 35 40 45 50

#words(x1000)

%accuracy

Tree-based Tagger
IGTree

Figure 6. Accuracy vs. training set size for unknown words

Of course, these conclusions have to be taken in the domain of small training sets
— the same plot in figure 7 suggests that the difference between the two methods
decreases as the training set size increases—. Using big corpora for training might
improve performance significantly. For instance, (Daelemans et al. 1996) report an
accuracy rate of 90.6% on unknown words when training with the whole WSJ (2
million words).

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40 45 50

#words(x1000)

#nodes
(x10) Tree-based Tagger

IGTree

Figure 7. Number of nodes of the trees for unknown words



16 LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

4. A Relaxation Labelling Based Tagger

We have described up to now a decision tree acquisition algorithm used to auto-
matically obtain a language model for POS tagging, and a classification algorithm
which uses the obtained model to disambiguate fresh texts.

Once the language model has been acquired, it would be useful that it could be
used by different systems and extended with new knowledge. In this section we
will describe a flexible tagger based on relaxation labelling methods, which enables
the use of models coming from different sources, as well as their combination and
cooperation.

Algorithm

Bigrams
Trigrams

Manually 
written

constraints

Tagged CorpusLabelling

constraints
Tree-based

Relaxation

...

Raw Corpus

Lexicon

Language Model

Tagging Algorithm

Figure 8. Architecture of the relaxation labelling based tagger

The tagger we present has the architecture described in figure 8: A unique al-
gorithm uses a language model consisting of constraints obtained from different
knowledge sources.

Relaxation is a generic name for a family of iterative algorithms which perform
function optimization, based on local information. They are closely related to
neural nets (Torras 1989) and gradient step (Larrosa & Meseguer 1995b).

Although relaxation operations had been long used in engineering fields to solve
systems of equations (Southwell 1940), they didn’t got their biggest success until
(Waltz 1975, Rosenfeld et al. 1976) applied their extension to symbolic domain –
relaxation labelling– to constraint propagation field, specially in low-level vision
problems.

Relaxation labelling is a technique that can be used to solve consistent labelling
problems (CLPs) –see (Larrosa & Meseguer 1995a)–. A consistent labelling prob-
lem consists of, given a set of variables, assigning to each variable a value compatible
with the values of the other ones, satisfying –to the maximum possible extent– a
set of compatibility constraints.

In the Artificial Intelligence field, relaxation has been mainly used in computer
vision –since it is where it was first used– to address problems such as corner and
edge recognition or line and image smoothing (Richards et al. 1981, Lloyd 1983).
Nevertheless, many traditional AI problems can be stated as a labelling prob-



A MACHINE LEARNING APPROACH TO POS TAGGING 17

lem: the traveling salesman problem, n-queens, or any other combinatorial problem
(Aarts & Korst 1987).

The utility of the algorithm to perform NLP tasks was pointed out in the work
by (Pelillo & Refice 1994, Pelillo & Maffione 1994), where POS tagging was used
as a toy problem to test some methods to improve the computation of constraint
compatibility coefficients for relaxation processes. Nevertheless, the first application
to a real NLP problems, on unrestricted text is the work presented in (Padró 1996,
Màrquez & Padró 1997, Padró 1997, Voutilainen & Padró 1997).
From out point of view, the most remarkable feature of the algorithm is that it

can deal with any kind of constraints, thus the model can be improved by adding
any constraints available and it makes the tagging algorithm independent of the
complexity of the model. The used constraints may come from different sources:
statistical acquisition, machine learned models or hand coding.

4.1. The Algorithm

Although in this section the relaxation algorithm is described from a general point
of view, its application to POS tagging is straightforwardly performed considering
each word as a variable and each of its possible POS tags as a label.

Let V = {v1, v2, . . . , vN} be a set of variables (words).
Let Ti = {ti

1
, ti

2
, . . . , timi

} be the set of possible labels (POS tags) for variable vi
(where mi is the number of different labels that are possible for vi).
Let C be a set of constraints between the labels of the variables. Each constraint

is a compatibility value for a combination of pairs variable–label.

