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Abstract 

Semantic Web and Web2.0 emerged during the past decade promising to achieve new 

frontiers for the Web. On the one hand, the Semantic Web is an interlinked web of 

data, supported by ontological semantics and allowing for intelligent applications such 

as semantic search and integration of heterogeneous content across systems and applica- 

tions. On the other hand, Web2.0 represents the new technologies and paradigms that 

revolutionised the user engagement in content creation and introduced novel means 

towards social interaction. Bridging the gap between Web2.0 and the Semantic Web 

has been proposed as a means to better manage and interact with the large amounts of 

user contributed content, which is a new challenge for Web2.0. This thesis focuses on a 

popular paradigm of Web2.0, folksonomies. In particular, we investigate the semantic 

enrichment of folksonomy tagspaces by reusing ontologies available in the Semantic 

Web. We identify the need for methods that automatically apply semantic descrip- 

tions to user generated content without requiring user intervention or alteration of the 

current tagging paradigm. We use an iterative approach in order to identify the char- 

acteristics of folksonomies and the attributes of knowledge sources that influence the 

semantic enrichment of tagspaces. We build on the results of our experimental studies 

to implement a folksonomy enrichment algorithm, that given an input tagspace, auto- 

matically creates a semantic structure that describes the meaning and relations of tags. 

We introduce measures for the evaluation of enriched tagspaces and finally, we propose 

a search algorithm that exploits the semantic structures to improve folksonomy search. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

Folksonomies [122], are typical Web2.0 [92] applications used to publish, annotate and 

share content on the web. They are highly popular due to their "low entry barriers" and 

effectiveness in personal and network organisation [84]. They are approachable by the 

casual web user by not requiring the latter to have special skills or technical knowledge. 

For content annotation, also called tagging, there is no controlled vocabulary or other 

syntax rules and no constraints are imposed on the users. While liberal tagging is 

the main advantage of folksonomies, it also introduces certain limitations. For example, 

the different backgrounds and expertise of the users on various topics are reflected in 

their selection and usage of tags. As a result, users with different vocabularies are not 

likely to encounter each other's content, unless the content semantics are considered 

by the tools supporting user navigation. In particular, phenomena such as polysemy, 

synonymy and basic level variation [51] may hamper the performance of folksonomies 

in terms of content retrieval, content recommendation and so on, thus limiting the user 

experience. In addition, the rich user contributed content, cannot lend itself easily to 

applications that require some sort of intelligent integration of information. As a result 
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it only remains available to the closed specific applications where it was created. 

In contrast to the low effort required to annotate folksonomy resources, the creation 

of ontologies is a laborious process. Ontologies [53] are knowledge artefacts used to 

formally specify objects, their "behaviours" and their relations in the context of various 

domains, tasks and applications. For their creation, knowledge engineers and domain 

experts are required to collaborate in order to produce technically and conceptually 

sound models. Ontologies are considered the backbone of the Semantic Web and play 

a key role in its realisation [29]. 

Both academic researchers [28,33,52,58,70,1101 and corporate stakeholders [23,67] 

have identified the need for semantics in order to solve the problems of Web2.0 and 

achieve new frontiers on the web. Baeza-Yates et. al [24] discuss the merits of semantic 

metadata towards new paradigms of search and Benjamins et. al [28] highlight the 

need for semantics as a means to manage and organise the "vast content of Web2.0". 

Alani [20] states that "a semantically-enabled content-exchange channel offers direct 

benefits with respect to consistency checking, relative ease of integration and distributed 

querying, and efficient data and information exchange and merging". 

Hendler and Golbeck [58] describe the alignment of tags to semantics as a first step to- 

wards achieving prospects such as interlinking items, users, networks and communities 

on the web and addressing content retrieval and integration issues. These prospects 

cannot be achieved only by over-annotating the content if this still lacks a semantic 

description [57]. Hence, an immediate challenge is the application of semantics 

to tags. At the same time, the maturing of Semantic Web technologies has allowed 

for the creation and publication of ontologies on the web. Hendler and Golbeck [58] 

claim that the creation of correct ontologies is laborious but they can have a major 

impact on tagging systems. d'Aquin et. al [40] endorse the reuse of existing knowledge 

encoded in ontologies to solve classic problems, such as ontology matching and question 

answering, as well as addressing the issues of Web2.0 and folksonomies. As a result an 
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additional challenge emerges considering the reuse of existing knowledge. 

1.2 Research Problem 

The research carried out in the scope of this thesis addresses the two aforementioned 

challenges. In particular we investigate how and to what extent the user tags in 

folksonomies can be semantically enriched by reusing existing semantics and 

what are the benefits of such enrichment? This problem can be further specified: 

RQ1: To what extent can folksonomies' tagspaces be semantically enriched 

by automatically exploiting semantic structures built in online ontolo- 

gies? Answering this question requires one more level of analysis and is repre- 

sented as follows: How can we discover automatically the meaning of individual 

tags and the semantic relations between tags based on their context? How can 

existing ontologies be exploited for the enrichment of tags? 

RQ2: What other resources are required in case the Semantic Web falls 

short of this task? In case the usage of ontologies is not sufficient to seman- 

tically enrich tagspaces, what other sources should be exploited for the purposes 

of folksonomy enrichment. 

RQ3: How can the enriched tagspaces and enrichment processes be evalu- 

ated? What measures and evaluation strategies should be established to quantify 

the performance of the enrichment methods? 

RQ4: How can the enriched tagspaces be exploited and evaluated in the 

context of content retrieval? What methods should be created for improving 

folksonomy search utilising the enriched tagspaces? What measures should be 

established to asses the value of enriched tagspaces in search? 
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In the following section we describe the course of our research motivated by these 

questions. 

1.3 Methodology and Structure of the Thesis 

Due to the open, heterogeneous and dynamic nature of the resources involved in our ap- 

proach, both ontologies and folksonomies, we performed a series of exploratory studies 

prior to establishing the requirements for the final enrichment and search algorithms. 

We used real world data to test various hypotheses and the results of our investigations 

were exploited for the implementation of our final approach. Next we briefly introduce 

the work described in the following chapters and highlight the outcomes obtained by 

each study and how they motivated the next steps of our work. 

In Chapter 2 we present a review of the existing work on folksonomies. We identify 

the most popular research lines and give an overview of the most important studies 

presented in each. Finally, we identify the open issues on the folksonomy research area 

and position our work. 

In Chapter 3 we present an analysis of the entities of folksonomies, their relations and 

the issues which influence search and content organisation. We define the core objects 

of folksonomies and introduce the concepts we use through out this thesis to describe 

the semantic enrichment of tagspaces. We present the schema of the ontology we built 

to support the enriched tagspaces. Finally, we introduce a set of measures for the 

evaluation of the enrichment algorithms, the semantic structures and their influence on 

search. 

Our first attempt to automatically enrich tagspaces was presented in [21]. We reused 

the clusters generated by Specia and Motta [114] and applied the relation discovery 

algorithm implemented by Sabou et. al [108]. In that work we automatically enriched 

tag clusters and obtained useful insights on the types of tags and their relations, as well 
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as, on the characteristics of Knowledge Sources that influence the enrichment process. 

With the first version of FLOR, FLOR-1, presented in Chapter 4 we aimed to increase 

the coverage of tags from ontologies (compared to [21]) by utilising an up-to-date on- 

tology search mechanism. In addition, we used WordNet to expand tags with their 

synonyms before seeking potential defining entities in ontologies. The major outcome 

of the experiments carried out with FLOR-1 was the adverse impact of WordNet (as 

a source for disambiguation and semantic expansion) in combination with hierarchi- 

cal similarity measures on the enrichment process (L4.3). The identification of non 

hierarchical relations among the tags lead to the conclusion that the alternative relat- 

edness measures are required (L4.1). In addition, we discovered the need for statistical 

measures where semantic measures fail (L4.2). 

With the study presented in Chapter 5 we aimed to obtain user incentives on 

semantically-enabled search and identify additional issues of the FLOR-1 enrichment 

algorithm that are only projected during search. We used a domain restricted dataset 

from Flickr, in order to guide the user queries. Unfortunately, using the same version 

of the enrichment algorithm (FLOR-1) that exploits WordNet to disambiguate and ex- 

pand the tags once again led to poor coverage of tags by ontological entities. Therefore, 

we conducted the experiment relying only on the WordNet derived hierarchy of tags. 

Despite its negative effect on the tag anchoring to semantic entities, WordNet's usage 

as a Knowledge Source for the creation of sense structures for search was successful 

(L5.3). This prompted us to reconsider its usage and instead of employing it as a 
disambiguation and semantic expansion resource to use it as a Knowledge Source for 

enrichment. In terms of user experience, the participants of our experiment reported 

that the organisation of results using semantically-enabled search was meaningful and 
helped them generate ideas for query reformulation (L5.4). We also identified the 

importance of the tagspace coverage from a semantic entity's neighbours in the enrich- 

ment value of the semantic entity (L5.1). Finally, we validated the need for statistical 

relatedness measures (L4.1, L4.2) in order to exploit non-semantically related contexts 
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(L5.2). 

In an effort to compare the impact of WordNet and ontologies in terms of creating sense 

structures and exploiting them for search we performed a Knowledge Source compari- 

son study in Chapter 6. Indeed, we noted that the value of WordNet is comparable 

to the value of ontologies and decided to use it as a Knowledge Source for enrichment 

rather than expansion (L6.1). The difference is that in the second case, when a tag is 

correctly assigned to a WordNet synset we consider the tag enriched and terminate the 

process, provided that there are no other ontologies containing appropriate definitions. 

In Chapter 6 we also compared semantically-enabled search with cluster-based search 

from folksonomies. We observed that although cluster-based search catered for idiosyn- 

crasies and returned less groups (L6.2), the semantically-enabled search presented the 

results in meaningful categories (L6.3). Finally, we discovered that failure of integra- 

tion that leads to different senses with the same meaning, has an adverse impact on 

search by generating overlapping groups (L6.4). 

Chapter 7 presents one of the core contributions of this work, which is the folksonomy 

enrichment algorithm FLOR-2. We describe how the results of the previous studies are 

transformed into requirements, which are then used as a basis for the design and devel- 

opment of the algorithm. We detail the individual phases and steps of the algorithm 

and how each contributes to the final output. The main improvements of FLOR-2 com- 

pared to FLOR-1 were focused on the exploitation of WordNet as a Knowledge Source, 

and on the phases of sense disambiguation, sense integration and semantic aggregation. 

In Chapter 8 we evaluate FLOR-2 and validate its improved performance compared 

to FLOR-1 in terms of sense assignment correctness and tagspace coverage. We do so 

by enriching the same dataset with the two versions of the algorithm and contrasting 

the results. We evaluate further the performance of the improved enrichment algorithm 

using an additional dataset and assessing the degree of connectivity of the semantic 

structure created by FLOR-2. Finally we present a quantitative and qualitative analysis 
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of the enrichment process and the impact of the design decisions on the output of the 

algorithm. 

In Chapter 9 we present a query algorithm, exFLORe, which exploits the enriched 

tagspaces in order to improve search in folksonomies. exFLORe is based on the out- 

comes of the experimentations presented in chapters 5 and 6 concerning the influence 

of semantic structures on search (L5.4, L6.2, L6.3). This search algorithm maps query 

keywords to senses in the enriched tagspace, disambiguates the senses and returns the 

results associated with them in a ranked order. 

Chapter 10 concludes the thesis with an overview of the work carried out, the con- 

tributions of this study and an outlook for future work. 

1.4 Contributions 

An algorithm for the enrichment of folksonomy tagspaces. We present an al- 

gorithm that semantically enriches folksonomy tagspaces by explicitly assigning 

meaning to tags and describing their inter-relations. Our method for folksonomy 

enrichment adheres to the following principles: 

1. Domain Independent. The process does not assume domain restriction, 

neither in the selection of ontologies nor in the selection of tags. 

2. Automatic. 

" The enrichment process operates on existing tagspaces, does not require 

user feedback during the tagging activity and does not suggest a shift 

in the tagging paradigm. 

" There is no need for preselection of Knowledge Sources, all ontologies 

available online are considered. 

3. Uses Heterogeneous Knowledge. Our algorithm integrates knowledge 

from online available ontologies and WordNet. 
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4. Unsupervised. There is no need for training data 

5. Creates an explicit semantic structure. The output of the algorithm 

is an explicit semantic structure supported by an appropriate ontology. 

Evaluation measures for the semantic structures that represent the tagspaces and 

for the enrichment algorithm. With these measures we evaluate the connectivity 

and richness of the semantic structures and the performance of the algorithm in 

terms of tagspace coverage. 

Search algorithm for enriched tagspaces that exploits the enriched tagspaces to 

improve search by addressing the issues of polysemy, synonymy and basic level 

variation and allows for result diversification. 



Chapter 2 

Literature Review on Folksonomies 

In this chapter we present a review of the relevant work that aims to understand and improve 

folksonomies. We analyse the most significant and representative approaches proposed to date 

and present a goal-based overview of the literature according to the most widely investigated 

folksonomy problems. Finally, we summarise the existing work and highlight the open issues 

addressed by this thesis. 

2.1 Introduction 

The success of Web2.0 has motivated a broad line of investigations on understanding 

and improving this type of user generated content. Considering that the contribution 

of users was estimated to be four to five times larger than that from the professional 

publishing on the web' [1041, the need for organisation and management tools emerged 

rapidly. The vision that using semantics to describe, organise and exploit such vast 

amounts of data would bring a new era on the web [28,33,52,58,70,110] motivated 

a broad range of initiatives. 

'Ramakrishnan et. al estimate that in 2007 users generated 8 to 10GB of content while at the same 
time only 2GB was generated by the professional web. 
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A successful example of user contribution on Web2.0, Wikipedia [14], was used in one 

of the first semantification initiatives with the aim to make the knowledge in it available 

on the web of data. The effort [31] to create a semantic version of Wikipedia resulted in 

DBpedia [6], a well adopted knowledge resource. Additional works towards the same 

vision describe how the usage of semantic web technologies can improve knowledge 

sharing, enable novel paradigms in online communities [32,38,39,50,71,113], and 

outline the architectural integration of Semantic Web and Web2.0 [91,93]. 

This thesis focuses on the special case of folksonomies, also called tagging systems, and 

for this reason we limit the literature analysis to work which focuses on them. This 

research area is quite young and there are no established methodologies, approaches 

and practices. In addition, classifying existing work in the area is a complex task 

due the multidimensionality of tagging systems and the interdisciplinary diversity of 

proposed approaches. Nevertheless, in the following, we aim to give a comprehensive 

overview of the literature from two different perspectives. 

Due to the young age of the domain, a great amount of work has been published aiming 

at understanding tagging systems. In particular, investigations on the incentives 

and behaviour of users, the types and characteristics of tags, and the network dynamics 

of folksonomies are very important to understand and establish the field. We analyse 

the outcomes of these studies in Section 2.2. 

The open, dynamic nature and the inherent problems of folksonomies presume many 

different possibilities towards improving tagging systems (see Section 2.3). For 

the sake of providing a detailed overview, as well as being consistent with the goals 

of this work, we present the folksonomy improvement work according to two abstract 

(and not totally mutually exclusive) groups. In the first group we discuss work that 

applies some sort of structure on folksonomies by utilising either emergent or explicit 

semantics. The second group includes work dealing with the improvement of content 

retrieval by enhancing search and content recommendation. 
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Finally, in Section 2.4 we summarise the existing work and discuss the open issues 

addressed by our approach. 

2.2 Understanding Tagging Systems 

The first observations and debates on tagging systems were published in weblogs 
[55,56,84,99,112,123] as soon as folksonomies became widespread. There, the 

benefits as well as the drawbacks of free tagging were highlighted and compared to 

traditional annotation and classification schemes. Their main observations were that 

the cognitive effort in content annotation in folksonomies is much lower compared to 

classification, yet the lack of structure was highlighted as an impedance of folksonomies 

while classification schemes do not suffer of such lack of structure. 

The first academic study on folksonomies was conducted by Golder and Huberman [51] 

in 2005, and its results influenced most of the research on the field2. They macroscop- 

ically studied the patterns and user incentives in folksonomies. They showed that the 

tagging activity follows a stable pattern after a certain amount of time and further val- 

idated their results via the visualisations provided by Cloudalicio. us [107]. Their major 

contribution, though, is a preliminary categorisation of tags based on the tagging 

motivation. More specifically, they identify tags used to denote the topic (webdesign), 

the type (blog), the owner (timbl) and various qualities of a resource (cool, funny). 

They also identify tags used for self reference (tags beginning with my) and task organ- 

ising (toread). Their observations apply on data from Delicious [7], however, Zollers 

[136] obtained the same findings on different folksonomies (Amazon [1] and Last. fm 

[11]). 

Marlow et. al [83] list user incentives for tagging (personal retrieval, contribution 

and sharing, attention seeking, self presentation, play and competition, opinion expres- 

2According to Google Scholar, "The structure of collaborative tagging systems" was cited by 546 
and the "Usage patterns of collaborative tagging systems" was cited by 637. (Accessed in April 2010) 
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sion) that affect the overall evolution and dynamics of folksonomies. They claim that 

tagging is also influenced by system design decisions (tagging rights, tagging sup- 

port, aggregation model, object type, source of material, resource connectivity, social 

connectivity) while Diaz et. al [43] show how design decisions (keyword and spelling 

suggestions, display of the items annotations, ability to enter multiple keywords) also 

affect the user behaviour during search. 

In terms of how tagging behaviour influences the global dynamics of the systems, 

Körner et. al [68] show that prolific taggers, who use a richer vocabulary and exhibit 

higher tagging verbosity, contribute better to the emergent semantics of folksonomies 

compared to the users who provide fewer tags. Fu et. al [48] show that the tagging 

behaviour of expert taggers converges faster than the behaviour of the novices possibly 

due to the ability of the expert taggers to better evaluate the topics of the resources 

and as a result assign more accurate and high quality tags. 

Millen et. al [87] explore how the incentives of the users affect their searching and 

browsing behaviour. Employing a corporate folksonomy as a use case, they identify 

three types of search. The community browsing (popularity and recentness based nav- 

igation on community created bookmarks), the personal search (search on ones own 

bookmark collection), and the explicit search (traditional keyword search to locate 

bookmarks created by the community). They show that the most frequently engaged 

activity by the largest number of users in the system is the community browsing, fol- 

lowed by the explicit search. The most prolific taggers tend to engage more on personal 

search due to the fact that they use the system for personal organisation rather than 

sharing. More lightweight taggers, who spend less time tagging, use the community 

browsing and the explicit search to locate bookmarks created by the community. Ex- 

ploiting social links to discover content has also been studied by van Zwol [120], who 

presented how the social connections affect the discovery and popularity of newly added 

items in Flickr. 
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From a quantitative perspective Al-Khalifa et. al [19] show that more than 60% of 

the tags represent common knowledge and can be used for content classification and 

metadata generation. 30% of the tags are personal, i. e., directed either to oneself or 

ones network, and around 4% express user opinion on the tagged resource. In terms 

of resource to tag ratio, Plangprasopchok et. al [100] show that users provide 4 to 7 

tags per bookmark on Delicious while Rattenbury et. al [105] show that each photo on 

Flickr has an average of 3.74 tags. Finally, Bischoff et. al [30] support the annotation 

value of folksonomies by showing that more than 50% of tags in Flickr and Delicious 

bring new information to the resources while the same happens for more than 98.5% 

of the tags in Last. fm. 

Another study that investigates the annotation value of folksonomies is presented 

by Kipp [66]. Using journal articles tagged in Citeulike [2] and Connotea [4] she com- 

paratively explores keywords generated by the authors and by professional librarians 

and user tags from the above systems. She discovers that user tags are very valuable 

because they provide novel terminology and more generic terms. Al-Khalifa et. al [18] 

show that Delicious tags have a higher semantic value than the automatically extracted 

keywords from the text of the resource because they are assigned by users with broad 

backgrounds and variable expertise which may not be reflected in the text of the re- 

source. On the opposite side, Lux et. al [78] show that there is a large number of tags 

that is inappropriate for retrieving resources or users. Such are misspellings, unpopular 

(infrequent) tags, shortcuts on resources, or personal vocabularies. 

A different perspective on the value of tagging systems is given when studied under 

the prism of web search improvement. Tags are usually good summaries of the 

corresponding webpages in collaborative systems and their count indicates the popu- 

larity of webpages. In addition, the social interactions among the users provide novel 

interlinks among resources. Exploiting such network dynamics, modifications of the 

classic PageRank [94] algorithm have been tailored for the folksonomy network. Such 

are SBRank [127], FolkRank [60], SocialSimRank and SocialPageRank [25]. These alga 



16 Literature Review on Folksonomies 

rithms exploit the notions tag and user popularity and similarity to rank the resources 

and demonstrate the benefits of introducing the social dimension on the web. Along 

the same lines, Yeung et. al [130] show that the socially derived associations among 

resources can be used to improve the existing hyperlink structure of the web. Their 

evidence supports the fact that such user induced links are indeed of very high qual- 

ity. In an earlier work [81] they deal with the problem of multiple and mixed results 

in the cases of ambiguous search terms. They approach this problem by diversifying 

web search results with classifiers based on tag co-occurrence from Delicious. Finally 

Mislove et. al [88] show that search based on social networks can be more efficient due 

to better disambiguation, serendipity and ranking of results. 

Yeung et. al [128] study the tag ambiguity problems by introducing the concept of 

mutual contextualisation of entities in folksonomies. This means that one entity e. g., 

a tag, resource or a user is better understood when contextualised with the other two. 

On this contextualisation line, they [129] experiment with unsupervised clustering on 

different types of networks (tag-based document, user-based document, tag-context) 

and show that user-based networks, which encapsulate the social interaction element, 

perform better in tag disambiguation. Ronzano et. al use Wikipedia articles to build 

a sense repository called Tagpedia [106], which contains all possible candidate mean- 

ings for the tags. They then propose a disambiguation algorithm that exploits the 

co-occurrence of the tag to be disambiguated with the other tags in its context [116]. 

In this case the context of the tag consists of the other tags tagging the same resource 

enriched with the popular tags used globally to annotate the resource. Finally they 

assign each tag to a Tagpedia sense, and implicitly to a Wikipedia article and fur- 

thermore to a DBpedia entry. DBpedia is also used by Garcia et. al [49] who directly 

associate a tag to the possible DBpedia entries. For each entry a vector of related 

terms is extracted and compared to the vector describing the context of the tag us- 

ing cosine similarity. Although the authors define different types of contexts such as 

resource-based, user-based, social-based and combinations of them, they only employ 
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the resource-based context, which is the co-occurring tags on the scope of a resource. 

The first approach, which is independent of external knowledge sources, can work for 

all the tags. However, the latter two approaches use resources with a high update fre- 

quency in new terminology, which increases the possibility of finding candidate senses 

for a tag. In addition, they provide explicit meaning for each tag by connecting it to a 

richly described sense. 

2.3 Improving Tagging Systems 

Motivated by the early realisation of, not only the benefits of free and unrestricted 

tagging, but also its adverse impact on content organisation and retrieval [51,83], the 

research community dedicated a lot of effort in creating solutions which can alleviate 

such effects. In this section we present an overview of the work in this area from the 

viewpoint of the goals of this thesis. We first analyse how structuring folksonomies 

is approached in the literature (Section 2.3.1) and then discuss the approaches that 

enhance content retrieval in folksonomies (Section 2.3.2) according to the structure 

presented in Figure 2.1. 

2.3.1 Structuring Folksonomies 

The application of structure on user generated content has been highlighted [28,33,52, 

58,70,1101 as a crucial component towards realising the vision of an interoperable and 

intelligent web. Depending on their background discipline researchers have approached 

the application of structure to folksonomies in different ways. In this section we dis- 

tinguish two types of approaches towards structuring folksonomies, the implicit and 

the explicit. The implicit way is to exploit their emergent semantics and discover rela- 

tions among the elements of folksonomies. Such approaches usually yield hierarchical 

structures but the relations are not made explicit. On the contrary, the explicit way 
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to structuring folksonomies results in an interlinked graph, where the relations among 

the entities are named. Such structuring has been approached either by aligning folk- 

sonomies to existing structured resources (such as ontologies, thesauri or community 

maintained wikies) or by creating new models to represent them. In the following 

sections we present the most representative works on implicit and explicit folksonomy 

structuring. 

Deriving Emergent Semantics From Folksonomies 

The most vital characteristic of folksonomies, which allows for implicit semantics to 

emerge, is their network dynamics, such as the co-occurrence frequency of tags, re- 

sources and users in existing tagspaces. The hypothesis that "entities which co-occur 

with a high frequency are somehow related" lies beneath the notion of emergent seman- 

tics. A variety of techniques and measures have been applied for acquiring a better 

understanding of the emergent semantics. Such techniques are applied on folksonomies 

post-tagging, and as a result, they do not propose a shift in the tagging paradigm for 

the purposes of applying structure. A common characteristic of the works discussed in 
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this line is that, although hierarchical structures are discovered among the tags, their 

relations are not formally described. 

One of the earliest studies, presented by Mika [86], represents the folksonomy network 

as a tripartite graph, whose nodes are the users, resources and tags and the edges are 

the connections among them. For example, an edge between a user and a tag node 

represents the usage of the tag from the user, while an edge between a resource and a 

tag node designates that the tag is used to tag the resource. Mika uses the tripartite 

graph to extract two graphs, a network of users based on commonly used resources and 

a lightweight ontology of tags(concepts) based on the overlap of the users and resources 

with which they co-occur. 

Begelman et al. [26] also represent the tagspace as a weighted undirected graph, based 

on the tag co-occurrence frequency. They then apply spectral clustering to induce 

clusters of related tags. This method only results to related clusters but provides no 

indication on types of specific relations, such as hierarchical. 

Schmitz [109] derives a hierarchy of tags by exploiting tag co-occurrence with a proba- 

bilistic model for subsumption generation. The basic hypothesis on which he bases his 

method is that a tag x subsumes a tag y if the probability of appearance of x given y 

is higher than a given threshold and the opposite is lower. 

Cattuto et. al 136] perform an extensive analysis on different kinds of relatedness 

measures and ground the emergent relations by comparing them to the hierarchy of 

WordNet. They demonstrate that by using the appropriate measure different types of 

semantic relationships, such as synonymy and subsumption, can be obtained. 

