224 research outputs found

    Semantic modelling of user interests based on cross-folksonomy analysis

    Get PDF
    The continued increase in Web usage, in particular participation in folksonomies, reveals a trend towards a more dynamic and interactive Web where individuals can organise and share resources. Tagging has emerged as the de-facto standard for the organisation of such resources, providing a versatile and reactive knowledge management mechanism that users find easy to use and understand. It is common nowadays for users to have multiple profiles in various folksonomies, thus distributing their tagging activities. In this paper, we present a method for the automatic consolidation of user profiles across two popular social networking sites, and subsequent semantic modelling of their interests utilising Wikipedia as a multi-domain model. We evaluate how much can be learned from such sites, and in which domains the knowledge acquired is focussed. Results show that far richer interest profiles can be generated for users when multiple tag-clouds are combine

    Growing a Tree in the Forest: Constructing Folksonomies by Integrating Structured Metadata

    Full text link
    Many social Web sites allow users to annotate the content with descriptive metadata, such as tags, and more recently to organize content hierarchically. These types of structured metadata provide valuable evidence for learning how a community organizes knowledge. For instance, we can aggregate many personal hierarchies into a common taxonomy, also known as a folksonomy, that will aid users in visualizing and browsing social content, and also to help them in organizing their own content. However, learning from social metadata presents several challenges, since it is sparse, shallow, ambiguous, noisy, and inconsistent. We describe an approach to folksonomy learning based on relational clustering, which exploits structured metadata contained in personal hierarchies. Our approach clusters similar hierarchies using their structure and tag statistics, then incrementally weaves them into a deeper, bushier tree. We study folksonomy learning using social metadata extracted from the photo-sharing site Flickr, and demonstrate that the proposed approach addresses the challenges. Moreover, comparing to previous work, the approach produces larger, more accurate folksonomies, and in addition, scales better.Comment: 10 pages, To appear in the Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining(KDD) 201

    The horse before the cart: improving the accuracy of taxonomic directions when building tag hierarchies

    No full text
    Content on the Web is huge and constantly growing, and building taxonomies for such content can help with navigation and organisation, but building taxonomies manually is costly and time-consuming. An alternative is to allow users to construct folksonomies: collective social classifications. Yet, folksonomies are inconsistent and their use for searching and browsing is limited. Approaches have been suggested for acquiring implicit hierarchical structures from folksonomies, however, but these approaches suffer from the ‘popularity-generality’ problem, in that popularity is assumed to be a proxy for generality, i.e. high-level taxonomic terms will occur more often than low-level ones. To tackle this problem, we propose in this paper an improved approach. It is based on the Heymann–Benz algorithm, and works by checking the taxonomic directions against a corpus of text. Our results show that popularity works as a proxy for generality in at most 90.91% of cases, but this can be improved to 95.45% using our approach, which should translate to higher-quality tag hierarchy structure

    Review of the state of the art: discovering and associating semantics to tags in folksonomies

    Get PDF
    This paper describes and compares the most relevant approaches for associating tags with semantics in order to make explicit the meaning of those tags. We identify a common set of steps that are usually considered across all these approaches and frame our descriptions according to them, providing a unified view of how each approach tackles the different problems that appear during the semantic association process. Furthermore, we provide some recommendations on (a) how and when to use each of the approaches according to the characteristics of the data source, and (b) how to improve results by leveraging the strengths of the different approaches

    TiFi: Taxonomy Induction for Fictional Domains [Extended version]

    No full text
    Taxonomies are important building blocks of structured knowledge bases, and their construction from text sources and Wikipedia has received much attention. In this paper we focus on the construction of taxonomies for fictional domains, using noisy category systems from fan wikis or text extraction as input. Such fictional domains are archetypes of entity universes that are poorly covered by Wikipedia, such as also enterprise-specific knowledge bases or highly specialized verticals. Our fiction-targeted approach, called TiFi, consists of three phases: (i) category cleaning, by identifying candidate categories that truly represent classes in the domain of interest, (ii) edge cleaning, by selecting subcategory relationships that correspond to class subsumption, and (iii) top-level construction, by mapping classes onto a subset of high-level WordNet categories. A comprehensive evaluation shows that TiFi is able to construct taxonomies for a diverse range of fictional domains such as Lord of the Rings, The Simpsons or Greek Mythology with very high precision and that it outperforms state-of-the-art baselines for taxonomy induction by a substantial margin

    Treelicious: a System for Semantically Navigating Tagged Web Pages

    Full text link
    Collaborative tagging has emerged as a popular and effective method for organizing and describing pages on the Web. We present Treelicious, a system that allows hierarchical navigation of tagged web pages. Our system enriches the navigational capabilities of standard tagging systems, which typically exploit only popularity and co-occurrence data. We describe a prototype that leverages the Wikipedia category structure to allow a user to semantically navigate pages from the Delicious social bookmarking service. In our system a user can perform an ordinary keyword search and browse relevant pages but is also given the ability to broaden the search to more general topics and narrow it to more specific topics. We show that Treelicious indeed provides an intuitive framework that allows for improved and effective discovery of knowledge.Comment: 6 pages, 3 figure

    Semantically enriching folksonomies with FLOR

    Get PDF
    While the increasing popularity of folksonomies has lead to a vast quantity of tagged data, resource retrieval in these systems is limited by them being agnostic to the meaning (i.e., semantics) of tags. Our goal is to automatically enrich folksonomy tags (and implicitly the related resources) with formal semantics by associating them to relevant concepts defined in online ontologies. We introduce FLOR, a mechanism for automatic folksonomy enrichment by combining knowledge from WordNet and online ontologies.We experimentally tested FLOR on tag sets drawn from 226 Flickr photos and obtained a precision value of 93% and an approximate recall of 49%

    Spatio-semantic user profiles in location-based social networks

    Get PDF
    Knowledge of users’ visits to places is one of the keys to understanding their interest in places. User-contributed annotations of place, the types of places they visit, and the activities they carry out, add a layer of important semantics that, if considered, can result in more refined representations of user profiles. In this paper, semantic information is summarised as tags for places and a folksonomy data model is used to represent spatial and semantic relationships between users, places, and tags. The model allows simple co-occurrence methods and similarity measures to be applied to build different views of personalised user profiles. Basic profiles capture direct user interactions, while enriched profiles offer an extended view of users’ association with places and tags that take into account relationships in the folksonomy. The main contributions of this work are the proposal of a uniform approach to the creation of user profiles on the Social Web that integrates both the spatial and semantic components of user-provided information, and the demonstration of the effectiveness of this approach with realistic datasets
    corecore