0.53 [(v1, A)(v3, B)] binary constraint (e.g. bi–gram)
0.29 [(v1, A)(v3, B)(v6, C)] ternary constraint (e.g. tri–gram)

The first constraint states that the combination of variable v1 having label A,
and variable v3 having label B has a compatibility value of 0.53. Similarly, the
second constraint states the compatibility value for the three pairs variable–value
it contains.
Constraints can be of any order, so we can define the compatibility value for

combinations of any number of variables (obviously we can have combinations of
at most N variables).

The aim of the algorithm is to find a weighted labelling such that global consis-
tency is maximized.
A weighted labelling is a weight assignment for each possible label of each variable:

P = (p1, p2, . . . , pN ) where each pi is a vector containing a weight for each
possible label of vi, that is: p

i = (pi
1
, pi

2
, . . . , pimi

)

Since relaxation is an iterative process, the weights vary in time. We will note
the weight for label j of variable i at time n as pij(n), or simply pij when the time
step is not relevant.



18 LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

Maximizing global consistency is defined as maximizing for each variable vi, (1 ≤
i ≤ N), the average support for that variable, which is defined as the weighted sum
of the support received by each of its possible labels, that is:

mi∑

j=1

pij × Sij

where Sij is the support received by that pair from the context.

The support for a pair variable–label (Sij) expresses how compatible is the assig-
nation of label j to variable i with the labels of neighbouring variables, according
to the constraint set.

Although several support functions may be used, we chose the following one,
which defines the support as the sum of the influence of every constraint on a label.

Sij =
∑

r∈Rij

Inf(r)

where Rij and Inf(r) are defined as follows:
Rij is the set of constraints on label j for variable i, i.e. the constraints formed

by any combination of variable–label pairs that includes the pair (vi, t
i
j).

Inf(r) = Cr × pr1k1
(m) × . . . × prdkd

(m), is the product of the current weights for

the labels appearing in the constraint except (vi, t
i
j) (representing how applicable

the constraint is in the current context) multiplied by Cr which is the constraint
compatibility value (stating how compatible the pair is with the context).

The performed global consistency maximization is a vector optimization. It
doesn’t maximize –as one might think– the sum of the supports of all variables. It
finds a weighted labelling such that any other choice wouldn’t increase the support
for any variable given –of course– that such a labelling exists. If such a labelling
does not exist, the algorithm will end in a local maximum.

The pseudo–code for the relaxation algorithm can be found in table 7. It consists
of the following steps:

1. Start in a random labelling P0. In out case, we select a better informed starting
point, which are the lexical probabilities for each word tag.

2. For each variable, compute the support that each label receives from the current
weights for the labels of the other variables (i.e. see how compatible is the
current weighting with the current weightings of the other variables, given the
set of constraints).

3. Update the weight of each variable label according to the support obtained by
each of them (that is, increase weight for labels with high support –greater than
zero–, and decrease weight for those with low support –lesser than zero–). The



A MACHINE LEARNING APPROACH TO POS TAGGING 19

chosen updating function in our case was:

pij(m+ 1) =
pij(m)× (1 + Sij)

ki∑

k=1

pik(m)× (1 + Sik)

4. iterate the process until a convergence criterion is met. The usual criterion is
waiting for no significant changes.

1. P := P0

2. repeat

3. for each variable vi

4. for each tj possible label for vi

5. Sij :=
∑

r∈Rij

Inf(r)

6. end for

7. pij(m+ 1) :=
pij(m)× (1 + Sij)

ki∑

k=1

pik(m)× (1 + Sik)

8. end for

9. until no more changes

Table 7. Pseudo code of the relaxation labelling algorithm.

The support computing and weight changing must be performed in parallel, to
avoid that changing a weight for a label would affect the support computation of
the others.