Halpin et. al [111] show that the distribution of tags follows the power low and sta- 

bilises over time. They use the stabilised tags and resources to extract hierarchies from 

folksonomies. They assume that the stabilised tags on a resource describe a general 

consensus on the topic of this resource. Using a number of heuristics they extract 
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hierarchical relations among tags based on their co-occurrence and their "information 

value", i. e., the number of resources tagged with them 

Heymann et. al [59] compose tag vectors based on the number of users who tagged each 

resource. Using cosine similarity to measure the distances among vectors they calculate 

betweenness centrality on the similarity graph of tags. Tags with higher centralities 

are added in the hierarchy first to represent more abstract concepts. 

Zhou et. al [135] present an unsupervised method to extract hierarchical semantics 

from tags. They break down clusters of tags using deterministic annealing until they 

encounter a number of "effective clusters". These represent clusters whose semantics 

can be generalised by some tags, the "leading tags". For instance, in the cluster {music, 

reggae, lyrics}, music is the leading tag. They deduce hierarchical semantics using 

their notion of leading tags. 

Wu et. al [124] represent the users, resources and tags as multidimensional vectors and 

place them in a multidimensional space of domains. They create links between domains 

and items according to the relations of tags, users and resources to these domains. The 

domains are identified through tag clustering which, along with the positioning of items 

within the domain space, is carried out dynamically. 

The above works exploit tag statistics in a manner bound to introduce the "popularity 

vs generality" problem, where the popularity of a tag can be mistaken for generality 

and as a result induce a wrong hierarchy. Plangprasopchok et. al [102 use additional 

information to induce global hierarchies from personal user specified hierarchies. Using 

Flickr as their use case, they assume that the structure users apply when uploading 

and organising content into sets and collections generally reflects subclass and part- 

of relationships. Using graph and lexical similarities they merge the hierarchies of 

individual users and learn a global folksonomy. However, the authors highlight a key 

issue with their approach, the phenomenon that only a small percentage of user apply 

such organisations to their content. Hence data sparseness affects their results. 
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In another effort to create structures using additional information to user tags, Kim et. 

al [62,65] propose a folksonomy contextualisation method based on Formal Concept 

Analysis aiming to provide shared meaning and create conceptual hierarchies from 

tags in the blogosphere. They base their work on the assumption that if a blog has 

relationships with others, they would use a similar set of tags. They deduce that 

contextualised folksonomies are able to provide context-centric and shared collections 

of tags to semantically-interlinked online communities. 

Applying explicit Semantics to Folksonomies 

In this section we discuss a line of work that involves the alignment of folksonomies 

elements to existing semantics or the creation of semantic models to represent folk- 

sonomies. The presentation of schemas for enriched annotation, a priori to tagging, 

propose a novel semantically-enabled way to tag and annotate. A disadvantage of struc- 

turing folksonomies with explicit semantics is that if the appropriate semantics does 

not exist (because of the lack of semantic entities describing the meaning of a novel tag, 

like "rss") human effort is required for their creation. An advantage of explicit over 

emergent semantics approaches is the potential to "publish" semantically described 

folksonomy content on the web of data according to the Linked Data principles [12]. 

Aligning Folksonomies to Existing Semantics 

The assumption behind this line of work is that "there exists an appropriate source 

of semantics for the representation of elements" in folksonomies. One way to apply 

semantics to tagspaces is by altering the paradigm of free tagging and requiring 

the users to explicitly align their tags to some sort of semantic entity. Marchetti 

et-al [82] propose a semantic tagging system, SemKey, where users select a meaning 

for their tag from WordNet and Wikipedia. In the same line, Passant et. al [98] 

propose the "Meaning of a Tag" (MOAT), a framework that allows the users to link 

their tag to semantic entities from DBpedia or other ontological repositories. Passant 
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also [97] proposes a scheme for linking tags from blogs to ontologies. He presents an 

architecture that enables the authors of corporate blogs to select entities that most 

accurately represent the meaning of each tag for the particular blog post. The entities 

are provided from a pool of preselected domain ontologies. Along the same lines, 

Limpens et. al [75] propose an RDFS model to formalise the meaning of tags exploiting 

user feedback. 

The following works also propose an alternative tagging process by requiring the user 

to provide more descriptive tagging. They then use the richer descriptions to create 

their own hierarchies which serve as semantic structures for their systems. Quintarelli 

et. al [103] describe FaceTag, a faceted annotation framework where users are encour- 

aged to import hierarchies of tags, which are then used to improve search and various 

other functionalities. Along the same lines, Yoo et. al [131] implement a framework 

that allows the users to input more specific and more generic tags rather than a sim- 

ple tag. Exploiting this information they provide a set of rules based on which, the 

aforementioned entries are turned into a hierarchy. 

A less user intensive manner to apply semantics on the tagspace is automatically 

aligning tags to semantic resources and is usually applied to tagging spaces a 

posteriori to tagging. Maala et. al [79] distinguish six conceptual categories of tags. 

Using WordNet and other knowledge resources representing a category they organise 

the tags accordingly. Then, they enrich the Flickr photos with RDF triples specified 

for each of the conceptual categories. These triples are generated either by predefined 

predicates or from WordNet signatures depending on the category. 

T-ORG [16] is a tag organisation system proposed by Abbasi et. al. Using a predefined 

ontology they categorise the tags, and as a result the resources they annotate, under 

the most appropriate ontological entity. They extract the ontological concepts and look 

for semantic relatedness between these concepts and the tags by combining them into 

predefined linguistic patterns and querying the web. Then each tag, and as a result 
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each resource, is categorised under a superclass of the concept to which it was most 

related by the web search. 

Laniado et. al [69] transform the related tags cluster of a tag as provided by Delicious 

into navigable hierarchical structures. Using a combination of WordNet based metrics 

they identify the most appropriate synset for each tag. Then they extract the path of 

this tag from the WordNet hierarchy and they integrate it into the semantic tree which 

is built for each cluster. 

Szomszor et al. [1151 use a broader semantic source to model user interests based on 

the tags he has used. They align them to Wikipedia articles and use FOAF [9] notation 

to integrate and publish them. 

Finally a hybrid approach that aligns tags to semantics after statistically processing 

them is presented by Specia and Motta [76]. They propose a method for extract- 

ing ontologies from folksonomies. Specifically they derive clusters of related tags and 

then align the tags to ontologies in order to discover their formal relations. Although 

not fully automated, this approach returns named relations between the semantically 

related tags in the clusters, thus formally adding semantics to the resulting structure. 

Ontologies for Folksonomy Modelling 

A complementary approach to aligning existing semantic entities to folksonomy ele- 

ments is the creation of formal models to represent folksonomic elements, as well as 

their inter-relations. As early as the spreading of folksonomies, Tom Gruber [54] pre- 

sented a formal model of elements and activities in folksonomies. In the TagOntology 

he proposes the expression: 

Tagging (Object, Tag, Tagger, Source) 

as a formal representation of the tagging activity. The meaning of the above is that, the 

tagger (user) tags the object (resource) with the tag in the context of the source system 
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(e. g., Flickr, Delicious etc. ). The same year (2005) Newman [90] proposed an ontology 

which models folksonomy elements in the same manner with Gruber's approach, but 

also allows for the encoding of relationships among tags, such as "relatedTag" and 

"skos: broader". 

Following Newman's example, Passant presented "Meaning of a Tag" MOAT [98] and 

Kim et. al the "Social Semantic Cloud of Tags", SCOT [64], which also represent the 

tagging activity from the perspective of a user (local) but also from the viewpoint of a 

community (global). These models also allow for explicit tag-to-meaning connection. 

Kim, Passant et. al [63] present an alignment of the most popular tag ontologies and 

demonstrate how this can support folksonomy modelling but also content reuse in 

various use cases across web applications. 

The latest advance in the ontological modelling of tagging has been proposed by the 

CommonTag initiative [3]. This approach differs from the previous by being more 

straightforward from an implementation perspective. It proposes the embedding of 

semantic metadata into the HTML code of a webpage using RDFa. It presents a richer 

representation for tags that allows the tagging of a whole document or components of 

it by embedding semantic metadata into the tags. The meaning of the tag is decided 

during the webpage creation by assigning to it DBpedia or other entities that carry 

semantics. The CommonTag initiative is supported by large web companies such as 

Yahoo and Freebase. 

2.3.2 Improving Content Retrieval in Folksonomies 

The majority of work investigating folksonomies was motivated by Golder and Huber- 

man who distinguished the three main issues that affect content retrieval, polysemy, 

synonymy and basic level variation (see Chapter 3 for the detailed explanation of these 

phenomena). To overcome these issues and improve search, the research community 

has focused its efforts on two research lines. The first line relies on statistical meth- 
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ods exploiting the dynamics of folksonomies and the distribution of tags, resources and 

users in order to address the problems in search caused by the above phenomena. 

Bender et. al [27] present a hyper-graph of folksonomy entities and define their weighted 

inter and intra relations to entities of the same and the other types (e. g., user to content, 

user to user, user to tag, tag to tag and so on). They calculate the weights using entity 

co-occurrence. For each user query, they perform six types of query expansion based on 

the similarities of entities calculated from the hyper-graph and return the documents 

mostly relevant to the query and the user 3. Experimenting with data from Delicious 

and Flickr on Precision @ 10 they show that the improvement is significant when using 

expansion based on the social network, i. e. seeking resources from the user's friends 

who have used the same tags as his query. De Meo et. al [85] also exploit the tripartite 

structure of folksonomies to create tag-resource and tag-user graphs which they use 

to perform query expansion. This method requires double relevance feedback on the 

user query. Upon submitting the query the most authoritative tags are selected based 

on the above graphs. The user needs to select which are the most relevant. These 

are further used to retrieve resources whose relevance is once again judged by the 

user. The intensive relevance feedback is required for enriching user profiles which can 

also support resource recommendation. Zanardi et. al [133] propose an approach for 

query expansion using collaborative filtering. In their approach a similarity measure 

is defined for the tags based on their frequency on resource labelling, Social Ranking. 

Each user query is expanded using the most similar tags to the query keywords based 

on K-Nearest Neighbour algorithm. Abbasi et. al [17] use a modified version of the 

vector space model which aims at addressing the tag sparseness in Flickr and improve 

the search results especially for poorly annotated images. They associate the resources 

with relevant tags based on contextual and distributional similarity of their tags with 

the new ones. In this way, they enrich the annotation of the images rather than perform 

query expansion. Yet, their approach in discovering sparsely annotated images performs 

quite well. 

'The same query from a different user yields different results 
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The second research line in folksonomy improvement aims to address the common 

underlying cause of polysemy, synonymy and basic level variation, which is the lack 

of machine understandable descriptions for the meaning of the tags and 

their relations. An alternative paradigm to statistically expanding user queries is 

proposed, which exploits existing knowledge sources. In particular the TagPlus system 

[73] uses WordNet to disambiguate the senses of Flickr tags by performing two step 

queries. First each query tag is matched against WordNet synsets which then are 

presented to the users. The latter select which senses they are interested in. The 

results consist of resources tagged with the synonyms of the selected by the user sense. 

In that way the problems caused by polysemy and synonymy are ruled out. Similarly, 

the SynTag system [72] uses WordNet to improve search and requires the users to 

connect tags to senses in annotation time rather than query time. Finally, a more 

recent approach, which exploits ontologies rather than WordNet, is presented by Pan 

et. al [95] and aims at improving the precision of results, i. e., addressing polysemy. 

The queries are expanded with more descriptive terms extracted from a preselected 

ontology and the results are narrowed down to the resources that are tagged with the 

more descriptive set of terms. The association of query terms to ontological entities is 

performed automatically using tf/idf, and once the most appropriate entity is located 

one of the preselected query expansion strategies (Individual Property Value Expansion, 

Individual Class Expansion and Individual Property Expansion) takes place, in order 

to obtain the expanded query. 

Additional functionalities have been proposed for improving the search experience in 

folksonomies. In an era of information overload classic IR improvements in terms 

of precision and recall should be complemented with enhancements such as result 

diversification [42]. Result diversification is the meaningful organisation of results, 

for example in cases of polysemy. Recognising this need Flickr provides a built4 in result 

organisation for popular tag queries. The exact clustering algorithms used in Flickr are 

not known, yet the approach of van Zwol [121] achieves similar result diversification 

4Accessed on 23/08/2010: http: //www. flickr. com/photos/tags/apple/clusters/ 
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using statistical measures on tags. An alternative approach presented by van Leuken 

et. al [119] is to use image clustering algorithms that exploit the visual similarity of 

images. In the latter the number of clusters depends on the differentiation on image 

characteristics and as a result it is less likely to rule out clusters representing a less 

popular sense for a tag (see the example for the query orange in Section 3.3). 

Finally apart from search improvement methods, further work has focused on opti- 

mising the recommendation of relevant content. Content discovery via social 

connections is a useful functionality enabled by the social dimension of folksonomies 

[120] and there is significant research towards this direction. Amer-Yahia et al. [126] 

produce recommendations of resources, tags and users by calculating the similarity 

among users based on two measures; the number of tags and the number of resources 

they share. Tso-Sutter et al. [118] perform resource recommendation based on col- 

laborative filtering of resources. They extend traditional collaborative filtering using 

shared tags among the users. Firan et al. [47] and Zhao et al. [134] produce recom- 

mendations based on user interest similarities as follows. They use a WordNet based 

similarity metric of the tags used by two users in order to deduce similarity among 

their interests. Carmagnola et al. [35] also use WordNet to classify tags in various 

categories (subjective or novel tags) and use these tags to asses user behaviour based 

on the profiles built with them. 

2.4 Summary and Outlook 

In this section we give a summary of the existing approaches focusing on the meth- 

ods they used. In addition, we outline the approaches for evaluating the proposed 

techniques and conclude by describing the open issues in the literature. 
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2.4.1 Employed Methods 

Literature Review on Folksonomies 

In Sections 2.2 and 2.3 we described the most significant research conducted in the 

scope of understanding and improving tagging systems. In this section we present 

an overview the most popular methods employed for their study. For the sake of 

consistency with the goals of this thesis we separate them in methods using statistics 

and methods using semantics. 

The majority of work presented in Sections 2.2 and 2.3 largely employ statistical 

measures. One of the reasons such methods are widely required is the scale of data 

generated from tagging systems. Statistical methods allow for macroscopic analysis 

of tagging systems and yield a holistic and high level understanding. One of the sta- 

tistically enabled approaches represents folksonomies as graphs. Usually, the nodes 

of the graph represent the users, tags and resources while the edges represent their 

interactions and interrelations. Most of the time the edges of the graphs are weighted 

based on the frequency of certain interactions, such as the frequency a user has used 

a tag, the number of tags she assigned to a resource, the number of users that use a 

specific tag to annotate a resource and so on. Frequency of interactions is also used 

in vector space models and latent semantic analysis where, instead of using graphs, 

the folksonomy elements (mainly the tags) are contextualised using their frequent co- 

occurrence in different contexts. With regards to tag contexts, the majority of work 

uses either the resource-based, which is the tags co-annotating resources with the tag 

of interest, or the user-based, which comprises of the tags the user has used along the 

tag of interest. Various combinations of the two have also been used and improved with 

the social context of a user, which consists of tags used by her network. Additional 

probabilistic approaches also exploiting co-occurrence have been proposed. Finally, 

other approaches exist that do not solely exploit co-occurrence of entities but employ 

statistical measures to perform image and text analysis. As an attempt to generalise, 

we observe that statistical methods were extensively used to extract emergent seman- 

tics, perform query expansion, search diversification and content recommendation in 
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On the contrary, considerably less work has used explicit semantics to study the 

tagging systems. On the one hand the semantically-enabled methods for the web 

are less mature compared to statistical analysis. On the other hand the microscopic 

study and semantic description of each folksonomy element is less efficient towards 

understanding the tagging systems and extracting their implicit semantics if we take 

into consideration their large scale. 

The motivation for most of the work focused on extracting semantics from tagging 

systems is to exploit data derived from folksonomies in order to extract semantics 

for the purposes of improving existing web functionalities (such as web search) and 

learning hierarchies, rather than improve the functionalities of folksonomies (such as 

search, content organisation, annotation and so on). As a result, the approaches that 

use explicit semantics are limited to aligning tags to WordNet and ontologies or creating 

new ontologies to represent the interactions within tagspaces. However, the collective 

element behind Web2.0 has allowed for the creation of resources, such as Wikipedia, 

DBpedia and Freebase. These, although they are less formal and often are characterised 
by their lightweight semantics, have also been used to study and improve folksonomies. 

2.4.2 Evaluation Approaches 

In contrast to other research areas where evaluation benchmarks have been estab- 

lished (Multilingual Information Retrieval [5] or Ontology Alignment [13]) and widely 

adopted, the folksonomy research field is lacking such common initiatives mainly due to 

its young age. Hence, each work is evaluated with a different strategy and dataset, and 
independently of the rest. For the same reason, a small percentage of the approaches 

has been extensively evaluated while the majority provide qualitative or empirical re- 

sults. 
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The work focused on improving search in folksonomies employs the classic IR mea- 

sure of precision to evaluate the results. Instead of measuring the recall, due of the lack 

of the ground truth, which is virtually impossible to obtain in social networks, these 

approaches employ the notion of rate of increase of relevant results. These are obtained 

by comparing a baseline-type of search (such as the search in a folksonomy system) 

to the search enabled by the method they propose [17]. To validate such methods 

user-based studies are conducted where humans are required to provide relevance 

judgements [22,27] 
. 

In terms of evaluating structured folksonomies, to the best of our knowledge, the only 

study which presents an evaluation of the learned hierarchical structure is pre- 

sented by Plangprasopchok et. al in [102]. They validate their learned folksonomies 

against the Open Directory Projects hierarchy using Lexical Recall [80] and a modified 

version of Taxonomic Overlap [101]. 

With the maturing of the field, and the increasing number of relevant approaches, 

the creation of a common evaluation framework would be highly beneficial despite the 

complexity of such task due to the heterogeneity and multidimensionality of tagging 

systems. However, its existence would largely benefit the related research, minimise 

repetitions and enable more rapid progress. 

2.4.3 Open Issues 

Overall, a wide variety of approaches aims to alleviate the limitations of free tagging of 

folksonomies. Statistic and semantic approaches are useful and allow for diverse ways 

of improvement in tagging systems. However, some issues still remain open. 

" Approaches that use the social dimension of tagging systems have proved to be 

very successful in tag disambiguation and search improvement. However, such 
5http: //www. dmoz. org/ 
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approaches depend not only on the explicit social relations (a user belongs to 

the list of friends of another), but mainly on the implicit relations emerging via 

shared tags and resources. Such rich social structure is only available in broad 

folksonomies [78] such as Delicious, Last. fm and Citeulike, where one resource is 

usually annotated by more than one user. In cases of narrow folksonomies, such 

as Flickr and Youtube, these approaches do not apply. Therefore there is a need 

for approaches that are independent of social structures. 

" Approaches that structure folksonomies with explicit semantics require some sort 

of human effort. A line of research, proposes a paradigm shift in free content 

annotation by the user [73,103], which cancels the unrestricted nature of free 

tagging and requires more effort from the side of the user. The approaches that 

automatically align tags to existing semantic structures require some type of 

initialisation [16], i. e., selection of the appropriate ontologies that represent a 

relevant domain to the tagspaces. As a result, methods that automatically 

select the appropriate knowledge are needed. 

" The statistically derived structures from folksonomies are frequently useful only 

within a particular folksonomy ecosystem and can only be exploited by a tailored 

technique [17,59,109]. On the contrary the structuring of folksonomies 

using explicit semantics allows for a persistent description of their ele- 

ments. In this way, the latter may lend themselves to cross domain, cross system 

applications and can be potentially exploited by endless semantic applications. 

As a result we identify the need for an approach, that automatically applies structure 

on tagging systems, is uninfluenced by social parameters, and is domain independent. 

As Hendler and Golbeck [58] point out: 

"Some techniques have tried to add structure to tags using clustering methods. Though 

this can sometimes create sensical "hierarchies", the links between concepts do not 



32 Literature Review on Folksonomies 

indicate parenthood as we would normally expect (... ) This kind of hierarchy will not 

significantly improve search and information structure as well as one that is human 

engineered. The first challenge, then, is how to build a structure around tags (... ) that 

goes beyond clustering methods ". 

In the next chapter we present the formalisation of the concepts employed in our thesis. 



Chapter 3 

Problem Formalisation and 

Definitions 

In this chapter we provide definitions for the folksonomic entities that are involved in our 

research and their relations. We describe their characteristics and the issues that influence 

folksonomy search. We introduce the key concepts of our approach and propose measures for 

the evaluation of sense structures and the performance of the enrichment algorithms. Finally, 

we present an ontology which is used to describe the output of the enrichment process. 

3.1 Introduction 

In this chapter we give a detailed analysis of the problem this thesis addresses. We 

present the main entities of folksonomies and their dependencies (Section 3.2). We 

introduce the main issues that emerge from the paradigm of free tagging and describe 

the limitations they pose in folksonomy search (Section 3.3). We introduce the concepts 

and entities used in this thesis for the semantic enrichment of folksonomies (Section 3.4) 

and specify an ontology that represents the semantically enriched tagspaces and the 

enrichment algorithms (Section 3.5). Finally we present measures for the evaluation of 



:; 1 f'roblevr Fürrrtalisation. and D(jiraztiurts 

the semantically enriched tagspaces (Section 3.6). To illustrate our definitions we use 

Figure 3.1 throughout this chapter as a running example. The left hand side represents 

a folksonorny tagspa. ce and the right hand side a semantic structure that defines the 

meaning of each tag and the relations among the senses. 

Si: Fruit 

R 

0- fruit ' 
11111111 dessert 

S2: Apple ) 

S,: Dessert 
ýº Rz: Cake / ---ý (S6: Organisation S.: Company 

apple 
cake 

S4: Apple 
Apple Inc. -- 

S7: Device 

apple 
-------------- 

Se: Gadget 
ipod S9: iPod 

Figure 3.1: F. xaiuple folksonomy with three resources and a structin'e of senses represeutiiig 
the rnie: ýiiüig; of the tags and their relations 

3.2 Folksonomics 

TIw elementary ent it ics of folksonoiuies mrv ii rc, ml r(es. t lie risers curl t he tags. The 

content of the resources depends on the folksorioin of reference and (all be images [8], 

audio tracks [11], video clips [15]. l, mkiumrl: ý, ý;; ali(1 More. The users provide mino- 

Cations for the resources during the tagging l)ro c.,. The annotations consist of one 

or more tags. which are words freely chosen by the users to describe the resources 

accor(lillg to their own perception. Alika [86] provided the first formal definition of' tile 
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tripartite model of folksonomies, which was further adopted and extended by the com- 

munity'. His model includes all three elements of folksonomies, users, resources and 

tags however, our approach is user-independent. In particular, our approach is resource 

and tag centric and does not take into account the social dimension of folksonomies. 

While, the relation between tags and resources is consistent in all tagging systems (i. e., 

each resource is annotated with a number of tags), the relation between users and tags 

and the one among users and resources are not (i. e., in narrow folksonomies, such as 

Flickr, one resource is tagged by one user, while in broad folksonomies, such as Deli- 

cious it is tagged by many). Therefore, by aiming to provide a universally applicable 

method, we exclude the social element. We modify the definition by Mika and specify 

the following. 

Definition 1. We define a folksonomy or a tagspace as: 
Da set of resources 1Z={R,, .., Rjzj}. 
Running Example: 7Z={R1, R2, R3} 

Da set of tags T ={t1, .., tIT1}. 
Running Example: T ={apple, cake, fruit, dessert, ipod} 

Definition 2. We represent the relations among tags and resources using the 
following functions: 

D tags(R) represents the set of tags associated with resource R. 
Running Example: tags(R2)={apple, cake} 

D res(t) is the set of resources associated with tag t. 1 <_ Ires(t)I < IRI; each t 
eT can annotate at least one and at most all the resources in the folksonomy. For 
the sake of clarity we adopt two naming conventions for the tags: 

" We characterise as specific those tags t that belong to a resource R and we 
annotate them with the resource name, i. e., R_t. 

" If we do not refer to the instance of a tag that is assigned to a specific resource 
we characterise it as generic, i. e., t 

Running Example: res(apple)={R2, R3} and res(R2_apple) = {R2}. 

1Ontologies Are Us: A Unified Model of Social Networks and Semantics 555 citations on August 
2010 
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Explore I Tags / apple / clusters 

D-- 
b, N. 

®4 

~1 

,i c:. 

1)f )/)/( 111 Mi 11/U/lýýltl1ll fllll! Ill ýllllýlUll. ý 

Jump to: apple 

c. mscbook, macintosh, comourer, 
P. I, keyboard. Dowerbook. 4sx. 

macbookoro 

y See more In this cluster... 

fruit. rod, roan, f2%1. rag, macro, canon. 
41fß. [Qs4m. aDQIe 

-+ Se moreimtflls cluster... 

pod iphone, music, -an- 

See more In this cluster... 

F-Lcý 
nom, newvo. man ittan. neorkc y. ny 

-º Ss mors In this cluster... 

Figure 3.2: ('luslcied rrsulls from Flickr when querying with apple 

\V'ee represent the co-occurrence of a tag with other tags using the notion of COIltext. 

1)('finition 3. We represent the context of a tag as: 

[> resource-based context: The set of tags assigned to th(' ýHIil( resource as R_t. The 

resource-based context is also denoted byy the tagset of H vVIliell is Tß =/ag, s(R). 
Running Example: TR2 = tags(R-))={apple. cake} 

D (. 1uster-based context. The cluster. C. is a more generic set of tags that has 

enierged from the statistical analysis of the tagsi)ace T. A cluster of tags is created 
based on their global co-occurrence frequency with resources or users. A cluster of 
tags is rarely associated with one resource. it is frcqucnt 1V associated with set of 
highly similar resources, from whose annotations 11 usually emerges. 

Figure 3.2 depicts the clustered results returned from Flickr for the query apple. We 

note that each -roue Of images is associated with a cluster of tags on the right hand 

siele. Each tag (l ust. er contextualises t he tag. e. g., apple in a different dimension. In 

fact, each of t fiese clusters contextualises apple. while the t, agset of R2 contextua. lises 

Rapple. The last row of results in Figure 3.2 contains cluster C= {nyc. newyork. 
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manhattan, newyorkcity, ny}, which is the cluster of tags co-occurring with apple 

and implies the sense of Big Apple (New York). 