We could summarize this algorithm saying that at each time step, a variable
changes its label weights depending on how compatible is that label with the labels
of the other variables at that time step. If the constraints are consistent, this
process converges to a state where each variable has weight 1 for one of its labels
and weight 0 for all the others.

Note that the global consistency idea –defined as the maximization of the average
support received by each variable from the context– makes the algorithm robust:
The problem of having mutually incompatible constraints (there is no combination
of label assignations which satisfies all the constraints) is solved because relaxation
does not necessarily find an exclusive combination of labels –i.e. an unique label
for each variable–, but a weight for each possible label such that constraints are
satisfied to the maximum possible degree. This is specially useful in our case, since



20 LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

constraints will be automatically acquired, and different knowledge sources will be
combined, so constraints are likely not to be fully consistent.

Advantages of the algorithm are:

• Its highly local character (each variable can compute its new label weights
given only the state at previous time step). This makes the algorithm highly
parallelizable (we could have a processor to compute the new label weights for
each variable, or even a processor to compute the weight for each label of each
variable).

• Its expressiveness, since we state the problem in terms of constraints between
variable labels.

• Its flexibility, we don’t have to check absolute consistency of constraints.

• Its robustness, since it can give an answer to problems without an exact solution
(incompatible constraints, insufficient data, . . . )

• Its ability to find local-optima solutions to NP problems in a non-exponential
time (only if we have an upper bound for the number of iterations, i.e. conver-
gence is fast or the algorithm is stopped after a fixed number of iterations).

Drawbacks of the algorithm are:

• Its cost. Being N the number of variables, v the average number of possible
labels per variable, c the average number of constraints per label, and I the
average number of iterations until convergence, the average cost is N×v×c×I,
that is, it depends linearly on N , but for a problem with many labels and
constraints, or if convergence is not quickly achieved, the multiplying terms
might be much bigger than N .

• Since it acts as an approximation of gradient step algorithms, it has their typical
convergence problems: Found optima are local, and convergence is not guaran-
teed, since the chosen step might be too large for the function to optimize.

• In general, constraints must be written manually, since they are the modeling of
the problem. This is good for easy-to-model domains or reduced constraint-set
problems, but in the case of POS tagging or WSD constraints are too many and
too complicated to be easily written by hand.

• The difficulty to state which is the compatibility value for each constraint. If
we deal with combinatorial problems with an exact solution (e.g. traveling
salesman), the constraints will be all fully compatible (e.g. stating that it is
possible to go to any city from any other) or fully incompatible (e.g. stating
that it is not possible to be twice in the same city). But if we try to model
more sophisticated or less exact problems (such as POS tagging) things will not
be black or white. We will have to establish a way of assigning a compatibility
value to each constraint.



A MACHINE LEARNING APPROACH TO POS TAGGING 21

• The difficulty to choose the support and updating functions more suitable for
each particular problem.

4.2. Using Machine Learned Constraints

In order to feed the relaxation labelling algorithm with the language model acquired
by the decision tree learning algorithm, the group of the 44 most representative
trees (covering 83.95% of the examples) were translated into a set of weighted
context constraints. The relaxation labelling based tagger was fed not only with
that constraints, but also with bi/tri–gram information.
The constraint formalism used to code the tree branches was Constraint Gram-

mars (Karlsson et al. 1995), a widespread formalism used to write context con-
straints. Since the CG formalism is intended for linguistic uses, the statistical con-
tribution has no place in it: Constraints can state only full compatibility (SELECT
constraints) or full incompatibility (REMOVE constraints). Thus, we slightly ex-
tended the formalism to enable the use of real-valued compatibilities, in such a
way that constraints are not assigned a REMOVE/SELECT command, but a real
number indicating the constraint compatibility value.
The usual way of expressing trees as a set of rules was used to construct the con-

text constraints. For instance the tree branch represented in figure 3 was translated
into the two following constraints:

−5.81 (IN) 2.366 (RB)

(0 "as" "As") (0 "as" "As")

(1 RB) (1 RB)

(2 IN); (2 IN);

which express the compatibility (either positive or negative) of the tag in the first
line with the given context (i.e. the focus word is as, the first word to the right has
tag RB and the second has tag IN).