3.3 Main Issues in Folksonomies 

One of the major assets of folksonomies, which is the free tagging, is also the cause of 

the three phenomena that largely impact on content organisation and retrieval. Initially 

highlighted by Golder and Huberman [51], these are: 

Tag synonymy arises when lexically different tags express the same concept. For 

example cake and dessert usually express a sweet meal course. Synonymy 

may cause exclusion of results if these are tagged with synonym(s) of the search 

keyword. For instance, searching for cake in the example of Figure 3.1, only 

returns R2 and not Rl even if this is correct match. 

Tag polysemy occurs among lexically identical tags that denote different meanings. 

For example, apple may refer to fruit or a brand name. Tag polysemy causes 

the retrieval of unwanted results when the tag is used with a different meaning 

than the search keyword. Searching for apple in the folksonomy of Figure 3.1 

will return both R2 and R3, although, depending on the meaning of apple in the 

context of the query, only one of these resources is relevant. 

Basic level variation. Tags with different levels of specificity are used to describe 

resources that relate to the same concept. For example, apple and fruit can 

both describe resources about apples. The lack of structure in the tagspaces, 

does not allow for explicit declaration of the fact that "apple is a fruit". This 

limits the potential of querying for resources tagged with related tags. For the 

example of Figure 3.1, querying for fruit only returns R1, although R2 is also 

tagged with a fruit name. 
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'J-, Zo K, 99- 

Figure 3.3: The most interesting results for the query lake europe in Flickr 

HOwever. the problems of content retrieval in folksouonnies arc not limited to the above 

exaºntýle5. Consider a Flickr utter who wishes to search for 1ºictures of lakes in europe. 

In lack of more elaborate query mechanisms. her only option is to use the keyword 

search with arguments {lake europe}. The most interest in 2 result s fer t his query are 

presented iºº Figure 3.3. The s. stem is not able to provide a nºcaningfuI categorisation of 

1 he results or sonne kind of recommendation such gis {lake austria}. {lake greece}. 

{lake balkans} because the european countries or areas that, contain lakes are not 

associated with the concept of europe. 

Some existing folksotiorny search systems are able to provide a more meaningful cate- 

gorisation and diversification of the results, as shown in Figure 3.2, which displays the 

results of the query apple. We note that there is one cluster for the sense of Fruit., 

oiie cluster for Big Apple and two clusters for Apple Inc.. This is because of the higher 

co-occurrence of the tag apple with Apple Inc. related terms. The two clusters could 

depict narrower senses of Apple Inc. which are the two main E)rodncCt lines. computers 
2http: //www. flickr. com/explore/interesting/ 
3T31,1 query returned 42.710 results (September 2010) 
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Explore / Tags / orange I clusters 
Jump to: orange 

yellow, n. green. leave. tall. tree, purple, 
colors, macro, licht 

y See more In this Cluster.. 

be. pink, sky, color, cloud, brown, 
reflection 

y See more In this cluster... 
"- 

sunset trees, evening, ocean, cues 

See more In this cluster... 

sun. autumn, nature, sunrise, leaf 

y See more In this cluster... 

Figure 3.4: ('lu'ttrt-d result' lion Fli<"kr yuýiviiir, with orange 

ý; I) 

and hand-held devices. I1(avcver, this approach is biased by t lie popularity of tags in 

the tagspace. In other words. if one of the rneanings of a polysemous tag does not occur 

frequently in the tagspace then it is eliminated. This is apparent in the search results 

for orange. depicted in Figure 3.4. There. the sense of' Colour occupies all four clusters 

of results. while the sense of Fruit is not represented. This is because the Colour sense 

of the lag is disproportionally frequent to the Fruit sense. 

Enriching tagspaces with a semantic structures that make the meaning and relatiuii 

of tags explicit, ill combination wit h appropriate query mechanisms can help alleviate 

siech l)r0hlehius. In the next section we introduce the concepts related to the semantic 

enrichment that we employ throughout this t thesis. 
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(n) apple (fruit with red or yellow or green skin and sweet to tart " S: crisp whitish flesh) 
o direct hyponvm /, dull hypon)mr 

" S: (n) crab apple, crabapple (small sour apple; suitable for preserving) "crabapples make a 
tangy jelly" 

" S. (n) eating apple, dessert apple (an apple used primarily for eating raw without cooking) 
" Si (n) cooking apple (an apple used primarily in cooking for pies and applesauce etc) 

o direct hypernn / inherited hypernym / sister term 
" S: (n) edible fruit (edible reproductive body of a seed plant especially one having sweet flesh) 
" Si (n) pome, false fruit (a fleshy fruit (apple or pear or related fruits) having seed chambers 

and an outer fleshy part) 
o pair holonym_ 

" S: (n) apple, oivhard apple tree, Malus purnila (native Eurasian tree widely cultivated in many 
varieties for its firm rounded edible fruits) 

Figure 3.5: A \\o"dNet sunset for Apple. 

3.4 Semantically Enriching Folksonornies 

In t his thesis we address the unclf'rbiiig cause for all the aforeuientioiied folksOIaiulies 

issues which is the lack of structure. In contrast to previous workc we reuse all the 

available knowledge encoded in Knowledge Sources and aiitomaticalt, ä})1)1V semantics 

to tagspaces. In the following; we define the core concepts of this work. 

1)efinitiou 1. Wc define as Knowledge Source: 

>a body of kno wledgc that ('Ou tmn", 'cniantic descriptions of concept", and explicitly 
defined Semantic relations between them. 

One such well established Knowledge Source is \VordNet, which haus been vvi(lely 

adopted in various research areas. including folksonornv improvement (see Chapter 2). 

In addition to \V()rdNet, ontuýlogies, are hand-crafted artefacts that also J)O vide ex- 

jýlicit ly foýrinalisecl knowledge. In the scope of t his thesis we utilise \\ )rd Net and 

oiilOlogics huhlicly, available can the web through the Watson Seniantic Web Gateway 

[4 1] 

f)efinit ion 5. We define Semantic Entity as: 

Knowledge Source object that contain, information that defines a concept. 
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Details for http: //ontosem. org/#apple 

" In httn: //morpheus. cs. umbc. edu/aksl/ontosem. owl 
oO Class 
o label: "the firm, rounded fruit of a tree, having skin that is usually red but may be yellow or green" 
o subClassOf: htm: //ontosem. org/#mree-fruit 

Figure 3.6: A C1as, derived frooin the Uututieui. ow1 ontology Ioi ; 1/)J)l(. 

An example of a semantic entity is depicted in Figure 3.54 in t lie forni of <t 

Net noun synset. Ontological Classes and Individuals are also semantic entities. An 

example of ontological semantic entity is depicted iii Figure 3.6 ý'. In both cases, the 

semantic entities describe the concept of Apple along with semantic relat ions to other 

concepts. For example, in Figure 3.5 Apple is a hvponvin of Edible Fruit and Porree, 

while in Figure 3.6 it is a subclass of Tree Fruit,. In the rest of the thesis we use the 

following notations to represent sIvnsets and ontological entities respectively. 

hypony"n hypuý7, ynr Synset: apple -ý edible fruit fruit --ý .. hyponym liz/pmi; ynt 

hypernym 

-4 crabapple 
hypernyrn 

"fruit rl ith I( (1 or Yc! lotc or yrr ýr sý ilý 1(11 /ý ri5p ra1hitoil? 
flesh. 

su&C lasso f "" bClassO f 
Class: apple =+ tree-fruit -+... 

(Ontology 1) "The firm rounded, fruit of a tree [... ] may be yellow or green. " 

The related concepts of a semantic entity constitute its semantic neighbourhood. 

Iii the following chapters we describe the extraction and u srige of semantic entities for 

t lI( definition of t he meaning of tags. 

In Or(ler to unify the heterogeneous semantic entities that originate from different 

lhttp: //wordnetweb. princeton. edu/ 
''http: //watson. kmi. open. ac. uk/WatsonWUI/entity_look_up. html? q=http: //ontosem. org/ 

#apple 
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Knowledge Sources and integrate them into a coherent structure we define a new con- 

cept. 

Defitiitioii 6. We define Sense as: 

> an object t hat holds t lie meaning of a word. Each sense S has a niiniher of 
subordinate (subsenses - sub(S)) and superordinate (supersenses - , Suip(S)) 
senses. Iii addit ioli, it has a set of s, N nom, rn terms syrn(S) that define its meaiiiiig. 
Running Example: sub(Sj)={S2}, sup(S4)={S,, S6} and syti(S3) = {cake. 

dessert} 

The two semantic entities of Apple described previously, are translated into senses in 

the following mariner. 

hyponyin 
Sense: apple edible fruit 

lt yý, on yrn 
\V(1ý -i pome 

hyperrtyrn 

"fruit with red or ? /ellour or green shin. /.. 7 tart crisp whitish flesh. 
" 

,; V Iaxs(f 
Sense: apple -* tree-fruit 

0(1) "The firm. roufdUd fruit of a tree /... J may be yellow or green., ' 

The codes 0(1) and \V(1) represent the provenance of the sense. For example, the 

first sense was created by a \VordNet sYnonYm, while the second by an ontological 

class. In later chapters where we describe the sense integration, these indicators may 

co-exist in the saune sense (i. e.. the respective sense is created using three ontological 

entities and a WordNet synset). In Chapter 7 we describe how the relations of the 

newly created senses to their neighbour semantic entities are transformed toi relations 

between senses, and subsequently integrated in a sense structure. 

A sense can have zero or more supersenses or subsenses in a specific hierarchy. For ex- 

ample, there are no supersenses for SI: Frui. t or subsenses for S,: App1c, hence 
. sup(Sj) _ 

{} and sub(S2) = {}. Each sense may carry additional relations to other senses apart 

from superserºses and subsenses. These are further analysed in Chapter 7. Finally, the 
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actual implementation of a sense contains more information than depicted above. For 

example, it contains a set of de-reference-able URIs of the semantic entities from which 

it originates. We do not demonstrate this data in the above representations in order 

to avoid the visual clutter. More in-depth analysis of the senses is given in Chapter 7 

where the process of sense creation is explained in more detail. Also, the description of 

the properties of a sense is presented in Section 3.5, where we introduce the ontology 

that supports the semantically enriched tagspaces. 

Our approach associates tags to the correct meaning, i. e., sense. Two types of relations 

can hold between a tag t and a sense S6 depending on whether the tag is specific or 

generic (see Definition 2). For the example of Figure 3.1, the tag apple can be defined 

either by S2 or by S4. Both 82 and S4 are candidate senses for apple, therefore: 

hasPotential De f inition has PotentialDe f inition 
apple ---ý S2 and apple --4 S4 

On the contrary, when the tag is explicitly specified in the context of a resource tagset, 

such as R2-apple and R3-apple, it can be related with at most one sense: 

hasDe f inition hasDe f inition R2-apple ---3 S2 and R3-apple -- + S4 

Definition 7. We define the relationship between senses and tags as definition 
(Dfn) oft from S: 

DDf n(t, S), s boolean function which, for sense S and tag t is defined as: 

1 if S holds a meaning for t, Df n(t, 5ý =0 if not. 
3.1 

Running Example: Dfn(apple, S2) =1 and Dfn(R3_apple, S2) =0 

D senses(t) returns a set of senses (candidate or explicit) for tag t and 
p< Isenses(t)l <I NJ 
Running Example: senses(apple) = {S2, S4} and senses(R3_appie) = {S4} 

6The notation tag and Sense has been used to reflect the fact that tags are plain text while senses 
carry semantics. 
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The empty set, senses(t) ={} is obtained if the tag is not enriched with any sense. It 

should be pointed out that senses(R_t) =S does not imply Dfn(R_t, S) =1. Even if 

there is only one candidate sense for t, it is not guaranteed that it is the correct one 

without considering is context. 

The explicit or semantic relations between tags and senses (or entities) e are related to 

the notion of coverage of t by e. We assume that a sense or semantic entity e covers 

a tag t in the following cases: 

Lexical Coverage holds when t belongs to the set of lexical descriptions of e. If e is 

an ontological entity, then the lexical descriptions consist of the local name and 

the labels of e. If e is a WordNet synset or a sense then the lexical descriptions 

are its synonyms. t can be lexically covered by many entities (senses) which 

means that each of them represents a candidate meaning for t. 

Semantic Coverage holds when the meaning of t is explicitly described by e. In 

order to decide if e semantically covers t, t needs to be contextualised in some 

manner (either in the scope of a resource tagset, or in the scope of a cluster, 

Definition 3). The semantic coverage of t from e is equivalent to Df n(t, e) =1 
(see M3.7) 

To conclude, in this section we introduced the concepts of Knowledge Source, which 

provides the enrichment algorithm with semantic entities. The semantic entities are 

transformed to senses, which are used to describe the meaning of tags and their rela- 

tions. Although previous work exploits additional metadata of the resources [101,102], 

we focus our experiments on the tags of the resources rather than other lexical at- 

tributes such as title, description and notes. Tags offer higher precision and recall to 

the queries in comparison to all other lexical information of the resource [78]. In addi- 

tion, the types of lexical information vary among different folksonomies, while tags are 

consistent. 
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In the following section we describe the FLOR-ontology that is used to represent the 

enriched tagspaces. 

3.5 An Ontology for Enriched Tagspaces 

In order to support the output of our enrichment algorithm (FLOR-2, Chapter 7), we 

built the FLOR ontology with which we define the schema which supports the rela- 

tions among tags, resources, senses and semantic entities as described in the previous 

sections. We create a new ontology for the representation of the enriched tagspaces, 

rather than reusing the ontologies described in Section 2.3.1. This is because these 

ontologies align the tag to a semantic entity directly and do not support the notion 

of sense. As we described in the previous section, the notion of sense is important for 

the integration of entities originating from different backgrounds and the creation of 

an interconnected semantic layer for the input tagspaces 7. The enrichment algorithm 

described in Chapter 7 (FLOR-2) directly populates the ontology with RDF represen- 

tations of the enriched tagspaces. Figure 3.7 is a visualisation of the main ontological 

classes and their relations. Each class is used to represent a set of fundamental entities 

involved in the enrichment process as described in the previous sections on this chapter. 

We specify each ontological entity in Appendix B. To help us exemplify the descriptions 

of the entities, in Figure 3.8 we present a more detailed and realistic representation of 

the semantic structure created by FLOR-2. 

Resourcex is tagged with {X_Hungary, X_Balaton, ... , X_Europe}. The tags of 

Resourcex are matched to senses that define their meaning. Each of these senses 

relates with the senses of the tags in the same tagset for example: 

hasDe f inition partOf hasDe f inition 
X_Balaton -4 Balaton --* Hungary 4-: - X_Hungary 

7The concept of "Meaning" from MOAT ontology is the closest representation to the concept of 
sense but does not provide representation of lexical forms and relations which are further required for 
the creation of semantic layers 
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Figure 3.7: FLOR ontology 
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They also relate with the senses of tags from other resources, for instance, Resource...: 

hasDe f inition typeO f hasDe f inition 
X_Balaton --+ Balaton -f Lake + ... _Lake 

This explicit linking of tags, resources, senses and semantic entities can largely ben- 

efit folksonomies. First of all, each tag is explicitly defined by a sense which carries 

additional knowledge, such as synonyms and semantic neighbourhood. As a result, 

complementary knowledge is injected in the resources. For example, Resourcex is as- 

sociated with broader concepts such as Lake and Country, which did not exist in its 

tagset initially. Second, such a structure can provide association of resources that rep- 

resent similar concepts. For example, all the concepts that represent lake names are 

explicitly related with Lake with the type Of relationship. Using appropriate semantic 

querying algorithms, such a structure can provide solutions to the search problems 

of folksonomies. We describe our approach on querying such semantic structures in 

Chapter 9. 

3.5.1 Comparison with CommonTag ontology 

In Section 2.3.1 we described the related works on ontological folksonomy modelling 

the latest of which is the CommonTag ontology, published in 2009. The specification 

is adopted by academic and enterprise applications8. CommonTag metadata can be 

embedded in any HTML page using the RDFa technology, where the representation of 

a tag contains the identifier of the resource it tags and a link to its meaning. 

Figure 3.9 presents a graphic representation of the CommonTag ontology, as well as 

its alignment with the FLOR ontology. In CommonTag, there is no need for definition 

of a class for resource since the latter can be the URI of any element in a webpage. 

The relation between tag and resource is tagged and represents the same relation as 

flor: is Tagged With. In addition, there is no definition of Sense. Instead, the creator of 
8http: //www. commontag. org/Applications 
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the web page is responsible for assigning to the tag an explicit URI of a concept from 

a Knowledge Source that represents the meaning of the tag. The relation used for this 

is means which is aligned to the flor: h. asDefinition. 

<resource> 

%- T- .0 
Tage -º '2001-01-01" taggingDate 

label 
` 

means 

i 
-lexr -aesource> 

relation 

flor: Sense flor: isFoundln SemanticEntity 

flor: hasDefinition 

flor: Specific_Tag 

`Bor: 
isTa gedWith j 

Iflor: TaggedResource 

http: //commontag. org/ http: //flor. kmi. open. ac. uk/ 

Figure 3.9: Alignment of the FLOR yore ontology with the Common Tag ontology 

3.6 Evaluating the Semantic Enrichment of tagspaces 

The measures introduced in this section are used to asses semantic structures in terms, 

of appropriate representation of tagspaces and improvement of search. In addition, we 

define measures that evaluate the performance of the enrichment algorithms in terms 

of tagspace coverage. 

3.6.1 Evaluation Measures for Sense Structures 

We define a set of measures, which we use to statistically evaluate a given sense space, 

S, in terms of appropriate representation of a tagspace, T. A sense space, also called 

sense structure, is a set, of senses and their relations, a semantic structure. as depicted 

on t he right hand side of Figure 3.1 and in Figure 3.8. The provenance of t lie sense 
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space (WordNet or ontologies) does not affect the calculation of the following measures. 

We define them based on the properties of senses (subsenses, supersenses, synonyms) 

however, the same measures can apply to entities from WordNet or ontologies with 

subordinate (hyponym, subclass) and superordinate (hypernym, superclass) entities, 

and a set of lexical representation (synonyms, local names, labels). We define the mea- 

sures on the basis of how a semantic structure can address the issues of folksonomies, 

i. e., polysemy. synonymy and basic level variation. 

The first measure is the mean number of synonyms per sense S in S. We assume 

that the more synonyms a sense has the more likely it is to semantically cover (see 

Definition 7) a large number of tags. If the mean number of synonyms per sense in a 

sense structure is higher than 1, it means that the structure can potentially address 

the problem of tag synonymy, where different tags have the same meaning. 

(syn(S)l _ 
s_s ýyn(`_ 

(3.2) 

For example, in Figure 3.1 Isyn(S) I= 1+1+2+2+1 = 1.4 

With regards to tag polysemy, the more candidate senses S provides for one tag t, the 

more likely it is to capture all its possible meanings in the tagspace. Therefore, we 

then define the mean number of senses per tag in a given tagspace T. 

Isenses(T)I = 
ET' ö Isenses(ti)1 

ITI (3.3) 

This measure is meaningful for generic, rather than specific tags because it represents 

the potential for correct sense assignment. For the generic tags of the tagspace this 

measure represents the mean number of candidate senses per tag. For example, in 

Figure 3.1: 

Isenses(T)l (senses(fruit)+senses(dessert)+senses(apple)+senses(cake)+senses(ipod) 

5=1.2 
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Finally we define the mean numbers of subsenses and supersenses in a sense space 

as 
Isub(S)I_ 

EsESýub(S)l 
(3.4) 

ý) 

sup(S)I - 
ESESýup(S)i 

(3.5) 

In Figure 3.1 Isup(S) l= 0+1+0+2+1 = 0.8. Intuitively, the higher the number of su- 5 

persenses and subsenses, the higher the probability that the structure can address the 

issue of basic level variation. In the previously mentioned example of searching for 

{lake, europe} (Section 3.3), the more subordinate senses associated with Europe 

(e. g., areas, countries and so on), the more tags are likely to be associated with these. 

Therefore by having a larger number of subsenses and supersenses we may obtain a 

better representation of the tagspace and higher connectivity of the tags. 

These measures provide quantitative assessment of a sense structure S. We instantiate 

these measures in Chapters 6 and 8 where we evaluate the output of the enrichment 

algorithms. Note that the enrichment algorithm presented in Chapter 4 does not make 

use of the concept of sense (Definition 6) nor does it produce an interconnected sense 

space, therefore these measures are not used for the evaluation of FLOR-1. 

Additionally, we define the percentage of semantically covered tags from a sense struc- 

ture S originating from a Knowledge Source. We define the semantic overlap of the 

tagspace T and the structure S as Tss g T: 

Tss =Ut: 3SES: Df n(t, (3.6) 
tET 

which is the set of tags t that are defined by one sense S of the sense space S (or 

are defined by one semantic entity of a Knowledge Source). Note that this refers to 

explicit tags as for tag t there is a sense S for which Df n(t, 5) = 1. The percentage 

of semantically covered tags from a sense structure S is represented by the measure of 
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semantic coverage: 

covs(T, S) = 
ITS I 

(3.7) 

These measures reflect the number of tags that are semantically covered from a Knowl- 

edge Source and are only dependent on the characteristics of the Knowledge Source and 

the characteristic of the tagspace. In particular, semantic coverage depends on the ex- 

istence of an entity (or sense) that defines the meaning of a tag in a given tagset. 

For example in Figure 3.1, the sense structure provides 100% semantic coverage for 

the tagspace of the three given resources because there is one sense that defines the 

meaning of each tag. 

We define the measure of normalised coverage in order to evaluate the percentage of 

assigned senses to tags by an enrichment algorithm, A. In other words, what percentage 

of tags that are semantically covered by the Knowledge Sources is correctly covered by 

the algorithm. If we consider the number of tags correctly covered by the algorithm to 

be TA then the normalised coverage of tags by algorithm A is: 

covn(T, S, A) =TA (3.8) 
Tss 

This measure reflects the performance of the enrichment algorithms and is independent 

of the bias introduced by Knowledge Sources' or folksonomies' characteristics. Indeed, 

Tss comprises only of the tags t that can be enriched as there is a sense SES for 

which Df n(t, S) = I. In the example of Figure 3.1 Tss = 6. Consider an enrichment 

algorithm A, which succeeded to assign senses only to 5 out of the 6 tags of the tagspace, 

then the normalised coverage would be: 

covn(T, S, A) =5=0.83 (3.9) 



52 Problem Formalisation and Definitions 

3.6.2 Evaluation Measures for Search 

In this section we define the measures with which we evaluate the improvement of search 

when using semantic structures from the perspective of synonymy, polysemy, and basic 

level variation. We assume that for a given tagspace T there is a sense structure, 

SKS (created using Knowledge Source KS). Consider keyword k used for search in 

the traditional keyword matching paradigm supported from the existing folksonomy 

systems; only results tagged with k will be returned: 

Query Results (k) = res(k) 

In the example of Figure 3.1 res(cake) = R2 while the relevant resource Rl is excluded. 

The existence of a structure that defines the relation of synonymy among tags can 

contribute towards solving this problem. Instead of retrieving only resources tagged 

with k, the resources that are tagged with its synonyms are also retrieved. The synonym 

tags of k can be extracted from the set of synonyms of the sense SE SKS that defines 

the meaning of k. In other words: 

Query Results (k) _ UtE 
syn(s) res(t) :SE senses(k). Which is 

Query Results (cake) = UtE 
syn(s3) res(t) _ {R1, R2} 

The number of Query Results depends on the number of synonyms of the sense S that 

defines k, and the number of resources each synonym t tags, Ires(t)j. The synonyms 

constitute the expansion of k in different search scenarios. The expansion may include 

synonyms, subordinate and superordinate terms of k. In particular, the expansion of 

k using a sense SE SKS is defined as: 

exp(k, SKS) = {syn(S) U syn(sub(S)) U syn(sup(S))}, VS E senses(k) 
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If we denote as res(exp(k)) the resources tagged with the expansion of k, we can 

calculate the normalised increase ratio for tag k using a sense S from SKS 

ninc(k, SKS) = 
Ires(exp(k)) - res(k)l (3.10) 
Ires(exp(k)) U res(k)l 

which calculates the percentage of new resources retrieved using the expansion, com- 

pared to all the results of the system. For example, inc(cake, SKS) -` 
{RI, R2}-{Rz}ý _ }U{RZ}1 

2=0.5. The mean normalise increase for a set of keywords T using SKS is calculated 

as: 

Ininc(T, Sxs)I - 
EtETlIninc(t)l 

(3.11) 
-rl 

In the following chapters (5,6) we evaluate the knowledge sources and the enriched 

tagspaces with the measure of normalised increase and the measure of precision as 

this is defined in classic Information Retrieval, which reflects the percentage of correct 

results to all the results returned by a search system. 

Precision =l 
cor ec (R)l 

(3.12) 
IRI 



Chapter 4 

First Version of Folksonomy 

Enrichment Algorithm 

In this chapter we present the first version of the FLOR enrichment algorithm that automat- 

ically aligns tags with semantic entities from online ontologies. We apply the algorithm to a 

randomly selected dataset from a popular folksonomy and present our results on the correct- 

ness and the average coverage of the algorithm. We also identify a set of characteristics of 

folksonomies, ontologies and our approach, which we further exploit for the creation of the 

improved version of the algorithm. 

4.1 Introduction 

We present the first version of the FoLksonomy Ontology enRichment algorithm, 

FLOR-1. FLOR-1 is aimed at transforming flat folksonomy tagspaces into rich seman- 

tic representations using semantics from freely available ontologies. Our first attempt 

to create semantics tagspaces, was published in [21]. There we performed an exper- 

iment aiming to identify whether the automatic enrichment of tagspaces is feasible. 

In particular we reused the clusters generated by Specia and Motta in [114] and ap- 
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plied the relation discovery algorithm presented by Sabou et. al in [108]. Despite the 

straightforward approach, the algorithm automatically obtained semantic relations be- 

tween the tags of the clusters. The same time we identified a set of limitations which 

we address in the implementation of FLOR-1. 