The compatibility value for each constraint is computed as the mutual informa-
tion (Cover & Thomas 1991) between the tag and the context. Mutual information
measures how informative is an event with respect to another, and is computed as

MI(A,B) = log
P (A ∩B)

P (A)P (B)

If A and B are independent events, the joint probability will be equal to the product
of the separate probabilities and the measure will be zero. If the joint probability is
larger, it means than the two events tend to appear together more often than they
would by chance, and the measure yields a positive number. Inversely, if the joint
occurrence is scarcer than chance the measure is negative. Mutual information is
a simple and useful way to assign compatibility values to our constraints.

The main advantage of the relaxation labelling tagger is its ability to deal with
constraints of any kind. This enables us to combine statistical n–grams (written
in the form of constraints) with the learned decision tree models, and even with
linguistically motivated hand written constraints, such as the following,



22 LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

10.0 (VBN)

(*-1 VAUX BARRIER (VBN) OR (IN) OR (<,>) OR

(<:>) OR (JJ) OR (JJS) OR (JJR));

which states a high compatibility value for a VBN (participle) tag when preceded by
an auxiliary verb, provided that there is not any other participle, adjective nor a
phrase change in between.

The obtained results for the different knowledge combination are shown in table
8. The results produced by two baseline taggers (ML: most likely, HMM: bi–gram
Hidden Markov Model tagger by (Elworthy 1993)) are also reported. B stands for
bi-grams, T for trigrams, and C for the constraints acquired by the decision tree
learning algorithm. Results using a sample of 20 hand–written constraints (H) can
be found in table 9.

Those results show that the addition of the automatically acquired context con-
straints led to an improvement in the accuracy of the tagger, overcoming the bi/tri–
gram models and properly cooperating with them. See (Màrquez & Padró 1997)
for more details on the experiments and comparisons with other current taggers.

Table 8. Results of baseline tagger and of the relaxation labelling tagger using every combination

of constraint kinds

ML HMM B T BT C BC TC BTC

ambiguous 85.31% 91.75% 91.35% 91.82% 91.92% 91.96% 92.72% 92.82% 92.55%
overall 94.66% 97.00% 96.86% 97.03% 97.06% 97.08% 97.36% 97.39% 97.29%

Table 9. Results of our tagger using every combination of constraint kinds plus hand

written constraints

H BH TH BTH CH BCH TCH BTCH

ambiguous 86.41% 91.88% 92.04% 92.32% 91.97% 92.76% 92.98% 92.71%
overall 95.06% 97.05% 97.11% 97.21% 97.08% 97.37% 97.45% 97.35%

Figure 9 shows the 95% confidence intervals for the results in table 8. The main
conclusions that can be drawn from those data are described below.

• The relaxation labelling algorithms is slightly worse than the HMM tagger when
using the same information (bi–grams). This may be due to a higher sensitivity
to noise in the training corpus.

• There are two significantly distinct groups: Those using only statistical infor-
mation, and those using statistical information plus the decision trees model.
The n–gram models and the learned model belong to the first group, and any
combination of a statistical model with the acquired constraint belongs to the
second group.



A MACHINE LEARNING APPROACH TO POS TAGGING 23

97.00

HMM
96.86

B
97.03

T
97.06

BT
97.08

C
97.36

BC
97.39

TC
97.29

BTC
97.45

TCH

96.50 97.00 97.50

97.00 97.5096.50

Figure 9. 95% confidence intervals for the relaxation tagger results

• Although the hand written constraints improve the accuracy of any model,
the size of the linguistic constraint set is too small to make this improvement
statistically significant.

• The combination of the two kinds of model produces significantly better results
than any separate use. This points that each model contains information which
was not included in the other, and that relaxation labelling properly combines
them.

5. Using Small Training Sets

In this section we will discuss the results obtained when using the two taggers
described above to apply the language models learned from small training corpus.
The motivation for this analysis is the need of determining the behavior of our

taggers when used with language models coming from scarce training data in order
to best exploit them to develop a Spanish and Catalan tagged corpora starting from
scratch.

In particular we used 50,000 words of the WSJ corpus to automatically derive
a set of decision trees and collect bi–gram statistics. Tri–gram statistics were not
considered since the size of the training corpus was not large enough to reasonably
estimate the big number of parameters of the model —note that a 45–tag tag set
produces a trigram model of over 90,000 parameters, which obviously cannot be
estimated from a set of 50,000 occurrences—.
Using this training set the learning algorithm was able to reliably acquire over

80 trees representing the most frequent ambiguity classes —note that the training



24 LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

data was insufficient for learning sensible trees for about 150 ambiguity classes—.
Following the formalism described in the previous section we translated these trees
into a set of about 4,000 constraints to feed the relaxation labelling algorithm.

Table 10. Comparative results using different models acquired from small
training corpus

ML Tree–based Relax(C) Relax(B) Relax(BC)

ambiguous 75.35% 87.29% 86.29% 87.50% 88.56%
overall 91.64% 95.69% 95.35% 95.76% 96.12%

95.69

Tree-based (C)

95.35

Relax (C)

95.76

Relax (B)

96.12

Relax (BC)

95.50 96.0095.00

95.50 96.0095.00

Figure 10. 95% confidence intervals for both tagger results

The results in table 10 are computed as the average of ten experiments using
randomly chosen training sets of 50,000 words each. B stands for the bi–gram
model and C for the learned decision tree (either in the form of trees or translated
to constraints). The corresponding confidence intervals can be found in figure 10.
The presented figures point out the following conclusions:

• The tree–based tagger yields a higher performance than the relaxation labelling
based tagger when both use only the C model. This is caused by the fact
that due to the scarceness of the data, a significant amount of test cases do
not match any complete tree branch, and thus the tree–based tagger uses some
intermediate node probabilities. Since only complete branches are translated to
constrains, the relaxation labelling tagger does not use intermediate node infor-
mation and produces lower results —restriction rules corresponding to internal
nodes are not considered because the total number of rules would increase dras-
tically and because there also would be problems of multiple application for all
the restrictions coming from the same branch—.

• The relaxation tagger using the B model produces better results than any of
the taggers when using the C model alone. The cause of this is related with the



A MACHINE LEARNING APPROACH TO POS TAGGING 25

aforementioned problem of estimating a big number of parameters with a small
sample. Since the model consists of six features, the number of parameters to
be learned is still larger than in the case of tri–grams, thus the estimation is
not as complete as it could be.

• The relaxation tagger using the BC model produces better results (statistically
significant at a 95% confidence level) than any other combination. This suggests
that, although the tree model is not complete enough on its own, it contains
different information than the bi–gram model. Moreover this information is
proved to be very useful when combined with the B model by the relaxation–
based tagger.

6. Conclusions

In this work we have presented and evaluated a machine learning based algorithm
for obtaining statistical language models oriented to POS tagging.
We have directly applied the learned models in a simple and fast tree–based

tagger obtaining quite good results. We also have combined the models with n–
gram statistics in a flexible relaxation labelling based tagger. Reported figures show
that both models properly collaborate in order to improve the results.
Both model learning and testing have been performed on the WSJ corpus.
Comparison between the results obtained using large training corpora (see sec-

tion 4.2) with those obtained with 50,000 words training sets (see section 5) points
out that the best policy in both cases is the combination of the learned tree–based
model with the best n–gram model. In the first case, the reported accuracy (97.36%)
is, if not better, at least as good as that of a number of current non linguistic based
taggers (see (Màrquez & Padró 1997) for further details). In the second case we
think that an accuracy of 96.12% is a very good starting point for our planned
bootstrapping project of annotating over 5 million words of Spanish and Catalan
corpora —similar experiments, also on the WSJ corpus, by (Daelemans et al. 1996)
yield an accuracy of 96.0% when training with 100,000 words—.