In the approach presented in [21] we used an outdated set of ontologiesl therefore we 

built the semantic entity discovery mechanism of FLOR-1 using an up-to-date search 

engine, the "Watson Semantic Web Gateway" [41], which continuously indexes Se- 

mantic Web data published on the web. In addition, in an effort to improve the tag 

anchoring in the semantic web (the discovery of semantic entities that contain the tag 

in their lexical representations), we use the rich synonym collection from WordNet to 

semantically expand the tag prior to searching for semantic entities that define its 

meaning. We point out that FLOR-1 does not deal with relation discovery among 

tags, it rather focuses on the correct identification of the tag concept. The relation 

discovery is detailed in Chapter 7. 

FLOR-1 takes as input resource tagsets and for each performs three basic steps as 

shown in Figure 4.1. First, during Lexical Processing the input tagset is cleaned 

and tags which a-priori are highly unlikely to match semantic entities are excluded. 

We rely on a set of heuristics to decide which tags are likely to be less useful. Second, 

during Sense Definition and Semantic Expansion we assign a WordNet synset to 

each tag based on its resource context and extract all relevant synonyms and hypernyms 

to generate a richer representation of the tag. Finally, during Semantic Enrichment 

each tag is associated to the appropriate semantic entity. 

The first step of the algorithm results in the Lexical Representations which is a 

set of lexical forms for the tag, such as plural and singular forms for nouns, or various 

delimited types of compound tags (sanFrancisco, san. Francisco, e. t. c). The second 

step identifies WordNet synset for each tag, which provide related Synonyms and 

'The experiment was carried out in 2006 with data from Swoogle 2005 
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Figure 4.1: The FLOP-1 Enrichment Process 
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Hypernyms. The last step generates the set of the associated semantic entities. A 

tag can be associated to several relevant semantic entities because it is likely that more 

than one ontology may contain a valid definition for the tag. 

In the following sections we describe in more detail the three phases of FLOR. In 

Section 4.5 we present an example of enrichment detailing each phase. Finally in 

Sections 4.6 and 4.7 we present our experimentation on FLOR-1 with <i rmudomly 

selected dataset from Flickr the results from this study. 

4.2 Lexical Processing 

Due to the freedom of tagging, a wide variety of different tag types are in use. Under- 

standing the types of tags is the first step in deciding which of them are meaningful and 

should be taken into account as the basis of a semantic enrichment process. Previous 

work [21,51,79] has identified different conceptual categories of tags (event, location, 

person). as well as tag categories that can be described by syntactic characteristics. For 

example, there are many tags containing special characters (e. g., : P), numbers (e. g., 

aug07), plurals as well as singular forms of the same word (e. g., building, buildings), 
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concatenated tags (e. g., littlegirl) or tags with spaces (e. g., little girl) and a 

number of non-English tags (e. g., sillon). The role of the lexical processing phase 

(phase 1) is to identify these different categories of tags and exclude those that do 

not need to be further considered for the semantic enrichment process. It also en- 

riches the tag with different lexical representations in order to maximise the coverage 

in ontologies. This task is performed in two steps. 

4.2.1 Lexical Isolation 

The Lexical Isolation step identifies sets of tags that should be excluded as well as those 

that can be further processed. Currently we isolate and exclude all tags with numbers, 

special characters and non-English tags. The reason for excluding non-English tags 

is that our method exploits online ontologies, which are primarily in English. While 

the isolation of tags containing numbers and special characters is straightforward, the 

decision on the tag language is not. Although language filtering based on the existence 

or not of tags in an English source (for example a dictionary) can possibly rule out 

novel terminology, in this first version of FLOR we use WordNet for this task. WordNet 

is also used in the subsequent phase for the purposes of semantic expansion. 

4.2.2 Lexical Normalisation 

The Lexical Normalisation step aims to solve the incompatibility between different 

naming conventions used in folksonomies, ontologies and thesauri such as WordNet. 

This phase produces a set of possible Lexical Representations for each tag aiming 

to maximise its coverage by different Knowledge Sources. For example, the compound 

tag santabarbara in folksonomies appears as Santa-Barbara or Santa+Barbara in var- 

ious ontologies and as Santa Barbara in WordNet. However, as the lexical anchoring 

to these resources is a quite complex problem, we try to address it by producing all 
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the possible lexical representations for each tag such as: {santaBarbara, santa. barbara, 

santa_barbara, santa barbara, santa-barbara, santa+barbara, ... 
}. We do so by util- 

ising a spelling service2 to break down the compound terms, and then use a list of 

delimitation patterns to produce the different formats of these terms. 

4.3 Sense Definition and Semantic Expansion 

Due to the phenomenon of polysemy, the same tag can have different meanings in 

different contexts. For example, the tag jaguar can describe either a car or an animal 

depending on the context in which it appears. As a result, in order to identify its 

synonyms we first need to identify its intended meaning in a certain context. In the 

following we describe the steps of the sense definition and semantic expansion phase 

(phase 2), how the tag meaning is decided using a rich sense repository, WordNet, and 

how this information is exploited for the alignment of the tag to ontological entities. 

4.3.1 Sense Definition and Disambiguation 

In this step FLOR-1 discovers the intended sense of a tag t in the context it appears. 

Since FLOR-1 deals with resource tagsets, the context of a tag in this case is the 

resource-based context or resource tagset T as detailed in Definition 3 of Section 3.2. 

We use WordNet as a sense repository and combine its hierarchy of synsets with the 

contextual information of t in order to discover a correct sense for it. 

We begin by searching for WordNet synsets (senses) that define the tag and its lexical 

representations (generated during the lexical normalisation step). If more than one 

synsets are returned we exploit the contextual information of the tagset to identify the 

most relevant sense. We calculate the similarity between all the combinations of tags 

2http: //search. yahooapis. com/WebSearchService/Vl/spellingSuggestion 
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Figure 4.2: An example of the Wu and Palmer similarity measure 

in the tagset using the \Vu and Palmer similarity formula [125] (see Formula 4.1) on 

the WordNet graph. The similarity degree between two senses Si arid $ is calculated 

based on the distance of their lowest common ancestor from the root of the hierarchy 

(N3) and their distances frone this ancestor (Ni and N2). The result for each calculation 

is a pair of senses and a similarity degree for these two. 

Sirn, (Sl, S2) _ N, +N2+2*N3 
2*N3 

(4.1) 

For example. consider the tag building in the tagset {building, corporation, 

road, england}. After discovering all possible synsets for each tag we calculate the 

similarity of all pairs of synsets. The similarity of building with england is zero due 

to the lack of connection between theme in the \\ )rdN'et hierarchy. However. the sim- 

ilarities of building with the other two tags are calculated in the mariner presented 

in Figure 4.2. For each pair, their nearest common ancestor is selected and the Word- 

Net, hierarchy is considered up to the most generic categories group and entity. The 

two synsets for building are: 
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hyponyýrt hyponyin 
Synset: Building Gathering -+ Social Group 

(1) "the occupants of a building" 

nyrn 
Synset: Building, Edifice 

hyp otty"nStructure, 
Construction 

hypo-* 
Arte- 

fact 
(2) "structure that has a roof and walls and stands more or less permanently 

in one place" 

The synset with the higher similarity is selected. the sunset for Building(2) since it is 

more similar to other tags of the tagt than Building(l). The sunsets for Road and 

CorpoT'ution.. with which Building(j) and Building(2) were compared are: 

hyponym hypoTSym 
Synset: Road Way Artefact 

an open way (generally public) for travel or transportation" 

Irypoýrym hyponynL hyponym hyponym 

Synset: Corporation -ý Firm Business -ý ... Social 
Group 
"a business firm whose articles of incorporation have been approved in 

some state" 

If a tag has low similarities when compared to all the other tags in its cluster, flied it 

is assigned to the most popular NVorciNet sense. For example, this is the case for the 

tag england. which is assigned the most popular synset, 3: 

nym 
Synset: England hypo-+ European Country 

`'a division of the United Kingdom" 

4.3.2 Semantic Expansion 

Owe the correct \\ ordNet synset is assigned to each tag FLOH-1 expands the tag 

descript ion by including its synonyms and liypernyms. In previous example, Buildi, 71g(2) 
1 I1, this case there is only one synset for this term 
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was selected as the most appropriate sense for building in the context of {building, 

corporation, road, england}. Then the semantic expansion associates the tag a 

s('t of synonyms: {edifice} and a set of hyperu ms: {structure, construction, 

artefact}. These provide a richer description of the tag and are used to improve its 

matching to semant is ent it ies. 

4.4 Semantic Enrichment 

Iii this phase FLOR-I identifies the relevant semantic entities for each tag. The final 

output is produced by this phase and it is a set of tags enriched with the appropriate 

semantic entities and their semantic neighbourhood. WC use the Watson API as all 

access point to online ontologies. We query Watson with the lexical representations 

(produced by the lexical normalisation) and the synony 1, (l)roduced bN, the semantic 

expansion) of a tag. All ontological Classes and Individuals returned by Watson that 

can potentially describe the meaning of the tag are considered. Then, we filter these 

cut il ies using the hyponynis assigned to a tag during the sense disambiguation and 

seinantic expansion phase. An example is presented in Figure -I. 3 where three entities 

were discovered for the tag building. 

ABC 

BuiltStructure Spot Human Shelter Construction 

PublicConstant Fixed, 'tru( turc 
Building Building 

Building 

TwoStoreyBuildinng 
Railway Bridge Pier Tower OneStoryBuilding ThreeStoryBuilding 

Figure 4.3: An example of selecting Semantic Entities using Hvpernvnis 

\Ve only select the semantic entities whose ontological parents match one (or more) of 
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the hvpernyms. For example. because the hypernyms of building are {structure, 

construction, artefact} the only semantic entities selected are A and C because 

their superclasses flexibly match the hypernyms of building'. The qualified entities 

are their subjected to clustering before they are assigned to the tags. 

4.4.1 Entity Clustering 

By using multiple ontologies. the same concept mIV the dlefiixecl more than o>>ee i lies 

leading to different types of redundancies such ass : 

1. Redundancy of the same entity. Several ontologies declare the same URI. 

2. One entity with the sa. m e id is declared in two different versions of the same 

ontology, for example. U1. daml: plann, t and 01. ouýl: 7la7at. 

3. The same concept is declared in different ontologies in the same iHarmer. namely- it 

i, 5ubsinned by the same concept(s) and has the same ontological iieighbourhuod 

(relations, literals and so on) but different URI. 

4. The same concept is defined in different ontologies by two different eutities with 

different neighbourhood, for example, 

subC-la-s Class: Banana p 
sO f GroceryProduce 

sýibC(assO f 
(Ontologyl) Banana -* TropicaiFruit 

subGiassOJ Class: Banana' anana ---p Tree-Fruit 
(Oiitology2) "an elongated yellowish fruit which grows on palm trees" 

41f the returned entity is a class, the ontological parent is its superclass. If it is all individual, the 

ontological parent is the class which the entity instantiates. 
'Although the distribution of these different types of redundancies varies for different entities and 

a detailed experiment should be conducted to determine the exact number of such occurrences in a 
given snapshot of an ontological repository. our experience with the Watson repository showed that 
the not freyucut cases of entity redundancies are I and 2. Almost 70% of redundancies refer to either 
the sauce URI described in different ontologies or the same entity with different base URI is described 
in different versions of the same ontoluhy. 
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To reduce the number of redundant entities, we perform an integration process similar 

to the one described in [117]. The goal of this process is to set sufficiently similar 

semantic descriptions of entities together and merge them into a new description, a 

cluster of entities, which represents a single meaning. The algorithm is repeated until 

all obtained entities are sufficiently different from each other. To compute the simi- 

larity between two entities we compare their semantic neighbourhoods (superclasses, 

subclasses, disjoint and equivalent classes and named relations) as well as their lexical 

information (localnames, labels). The similarity Sim(ei, e2) for two entities el and e2 

is computed as: 

Sim(el, e2) = WL X SimL(el, e2) + WG X SimG(el, e2) (4.2) 

SimL(el, e2) is the similarity of the lexical information of the two entities computed 

using the Levenshtein distance metric [74]. SimG(el, e2) is the similarity of the entities' 

neighbourhood graphs. For example, the superclasses of el are compared against the 

superclasses of e2 and the same happens for subclasses and disjointness relations. This is 

repeated for all the neighbour entities of el and e2. The similarity among the neighbour 

entities is computed based on string similarity too. Because we consider the similarity 

of the semantic neighbourhoods more important than the similarity of the labels, we 

set the following restriction for the weights as: Wi < Wg. 

If the similarity between two entities is higher than a threshold we merge them in 

one entity by integrating their neighbourhoods into one. The process is exemplified 

in Figure 4.4 where five semantic entities e1,5 are compared against each other. The 

values in the cells T; j are the similarities between the two entities, i. e., T1,2=T2,1 = 

Sim(el, e2) = 0.1. 

Consider that the threshold for this example is set to 0.5. We start by performing a 

pair-wise comparison of the entities and observe that the pairs (el, e4), (el, e5), (e2, 
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e, 

e2 

e3 

e4 

e5 

e, e2 e3 e4 e5 

0.1 0.3 0.7 0.8 
0.1 0.5 0.4 0.7 
0.3 0.5 0.3 0.2 
0.7 0.4 0.3 n 0.1 
0.8 0.7 0.2 0.1 

e2+e3 e4 e5+e1 

e2+e3 

e4 

e5+e, 

e2 
e3 

e4 

e5+e1 

e2+e3 

e4 

e5+e, 

eý e3 e4 e5+ el 

0.5 0.4 0.3 
0.5 0.3 0.5 
0.4 0.3 0.1 
0.3 0.5 0.1 

Figure 4.4: An example of entity inergiug strategy with threshold 0. 

(; r) 

e3) and (e2, e5) have a similarity equal or above the set threshold. We proceed by 

merging the first two entities with the highest similarity. e1 and e5, to one entity er + 

e5, rearrange the table and compute the similarities between the new entity and the 

remaining ones'. This process continues until all similarities are lower than the set 

threshold. which implies that the obtained entities are sufficiently different. In this 

example, three different entities are obtained e3+e3, e4 and ei+e5. The merging of 

entities is performed by collapsing t heir neighbourhoods. For example, Watson returns 

two semantic entities for banana: 

subC. lassOf 
Class: Banana -4 GroceryProduce 

sub lassO f 
(0ntology1) Banana -4 TropicalFruit 

6Note that in the second step. the similarity between entity ei + e5 and e2 equals to 0.3, while 
the similarity of e2 with the individual entities before their merging is Sim(ei. ('2) 0.1 and Siin(e5i 

e2)-0.7. Naturally. the merged entity ei + e5 shares the features of the two component entities, 
therefore its similarity with the other entities (e. g.. e2) is different to the similarity of e. g., e2 and ei 
or e2 and e,. 
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subClassOf 
Class: Banana ---4 Tree-Fruit 

(Ontology2) "an elongated yellowish fruit which grows on palm trees" 

Using the similarity ineasure (4.2) we decide that they arc sufficiently similar and they 

girre then merged to obtain: 

subClassOf 
Class: Banana --4 GroceryProduce 

subClassOf (Ont. ologyl) Banana --4 TropicalFruit 

subClassOf (Ontology2) Banana -* Tree-Fruit 

an elongated yellowish fruit which grows on JHalrII trees 

4.5 An Enrichment Example 

In this section we present a full cycle of the FLOR-1 semantic enrichment met hod for 

the tag lake, which was found in the following five tagsets frone Flickr: 

1 
{rush. lake. pakistan. rakaposhi. mountain. asia. kashmir. snow. sky. ýi 

glacier. green. white. blue. clouds. water} 

T2 {moraine, alberta. banff. canada, lake, lac, rookies, scan} 

T3 {rising. sunlight. lake. quality. bravo 

T4 I {lake, nature, landscape, sunset, water, organisms 

T5 lake. finland. suomi. beach. bubbles. blue, sunlight, kids. natural} 

since the Lexical Processing phase is straightforward we do not detail it in this example 

(tlre above tagsets only contain the tags that qualified through it, i. e.. initially they 

contained tags that, were isolated by phase 1). During the second phase we queried 

\\ rdNet for synsets that may define the meaning of lake and obtained the following 

three7: 

7Note that synsets 2 and 3 are different synsets in «'ordNet despite their almost equivalent defini- 
t ion. 
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Synset: Lake hyP-4 Body of water. Water hyP2; "' Thing hypýTm Entity 
(1) "a body of (usually fresh) water surrounded by land" 

h ypon ym h ypon ym h yponyin 
Synset: Lake -* Pigment Coloring material - Material 

Substance hyP4 Entity 
(2) "a purplish red pigment prepared from lac or cochineal" 

hypo; yrr hyponm hyponyin 
Synset: Lake pigment -4' Coloring material Material-+ 

hyyonyrn 
Substance Entity 

(3) "any of numerous bright translucent organic pigments" 

Applying the Wu and Palmer formula for the senses of lake and the senses of the rest 

of the tags in each of the tagsets we obtained variable similarities from 0 to 0.8G. The 

zero similarities were obtained for location names such as banff. pakistan, suomi and 

for generally unrelated tags such as quality, scan, sunlight, sunset. Interestingly, 

lake returned a value of zero for the tags glacier and mountain while they should be 

related. The WordNet synsets for glacier and mountain are: 

Synset: mountain, mount 
zyp yrn Natural Elevation 

hyp-oýi 
ýyrn Geological 

Formation hy7 y"' Object 
"a land mass that projects well above its surroundings; higher than a hill" 

Synset: glacier 
'"p ' Ice mass-> Geological Formation hyp y"' Object 

"a slowly moving mass of ice" 

They are both hvponyms of Geological formation which is a hypoiiyrn of object, while 

Lake is a hyponym of Body of water which is a hyponym of Thing. Although a. hy- 

ponymy relation between Lake and Geological formation is expected, in the hierarchy 

of WordNet such relation does not exist. Furthermore Glacier is a hyponyrn of Ice mass 

but there is no subsumption relation between Ice mass and Ice or Water that, would 
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allow for a connect ing path between Lake and Glacier. WordNet's relations hierarchy 

is not sufficient for disambiguation in this case. 

T1ie highest, similarity 0.86. for lake was obtained with the tar, water. because Svnset 

I of Late is related to Body of water (Sunset 2 of Water) «it li clirýý t lid hý>nýiný 

rehat ion. Note that. for most of the tagsets the first sense of lt'ot(r. Liglcid, is selected 

as this is the most common sense in glitch the tag water is used. 

hyponyýn 

Synset: W er. H2O -> Binary Compound 
hyponym 

(1) Wate'-. H2O . Liquid 
"bi iy/ compound that occurs at room temperature as a clear colourless 
od 

iiirh. 
ss tasteless liquid" 

¶ 
h: 4ponym 

Synnset: Body of water, Water -ý Thing 
(2) ' tht$, purl of the corlh 's surface co r'cred tuith water" 

lake 

budy_ot_water - 
water subL ssOt http #Iunel , ui ý. accrýtiý, 
thing http /! Icýnely nrg. fru=sia#Lake_Baikal- type 

entity 

subClassOf 
http. //Isdis. cs. uga.... ltestbedl# Water-Feature 

subClassof 
http //lsdis cs. uga edu/prod/semdis/testbed! #Thing 

" Figure 4.5: Enriched tag lake by FLOR-1 

Olim the correct sense is selected and the tag is setnantically expanded with hypernytns 

(there are no synonyms for this sense of LaA ) then the third phaýc of FLOR-1 queries 

the online ontologies t hrough V'l at son and selects t lie senianti( ent it ies t Imt correspond 

to this sense. As shown in Figure 4.5 both selected entities have the term Lab in their 
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localname and their superclass in the ontology contains one or more of the hypernyms 

returned by WordNet, Water and Thing, as a whole or as a compound. Note also that 

the selected semantic entities carry additional information about two superclasses of 

Lake (Waterway, Waterfeature) and an instance of Lake (Lake Baikal) thus further 

enriching the tag. 

4.6 Experiments and Results 

To assess the correctness of the FLOR-1 enrichment process (i. e., whether tags were 

linked to relevant semantic entities) we applied FLOR-1 on a Flickr data set comprised 

of 250 randomly selected photos with a total of 2819 specific tags. During the Lexical 

Isolation we removed 59% of the initial tags reducing to 1146 tags in total. We isolated 

45 tags with two characters (e. g., pb, ak), 333 tags with numbers (e. g., 356days, tagl), 

86 tags with special characters (e. g., : P, (raw -4 j pg) ), and 818 non-English tags (e. g., 

turdus, arbol). Then we filtered out the photos that exclusively contained the isolated 

tags (24 photos) and obtained a dataset of 226 photos with a total of 1146 tags. After 

running the FLOR-1 enrichment algorithm for these 226 photos, one evaluator (the 

author) manually checked all the assignments between tags and semantic entities. 

The assignment of a semantic entity to a tag is considered correct if the concept de- 

scribed by the semantic entity is the same as the concept of the tag in the context of its 

tagset. To decide that the evaluator was given a tagset and the semantic entities linked 

to its tags. She evaluated each tag enrichment as "correct" if the tag was linked to 

the appropriate semantic entity and "incorrect" otherwise. In cases when she was not 

sure about the intended meaning of the tag, she rated the enrichment as "undecided". 

Finally, tags not associated to any semantic entity were described as "non-enriched". 

The results of this process are displayed in in Table 4.1. 

Out of the 1146 lexically processed tags, FLOR-1 correctly enriched 281 tags and 
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Enrichment Result # of Tags Percentage 

"correct" 281 24.5% 

"incorrect" 20 1.7% 

"undecided" 4 0.31/0 

"non-enriched" 841 73.4% 

Total 1146 100% 

Table 4.1: Evaluation of semantic enrichment for individual tags. 

incorrectly enriched 20 tags thus leading to precision results of 93%. An example of 

incorrect enrichment is that of square in the context {street, square, film, color, 

documentary}. A'hile its intended meaning is Geographical area, because during the 

disambiguation phase square did not, return high similarity with any of the rest of the 

týigs, the WordNet sense assigned to it was the most popular one, Geometrical shape. 

Synset: Square, Foursquare * 
hypon: 4"' 

Rectangle 
hyPoýty"n 

.... 
h''JPonym 

Shape 
"(geonietry) a plane rectangle with four equal sides and four right angles; 
a four-sided regular polygon" 

I'hi5 leci to the assignment of non-relevant semantic entities na. niely: 

svbClassn f 

Class: Square --ý Rectangle 
(Ontology 1) "Any Rectangle whose sides am, all equal" 

svlassO f bC 

Class: Square -+ Rectangle-2D 
(Ontology 2) ' [". ] Each instance of Square is a rectangle. with all four sides of 

equal length. [.. 

Despite this error, the rest of the tags in this tagset were correctly enriched. 

FLOR. -1 failed to enrich 841 tags, i. e.. 73.4c%, of the tags (see Table 4.1). Because 

this is a, significant amount of tags, we wished to understand whether the enrichment. 

failed because of FLOR's low coverage enrichment or because most of the tags have 

uo equivalent coverage in online ontologies. To that end we selected a raaicloin 10%% 
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of the 841 tags (85 tags) and manually identified appropriate seºnaººt is entities using 

Watson and taking into account the context (s) of the tags in the tagset(s) they appear. 

Out of the 85 tags we manually enriched 29. We therefore estimate that the number 

of tags that could have been enriched by FLOR. -1 (i. e., those for which an appropriate 

semantic entity exists) is approximately 287. thus, taking into account that the overall 

number of tags t hat should be correct 1y eººrichecl was 568 (281+287)' but, only 281 were 

enriched by FLOR-19 this leads to an approximate norinalisecl coverage for FLOR-1, 

113.8: 

cOrn(T, S, FLOR-1) = 49`h 

where T represents the tagspace of the experimental clataset and S the online ontologies 

ill Watson as a Knowledge Source. While this is quite a low cnri<"1>>nent percentage, 

these results are highly superior to the ones we have Obtained in previous exherünen is 

[21] where wtwe (lid not perform senlautic expnn,, ion aid we directly searched for semantic 

entities for the tags wit pout relying on \VoriINet as an intermediary step. Indeed, the 

\VordNet sense definition and expansion of the tags with svnonyins and hvpernvnus 

(FLOR-1 phase 2) increased the tag discovery ill the Semantic \Vch thus hiving a 

positive effect on the coverage of tags to ontologies. 

FLOR-1 failed to enrich the above 29 tags due to the following reasons. The majority 

of the failures (55%) was due to different definition in terms of superclasses in \v INet 

and in online ontologies For example. the definition of love in WordNet and the relevant 

entity found in the Semantic Web are: 

hyponyin 
Emotion -* 

hyponym hypo-nynn 
Synset: Love - Feeling Psychological feature 

"a strong positive emotion of regard and affection 

R'1'his is equivalent tu 'Tss - 56H. see N13.6 in Section 3.6.1 
9This is equivalent to TA = 281 
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Class: Love s u6Clas-* sO f Affection 
"Love is a collection 1..!. Specialized forms of Love are Love-Romantic, 
platonic love, maternal love, infatuation, agape, etc. " 

Although both these definitions refer to the same sense, and additionally the superelass 

Affection belongs to the gloss of Love in \VorclNet, t hey were ººot matched because 

Affection does not appear as a hvpernvin of Love. 

A further 24% of the tags not connected to any semantic (ýntitv were assigned to the 

Wrong WordNet sunset (luring phase 2. For example, bulb referring to light bulb in 

its tagset is assigned the incorrect sYnset: 

h ypon yTn hyppn. yýn 
Synset: Bulb Stalk, Stem -ý Plant organ 

rn. od, ficd bud cora. 5istiny of a thick ncd globular iýndýýrgrourtd, stcýrt scrtiýr. q 
as a reproductive structure" 

The rest of tue tags are utienricfýed due to I; iilures III ýiiýý honing th ell) into appropriate 

semantic cntit. ies. This is because, despite the lexical enrichment phase FLOR uses 

strict string matching. 

For 4 tags the evaluator could not determine whether the enriclimetit, was correct or 

incorrect (Takle 1.1). This is because the meaning of the tag was unclear even when 

consicleriiig its context and the actual image it is assigned to. For example, in the 

photo of Figure 4.6 the meaning of the tag volume is unclear. ]u the second phase of 

FLOR-1 the tag was expanded with the lid perm iris . 
1J a. ýurr aind Abstraction from the 

most popular synset of \VordNet for volume: 

hypo hyponym 

Synset: Volume -4 Measure 4 Abstraction 
"the amount of 3-dimensional space occupied by an object" 

Then, it way related to the semantic eDtitV: 
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Figure 4. (i: A1mid,, i, k, I-I. IIIi( II ,,, i iit 

subClassOf 
Class: Volume -p Measure 

"I , I, n0c1usure of t/iC Ji45ical space: of any 3-1) geometric object" 

As, the meaning of the tag was not clear for the evaluator, she evaluated it as -1111- 

ýlecidedýý. More generally. there are several cases wlieii tags only make sense to their 

author (and maybe to his social group) and thus are difficult to enrich. 

4.7 Lessons Learnt 

we prcSciitcd tlivv FLOR-l f'i ri(lifu('iit <ýlnuýi1lýiýi <Ilid IIn (XJ)eriinwuts WW-Y, 

on a subset, of Flickr photos. We enriched approximately 49, ( of the tags (normalised 

coverage) vith a precision of 93`X. Compared to our previous efforts to Wimp tags 

rain black vanda 
lights museum white purge 
people reflection landscape london 
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to Semantic Web Entities, without previously expanding them with synonyms and 

hypernyms (23% in [211), this is a significant improvement. Analysing the results we 

identified a number of issues to be resolved in order to enhance the performance of 

FLOR-1. 

As indicated by the results in Section 4.6, the cases of incorrect enrichment and lack 

of enrichment were mainly caused by failure in the Sense Definition and Semantic 

Expansion phase. In particular the following issues need to be addressed in order 

to correct the errors and enhance the performance of this phase. First, it is essential 

to extend the tag similarity measure to also exploit other relations rather than only 

Subsumption. This flaw was exemplified in the case of lake and glacier which were 

considered unrelated based on the hierarchical structure of WordNet (Section 4.5). 

Second, in the example of square co-occurring with street, the incorrect sense defini- 

tion for square caused further incorrect enrichment (Section 4.6). One of the possible 

solutions to this is to perform context expansion exploiting tag co-occurrence. For ex- 

ample, expanding the {square, street} tagset with their frequently co-occurring tags, 

for example {building, park}, can increase semantic relatedness between the tags and 

potentially lead to correct mappings from tags to correct senses. 

To conclude, we present the issues highlighted from this experimentation with FLOR 

1. To increase the coverage and correctness of assigning tags to semantic entities it is 

required to: 

" L4.1: Identify alternative relatedness measures among the tags of a tagset. 

" L4.2: Utilise tag co-occurrence where semantic measures fail. 

" L4.3: Reconsider the use of WordNet as a source for semantic expansion. 

In Chapter 5 we present an evaluation of this enrichment algorithm from a search 

perspective with the help of a user study. 



Chapter 5 

Searching Enriched Tagspaces: 

Initial Experiments 

In this chapter we present an initial experiment on querying a tagspace enriched with the 

first version of FLOR. We describe an algorithm for search in the enriched tagspaces and its 

implementation as a web application. We perform a user experiment and report on the user 

experience, as well as, the performance of the enriched tagspaces in search. 

5.1 Introduction 

In this chapter we investigate how the enriched tagspaces obtained with FLOR-1 com- 

pare against the flat tagspaces in a search scenario. In Chapter 2 we described the 

relevant work on folksonomy improvement and highlighted the lack of formally es- 

tablished evaluation benchmarks. As a result, some of the folksonomy improvement 

approaches [17,85,102] have conducted a tailored evaluation which best suits the char- 

acteristics of the problem they address and the methods they propose. For the same 

reasons, we perform an evaluation of FLOR-1's impact on search using a larger dataset 

than the one used in the evaluation described in Chapter 4. Here, we enrich a dataset 



76 Searching Enriched Tagspaces: Initial Experiments 

from Flickr, build a query expansion mechanism, which facilitates servant ica. lly-enabled 

search, and use it to perform a user experiment. 

In Sect ion 5.2 we briefly describe the enrichment of the tagspace, introduce the (tucrv 

mechanism and present the user interface. In Section 5.3 we describe the experiment 

conducted and the results we obtained. W'i'e conclude with Section 5.4 where we describe 

the lessons learnt from this experiment. 

5.2 Method 

5.2.1 Enrichment 

For this experiment we used the algorithm clescrihecl iii Chapter . 1. Iý LOR- 1, to enrich 

the input tagspace. FLUH-1 takes as input a set of tagsets correspOnclillg tO res-our("eti 

and for each tagset T performs the following steps. At first. it eliiiiinates the less useful 

tags and lexically processes the rest. Then, each tag t is clisanil)ig>>ate<I i»" being 

snatched to an appropriate WordNet synset according to the context of T. Using the 

svtiset's synonyms and hypernyins we identify seina. iitic entities from online Oillologies 

and connect them to t. 

Synsetc, bbage 
Hypernyms: {vegetable} 

Synonyms: {chou, cabbage} 

http: //Ont1. com#vegeta ble 

subClpssOf 

Ontological 
I 

Entities: {http: //Ontl. com#cabbage, .. } 

Lexical Variations: {cabbage} 

R_cabbages 

R 

Figure 5.1: Fiii 'licd t; lg cabbage by FLOH-1 
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Figure 5.1 depicts the representation of the output of FLOR-1. Resource R, is tagged 

with specific tag R_cabbages which is associated with three types of entities according 

to the three phases of FLOR-1. First the tag is lexically enriched with a lexical vari- 

ation {cabbage} and then it is associated with synset Synsetcabbage. From that it is 

semantically expanded with synonyms {chu, cabbage} and hypernyms {vegetable}. 

Finally it is associated with ontological entities, for example http: //Ontl. com#cabbage. 

Each ontological entity is associated with other semantic entities such as: 

http -. //Ontl. com#cabbage subc of http : //Ontl. com#vegetable (5.1) 

In the next section we describe different strategies to perform search on enriched 

tagspaces in order to investigate the value of the enrichment algorithm. 

5.2.2 Querying Strategies 

We describe three search strategies, each of which exploits different characteristics 

of the enriched tagspace in order to obtain relevant results to a query keyword k. 

In this preliminary experiment we allow only for single-keyword queries. We pose 

this limitation because we want to study individual cases of tag enrichment without 

introducing the complexity of tag interdependencies. In addition, we want to obtain 

insights on the user experience with such semantically-enabled search. 

To the best of our knowledge the only other approaches performing semantically- 

enabled search in folksonomies also restrict to single-query keywords. Lee et. al [73] 

match the keyword to all candidate synsets from WordNet and require the user to 

select the one she is interested in based on the synset's natural language description 

(Gloss [45]). Then the synonyms of this synset are used to expand the query. This 

work has not been evaluated from a user perspective. A work published at a later time 

than the one described in this chapter is presented by Pan et. al [96]. They intro- 
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duce an approach for reducing tag ambiguity in domain specific search in folksonomies 

(e. g., music videos in Youtube). Their approach depends on appropriately bootstrap- 

ping their expansion framework with a relevant domain ontology. They predefine a set 

of queries and evaluate the performance of their method by comparing the relevance 

of the results to each query keyword and using a measure of precision (equivalent to 

Measure 3.12). The relevance judgement is provided by one evaluator. 

In contrast to Pan et. al, who deal with the problem of tag ambiguity (i. e., tag pol- 

ysemy), we investigate how the structure of enriched tagspaces can help address the 

problems of synonymy and basic level variation (see Chapter 3). As a result we intro- 

duce the following search strategies. 

(A) Querying with tags 

This is the type of search provided by folksonomies where the set of results consists 

of all the resources that are explicitly tagged with query keyword k. In the example 

of Figure 5.1, k is compared only against the tag itself, i. e., R_cabbages. R is only 

retrieved if k=cabbages. We use this strategy as the baseline for comparison against 

the following two. 

(B) Querying with synonyms and lexical variations 

With this strategy we aim to increase the number of resources by dealing with the 

issue of synonymy. As a result, the results of this strategy are resources tagged with 

synonyms or variant lexical representations of the query keyword k. The lexical rep- 

resentations are obtained by the phase of Lexical Processing (Section 4.2.2) and the 

synonyms from the phase of Semantic Expansion (Section 4.3.2). The results of this 

strategy are the resources tagged with tags t, whose synonyms or lexical variations 

contain the query keyword k. In the example of Figure 5.1, R will be retrieved for 

k={cabbage, cabbages, chou} although it is only tagged with cabbages. 

(C) Querying with subclasses and hyponyms 

With this strategy we investigate the problem of basic level variation by returning 
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resources annotated with subordinate terms of the query keyword. Because not all 

semantically expanded tags are successfully associated with semantic entities' we also 

use the hierarchical relations of WordNet. In this strategy, the query keyword k is 

mapped against the hypernyms of the tags' synsets and the superclassess of the tags 

ontological entities. In this strategy the results are resources tagged with tags t that: 

. contain the query keyword k in their set of hypernyms 

" are associated with semantic entities which are subclasses of the entities with 

which k is matched. 

In the example of Figure 5.1, R will be retrieved for k={vegetable}. In the following 

section we describe the user interface that supports search using these three strategies. 

5.2.3 User Interface 

We build a web interface implementing the above strategies, using JSP2 on Apache 

Tomcat3. The enriched tagspaces reside on a Sesame4 RDF repository and strategies 

(A) to (C) are implemented in terms of SerQL query calls to the repository. 

The introductory page of the web application consists of a search box and instructions 

to the users. The first page of the results is displayed in Figure 5.2. The first col- 

umn (A) presents the results that are explicitly tagged with the query keyword; for 

example, vegetable and represents the tag-based search in folksonomies. Column (B) 

presents the results that are tagged with synonyms or different lexical representations 

of the query term; for example, {veggies, vegetables} and implements strategy (B). 

Finally, column (C) presents the results tagged with subordinate senses of the query 

keyword; for example, {legume, artichoke} and represents querying strategy (C). 

'see the example of love in Section 4.6 
2http: //java. sun. com/products/jsp/ 
3http: //tomcat. apache. org 
4http: //www. openrdf. org/ 
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Figure 5-3: Second Page - Results tagged with subordinate concepts of vegetable 

Under eººch result we present the tag which caused a resource to be returned for this 

quere. For example, in the second column the tja, vegetables was mat(he(l Iot lie 
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query keyword vegetable and in the third column the legume and artichoke were 

found as subclasses of vegetable. 

To avoid visual clutter, a maximum of 10 photos are presented within each column. If a 

column contains more than ten results, these can be accessed by clicking on "see all". 

For the first two columns this will simply lead to a "bag" display of the relevant photos. 

By clicking "see all" in the third column, the user views the results further organised. 

We take advantage of the available semantic information to categorise the results under 

each subordinate sense of the keyword query as demonstrated in Figure 5.3. Clicking 

on a result (either from the screen of Figure 5.2 or from the screen of Figure 5.3) the 

user obtains a larger view of the photo with all its associated tags and the tag matching 

the query keyword highlighted (e. g., onion). 

5.3 Experiments 

5.3.1 Experimental Setup 

As previously mentioned, the selection of a dataset for the evaluation of folksonomy en- 

richment methods is not a straightforward task. A criterion for a good selection should 

take into account popular resources and tags for the sake of avoiding idiosyncrasies. In 

addition, it is often useful to select datasets from specific domain in order to guide the 

users with the queries they can ask. 

For the current evaluation we selected a dataset from Flickr, more specifically a subset 

of photos from the group Plant [directory]'. We then randomly selected 12233 photos 

with a total of 13645 generic tags (89446 specific tags). Applying FLOR-1 on this 

dataset we acquired the following results: 3765 tags, i. e., 27,6% of the generic tags 

were disambiguated and semantically expanded with (WordNet) synonyms in Phase 
5http : //WWW. f lickr. com/groups/plantdirectory/ 5.943 members and 63.454 resources on 24- 

07-2008 
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2. Out of these 670 tags, i. e., 4% of the total tags were linked to Semantic Web 

Entities resulting into 9697 (79,2%) enriched photos. The enrichment precision of the 

algorithm (i. e., how many enriched tags were correctly enriched) was tested in the 

earlier evaluation of FLOR-1 in Section 4.6. In that dataset (250 photos and 2819 

individual tags) 25% of the tags were enriched with 93% precision. The drop in the 

tag coverage (25% to 4%) can be explained by the fact that the majority of the photos 

belonging to the Plant [directory] group are tagged with group idiosyncratic tags such 

as {ilovenature, naturesfinest, lovelyi}. The existence of idiosyncratic tags 

drops the coverage percentage but does not affect the enrichment of the rest of the tags 

in the group since they cannot contribute to the disambiguation phase by not being 

matched against WordNet synsets. 

The percentage of enriched tags (4% during Phase 3) with semantic entities compared 

to the percentage of semantically expanded tags (27,6% during Phase 2) is quite low. 

As the goal of this experiment was to evaluate the usefulness of the enriched tagspaces 

to the user, it makes sense to concentrate on the structure provided by WordNet leaving 

out the ontological entities returned for the 4% of the tags. 

5.3.2 User Study 

We asked 11 users (postgraduate and postdoctoral researchers) to post at least 3 single 

keyword queries related to plants using the web application described in Section 5.2.3. 

They had to evaluate the results returned in each column and answer the questions of 

Table 5.1. The results for tag-based search (T) refer to strategy (A). (S) represents 

systems (B) and (C) which are obtained using the semantically-enabled search. 

After the completion of the experiment we acquired 45 individual user queries. The 

following four {aquatics, bryophytes, conkers, photosynthesis} did not return 

any results neither in (T) nor in (S), as no photos from the dataset were tagged with 
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Q1: What are you looking for? 

Q2: What keyword did you use? 

Q3: Did you find what you were looking for? (T): 88% (S): 88% 

Q4: Did the presentation of the results help you find what 
you were looking for? 

(T): 77% (S): 88% 

Q5: Are there any photos that should not be in your results? (T): 12% (S): 21%, 

Q6: Did you find any photos with (T) that you were not 
able to find with (S)? And vice versa? 

(T): 0% (S): 66% 

Table 5.1: User Experiment 1: Questions and Responses 

them6. 

Additionally, there were nine keywords for which (S) did not return any additional 

results to (T). This was because FLOR-1 did not enrich the tags corresponding to 

these keywords. One of them is the misspelled funghi (the correct spelling is fungi). 

Yet, there were two photos tagged with the misspelled tag but no WordNet synsets or 

semantic entities exist (at the time of the experiment) for funghi. In other cases (S) 

did not return additional results as the query keywords did not have any synonyms 

(returned by (B)) or hyponyms (returned by (C))7. Finally for the keyword fish al- 

though it was expanded by (S) no photos were found to be tagged with its synonyms 

or subclasses as the domain of our dataset was restricted to plants. Yet this yielded a 

useful observation. The correct assignment of a semantic entity to a tag is not enough 

if this entity's neighbourhood does not cover other tags in the tagspace. In other words, 

semantic entities whose neighbourhoods are assigned to a larger number of tags in the 

tagspace are more useful to the enrichment process. 

In the following sections we present quantitative results on normalised increase (Mea- 

sure 3.11) and precision (Measure 3.12) calculated from the 32 remaining user keywords 

and describe the user incentives on this experiment. 

6The non existence of photos tagged with them (or their synonyms) did not trigger the enrichment 
process thus strategies (B) and (C) could not find relevant tags t for these keywords. 

7These keywords are: lotus, aloe, trunk, oak, stigma, boletus, wither 
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Normalised Increase and Precision 

In Chapter 3 we defined the measure of normalised increase M3.11 as the percentage 

of additional results obtained when querying with the expansion of the query keyword 

over the total results (obtained with a keyword and its expansions). We calculated 

the additional correct results with the help of one evaluator who judged the results of 

the queries based on the information needs of the users (see Table 5.1: Ql) and their 

responses (see Table 5.1: Q3-Q6). 

The light (green) bar in Figure 5.4 represents the normalised increase values of (S) 

for the 32 user keywords, K, ranging from 0 to 98% and obtaining average normalised 

increase M3.11: 

Ininc(K, (S)) I= 36% 
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We observe that (S) achieved the highest normalised increase for leafs. In this case 

the number of (T) results was 23 while the (B) returned 745 new photos that would 

otherwise be excluded because they were tagged with leaf, leaves and foliage. 

(C) returned 49 photos tagged with subclasses of leaf including frond and rossette. 

Another interesting case was that of conifer which explicitly tagged only two photos. 

(B) did not return any results but 36 photos were tagged with subclasses of conifer 

such as pine, cedar, cypress and araucaria. The worst normalised increase rate 

(0%) was achieved for the query nature because none of the synsets of WordNet for 

nature has hyponyms that cover the tags of the input tagspace. In addition, nature 

is one of the queries for which hierarchical expansion would not make sense. This is 

because nature is a generic concept and the notion of narrower concept for nature varies 

among different users. The user who posted this query specified (in Table 5.1: Q1) 

that she was looking for images of the natural world, such as mountains, landscapes 

and so on. In Chapter 6 we present the interesting case of an ontology that describes 

nature as a superclass of such concepts (see Section 6.3.3). 

In Figure 5.4 is shown that in the majority of the cases, the results returned by (S) 

are 100% correct. The average precision for all the keywords (including maize, root, 

fruit for which not all results were correct) was calculated as (M3.12): 

lprec(T, S) I= 94% 

This is not a surprising result since the dataset we selected was domain restricted, thus 

less likely to contain ambiguous senses for the tags. For example, for the ambiguous 

word lotus, there were no images of cars tagged with it, only images of flowers. 

The domain restriction, however, did not cater for the ambiguity in the following 

case. For the query insect, the precision dropped because one of the photos retrieved 

with the hyponyms of insect depicted a Volkswagen Beetle (see Figure 5.58). The 

8http: //www. flickr. com/photos/kazukichi/2404898062/ 
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insect sense of beetle was incorrectly assigned to this image because in FLOR-1 if 

the WordNet-based disambiguation fails the most popular sense is assigned to the tag. 

This is a known limitation of the algorithm which can be eliminated by employing other 

Knowledge Sources, where more tags are covered and their relations e. g., between beetle 

and car are declared (we have implemented this improvement in the second version of 

FLOR Chapter 7). Yet an interesting observation emerges from this example. 

The image depicts different objects which are not semantically related and its tagset 

({oml, tree, yokohama, plants, japan, flower, kanagawa, multipleexposure, 

car, beetle}) contains different contexts. For example, {tree, plants, flower} 

define one context, {yokohama, japan, kanagawa} define another, and the same holds 

for {beetle, car}9. The existence of various sub-contexts (within the context of a 

tagset) which are semantically un-related can not be addressed by solely utilising for- 

mal semantics. In addition, for the disambiguation of specific tags, e. g., beetle, only 

some of the contexts should be taken into account e. g., {beetle, car}. If an explicit 

relation among the tags of a context exist, then this problem is eliminated. However, 

if the tags are related but the employed Knowledge Sources either do not cover the 

tags or do not declare their explicit relations, the co-occurrence frequency of the tags 

could be exploited to simulate their relatedness. Cattuto et. al [36] showed that statis- 

tically obtained relatedness matches the semantic measure in performance. Therefore, 

alternative disambiguation measures that take into account statistical re- 

latedness of tags should be considered (see Chapter 7). 

Finally, the query fruit caused lower precision because the algorithm exploited the 

direct hyponyms in the WordNet hierarchy of fruits, which were not compatible with 

the information need of the user. The user was looking for fruit images while the 

subsenses of fruit in WordNet include {seed, pome, berry, achene, acorn}. These 

are more abstract categorisations of fruit and do not cover well the tagspace. This is 

another case of a semantic entity (the WordNet synonym of fruit) that is conceptually 
9The tags {oml, multipleexposure} are idiosyncratic, i. e., they do not refer to the concepts 

depicted in the image. 
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Pros Cons 
Returns more results Does not categorise results in (B) 
Meaningful presentation of results Does not broaden the query keyword 
Ideas for query reformulation 

Table 5.2: User Responses on regarding the use of (S) 

Furthermore, they would prefer a sense-based grouping of results in (B) and they would 

like (C) to also give them broader results in the cases of low or no results. One such 

case is querying with boletus which is a type of mushroom and there were no resources 

tagged with it or its subordinates. In that case the users would prefer to see other types 

of mushrooms. 

We note that the responses for Q5 demonstrate that in 21% of the queries on (S), 

there were incorrect results, while the same happens for the 12% of the cases in (T). 

This result on (T) indicated that searchers did not agree with the taggers. The users 

commented that they would not annotate this image with the query keyword and as a 

result, they consider it an incorrect hit for their search. This disagreement is inherent 

in folksonomies since users are free to tag the resources with any keyword. Finally, the 

increased value for (S) in Q5 was caused due to incorrect results such as the case of 

beetle. 

5.4 Lessons Learnt 

In the study presented in this chapter we compared the traditional search on flat 

folksonomies with a preliminary implementation of search on enriched tagspaces. We 

selected a dataset from Flickr related to plants and enriched it with the FLOR-1 en- 

richment algorithm. We implemented three search strategies in a web interface where 

users could ask keyword queries related to the domain of plants and had to compare 

their querying experience in using the baseline folksonomy approach (T) with the query 
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expansion facilitated by the enriched tagspaces (S). With the latter we obtained aver- 

age normalised increase of 36% with average precision of 94%, which may have been 

influenced by the domain restriction of the dataset. The users were satisfied by the ad- 

ditional results from (S) and stated that their structured presentation generated more 

ideas for query reformulation. A qualitative investigation of individual user query key- 

words demonstrated cases where the Semantic Web could contribute further to the 

typical WordNet based approaches. For example, in the case of beetle, which was 

incorrectly mapped to insect from WordNet because the concept of car name is not 

included in WordNet. 

Below we summarise the main outcomes of this study 

L5.1 The value of semantic entities with respect to the enrichment process depends 

not only on their richness on the Knowledge Sources of provenance, but also on 

how well their semantic neighbourhoods match the tagspaces. 

L5.2 Statistical relatedness measures should be explored in order to exploit tag con- 

texts which are not semantically related. 

L5.3 WordNet allows satisfactory query expansion, therefore it should be considered 

as a Knowledge Source for enrichment. 

L5.4 The presentation of results in groups is meaningful to the users and can help 

generate ideas for query reformulations. 



Chapter 6 

A Task Based Comparison of Online 

Ontologies and WordNet on Search 

In this chapter we compare ontologies accessible via the Watson Semantic Web Gateway and 

WordNet as Knowledge Sources used for the purposes of search. We use them individually 

to extract two sense structures for a given tagspace and then exploit these two structures 

for search. We juxtapose the two sense spaces in terms of structure, we perform a user 

experiment in order to gain insights on their influence on search, and finally compare them 

against folksonomy based search. 

6.1 Introduction 

The work presented in Chapters 4 and 5 provided evidence on the value of WordNet in 

the enrichment of tagspaces and in search. WordNet is a long term, continuously 

maturing resource used for information retrieval, text classification and sense disam- 

biguation and spans several domains. However, its evolution is relatively slow and 

often lags behind in the representation of novel terminology. At the same time it is a 

robust knowledge artefact of high quality. On the contrary, the ontologies on the web 
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originate from various sources and may encode more up-to-date knowledge compared 

to WordNet. For the same reason, though, they contain modelling and other errors 

and exhibit a high degree of heterogeneity. 

In Chapter 4 we presented FLOR-1 and evaluated its enrichment precision and the 

tagspace coverage using a randomly selected sample. In that experiment we used Word- 

Net to semantically expand the tags before matching them against semantic entities 

from ontologies. The experiment showed that the WordNet hierarchy was insufficient 

to determine whether two tags were semantically related (e. g., lake and glacier) 

therefore did not provide a good basis for disambiguation (L4.3). In Chapter 5 we 

experimented with FLOR-1 using a larger dataset from Flickr in order to obtain user 

insights on semantically-enabled search. Only the WordNet hierarchy was used to per- 

form tag expansion and we observed that the results were satisfactory. This led to the 

hypothesis that WordNet could be used as a complementary Knowledge Source for the 

purposes of enrichment (L5.3). Aiming to address Research Question 2, which concerns 

the identification of alternative Knowledge Sources for tag enrichment, in this chapter 

we perform a comparative study of WordNet and ontologies available online in the 

context of folksonomy enrichment and search. 

In the experiment we extract two sense structures from the two Knowledge Sources. For 

the purpose of assessing how they can address the issues of polysemy, synonymy and 

basic level variation we evaluate their structural properties using measures M3.2 - M3.5 

(Section 3.6). Then, using the two sense structures we perform an experiment with 

semantically-enabled search that serves two purposes. First, in order to evaluate the se- 

mantic overlap with the tagspace (i. e., if the senses' neighbourhoods cover the tagspace, 

according to L5.1) we obtain the search results and apply the measure of mean nor- 

malised increase M3.11. The mean normalised increase depends on how well the sense 

expansion M3.6.2, which represents the sense's neighbourhood, maps to the tagspace. 

The second purpose of the search experiment is to compare the semantically-enabled 

search with standard folksonomy search in terms of result grouping and presentation. 
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In this section we describe how we obtain two sense structures from WordNet and 

ontologies and describe the search mechanism used to query them. 

6.2.1 Creation of Sense Spaces SKS 

We use two different strategies to enrich tagspaces with semantic structure. Strategy A 

uses WordNet and yields the sense structure Sw and Strategy B uses online ontologies 

and produces So. Both SW and So are structures similar to the one depicted in 

Figure 3.1. They are both built in two stages, common to both strategies. 

Stage 1: First, the potential meanings of a tag are discovered by aligning it to 

appropriate senses. Strategy A relies on WordNet's synsets to find such senses, 

while in the case of Strategy B we employ a clustering mechanism which iden- 

tifies a possible set of senses for a tag by combining information from multiple 

online ontologies. While in previous work (Chapter 4) we used disambiguation 

algorithms to precisely identify the meaning of a tag in a certain context, for the 

purposes of this comparative study we assign all possible senses to the generic 

tags. The reason is that we are interested in the richness and coverage of the 

Knowledge Sources over a tagspace and want to rule out any bias introduced by 

disambiguation methods. As a result, we assign all candidate senses to a tag, for 

the example of Figure 3.1 it would hold senses(apple) _ {S27 S5}. 