However, further work is still to be done in several directions. Referring to the
language model learning algorithm, we are interested in testing more informed
attribute selection functions, considering more complex questions in the nodes and
finding a good smoothing procedure for dealing with very small ambiguity classes.
See (Màrquez & Rodŕıguez 1997) for a first approach.
About the information that this algorithm uses, we want to explore the in-

clusion of more morphological and semantic information, as well as more com-
plex context features, such as non–limited distance or barrier rules in the style of
(Samuelsson et al. 1996).
Regarding the current work, we are beginning to apply our taggers to Spanish

and Catalan languages. In this direction we are interested in verifying whether the
so far obtained results also hold for those languages.
We conclude saying that we have done first attempts (Padró 1997) in using the

same techniques to tackle another classification problem in NLP area, namely Word



26 LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

Sense Disambiguation (WSD). We believe, as other authors do, that we can take
profit of treating both problems jointly.

Acknowledgments

We specially thank Horacio Rodŕıguez for his encouraging support and his insightful
advice in the development of this work.

This research has been partially funded by the Spanish Research Department (CI-
CYT’s ITEM project TIC96–1243–C03–02), by the EU Commission (EuroWordNet
LE4003) and by the Catalan Research Department (CIRIT’s quality research group
1995SGR 00566).

Appendix A

Here follows a description of the Penn Treebank tag set, used for tagging the WSJ
corpus. For a complete description of the corpus see (Marcus et al.93).

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular

NNP Proper noun, singular

NNS Noun, plural

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

PP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund

VBN Verb, past participle

VBP Verb, non-3rd ps. sing.

present

VBZ Verb, 3rd ps. sing.

present

WDT wh-determiner

WP wh-pronoun

WP$ Possessive wh-pronoun

WRB wh-adverb

# Pound sign

$ Dollar sign

. End of sentence

, Comma

: Colon, semi-colon

( Left bracket character

) Right bracket character

" Straight double quote

‘ Left open single quote

‘‘ Left open double quote

’ Right close single quote

’’ Right close double quote

Notes

1. The size of tag sets differ greatly from one domain to another. Depending on the contents,
complexity and level of annotation they are moving from 30–40 to several hundreds of different
tags. Of course, these differences have important effects in the performance rates reported by
different systems and imply difficulties when comparing them. See (Krenn & Samuelsson 1996)
for a more detailed discussion on this issue.



A MACHINE LEARNING APPROACH TO POS TAGGING 27

References

Aarts, E.H.L. & Korst, J.H.M. (1987). Boltzmann machines and their applications. In J.W. de
Bakker, A.J. Nijman & P.C. Treleaven (Eds.), Proceedings PARLE (Parallel Architectures and
Languages Europe). Lecture Notes in Computer Science 258.

Baum, L.E. (1972). An inequality and associated maximization technique in statistical estimation
for probabilistic functions of a Markov process. Inequalities 3:1-8.

Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984). Classification and Regression
Trees. Wadsworth International Group, Belmont, California.

Brill, E. (1992). A Simple Rule–Based Part–of–Speech Tagger. In Proceedings of the 3rd ACL
Conference on Applied Natural Language Processing.

Brill, E. (1995). Unsupervised Learning of Disambiguation Rules for Part–of–speech Tagging. In
Proceedings of 3rd Workshop on Very Large Corpora.

Cardie, C. (1994). Domain Specific Knowledge Acquisition for Conceptual Sentence Analysis.
PhD Thesis, University of Massachusets, Amherst, MA.