Stage 2: Second, we include structural information among the senses by reusing 

knowledge from the Knowledge Source. In particular, we consider all possible 

ancestors for each sense. For instance Apple Inc. is defined both as a Company 

and as an Organisation, sup(S4) _ {S5, S6}. In order to achieve a high degree 

of connectivity between the senses we consider the subsumption path up to the 

highest possible ancestor. We restrict this method to subsumption relations, as 
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these are present in both Knowledge Sources. 

Strategy A: WordNet-Based Enrichment. 

WordNet is a hierarchy of synsets each describing a sense. Most synsets are subsumed 

by at least one hypernym synset, subsume a set of hyponym synsets, and contain a set 

of words describing the same sense (synonyms). 

For sense selection, we consider all the synsets that contain a given tag in their set 

of synonyms. Note that we consider only noun synsets as these have richer hierarchical 

information than other parts of speech. For each sense, we import in the structure SW 

the corresponding synonyms of the sense. WordNet's matching mechanism automat- 

ically caters for lexical variations and plurals. To create a structure of senses, we 

import each sense's ancestor path up to the root of the WordNet hierarchy. Finally, 

for each sense we include the first level of hyponyms as subsenses. 

Strategy B: Online-Ontology Based Enrichment. 

In order to enrich the tagspace with So, we explore online ontologies through the 

Watson' Semantic Web gateway. The sense selection is less straightforward in this 

strategy, because, unlike WordNet, the Semantic Web does not contain an established 

set of senses. To overcome this limitation, we use the clustering algorithm described in 

Section 4.4.1 which groups together entities that are sufficiently similar and therefore 

might denote the same sense. The process of sense selection from ontologies is as 

follows. 

For each generic tag, we use Watson's API and we strictly match it against the id or 

label(s) of ontological concepts. For instance, berry is not matched against Berry-Fruit 

nor is water against Water- Container. This is done to reduce noise. By using multiple 

ontologies, the same concept may be defined more than once thus leading to different 

1http: //watson. kmi. open. ac. uk. The ontologies indexed in Watson during the experiment 
(May-June 2009) were approximately 9.000 and contained a total number of 460.000 classes (including 

redundancies). 
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types of redundancies. We use the entity merging methods described in Section 4.4.1 

and the entity similarity measure N14.2. 

For this experiment we set a low similarity threshold of 0.: 3 in order to iichieve it 

maximum clustering result. In addition, we give the weights used tit INI 1.2. \\'(; mid 

\\ L. a value of 0.5 in order to reflect the heterogeneity of online ontologies in ternns of 

the richness of their lexical and structural information. For example. for tit(- t gag banana 

we obtained a single cluster of entities, because, accoroling to our clustering algorithm 

there is only one sense of banana in all oliline out ologies. This cliister of entities 

contributes to the sense of banavna with synonyms derived from tlic 1()(-; il mines and 

labels {LI: "banana", L2: -an, elongated ijcllowi. sh fruit which grows on palm trcc, ti'. I. 

L2 was the label of one of the clustered eilt it ies. Different ontologists have different 

representation styles and may include a comment its it label. hi mdditioýn. unlike iii 

the case of Wordlet. snapping of inflections is not covered by I Ia \V'ýatsou . AI'I's search 

mechanism and therefore lexical variations of I he name coucctit will (lcn(>t<' I wo (liferernt 

senses if they are not clustered by our algorithm. issues such its lexical mwatcliiiig and 

entity redundancy need to he dealt with in Strategy B. All these are effects of the 

het erogeneity of out ologies. 

To create the structure of senses, rice the entity clustering is complete, for all itu 

direct sut)erctass(, 5 of the cluster's entities we iteratively get their sIIp rchlsses ut) toi 

the root of each ontology. For example, we obtain 

.5 ubClasso f Sense: Banana --+ Fruit 

. SubClassOf uh 'la , Of 
(Ontology 1) ---+ Tropical Fruit - Fruit 

subClas.. O f 
(Ontology 2) -+ GroceryProduce 

s ubC1as. sO f 

(Ontology 3) -4 Tree Fruit 

W'i'e notice that hY adding this knowledge there is then one direct and oiie indlire<"t 

relation between Fruit, and I3o, naflu. We maintain as nanny suhtiiiiu])ti0n relations as 

possible regardless of «Bether they are redundant, in order to support (tn('rV expansion. 
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6.2.2 Query Mechanism 

The query mechanism allows the exploration of the sense structures SKS created using 

the two Knowledge Sources. Algorithm 1 describes a querying process which first 

maps query keywords to appropriate senses, then retrieves the resources tagged with 

tags associated to these senses, and finally groups the result resources into meaningful 

groups, which are used as a basis for the presentation of the results. 

Algorithm 1 Knowledge-based Querying 

1: for all query keyword k do 

2: gk = res(k) 
3: Sk = senses(k) 
4: for all SE Skdo 
5: gk = gk U IUt 

E syn(s) 
res(t)} 

6: for all SE sub(S) do 
7: gk = 

Ut 
E syn(S) res(t), 

8: for all rEgkdo 
9: Overlap(r, S) = 

Itags(r) n syn(ft 
jtags(r)Usyn(S)j 

10: if Overlap(r, S) > MaxOverlap then 

11: move r to 

12: end if 

13: end for 

14: end for 

15: end for 

16: if I Use Sk sub(S) <4 then 
17: for all SE Skdo 
18: for all SE sup(S) do 
19: gk =UE syn(S) res(t), 
20: end for 

21: end for 

22: end if 
23: end for 

The algorithm is based on the hypothesis that users are primarily interested in resources 

tagged with the exact query keywords, as well as with tags denoting more specific 

concepts. However, in cases where only a few resources are returned the user might 

also be interested in exploring resources tagged with more generic tags. For example, 

when searching for fruit, a user is likely to be looking also for resources annotated 

with the various types of fruit, such as apple or tropical fruit. Alternatively, if few 
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results are returned, it may be worth returning results associated with broader notions, 

such as plant. Accordingly, for a query keyword k, Algorithm 1 retrieves the relevant 

senses for k and creates a set of resources, gk, annotated with the synonyms of these 

senses2 (Algorithm 1: 2-5). For each subsense of k's senses, one group is created with 

the resources annotated with its synonyms (Algorithm 1: 6-7). Then all the resources 

tagged with k and its synonyms are compared against the synonyms of the subsense. 

The resource is moved to the group with whose sense it has the higher overlap. This 

is done in order to present the resources in specific groups (Algorithm 1: 8-11). For 

example, in a query for animal, items tagged with animal and zebra and items tagged 

with zebra are grouped together into a group created by the subclass of Animal, which 

is Zebra. If the number of subsenses is less than four, then the same process is repeated 

with the supersenses (Algorithm 1: 16-19). The threshold of four is selected because we 

further compare the knowledge-based querying with the cluster-based querying where 

the mean number of clusters per tag is 3.4 (Section 6.3). 

6.3 Experiments 

As a basis for our experiments, we used the MIRFLICKR-25000 [61] dataset proposed 

for ImageCLEF 2009. This contains 25000 images from Flickr with 69099 distinct tags. 

Although this is a dataset proposed for image analysis and 9% of the images are not 

tagged, the rest are tagged with a number of tags ranging from one to 75, spanning 

various domains. 

We conducted three experiments. First, we enriched the dataset with strategies A 

and B and evaluated the enrichment in terms of quantitative and qualitative measures 

(Section 6.3.1). Second, we performed a user evaluation on search using the three 

systems built in Section 6.3.2. Finally, we used the user queries, 1C, to quantify the mean 

normalised increase, M3.11, Ininc(1C, Sxs) I for each Knowledge Source (Section 6.3.3). 

2Note that the synonyms of k's senses are the synonyms of k including k. 
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6.3.1 Enrichment Evaluation 

The values we obtained for the metrics defined for the evaluation enrichment in Sec- 

tion 3.6 are shown in Table 6.1. In terms of the tagset coverage of the two knowledge 

sources, we observe that WordNet covers more tags than online ontologies which is 

26.3% of all tags, versus 16%. 

Measure WordNet Ontologies 

M3.2 Isyn(SKs) l 2.3 2.2 

M3.3 I senses(T) l 2.9 1.8 

M3.4 sub(SKS)j 2.7 1.5 

M3.5 sup(SKS)I 1.0 1.5 

M3.11 Ininc(T, SKS) 1 38% 39% 

Table 6.1: Quantitative results of the enrichment evaluation 

One of the reasons for the low lexical coverage by both Knowledge Sources is that, ap- 

proximately 71.4% of the tags were not mapped to any of them. This was due to phe- 

nomena such as compound tag concatenation (rowingboats), misspellings (rasberry), 

non English tags (chaminä), idiosyncratic tags (: D), tags that are not defined in either 

source (augor) and phrases (daughtersoftheamericanrevolution). 

Additionally, the major difference in coverage between WordNet and ontologies can be 

explained by the difficulty of anchoring tags to the concepts of these sources. We used 

strict matching to avoid the additional noise from ontologies, while WordNet has its 

own mechanism for matching of tags to synsets. In addition ontologies use different 

modelling styles to express the names of entities, using one or more of the following 

mechanisms: the local name(id), rdf. "label, rdf. "comment or even locally specified prop- 

erties (for example 02: name). In addition, the delimitation of compound labels such 

as zantedeschia__genus_zantedeschia, 
FloweringPlant is inconsistent across ontologies. 

In terms of the richness of the created structures, WordNet provides, on average, more 
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senses per tag (2.9) than ontologies (1.8). The amount of svnoiivins per senses are 

comparable in both sources. but important differences can be observed in t lie average 

number of more generic and more specific senses created in the two structures. Indeed. 

the structure created with \V'ordNet, has a higher numher of subseiises (2.7) ()it werage, 

than ontologies (1.5). Inversely, ontologies lead to more supertieuties (1.5) 111; 111 \\'()rdNeet 

(1.0). This is because online ontologies often express different points of views. ()r 

cover more domains than WordNet does and therefore using t he dustering uiieuliurnisin 

produces more supersenses. For example, banana has four inure generic senses in 

ontologies and only one in WW'ordNet: 

hypon'y hyýi"" you 
Synset: Banana Edible Fruit Fruit 

subclass Of 
Sense: Banana --4 Fruit 

subClasSO f sah( 7ri.., l ) 
(Ontology 1) -f Tropical Fruit -> Fruit 

subClasso f 
(Ontology 2) -+ GroceryProduce 

(Ontology 3) Tree Fruit 

We alsoý ýýh5ervýý Variable hierarchical granularity between out o ()gieti and 

Indeed, as shown for banana. the \\oordNet defiiiitio>>is Ot t<ýnus 1(, 11(1 to 1)(' uuiore Jim, 

grained than in ontologies. Additionally, differences in the grauuularitV of'tliee (lefiiiitioms 

can also be observed within \V'ordNet itself. For example: 

hyponym hyponym 
Synset: Orange --4 Citrus Edible Fruit 

h gpoli ym 
Synset: Apple -> Edible Fruit 

6.3.2 User-based Search Evaluation 

TO gain further insights on the impact of \VorclNet and ouitoýlogies Oil scare 1. we created 

three search systems. Two systems irnpleuiernt ing Algorithm 1 and (piCi yiug Sýý ýiu(l 



100 A Task Based Comparison of Online Ontologies and WordNet on Search 

So and one simulating baseline search in folksonomies. We then evaluated the three 

systems with the help of a group of users. 

System Implementation 

We developed two web interfaces which supported knowledge-based search as described 

in Algorithm 1. System 2, (S2) was based on the sense structure acquired from Word- 

Net, Sw while System 3, (S3) exploited the structure created using online ontologies 

so. 

We also developed a web interface to simulate the cluster-based presentation of results 

currently provided by folksonomies, System 1, (S1)3. For this purpose we extracted 

the clusters of the query keyword using the Flickr API and for each cluster we created 

a group. Then we calculated the overlap of the tags of the resources tagged with the 

keyword with the tags of each cluster. The resource is then categorised under the group 

with which cluster it overlapped more. 

All three web interfaces display the results grouped in meaningfully named groups. 

Figure 6.1 contains a screenshot with results from S1 for the query sport and Figure 6.2 

the results for S3. For each group, there is a descriptive header which contains the title 

and the number of results per group. For S1 the title consists of the three most popular 

tags of the cluster (in accordance to the folksonomy clustering paradigm). For S2 and 

S3 the titles consist of the synonyms of the sense under which the results are clustered. 

For example, for the same query, sport S2 returned groups described as track and 

field, skiing or judo, while S3 had groups named swimming, golf, football, hiking 

and stadium. The "see all" link allows the user to view all the results of the group 

when there are more than five results per group. 

3http: //www. flickr. com/photos/tags/TAG/clusters/ 
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hike canon eos (4) 

rf beach (8) st 

car race racing (3 

fuOtt)fl 

Figure C. 1: Result sc"reentilcc)t for the (query Sport iii system SI. 

User Experiment 

In the second experiment we performed a user study. The user group consisted of' 

25 (expert and non expert) users with basic knowledge of irrvage search on the wclº. 

Their task was to post at least t ltree single kcvword ctucrics t ºº SVSI erns SI, S2 and S3 

without domain or any other rest riet ions. We limited the search t() single kevw()rds 

because we were interested in comparing the richness of the structures created in Step 

I per keyword. In addition we maintained tlºte 5, ºnº(e I('rnºs to conºparc with SI, wlºi<"11 

simulates the cluster-based search which is only available for single keywords. We 

obtained 88 distinct queries and the evaluators had to report on their comparative 

experience on using S1. S2 and S3. More specifically. they had to report on the ynest ions 

of Table 6.2. In Q2 and Q3 they had to select from a sealc of I to 4; 1 being very 
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I, I. 
I 

hikinu i, 4ý 

Figure 6.2: Result screenshot for the query sport in sv stem Via. 

iinhelpfiil/all incorrect and 4 very helpful/all correct. They also had to report vrhich 

results were most (ir)relevant/(in)correct and xvh, v for each query au<1 sv-ste, 11. 
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Question S1 S2 S3 

Ql: Did you find what you were looking for? 90% 85% 84% 

Q2: How helpful was the presentation of the results and why? 2,9 2,8 2,8 

Q3: Rate the number of correct versus incorrect results 3,3 2,8 3,1 

Q4: Which is the best performing system? 35% 32% 33% 

Table 6.2: User Experiment 2: Questions and Responses 

Overall, Si performs better than S3 which performs better than S2 as seen in Table 6.2. 

Considering that in S2 and S3 none of the results of Si are excluded (Algorithm 1), 

a possible explanation for this result is the reported decrease in precision (Table 6.2, 

Q3). The users stated that S1 performed better because there were less groups 

and it was easier to navigate through the results. It should be stressed that all the 

results returned from Si were tagged with the query keyword (see Section 6.3.2). S2 

and S3 included results tagged with tags related to the keyword, thus increasing the 

number of groups. The number of groups in S3 was also increased by the existence of 

overlapping senses with the same meaning due to failure of the entity merging 

strategy. For example, in the case of car, two senses (one defining car as a vehicle and 

another defining car as automobile) were not merged, and appeared as two different 

senses in the results of S3. 

The effect of irrelevant results was maximised by an additional factor. In some cases 

the users reported that the photos were tagged incorrectly. This can be further jus- 

tified from the result of Q3: S1 = 3.3 (Table 6.2). An example of this is the query 

tiger. Among the groups containing photos of tigers, Si returned a group headed 

with {butterfly, shallowtail} containing one image of a tiger butterfly. This was 

reported as incorrect because the user was unaware of this sense of the word tiger 

and no further explanation was given from the system. This is a common phenomenon 

arising from categorising photos based on clusters of tags derived from co-occurrence. 

The relations among the tags are not clear (e. g., tiger butterfly is a type of but- 

terfly) and it is not possible to give a justification for the retrieval of results and their 
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categorisation in a particular group. This, however, would be possible if the knowledge 
subSense 

Tiger Butterfly -ý Butterfly was provided by a Knowledge Source. 

In some cases the users reported that the presentation of S2 and S3 was more helpful 

even when the results returned by S1 were almost the same. According to them, the 

images were presented under a meaningful category. For example, for the query 

horse, S2 and S3 returned different groups for {colt, palomino} as opposed to the 

groups returned by S1 {italy, cavallo, england}. They found this distinction of 

results helpful for understanding the kind of horse depicted. 

In the cases where the query keyword did not return meaningful results in S1, the 

users reported that S2 and S3 returned a higher number and variety of results, 

For example, querying for soap, most of Sl's results depicted bubbles but S3 returned 

subSense 
results depicting shampoo because Shampoo ý Soap was found in online ontolo- 

gies. Equally, for doggy S1 retrieved only two images while S2 retrieved all images 

tagged with dog because doggy is one of the synonym terms for the sense of dog in 

WordNet. Finally the users were asked to select the system that performed better in 

all their queries (Q4). 35% of the users selected S1,33% S3 and 32% selected S2. The 

responses to the rest of the questions of Table 6.2 justify this too. S1 performed better 

due to less groups of results. S2 and S3 returned better group descriptions and in 

addition S3 groups were judged to be more relevant than S2. 

6.3.3 Quantitative Search Evaluation 

Taking into account the user's query keywords, IC, and comments, we measured the 

approximate average normalised increase, (M3.11 in Section 3.6.2), jninc(K, Sw)I for 

WordNet and Ininc(K, So) 1, for ontologies compared to the folksonomy search baseline. 

ninc(k, Sxs) (M3.10 in Section 3.6.2) is the ratio of additional correct results returned 

by the expansion of k using the SKS, divided by the total number of results as described 

in Section 3.6.2. Figure 6.3 shows the normalised increase for each keyword k from 

WordNet represented with dark lines and from ontologies' with light lines. 
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ninc(k, SKS) is affected by two factors. The first, depends on the tagset and is not 

relevant to the Knowledge Source used. This is how popular is the search keyword ki 

in the tagset, i. e., how many resources are tagged with it (e. g., soap, doggy). The sec- 

ond factor, is the number of correct additional resources retrieved when expanding ki 

with synonyms, subsenses and supersenses. This depends on the number of synonyms, 

sub/super-senses and how well these are covered in the tagset. A representative case of 

related senses that were not well covered is the one of nature. S2 returned four groups, 

one for each of the subsenses of nature in WordNet, i. e., Janimality, complexion, 

disposition, socialityl. The users reported that the results of S2 were not signif- 

icantly more than S1, they were generic and quite irrelevant to nature. On the other 

hand, S3 returned five groups for Isky, f ire, mountain, reef, ricel which are ontolog- 

ical subclasses of nature. All the above were well covered by the tagset and, with the 

exception of rice, the users reported that results and their grouping were meaningful 

and satisfactory. As a result the normalised increase of nature from S3 was significant. 

The phenomenon of irrelevant groups was more frequent in S2 than S3, justifying the 

lower normalised increase for S2 (Table 6-1) and the lower user satisfaction with this 

particular system (Table 6.2). 

When querying for apple, system S3 returned one group representing the sense of fruit. 

S2 returned two groups for apple derived from the two senses of apple in WordNet, i. e., 

fruit and fruit tree. However, none of the two senses was relevant to the the 

sense of computer company. This shows that the number of senses is not necessary an 

indicator of the ability of a Knowledge Source to deal with polysemy. To reach such a 

conclusion, information on the coverage of the senses from the tagspace is required. 

Another useful outcome emerged with querying for may. While S2 and S3 did not 

present the results in any meaningful manner nor did they return any additional results, 

Si performed quite satisfactorily. Four clusters were returned grouping together images 

tagged with {england, london}, {spring, flowers}, {sky, cloud} and {paris, 

france}. A plethora of photos shot in and tagged with may, can depict flowers, sky, 
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cities and so on but may depict nothing that can symbolise the month May. This is 

a type of idiosyncratic tagging and no Knowledge Source can supply formal relations 

between may and these tags since there are no formal relations among them. Never- 

theless, for this type of idiosyncratic tagging the clustering of results based on 

frequent tag co-occurrence is quite efficient. 

6.4 Lessons Learnt 

In this study we explored how formal knowledge sources, WordNet and online ontolo- 

gies, can improve folksonomy search and which of them performs better. We evaluated 

them qualitatively and quantitatively in terms of tagspace enrichment and user satis- 

faction comparing the knowledge-based search to cluster-based search. 

In terms of tagspace enrichment, WordNet outperformed ontologies in most of the mea- 

sures. It provided more senses per tag and more synonyms per sense than ontologies 

and lexically covered a higher percentage of tags than ontologies. WordNet and ontolo- 

gies returned comparable measures for subsenses and supersenses. The above measures 

indicate that WordNet performed better in terms of sense richness and similarly to on- 

tologies in terms of structure. However, in the user evaluation the ontologically created 

structure performed better in search than the WordNet created structure. The expan- 

sion of the query keyword with terms from ontologies returned a higher number of 

results compared to the expansion provided from WordNet despite the fact that Word- 

Net provided a richer structure. This indicates that ontological structures of senses 

map better to the tagspace. 

Comparing the knowledge-based search to folksonomy search, indicated that users 

prefer the number of groups to be concise, similar to cluster-based search but 

the explanation of the results to be more intuitive similar to knowledge-based 

search. In addition, search problems caused by idiosyncratic tagging can be axidressed 
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better by statistical methods rather than formal knowledge sources. 

in Chapter 7 we show how information from folksonomies, ontologies and WordNet can 

be combined to achieve better sense discovery for tags. In particular, we use hybrid 

disambiguation techniques in order to assign the tags to the most relevant senses using 

both knowledge sources. In addition, we extend strategies A and B so that they exploit 

inore entities and relations from each Knowledge Source and use a more elaborate entity 

rnerging mechanism. 

In the following we summarise the key outcomes of the experiment presented in this 

chapter. 

L6.1 WordNet provides more synonyms for a sense compared to ontologies but neigh- 

bourhoods of senses derived from ontologies map better to the tagspace. There- 

fore a combination of the two Knowledge Sources would be beneficial for the 

enrichment of tagspaces. 

L6.2 Statistically clustering the results returns less groups, caters for idiosyncratic 

tags but does not explain why a result belongs to a group. 

L6.3 Semantically-enabled search returns more meaningfully organised results but the 

number of groups should be restricted. 

L6.4 The existence of senses with the same meaning has an adverse impact on search. 



Chapter 7 

Improved Version of Folksonomy 

Enrichment Algorithm 

In this chapter we describe the improved version of the FLOR enrichment algorithm. We 

describe how the new version is influenced from the outcomes of the -studies performed using 

the previous version and detail the individual steps and processes. 

7.1 Introduction 

In this chapter we describe the final version of the enrichment algorithm, FLOR-2, 

based on the requirements that emerged from the analysis we conducted in Chapters 4 

to 6. The goal of the algorithm is, given a tagspace T, to create a semantic structure 

that contains the meaning of the tags in 7' and their relations. The desired output is 

the structure demonstrated in Section 3.5, Figure 3.8. In this structure, each tag t is 

connected to a sense S that describes its meaning and each sense is connected with 

other senses in the structure. Finally, each sense is linked to the semantic entity(ies), 

from which it originates. The production of this output is dependent on the discovery 

of appropriate semantic entities, the creation of suitable senses, the disambiguation of 
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tag meaning and the discovery of relations among the senses. 

7.2 FLOR-2 Overview 

The implementation of FLOR-2 was guided by the outcomes of the studies described 

in chapters 4 to 6. In these studies we performed two types of analysis. The first aimed 

at evaluating the output of FLOR-1 in terms of enrichment. We explored the coverage 

of tags in the employed Knowledge Sources and the correctness of assigning semantic 

entities to tags. The second analysis assessed the value of the enriched tagspaces from 

the perspective of search. Below we explain how the outcomes of this analysis translate 

to design requirements for the final version of FLOR. 

7.2.1 Design Requirements 

The first outcome of our previous investigation regarded the inclusion of WordNet in 

the enrichment procedure. In our first studies (Chapters 4,5) we used WordNet as 

a thesaurus to disambiguate the meaning of tags and expand them with synonyms 

and hypernyms. We did that based on the assumption that hierarchical relations 

may hold between the tags of a tagset and used a hierarchical similarity measure 

for their disambiguation. Experimenting with this approach showed that the implicit 

relations among the tags of a tagset are usually not hierarchical. As a result, similarity 

rneasures based on subsumption are not adequate for disambiguating tags in such 

contexts (L4.3) and statistical correlations between tags may need to be considered to 

improve disambiguation (L5.2). 

Rqj: Disambiguation should exploit statistical relatedness in addition to formal 

knowledge. 
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The second outcome of our experiments was the low coverage of tags against the Knowl- 

edge Sources. Our study presented in Chapter 6 where we did a search-based compar- 

ison of WordNet and ontologies, showed that their value in folksonomy search and en- 

richment is similar, while WordNet's performance on search was satisfactory (Chapter 

5). As a result we decided to use WordNet as a Knowledge Source for entity discovery 

rather than as a thesaurus for expansion (L5.3, L6.1). 

Rq2: Entity Discovery should exploit WordNet as a Knowledge Source for entity 

discovery rather than as a source for disambiguation and semantic expansion 

The search experiments presented in Chapter 6 showed that the existence of overlapping 

senses (senses that have the same meaning but have not been merged into one) has an 

adverse impact on search (L6.4). As a result we revise the entity merging strategy in 

an effort to integrate all senses that convey the same meaning. 

Rq3: Sense Discovery should integrate all sufficiently similar senses. 

Rq3 can provide additional value to the semantic aggregation phase. By clustering 

together senses with heterogeneous neighbourhood we are bound to achieve a higher 

connectivity of the final structure. 

7.2.2 Data Structures and Components 

The algorithm is visualised in Figure 7.1 and involves the following data structures: 

Tag and Tagset represent a specific tag and the tagset in which it occurs. The tag is 

represented by a disk with the label t and the tagset with the oval labeled with 
T. The tagsets are the input of FLOR-2 and are handled by the lexical processing 
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phase (Figure 7-1: steps I and 2). They are also the input for the sense disam- 

biguation step. While sense discovery takes as input individual tags and returns 

as output a set of candidate senses to the sense repository, tag disambiguation 

requires as input the whole tagset because it expresses the context based on which 

the correct senses will be selected for its tags. 