Chanod, J.P. & Tapanainen, P. (1995). Tagging French - comparing a statistical and a constraint-
based method. In Proceedings of the 7th Conference of the European Chapter of the Association
for Computational Linguistics (EACL’95).

Church, K.W. (1988). A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text.
In Proceeding of the 2nd ACL Conference on Applied Natural Language Processing.

Cover, T.M. & Thomas, J.A. (1991). Elements of Information Theory. John Wiley & Sons.
Cutting, D., Kupiec, J., Pederson, J. & Sibun, P. (1992). A Practical Part–of–Speech Tagger. In
Proceedings of the 3rd ACL Conference on Applied Natural Language Processing.

DeRose, S.J. (1988). Grammatical Category Disambiguation by Statistical Optimization. Com-
putational Linguistics 14(1), pp. 31–39.

Elworthy, D. (1993). Part–of–Speech and Phrasal Tagging. Technical Report, ESPRIT BRA–7315
Acquilex II, WP #10.

Daelemans, W., Zavrel, J., Berck, P. & Gillis, S. (1996). MTB: A Memory–Based Part–of–Speech
Tagger Generator. In Proceedings of 4th Workshop on Very Large Corpora, Copenhagen.

Garside, R., Leech, G. & Sampson, G. (1987). The Computational Analysis of English. Longman.
Greene, B.B., & Rubin, G.M. (1971). Automatic Grammatical Tagging of English. Technical
Report, Department of Linguistics, Brown University.

Karlsson, F., Voutilainen, A., Heikkilä, J. & Anttila, A. (1995). Constraint Grammar. A
Language-Independent System for Parsing Unrestricted Text. Mouton de Gruyter.

Krenn, B. & Samuelsson, C. (1996). The Linguist’s Guide to Statistics. Don’t Panic. Universität
des Saarlandes. Saarbrücken. Germany. http://coli.uni-sb.de

Krovetz, R. (1997). Homonymy and Polysemy in Information Retrieval. In Proceedings of the
35th Annual Meeting of the Association for Computational Linguistics, ACL ’97.

Larrosa, J. & Meseguer, P. (1995). Constraint Satisfaction as Global Optimization. In Proceedings
of 14th International Joint Conference on Artificial Intelligence, IJCAI ’95.

Larrosa, J. & Meseguer, P. (1995). An Optimization-based Heuristic for Maximal Constraint
Satisfaction. In Proceedings of International Conference on Priciples and Practice of Constraint
Programming.

Lloyd, S.A. (1983). An optimization approach to relaxation labelling algorithms. Image and
Vision Computing, Vol.1, n.2.

López de Mántaras, R. (1991). A Distance–Based Attribute Selection Measure for Decision Tree
Induction. Machine Learning, Kluwer Academic.

Magerman, M. (1996). Learning Grammatical Structure Using Statistical Decision–Trees. In
Proceedings of the 3rd International Colloquium on Grammatical Inference, ICGI ’96. Lecture
Notes in Artificial Intelligence 1147.

Marcus, M.P., Marcinkiewicz, M.A. & Santorini, B. (1993). Building a Large Annotated Corpus
of English: The Penn Treebank. Computational Linguistics, Vol.19, n.2.

Màrquez, L. & Rodŕıguez, H. (1995). Towards Learning a Constraint Grammar from Annotated
Corpora Using Decision Trees. ESPRIT BRA–7315 Acquilex II, Working Paper n.15,1995.

Màrquez, L. & Padró, L. (1997). A Flexible POS Tagger Using an Automatically Acquired Lan-
guage Model. In Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics, ACL ’97.



28 LLÚıS MÀRQUEZ AND LLÚıS PADRÓ AND HORACIO RODŔıGUEZ

Màrquez, L. & Rodŕıguez, H. (1997). Automatically Acquiring a Language Model for POS Tagging

Using Decision Trees. In Proceedings of the Second Conference on Recent Advances in Natural
Language Processing, RANLP ’97.

McCarthy, J.F. & Lehnert, W.G. (1997). Using Decision Trees for Coreference Resolution. In
Proceedings of 14th International Joint Conference on Artificial Intelligence IJCAI ’95.

Merialdo, B. (1994). Tagging English Text with a Probabilistic Model. Computational Linguistics
20(2), pp. 155-171.

Mooney, R.J. (1996). Comparative Experiments on Disambiguating Word Senses: An Illustration
of the Role of Bias in Machine Learning. In Proceedings of Conference on Empirical Methods
in NLP, EMNLP ’96.

Oostdijk, N. (1991). Corpus Linguistic and the automatic analysis of English. Rodopi, Amster-
dam.

Padró, L. (1996). POS Tagging Using Relaxation Labelling. In Proceedings of 16th International
Conference on Computational Linguistics, COLING ’96.

Padró, L. (1997). A Hybrid Environment for Syntax–Semantic Tagging. PhD Thesis, Dep.
Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, 1997. Forthcoming.

Pelillo, M. & Refice, M. (1994). Learning Compatibility Coefficients for Relaxation Labeling
Processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.16, n.9.

Pelillo, M. & Maffione, A. (1994). Using Simulated Annealing to Train Relaxation Labelling
Processes. In Proceedings of ICANN ’94.

Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann. San Mateo,
CA.

Rosenfeld, R., Hummel, R., Zucker, S. (1976). Scene labelling by relaxation operations. IEEE
Transactions on Systems, Man and Cybernetics. Vol.6, n.6.

Rosenfeld, R. (1994). Adaptive Statistical Language Modeling: A Maximum Entropy Approach.
PhD Thesis. School of Computer Science, Carnegie Mellon University.

Richards, J., Landgrebe, D., Swain, P. (1981). On the accuracy of pixel relaxation labelling. IEEE
Transactions on System, Man and Cybernetics Vol.11.

Ristad, E.S. & Thomas, R.G. (1996). Nonuniform Markov Models. In Proceedings of International
Conference on Acoustics, Speech and Signal Processing. Munich, Germany.

Samuelsson, C., Tapanainen, P. & Voutilainen, A. (1996). Inducing Constraint Grammars. In
Proceedings of the 3rd International Colloquium on Grammatical Inference.

Samuelsson, C. & Voutilainen, A. (1997). Comparing a Linguistic and a Stochastic Tagger. In
Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics, ACL
’97.

Saul, L. & Pereira, F. (1997). Aggregate and mixed-order Markov models for statistical language
processing. In Proceedings of 2nd Conference on Empirical Methods for Natural Language
Processing, EMNLP 97.

Schmid, H. (1994). Part–of–speech tagging with neural networks. In Proceedings of 15th Inter-
national Conference on Computational Linguistics, COLING ’94.

Schmid, H. (1994). Probabilistic Part–of–Speech Tagging Using Decision Trees. In Proceedings of
the Conference on New Methods in Language Processing. Manchester, UK.

Southwell, R. (1940). Relaxation Methods in Engineering Science. Clarendon.
Torras, C. (1989). Relaxation and Neural Learning: Points of Convergence and Divergence.
Journal of Parallel and Distributed Computing 6, pp.217-244.

Voutilainen, A. (1994). Three Studies of Grammar–Based Surface Parsing on Unrestricted English
Text. PhD Thesis. Department of General Linguistics. University of Helsinki.

A. Voutilainen & L. Padró. (1997). Developing a Hybrid NP Parser. In Proceedings of the 5th
ACL Conference on Applied Natural Language Processing.

Waltz, D. (1975). Understanding line drawings of scenes with shadows: Psychology of Computer
Vision. P. Winston, New York: McGraw-Hill.

Wilks, Y. & Stevenson, M. (1997). Combining Independent Knowledge Sources for Word Sense
Disambiguation. In Proceedings of the 2nd Conference on Recent Advances in Natural Language
Processing, RANLP ’97.