Semantic EntitY is represented by the polygon labeled with e. The semantic entity 

(Section 3.4) is extracted from the Knowledge Sources and is the output of the 

entity discovery steps (Figure 7.1: steps 3 and 10). The semantic entities are 

then subject to entity filtering (Figure 7.1: steps 4 and 11) and the output of this 

phase is passed as input to the sense creation step. 

Sense is introduced as the output of sense creation (Figure 7.1: steps 5 and 12) and 

is designated with the diamond labeled with S. Senses are added to the sense 

repository where they remain during the lifecycle of the algorithm. They are 

initially linked to tags as candidate senses by the sense discovery step. After 

the sense disambiguation (Figure 7.1: step 8) the relation between tag t and sense 

S is made explicit (see Chapter 3, hasDefinition) and is added to the output. 

The sense S that explicitly defines the meaning of the specific tag R-t is called 

assigned sense to R-t- 

Sense Relation is the last data structure created by FLOR-2 and is designated by a 

pair of senses. Sense relations are added to the output during relation definition 

(Figure 7-1: step 9) and structure integration (Figure 7.1: step 14). 

Figure 7.1 also depicts the components and resources used by the algorithm: 

Knowledge Sources (defined in Section 3.4) are the online ontologies indexed by 

the Watson repository and WordNet- Knowledge Sources are queried during 

the entity discovery step (Figure 7.1: steps 3 and 10) when trying to locate 

appropriate semantic entities. 
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Sense Repository is a registry of all the senses that are encountered during the 

lifecycle of the algorithm. It contains all the candidate senses of the tags, the 

assigned senses for each tag and other useful information (required for sense 

ranking, sense addition, and relation definition). The sense repository is a central 

component and is used by the majority of the processes of FLOR-2. When the 

transaction of a process with the repository yields a specific object (e. g., a sense 
S) we use a solid line in Figure 7.1 annotated with the object type (e. g., a 
diamond labeled with S). Alternatively, when the repository is queried for generic 
information' the transaction is designated with a spaced line. 

Folksonomy sources represent the components which provide the algorithm with 

statistical information about the tags. In Figure 7.1 they are exemplified with 

the symbol F. They provide information about the clusters of tags (Section 3.2), 

which represent the statistical distribution of tags over a tagspace. FLOR-2 

exploits existing clusters as the implementation of methods for tag clustering is 

out of the scope of this work. Several clustering methods exist in the literature 

(Chapter 2) and some folksonomies already provide clusters of frequently co- 

occurring tags (e. g., Flickr, Delicious). 

'For example, step 3 checks the repository for already encountered candidate senses for a tag, prior 
to querying the Knowledge Sources. If such senses exist, no further steps are taken for the tag within the sense discovery step. 
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7.2.3 Overview 
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The algorithm takes as input a set of tagsets, a tagspace T, and returns a semantic 

structure, S, that represents the meanings of the tags and their relations. The structure 

S contains specific tags and senses, the relations between tags and their associated 

senses (hasDefinition) and the relations between senses. A high level description of 

FLOR-2 is presented in Algorithm 2. 

Algorithm 2 Semantically Enrich(T) 
I Input = 7- 
2: for all TR C 7- do 
3: Lexical Processing(TR) > Figure 7.1: steps 1-2, Section 7.3 
4: for all tE TR do 
5: Sense Discovery(t) > Figure 7.1: steps 3-6, Section 7.4 

6: end for 

7: end for 
8: for all TR ET do 

9: Sense Assignment(TR) > Figure 7.1: steps 7-8, Section 7.5 

10: end for 

11: for all Si, Sj G Repository do > Figure 7.1: steps 9-14, Section 7.6 
12: Semantic Aggregation I Si, Sj} to S 

13: end for 

14: Output =S 

Each input tagset is first subjected to lexical processing (Algorithm 2: 3) and for each 

of its tags the sense discovery takes place (Algorithm 2: 5). Once the tags of all tagsets 

have been assigned candidate senses, the tagsets are disambiguated and each tag is 

explicitly related to one sense (Algorithm 2: 9). Finally the relations among the senses 

are discovered and appended in the output S (Algorithm 2: 12). In the following 

sections we describe the four processes of the algorithm in more detail. 
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-res(t) belong to such groups, therefore it is likely that t is idiosyncratic. 

low frequency tags 

low frequency tags are used by few users and may include some types of idiosyncratic 

tags. These may express personal opinion e. g., horriblywrong or describe a vague 

or non-commonly understood concept, e. g., mariasbirthday2009. To identify these 

types of tags we use statistical information. For example, if they do not belong to 

clusters of frequently co-occurring tags, it means that they are not frequent. 

Lexically-noisy tags 

These are tags that contain special characters, such as : D, numbers, top111, and 

phrases daughtersoftheamericanrevolution. The identification and exclusion of 

these tags is straightforward and is performed using string length and character filters. 

Depending on the nature of the input tagspace there is a possibility to include or 

exclude different types of tags by implementing additional isolation methods. The 

lexical isolation is the first step in the process of FLOR-2 (Figure 7.1) and requires 

additional information from F such as, the number of clusters a tag belongs to (for the 

infrequent tags) and the groups that a resource belongs to (for the idiosyncratic tags). 

7.3.2 Lexical Normalisation 

The lexical normalisation (step 2) is essential in order to achieve a better anchoring 

of tags to the various Knowledge Sources. For example the tag f lowers is normalised 

to flower which is also used for querying in Knowledge Sources. In addition, in cases 

of tags such as santaBarbara, the different delimitations such as santa barbara, 

Santa-barbara will also be included in the inflections of the tag in order to maximise 
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Sense Discovery 
4 

EntitV 

Filtering 
Sense 

Creation 

Entity 
IF 7 

Discovery Sense 6 

Addition 

too goo 46 

Figure 7.4: The Sense Oiscovel-Y Phase 

the coverage. To normalise the tags -, ve use a combination of string processing and 

lexical information derived from WordNet (such as the singular inflections of a wo, -(I, 

e. g.. "flowers" maps to -flower-) 

7.4 Sense Discovery 

The role of' sense discovery iý; essential to Ihc over(ill perforimmue of FLOR-2 is rc- 

quirements R(Ii. 8q2 1111(l Rq3 are all addressed in various steps, of this phaýsc. In tile. 

folloýving secti0iis Nve describe the St(II)S Of seilse (11scoverv mi(l 11OW I 1wV m1dress I hesc 

requirements. 

7.4.1 Entity Discovery 

in the firs'l instaiwe. ew ily di scovery (Figiirc 7.1: slep 3) takes as input a tag t an(l 

queries the Knowledge Sources for entities that 1-)()ssil)l. \, match it (tising the processes 

described below). Due to the high probability of a tag appeariiip, Ili more Ilmn one 

tagset. the sense repository maintains all cmididate senses for a tag t. These are all 

the senses S for which t belongs to their sý-'Iollvm set, i. e., tC syn(S)- Therefore. pri ior 

to searching for new semantic entities the entity discovery step checks the relmsitory. 

If 110 candidýlt c sell'("-4 are found in tile rej)()sItOI'Y. t Ile ellt ItY (liscovel-Y procceds Ill 
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the manner described below. If t has been encountered in a previous tagset and has 

already been assigned candidate senses, the overall sense discovery phase is omitted 

for t. 

Entity Discovery from online ontologies. The entity discovery algorithm exploits 

all the ontologies indexed in the Watson Semantic Web Gateway via the Watson API. 

Each tag t is used in the search mechanism of the Watson API in order to locate 

appropriate semantic entities. As appropriate entities we consider the classes and 

individuals (instances), which contain t in their lexical representation. The lexical 

representation of a semantic entity consists of its labels (denoted with "rdf: label" [34]) 

and its local name (ID). Due to the high heterogeneity of the modelling styles among the 

online ontologies (an outcome of the study presented in Chapter 6), various heuristics 

were employed in order to identify other possible lexical representations and increase 

tagspace coverage. For example, we also retrieve entities that contain the tag in their 

64rdf: comment" literals when the length of the comment is not longer than two words. 

The anchoring of tags to semantic entities is initially performed using strict matching, 

however, in case no results are returned we use flexible matching (e. g., berry is matched 

against the delimited berry-f ruit, but tea is not matched against teacher) - 

Entity Discovery in WordNet. To satisfy Rq2, WordNet is exploited as a Knowledge 

Source for the discovery of semantic entities. In this case the process of discovering 

semantic entities is more straightforward. The semantic entities are all the WordNet 

noun synsets which contain the tag in their set of synonyms. We use only nouns because 

they are hierarchically related to each other. 

The output of the entity discovery step for a tag is a set of semantic entities, which are 

then subjected to entity filtering. 
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7.4.2 Entity Filtering 

i 11 

T] ie need to perform filtering (Figure 7.1: stcps 4 it it dI I) ()f IIw semai it ic cit i i- 

ties emerges from the following characteristic of the kiiowledge hidexed iii Wat, smi. 

The quality and richness of this heterogeneous knowledgc is variable. While there is 

a plethora of useful ontological entities which can he efficiewly reused. I lici-c are also 

,s NvIdch (10 Dot contribute to the cilriclitilent process. Their ciii-ichment is eilt it ie 

loxv and thus are filtered out of the process. Such entilic,; ýtrc: 

Structurally poor entifies. These entildes (1() not have any relilimis to my 

semantic entities nor lexical representat ions (apart frmii the lahcl that was ii. sed to 

rctrievetheiii). Asa result, they arenot useful to) t lie crcation 4senses or the crciit i0i) (d 

an hiterconnectedseniantic laver. Siiclieiititiesiiiaiiiivoi-igiiiat(, ft-()iii ()iiliii(, miI()Iogies. 

ElItities originating from Semantic Documents wit'll low enrichment Value. 

\Vatomi indexes all "vb doemnPrAs that contak spnuuA4- AWTAW0. IH nNny 41he 

(-ascs, these docunwKs are automaticaly, gammed (WmTQAQm (I iwws Awds or mer 

I)Iogs. The majority of their enthieR are hAividuak and "Min inimnatkm brehnant 

to t he enrichment pmeess. K)r exnmple, in a seamh Mr cat. mv AA An mh ks sudi 

as: 

1t: 
Individual: littp: //--. /itiy/cat My 9 rules, Cat's Profile 

ycm, rafm Agent 
-4 httl): //www. talk(iiggei-. (-()iii 
lit, ti): //xiiiliis. (-oiii/foitf/O. I/Do(-tiiii(ýiit 

We disOngukh thcsedocurnent, s by inatchingtheirdonmin iiýmies against a set of-. sj()p- 

(101, Iýjij js-ý3. Iii addition. xve ineasiwe the nurnber of chsses such snnaWic dminuents 

define. NO rule oirt. t he ones that contain less t han 3 classes. This is an iudicat ion t 11; It 

such seman6c documents conmhi a low, number of senumAc ruIntions and thus their 

contribution to the seman6c enrichment is boluld t, () be low. 

: 3Ac(-ordiilg to tjje stop-words 1)aradigin. 
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*ýIjtjtjcs with folksonoinically- low value. Certain entities 1 from milinc oiitoI()gies 

; ýirc defined in a inanner fliat does not contribute t, o the enrichment process because 

I hey can not relate to other tags in the tagspace (L5.1). For example: 

label 
Class: littp: // 

... 
/sniaII3#foo(I ýf ood 

lIttp: // 
... 13#DEFAULT ROOT 

CONCEPT 

! ý-)Iwh mi ('11tity ImIY be valtiable iii the context, and for the purposes ()f' the lise (-; is(, 

it Nvas created for but not for a generic case stich ýjs the em-ichineiit of folksotiomy 

ta gspaces. Stich entities are ruled otit by explormp, the folks(momic vahic ()f' t1wil. 

!, wimintic neighbourhood. The folksonomic value is nicitsured by folks0immy rcs-ources 

iagged -with labels derived from the entities' semantic iieighl)(mr1loods. ror example, 

of default, root and concept are not 1-clated to any resource mid ýis 

resuli ihis entity is judged to be of low value and is filtel-e(I (), It ()I, III(, (, jjr'j(-ljjjj, jjt 

process. 

The process of entity filtering is required ul order to overcome I ll(, nhovc phel 

r. ()(I I)y t1le paradigin of existing kiiowledge rcuse. Sinlilm- Issm-s ()n kiiO\vIcdgc 

Ila\, e been Iliglilighted by Lopez et. al in [77]. hif'OrtunatelY, im f0j-mal methods. 

1)(ýejj pl-oposed for the task-based evaluafion, setection all(I reuse of ontological 

kjjo, A, je(jgc. Therefore, in the scope of' this work we address the i,,, sll(, of 1). Ný 

lieuristles tailored to this approach. The outpilt of' the entily filtering is a 

,, et of sell-laliti(, entitics fliat do not, exhibit the phenomena described above. 

7.4.3 Sense Creation 

The entities that qualify t hrough the ent ity filtering are used to creat e senses according 

to Definition 6 of Section 3.4 (and the schenia of Figure 3.7). 'Hie transfor11)ýitioll ()1, 

Semantic entities to senses is necessary in order t, o achieve optimal sense integratioti 
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Synonym 

Details for http: //a. com/ontology#Lake 

Semantic Entity 

In http: //www. meteck. orci/PilotPollution1. owl 
G C/8"S 
comment: the exact difference between a lake and a pond is 
that the former is generally larger, and tends to have inflow of Gloss 
water from a river, need a clearer distinction. 
disjointWith: http: //a. com/ontoloqy#Sea 
subClass0f: http: //a. com/ontoloqy#WaterBasin 

* disjointWith: http: //a. com/ontoloqy# River 
Relations 

* httpý/ILa. comLontol ýRjyer: disjointWith 
- jjoý# 

* http: //a. com/ontolociy#Pond: subClassOf 
* http: //a. com/ontolociy#Sea: disjointWith 

Figure 7.5: An example ofa seninntic entity returncd for Lakc 

according to R(l: i. In the followhig Section", we delliollstrate 11mv sellses with differclit 

-)rigin 
(froill differel are coiiipýii M against each othet -it 011tologles and WordNet) nild. 

with the help of a sense similarity fililclion, are integraled inlo oitc. 

Sense creation (Figi ire 7-1: steps 5a nd 12) com7erts the sommilic ci it it ics to senses. In 

Section 3A we exemplified the creation of senses from one outological (, iitit. \- ý111(1 one 

svilonym for apple. Weshowed howthe information oftheciltity is, Irmisformed to Hic 

respective attribute of' a sense. For example. tlic "'YnollYins of' ""Yllscls ý111(1 Ihe lcxicýd 

Information of ontological clitities (labels and locid immes) creite the set ofs. viionvins 

for a sense. Figure 7.3 depicts one ontologici] cillitly retrieved froul W(Itson ill se(Irch 

for lake. The sense created froin t Ims ent ity is: 

bsenscof 
Sense: lake su 

--, http: //a. corn/ontology# WaterBasin 
, superSe? i, 5c(), f 

11flotpollitioill http: //a. com/ontology//Pond 
http: //a. com/ontology #Lake 

-the. exact. d7, ffcrcnc(,. bctween o lakc [... j distin. ctian. " 
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In this sense of lake the following points should be considered. 

o There is only one synonym for the sense (the local name of its semantic entity of 

origin, since no other appropriate lexical descriptions exist) and there is a natural 

language description which is transformed to the gloss of the sense. The value of 

the relation isFoundIn is the semantic entity, which is the origin of this sense. 

In the FLOR ontology (Figure 3.7) we specified that the relation isFoundIn has 

cardinality "one-to-many", which means that one sense can be found in many 

semantic entities. In the following sections we demonstrate how the integration 

of senses yields this result. If the semantic entity does not have an ontologically 

specified unique identifier (URI), for example it is a WordNet synset, we create 

one dereferenceable URI which consists of its offset4. 

9 We also observe the exclusion of the disjointness relations from the information of 

the sense. These relations are meaningful in an ontological context and the only 

type of WordNet relations that could be equivalent to these are the antonymy 

relations. Yet, our approach does not exploit relations which imply negation. 

We also note that the new sense of lake is related to the neighbour entities of 

the original semantic entity (rather than being related to a sense). This is a 

temporary state, which will be addressed by the phase of semantic aggregation. 

There, the relations that hold between the sense and the neighbourhood of the 

original entity will be leveraged to relations between senses. 

Finally, the relation between the sense Lake and the original entity's superclass, 

WaterBasin is subSense0f rather than rdfs: sub Class Of. The latter is valid only 

among classes while the senses created by FLOR-2 are instances of the class 

flor. -sense. As a result rdfs: sub Class Of is not appropriate to define subsumption 

among them. 

4An offset is a WordNet-specified unique identifier for synsets. 
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Consider two entities a and b that are transformed into senses A and B. The 

relations of a and b are leveraged to relations between A and B as follows: 

1. Subordinate 

rdf s: subClassOf f lor: subSense0f 
a --4 bA --4 B 

wn: hyponym flor: subSense0f a --: -14 bA --+ B 

rdf: ty, pe f lor: instance0f 
abA ---+ B 

wn: nce f lor: instance0f 
a ! LST bA --4 B 

Superordinate 

rdf s: subClassOf f lor: sup!! IýrnseOf baA 

a 
wn: hE! 7ym b ===> Af lor: suýýSenseOf B 

rd" flor: hasInstance b6aA4B 

wmha tan f lor: haslnstan ce bA ce B 

3. Meronymy 

wn: meronym f lor: isPartOf 
a+bA ----> 

wn: holonym f lor: hasPart 
a4bA -4 

Although the subsumption relations in ontologies are universally stated with 

rdf. -type and rdfs: sub Class Of, the meronymy relations are only explicit in Word- 

Net. These include all types of meronymy (membership, substance, part). 

In the next section we describe how the created senses are compared against existing 

senses and are maintained in the sense repository. 

7.4.4 Sense Addition 

The sense addition step (Figure 7.1: steps 6 and 13) takes as input the senses produced 

by the sense creation step and adds them to the sense repository. The process of sense 

addition is depicted in Figure 7.6. Each new sense is compared against the relevant 
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senses that exist in the repository. This is important for the satisfaction of Rqj which 

requires optimal sense integration in order to avoid the redundancY of senses, that 

(lescribe the sanie meaning. Under-merging the senses would lead to the existence of 

iiiore representat ions of the same meaning in the tagspace and would cause problerns in 

Hie exploitation (Chapter 6) of the sense structure. Oti Ilic other hand, over-niergiiig 

the senses would lead to senses that may convey more than one meaning and t his would 

be a conceptual error. 

Yes 

Is e similar No 
0 is the most similar Remove from rep. 

to any of the senses 
in the 40 + repository? 

Merge and append in the repository 

Appendin 
repository 

00 

Figure 7.6: Adding, a new sense hi the Sonse Reposilory 

Seljs(ý (. c)nlparlson is, done based oil the sense ýýilililarlty meaSLire described 1)(, Io'A,. If' 

the similarity is low then the new sense is added to the repository. If the similarity i. s 

high t, lic. 11 the existing sense with which this 111911 sinn ilarity Is achieved is merged xvith 

the new sense. The iiitegratimi of the senses involves the creatioii of it new sense A, ith 

all the properties of its original senses (see the detailed process below). 

Seqjs(ý Similarity 

In Chapter 4 (Section 4.4.1) Nve presented a inetho(I for clustering ontological cutities 

based on the similarity meastire NI 1.2. We also used this approach in Chapter 6 where 

the following issues emerged. In some cases similar senses were not, merged because 
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Nutrient 
Physical Thing 

yC Food 
_ 

ýr i Lnk ýýeaýt H! ýný QD 
Additive 

Vegetables 

Figure 7.7: Three different, sens(, s fiff Food 

12 ; 

the similarity measure did 'lot cater for heterogeneous senses. For inst ance, not 111 1 lic 

senses have supersenses or subsenses and 0111Y the lexical coniparismi (d illeir licigh- 

bourliood may not be sufficient for the calculation of a similarity degree. In F1 I igure 7-7 

we present three senses created from semantic entities from online ontologies describing 

tile concept of food. None of the three entities have further lexical information. e. g.. 

synonvins, apart forin their local name. wl-ncli is food. In Hiis case Ilw lexical and 

structural information exploited in ineasure N14.2 are not sufficient to m-luevc j(lc(jjIýjte 

similarit. y value despite the fact that these senses refer to the same concept und should 

be merged into one. 

\Ve, introduce the concept of' lexical "eighbourhood i'or I Ile mid mse it ill t Ile 

devised similarity ineasure. The lexical neighbourhood of a sense is t lie vect or of lexical 

information of its suhscii-, es and supersenses. For example file lexical neighboin-hoods- of 

the senses in Figure 7.7, ýire Imeats, vegetables). Inutrient. honey. food additivel 

and lphysical thing. drinkl. ýVe use the relatedness of' Hie lexicA neighbouriloods 

of tlje , (, ij,, es (vectors of tern-is) as all indicator of' the senses' distance. 

The relatedness of the lexical neighl)(MI'lloods Ini and hi, 
-) of' the, senses Sland S2 is 
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, w, --alculated as: 

relLn(Sl, S2) -- 

ExElni, 
yEln2 relT(x, 

11nil * 11n2l 

'%xhich is the mean pairwise relatedness among all terms of In, and In2. The relatedness 

'between two terms, x and y, is calculated with a variation of the statistical measure 

introduced by Cilibrasi and Vitaniy in [37]: 

maxflog(fx), Iog(fv)) -log (fxy 

relT(x, y) 
log (N) -minflog (fx), log (fy) 1) ifx y 

(7.2) 
ifx y 

In the measure of Cilibrasi and Vitaniy f., and fy represent the number of web docu- 

xnents when x and y occur individually and fýy the number of documents where they 

occur together. We substitute the number of web documents with the number of folk- 

sonomy clusters where x and y occur. As discussed in Section 3.2, the tags belonging 

to the same cluster are related, so if fxy is high (i. e., the number of clusters where x 

and y occur together), there is high probability that x and y are related. N is the total 

number of clusters associated with all tags of the tagspace. 

The relatedness of lexical neighbourhoods, relLn(si, S2), is included in the measure 

M4.2 and the new sense similarity is calculated via the modified measure: 

Si7n(Sl, S2) == WL * SiraL(Si, S2) + WG * SimG(Sl, S2) + WL,, * RelLn(Sl, S2) (7.3) 

where siraG(Si, S2) and simL(Sl, S2) are the graph similarity and lexical similarity. 

Note that the lexical similarity refers to string comparison of the sense's synonyms (in 

M4.2, this was the lexical similarity of labels and local names, which constitute the 

synonyms for senses). While the lexical similarity is calculated in the same manner as 

in M4.2, we modified the graph similarity as follows. Instead of lexically comparing 
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the neighbourhood of the two senses using string metrics, we used a semantic similarity 

measure (Wu and Palmer [1251) to cater for neighbour entities which are not identical, 

but they may synonymous or hierarchically related. For example, the appearance of 

banana as a subclass of fruit, and its appearance as a subclass of food would yield 

low graph similarity in M4.2 because the lexical similarity of fruit and food is low. 

Introducing semantic similarity for the comparison of parents (fruit and food) addresses 

this issue. This is because food subsumes fruit. 

A weighting function is responsible for the adjustment of the weights 71)G, WL and 

WL,, depending on the nature of S, and S2. For instance, if S, has only supersenses 

and S2 has only subsenses, then weights WL and WL, are increased to compensate for 

the null value returned by szmG(Sl, S2). This is a case of the senses of Figure 7.7. 

Also, if simG(Si, S2) and relLn(Sl, S2) are lower than specified thresholds, this is an 

indication that the senses are likely to be dissimilar. As a result, the respective weights 

are lowered in order to avoid similarity values that would yield incorrect sense merging. 

Note that sirnG(Sj, S2) represents the similarity of the senses neighbourhood e. g., "food 

is similar to fruit" based on the Wu and Palmer similarity on the WordNet hierarchy. 

, relLn(Si, S2) represents the statistical relatedness of the neighbourhood e. g., honey 

may not be similar to drink (either because they are not connected in the WordNet hi- 

erarchy or because one of them does not exist in it) but "honey is related to drink" 

because they frequently co-occur in clusters of related tags. 

Sense Integration 

If the similarity value of two senses S, and S2 is higher than a threshold (decided using 

empirical experimentation) then a new sense is created containing the information of 

the two, S, U S2 . 
Consider the first two senses of food in Figure 7.7: 



130 Improved Version of Folksonomy Enrichment Alyor'llthm 

SenscOf 
Sense: food http: 11.. 01 #meats 

superSenseOf 
-4 http: ll.. 01 Ilvegetables 

isFouii(l], ii http: //.. 01#food 

, ab'ýci? scOf Sense: food http: //.. 02#nutrient 
supersenscof 02 --4 http: //.. 02#honey 
superSense0f 

-4 http: ll.. 02#foodAdditive 
isFowidhi 

http: //.. 02#food 

The product of I licir "Itc, (, "'atlor, is: 

, 
I)S('71, S( Of 

Sense: food ," --> http: //.. 02#n7ittýient 
, SUP('I, SC71. sf Of 

01 -> http: 11.. 01# meats 
. superSenscOf 

02 http: 11.. 01 #vegetables 
superSeriscOf http: //.. 02#honey 
supcrSense, Of 

-> http: 11. 
- 02#foodAdditive 

isFou? idln 

-4 http: //.. 01#food 
isFoutidli, http: //.. 02#food 

We note that the level (-)f' lbsti-m-tion for the subseises of the new sense is variable, 

which (-an cause relation redundancy in the structure. For eximiple, consider that a 

new sense is added. sweetener as a subsense of food and supersense of hom y. I lence 

two relat i0i's exist between food and honey. One is explicit mid anot her one is implicit, 

via qL7eetener. At this st, age there is not enough information about which addltioiiýjj 

sense,, (-ould be inerged Nvith the sense of food, and wliat other rehitions theY could 

Contribute to it. As a result, we do not further process the senses at this plimse. 

Figure 7.8 presents the phYsical output oft lie sense creation phase for i lie setise Alosquc 

This sense originates froin three ontological entities and olic \V0rdNet s Ylls(" - 
These are 



7.4. Sense Discovery 131 

@prefix flors <httpt//flor. kmi. open. ac. uk/FWR#>. 
@prefix rdf: <httpt//www. w3. org/l999/02/22-rdf-syntax-ns#>. 

flortsense_lOOS27190844258_mosq[ue 
florthanGlass 

*a Muslim place of worship", 
"A religious building where Islamic services and activities are 
hold. Some of these are deinitely HodemShelterConstructions, 
but some are not. ", 
'Islam a Muslim place of worship"; 

florthasPart 
flors WN-3621419-noun, 
flort_WN_3626641-noun; 

flor: hasProvenamce 
"SN-WN-SW-SW"; 

flor: hasSynonyu 
"majid", 
"mosque", 
wnusjid"; 

flortinFoundln 
flor: 

-WN-3646282_noun, <http*//ontosem. orq/#mosque>, 
<http: //paoli. opon. ac. uk/wataon-cach*#Mosque>; 

flor: subSenseOf 
<httpt//ontonam. orq/#reliqioun-buildinq>t 
<https//paoli. open. ac. uk/watoon-eache #ReliqiousBuildinq>' 
<https//paoli. open. ac. uk/watoon-cache#UligiousStructure>1 

a flortSense. 

Figure 7.8: An example of RDF-encoded output for the sense of Mosque 

related to the sense via the relation flor: isFoundIn- The value of the datatype relation 

floT-: hasProvenance also demonstrates that the sense was created by three ontological 

entities (SW, "Semantic Web") and one WordNet entity. In addition it has two glosses 

and three synonyms which are contributed from the four semantic entities of origin. 

Finally we note that it relates to three entities, which are its supersenses, and two 

entities with the relation flor: hasPart. 

Sense integration is the final process of the sense addition (Figure 7.1: step 6) and 

sense discovery phase. It returns the candidate senses for the tags which will be used 

for disambiguation in the next phase. The sense addition step performed in the scope of 

the semantic aggregation (Figure 7.1: step 13) also integrates senses to the repository 

using the similarity measure M7.3. In this case the output of sense addition is not a set 

of candidate senses for a tag but a sense used for the purposes of structure integration. 

We detail the semantic aggregation phase in Section 7.6. 
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Sense Assignment 

Sense 8 
Disambiguation 

I' 

IF 

Sense 
Ranking 

A 

Figure 7.9: The Sense Assi, mment Pl,; vc n 

7.5 Sense Assignment 

Sense (lis(. c)ve,, -y yidds a set of candidate senses for each specific lag flie 

The sense assignment phase is responsible for selecting the most appropriate sense for 

a specific tag taking into accomit the ta, gset it belongs to. In addition, it selects the 

sense, which is more valuable. to the enrichment process. For example, all integrated 

sense originating from different ontologies and WordNet is usually richer than a sense 

that originates from a single ontology. This is because. integrated senses obtalned 

tising tile similarity measure (described ill the previous section) cotitain cmnpleineil- 

tary illformation from different Knowledge Sources (see the example of the integrated 

sense of food). Alsoý a sense which originates from a Knowledge Source, froin which 

more senses are extracted, is more likely to produce relations among the senses of tile 

tagspace. I'lierefore we introduce a method which ineasures the value of candidate 

senses pl-jor to disanibiguation. 

Tag disambiguation is performed as follows: 
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1. At first all the discovered senses in the sense repository are ranked (Section 7.5.1) 

2. For each specific tag R-t (in the tagset TR of resource R) with candidate senses 

S=IS,,..., sli: 

(a) calculate the graph and statistical overlap (Section 7-5.2) of each S,, ES 

with TR in descending rank, i. e., first calculate the overlap of TR with the 

most highly ranked senses. 

(b) if either the graph or the statistical overlap of sense S,, is higher than a 

preselected threshold Th, S,, is assigned to t and the disambiguation for t 

terminates. 

3. The disambiguation for t fails if neither the graph nor the statistical overlap 

measures exceed Th. 

In the following we describe the functions of sense ranking and sense disambiguation 

in more detail. 

7.5.1 Sense Ranking 

The sense disambiguation step takes place after all candidate senses for the tagspace 

have been discovered. This fact allows for an overview of the candidate senses with 

respect to the following considerations: 

For each sense we are aware of its integration ratio, IR(S). This is the number 

of senses that have been integrated into one sense. For example, the integration 

ratio of the sense of Mosque, shown in Figure 7.8, is 4. A sense with higher 

integration ratio: 

1. originates from different Knowledge Sources. Therefore, it is possibly richer 
in lexical information and relations. The existence of variable relations from 
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heterogeneous sources is more likely to provide higher connectivity among 

the senses that belong to the output of FLOR-2. 

2. is popular across different Knowledge Sources. The popularity of the sense 

reflects the fact that it is frequently used in (possibly) different domains and 

as a commonly used sense is likely to overlap well with the tagspace, which 

contains commonly used tags. 

Therefore, senses with higher integration ratio IR(S) should be preferred when 

deciding which is the correct sense for a tag. 

For each sense we are aware of the similarity of senses used to create it, Sim(s). 

The hypothesis is that a sense obtained by merging two highly similar senses is 

more likely to be correct than one that was obtained by merging two less similar 

senses. Therefore we give preference to the sense with the higher Sim(S). 

e We are aware of the popularity of each Knowledge Source, which is expressed 

by the number of senses that originate from it, i. e., how many entities of this 

Knowledge Source have been used for the creation of senses. The more popular 

the Knowledge Source, the more likely it is to provide better connectivity of 

senses, because the entities used to create them are more likely to be connected in 

the Knowledge Source of origin. As a result, a sense that originates from a popular 

Knowledge Source should be preferred. This is quantified with the expression 

I UKSEprov(S) SKS I which is the number of senses (SKS) that originate from the 

Knowledge Sources of provenance of S. For example, consider sense S which is 

the result of merging three senses, created with three semantic entities originating 

from two ontologies, 01 and 02, and WordNet. In that case the provenance of S 

is prov(S) = 101,02, WN1. If WordNet has contributed a total of five candidate 

senses' then 145WNI = 5. Equally, consider that jSojj =3 and IS021 = 2. Then 

50ur previous experience showed that WordNet covers a high percentage of the tagspace. This 
means that the number of senses originating from WordNet could be higher than the number of all 
senses originating from ontologies. Therefore, to normalise the popularity of WordNet compared to 
the other ontologies we assign as JSWNJ not the actual number of senses originating from WordNet 
but the maximum value of senses obtained by one ontology. 
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UKSE101,02, 
WNI 

SKSI 
= 5+3+2= 10. 
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Taking into account the above considerations, we define the following measure to cal- 

culate the rank of sense S. 

rank(S) = IR(S) * Sirn(S) * log IU SKSI VBgr(S) (7.4) 
( 

KSEprov(S) 

VBgr(S) is used to increase the rank of S when this is created from variable back- 

grounds, i. e., a combination of ontologies and WordNet. The experiments in Chapter 6 

showed that the knowledge in ontologies and WordNet is complementary therefore 

when integrated, it can provide a better connectivity of senses. 

7.5.2 Sense Disambiguation 

This is the last step (Figure 7.1: step 8) of sense assignment, it disambiguates the 

candidate senses of a tag t and selects the sense which is more appropriate for the 

context of t. This process is designed to satisfy Rqj, which is to exploit semantic 

and statistical information for the purposes of sense disambiguation. We calculate the 

graph-based and the statistical overlap of the candidate senses with the tagset of t and 

select the highest ranked sense that exceeds a predefined threshold. 

Graph-based Overlap 

Graph based overlap allows for relation based disambiguation and exploits the relations 

among the candidate senses of a tagset T. Our hypothesis is that among the candidate 

senses of t, the one that is better connected via formal relations with the senses of the 

other tags in T is the most likely to represent the correct meaning for t. We represent 

this degree of connectedness as follows. For each candidate sense S of t, which belongs 
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to tagset T, we calculate its graph-based overlap wit, li T using the following measures: 

OG (S, T) =ZZ dc, (e, ei) (7.5) 
Si ET S, ci (ý Si 

1 

if there is a path that connects e and ej 

0 if' iio such path exists OR (7.6) 

c mi(I (,, do not belong to the same Knowledge Source. 

S, represents the other candidate senses of the tags of T, while c and ei are seniantic 

entities which were used to create the senses S and S, Using these original entities 

we calculate dG (e', ej) which represents their distance in the graph of the Knowledge 

Source of origin. This measure also represents the semantic distance between the senses 

S and S, with jp(c, ej) I being the length of the connecting path between C and C, in 

the Knowledge Source. The connecting path may include all types of relations and is 

not, restricted to subsumption. In the cases when c and c, neither belong to the same 

Knowledge Source nor are they connected to each other, dG(e, ej) = 0. 

This formula caters for all senses regardless of their provenance and whether they 

have been inerged beforehand. The distance dG(e, ei) is calculated for all pairwise 

combinations of the entities of S and Si. If the senses have been merged and sorne 

of t heir entities originate from the samellKnowledge Source then the value of d(, (e, ej) 

woul(I I)e non null, therefore contributing to the distance of the two senses. 

The graph-based overlap of the candidate sense S with T, OG(S, T), is the suin of 

dc(e, ei) among all entities e of S and all entities e, of the other candidate senses of 

the tags in T, S, This type of disambiguation takes into account all the candidate 

senses assigned to the tags of T but does not consider the rest of the tags for which no 
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candidate sense is found. 

Statistical Overlap 

In contrast to graph-based overlap, the statistical overlap of a candidate sense S with 

the tagset T of t takes into account all tags of T regardless if they have been assigned 

candidate senses Si or not. The statistical disambiguation does not exploit the relations 

of the candidate sense S with Si. It exploits its lexical neighbourhood, ln(S), by 

calculating the relatedness of the neighbourhood with the tags of the tagset T. The 

relatedness of ln(S) with the tags of the tagset is called statistical overlap of S with T 

and is calculated using the following measure: 

Os(S, T) = 

E-E 
ln(S), yC T relT(x, y) (7.7) 
lln(S)l * ITI 

relT(x, y) is the relatedness between y and x, as calculated by measure M7.2. 

This statistical disambiguation caters for cases where the relation based disambiguation 

fails due to the heterogeneous origin of the senses in a tagset (which does not allow 

for connecting paths in one Knowledge Source). As in relation based disambiguation, 

the most strongly connected sense to all the tags of the tagset is selected to define the 

meaning of the tag. 

If sense assignment successfully disambiguates tag R-t (the specific occurrence of t in 

the tagset of resource R) and assigns to it sense S, the following relation (represented 

by the couple It, S1 in Figure 7.1) 

R 
hasDefinition 

-t 
: --+ 

is appended to the semantic structure, which is the output of FLOR-2. This process, 

sense disambiguation, and as a result sense assignment, fails when both OG (S, T) and 
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Os (S, T) fall under the specified thresholds. 

Figure 7.10 shows the output of sense assignment to the tags of the tagset 24768. 

24768- exhaust ion and 24768-sitting are the only tags not assigned a sense. This 

is because the overlap of their candidate senses with the other tags of the tagset is 

lower than the preselected threshold. Hence graph overlap is zero because there are no 

formal relations connecting the senses of exhaustion and sitting with the senses of the 

other tags in 24768. In addition, the statistical overlap of the two tags with the rest of 

the tagset is low. Indeed, while fmosque, tourist, istanbul, turkeyl provide a good 

disambiguation context for each other, they are not sufficiently related to f exhaustion, 

sittingl in order to facilitate their disambiguation. 

7.6 Semantic Aggregation 

This is the last phase of FLOR-2 and is responsible for the creation of the sense structure 

S, which represents the meanings of tags in T and their relations. The previous phase, 

sense assignment, populates the output with relations among tags and senses. However, 

the relations between the senses, and thus between the tags, are not specified yet. 

In Section 7.4 we described how the newly created senses relate to the neighbour 

entities of their original semantic entity. In this phase, the relations among senses and 

semantic entities are leveraged to relations between senses. This is achieved during 

relation definition (Figure 7.1: step 9) where the existing senses are connected with each 

other (Section 7.6.1). Yet, to produce a connected graph we introduce superordinate 

senses that do not exist in the tagspace6 but are used to summarise the existing senses 

(Figure 7-1: steps 10 to 14, Section 7.6.2). This is important in order to create a 

connected hierarchy. For example, if the senses Italy, Hungary and Slovenia already 

exist in 8, the new sense Country, is introduced as well as its relations to the existing 

61f there were tags in the tagspace with the meaning of such superordinate senses the later would 
have been discovered and created by steps 3 to 6 
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@prefix rdfa: <http: //www. w3. org/2000/01/rdf-schema#>. 
@prefix flort <httpt//flor. kmi. open. ac. uk/FWR*>. 
brefix rdfs <http: //www. w3. org/1999/02/22-rdf-syntax-ns#>. 

flortTa%_24768-exhaustion a florsTag; 
rdfatlabel 

Nexhaustion". 
florsTag_24768-intanbul a florsTag; 

flor: hasDeflnition 
flortSonse100527061916718; 

rdfs: label 
"istanbul". 

florcTa%_24768-posque a florsTag; 
flor: hasDeflnition 

flor: gense-10052719CS44258-moSque; 
rdfs: labal 

"mosque". 
flor: Tag_24768_sitting a florsTag; 

rdfaslalml 
*sitting". 

florsTag_24768_tourista a florsTag; 
flor: hanDeflnition 

flortSonse-10OS27191014928-tourist; 
rdfs: lal)el " 

tourists% 
florsTag_24768-turkey a florsTag; 

flor: hanDeflnition 
flortgense-100S274012923; 

rdfa: label 
"turkey". 

florsTaggedResource_24768 
flortisTaggedffith 
flor: Tag_., 24768-exhaustion, 
florsTag_.., 24766-istanbul, 
flortTag_., 24768 mosque, 
flor: Tag_24768 

- 
sitting, 

flortTag_24766 
- 

tourists, 
flor: Tag_.., 24766 turkey; 
a florsTaggedlt; source. 
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Figure 7.10: An example of RDF-encoded output for the enriched tagset, '1247681, 
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Semantic Aggregation 
Rel 

lavfio 

n 

Entity 10 
Definition 

Discovery 1001 

V, IF Sense 13 1 

Entity Addition 

Filtering Structurel4j 
Sense 12 

.. jjjjjjjý 
Integration 

Creation 

Figure 7.11: The Semantic Aggregation Phase 

three senses that represent Hist ailt iations of countries. 

7.6.1 Sense Relation Definition 

The ], I ., ý pr(wes"ws of' FLOR-2 (steps Ito ý, ) returii tw() 1. vpcý, of' 1-clat Io]). '-, betweell 

sellialltic entities and senses. The first type represents Hic Fact that tlic sellst, .5 wHs 

created by clititY C alld k: 

isF owl dIp 

'FlIe secolid type of relations refers to the Ones described 'I' Section 7.4-3, which include 

subordin ate, supcrordinate and nieroilymy relatim is. These relatilol IS cillerged frol I It I Ic 

rel at jons, oft lie entity c. which was used fort he creation of a sense S. Nvit II it,,, neigh bo III. 

semantic entities. c'. At that stage of selise creation, t lie relations among c and ('' Were 

translated to relations among S and c*: 

subSc? i se0f in stance0f S --4 c *ý S 
--4 

The above types of relations are used for the inte. gritt ioii ()f ý(,. Ijses I lijit have been 

(17 to tag, il) t1le (jj,, ýýIjjjj)igiiation phase. The process of relation (10inition among wssiglie 

assigned senses is: 

7 Alt houoý IIII lol-c candidate senses I lave been ("sco%'ere(" iftliese were not used j() (jefi I lie meaning 
of' a tago ill tlle tagspace. t hey are not considered by the semantic aggregation phase. 
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ei 

Hungary )at-101' Balaton 

isFoundIn i. sFoundIll 

ei 
partQf 

e3 

, e2 

Figure 7.12: Rviition 1)(4initioll 
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I. For each sense S, extract the seniantle entit ies, c *, wit 11 which S is relat ed via 

a specific relation. For example, all c* which r(Ante with S vla the relation 
bSenseOf 

subSense0f: S "u 
-4 C 

For all the semantic entities, c', locate all scilses S' that have becii created from 

isFoundLn 

- 
Connect S and S' with the relati( )II of, ý ý11)(, S, 31 

4. Bepeat actions 1-3 for all the diffcrelit t, vpCS of 1-clatiolis betweell S aild c* 

perSense0f, par(O. f mstanccOf and so on). 

The process is excl"Plified in Figure 7.12 where two senses share different types of 

relations, with semantic entities. For example, the relations: 

isFoundIn . tof Hupgary el and Balaton 

produce: 

" Of 111171, Pý"' Balaton gary 

The process is repeated for all assigned senses and all I he cio 11 les c* with wilw1i t 

relate. In the case when soine of c', have not been already used to create imot her serise 
isFoundhi 

there is no sense S' for which S' e'), this means, that the cmicepi defined 

I)N, c, ' does not appear in t lie in I) tit tagspace T. Yet,, tI ie en I it ies c'tIi at a re su bs iIII je(j I)y 
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the existing senses, are used for the creation of new senses and for structure integration 

as described in the following section. 

7.6.2 Structure Integration 

This is the last step of the algorithm which performs the integration process over the 

senses discovered for a tagspace. For example, consider that the senses Italy, Austria 

and Hungary have been assigned to tags in the tagspace. If the input tagspace T, does 

not contain the tag country 8, then the process of sense discovery (Figure 7.1: steps 3 

to 6) has not been triggered for this tag, and there is no sense such as Country in the 

repository. However, importing this new sense and its relations to the existing senses 

Austria, Hungary and Italy, would render the output Sa connected structure. 

The process of structure integration takes as input all the senses S, ' that are not con- 

nected to another sense with the hierarchical relations subSense0f and instance0f, and 

imports their superordinate senses. For all senses that have no superordinate senses, 

S": 

extract entities ep which are related to S,, via the relations subSense0f or in- 

stance0f (Figure 7.1: step 10). 

For each ep: 

(a) create sense Sp according to the process described in Section 7.4 

i. Entity filtering (Figure 7.1: step 11), which validates that ep is mean- 

ingful to folksonomy enrichment. 

ii. Sense creation (Figure 7.1: step 12), creates Sp. 

iii. Sense addition (Figure 7.1: step 13), which ensures that Sp is a new sense 

and there is no other sense with similar meaning to it in the repository. 

80r any other tag which is a synonym of country 
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In the case when a sufficiently similar sense to Sp exists, e. g., S,, these 

two are integrated (in the same manner described in Section 7.4.4) and 

Sp becomes the integrated sense Sp = Sp U S, 

subSense0f /instance0f 
(b) Add the relation S. -1 4 Sp to the output S. 

3. Repeat actions 1-2 for Sp until the subsumption path of entities has reached the 

root of the Knowledge Source. 

4. The process terminates when all S,, that are not connected to superordinate senses 

are integrated in the hierarchy. 

For example, consider the aforementioned three senses which are not connected to other 

senses with subsumption relations, Italy, Hungary and Austria. Structure integration is 

performed as follows. The superordinate semantic entities of S,, = Italy are extracted, 

for example, the entity ep = http: //Ontologyl. com#Country is related to Italy via the 

relation instance0f. ep is used for the creation of Countryp which is a new sense (no 

other sense in the repository is sufficiently similar to it). The relation: 

instance0f 
Italy Countryp 

is added to the structure and the same process is repeated for Countryp, which yields 

a new superordinate sense, Regionp, and relation: 

s bSense0f Country,, u Regionp 

The process continues until no more semantic entities are discovered in the path of ep 

in its Knowledge Source of origin (Ontologyl), and adds the following path in S: 

instance0f bSenseO f subSense0f Italy Countryp su 
-+ ' Regionp -4 Locationp 

Then the process is repeated for Austria and Hungary. The semantic entities that are 

subsumed by Hungary are extracted, for example the entity eý = http: //Ontology2. com# Count 
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Then efi is used for the creation of Countryp. However, during sense addition (Fig- 

ure 7-1: step 13), Countryfi and Countryp demonstrate high relatedness, thus instead 

of adding a new sense, Countryp, we integrate it with the existing Countryp, Countryp 

= Countryp U Countryo and add the subsumption relation: 

, instance0f Hungary Countryp 

The steps 10-13 (of Figure 7.1) of the semantic integration are then omitted for 

Countryp as it has already been integrated into the existing structure through its merg- 

ing with Countryp. 

7.7 Summary 

In this chapter we described the overall procedure and individual processes of FLOR-2 

as presented in Figure 7.1. We showed how, given an input tagspace T, we obtained 

a structure of senses S, which define the meaning of tags in T, and the relations 

between these senses. In the next chapter we describe the evaluation of the algorithm 

in terms of sense assignment correctness, i. e., what percentage of assigned senses is 

correct, tagspace coverage, i. e., what percentage of tags is assigned a correct sense, and 

connectivitY of obtained structure. 



Chapter 8 

Evaluating the Enrichment of 

Tagspaces 

In this chapter we evaluate the FLOR-2 enrichment algorithm in terms of sense assignment 

correctness, connectivity of sense spaces and tagspace coverage. We use two datasets one Of 

which is the dataset used to evaluate FLOR-1. With this we perform a comparative evaluation 

of the two versions of FLOR in terms of tagspace coverage and sense assignment correctness. 

8.1 Introduction 

In this chapter we evaluate our enrichment algorithm from three different perspectives: 

* Evaluation of the correctness of sense assignment, i. e., decide whether the 

senses that FLOR-2 assigned to tags are correct given their context (Section 8.2). 

e Evaluation of the degree of connectivity of the structure generated by the 

semantic aggregation phase, i. e., decide if the relations discovered between the 

senses constitute a semantic layer with a high degree of connectivity (Section 8-3). 
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e Evaluation of tagspace coverage, Le, measure the percentage of correctly 

enriched tags compared to the total tags of the input tagspa-ce and identify the 

reasons for non-coverage of the rest of the tags (Section 8.4). 

In the following section we give an overview of the experiments carried out and present 

the clatasets used for the purposes of this evaluation. 

8.1.1 Experimental Setup 

In order to evaluate the enrichment algorithm with respect to the three tasks intro- 

duced above, we use two different datasets. Table 8.1, surnmarises their characteristics. 

Dataset A has already been used to evaluate FLOR-1 (Section 4.6). The reason for 

selecting the same dataset is to compare the relative improvement of FLOR-2 with re- 

spect to sense assignment correctness and tagspace coverage (note that FLOR-1 did not 

support semantic aggregation). Dataset A comprises 250 resources randomly selected 

from Flickr with 2819 generic tags and 4242 specific tags' (the distinction between 

generic and specific tags was given in Definition 2 from Section 3.2). Dataset B is to 

the best of our knowledge the only established folksonomy dataset used for evaluation 

and was used in the experiments of Chapter 6. It is the MIRFLICKR-25000 collection 

[61] and was introduced for the purposes of image retrieval evaluation [10]. For this 

reason the images in this collection are of high quality and were selected based on their 

interestingness 2- 

We have enriched the two datasets using FLOR-2 and used human evaluations to asses 

the correctness of the sense assignment. On the basis of this result we then evaluate 

the semantic aggregation and tagspace coverage. Due to the large scale of the FLOR- 

2 output, we use the following convention throughout the evaluation. The evaluation 
IThe generic tags occur only once in the tagspace, e. g,, apple, while the specific occur as many 

times as the number of resources they tag. For example, in Dataset A there can be potentially 250 
instances of apple as a specific tag if all resources are tagged with apple (see Definition 2). 

2http: //wwv. flickr. com/explore/interesting 
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Dataset A Dataset B 

Number of Resources 250 25000 

Number of Generic tags 2819 69099 

Number of Specific Tags 4242 223537 

Table 8.1: Evaluation datasets 
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itself has been carried out on a randomly selected sample of the set of sense assignments. 

Without loss of generality we assume that the evaluation results from the sample are 

a meaningful approximation of the result for the overall population. 

In the following sections we describe the evaluation strategies for each of the three 

tasks. 

8.2 Evaluation of Sense Assignment 

The goal of the sense assignment evaluation is to decide if the sense S assigned to tag t 

is appropriate and conveys the meaning of t in the context of the tagset of resource R. 

This is the output produced by the process of sense disambiguation (Figure 7.1: step 

8) and is a sense assignment sa represented by the relation: 

has Def inition 
R-t -+ 

To evaluate the correctness of this assignment we devised the method presented in 

[1321 and used the help of a group of human judges (N). Fýrom the set of all sense 

assignments produced by FLOR-2, A, we randomly selected a subset SA :AD SA. 

We then asked each judge to asses if each sense assignment sa E SA was correct or 

not. 

Each judge is given a set of sense assignments in the manner presented in Table 8.2. 

The first column contains the tag whose sense assignment is under evaluation. The 
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Tag Tagset Sense 

sal light window, blue, light, orange, 
warmth 

GrowthCondition, status, condi- 
tion, illumination, lighting 

sa, 2 fire blue, demon, pipaugust, hand, 
fire, lowlight, devil 

Phenomena, firestorm, natural- 
event 

sa3 alberta winter, alberta, path, calgary canadian-province 

Table 8.2: Evaluation input example for sense assignment. 

second column contains the tag in its original context, i. e., among the other tags in its 

tagset. The last column contains a set of terms describing the assigned sense. These 

terms are the semantic neighbourhood of the sense, i. e., synonyms, supersenses and 

subsenses. 

The evaluators were asked to asses whether the meaning conveyed from the set of terms 

in the last column was the correct meaning for the tag given its context tagset. They 

could answer either "yes", "no" or "unsure" if the assignment is correct, incorrect or 

they can not make a judgement. As a result, for each sense assignment, sa, we obtain 

a tuple of responses, R =< rj,, rj,,.... 7rj, >=< yes, no, unsure,..., unsure >, one 

response per judge. 

To calculate the global consensus on the correctness of sa, i. e., if the majority of judges 

believe it is correct or incorrect, we construct 'ý --'ý < ýJl ý ýJV '***I ýJN >, as follows: 

0 If rii=: ccyes" then 6i =I 

If rj, = "no" then ýjj =0 

o If rj, == "unsure" then ýj, = 0.5 

For example, if the response tuple for sa is R =< yes, no, unsure, yes, yes >, we obtain: 

Jý =<1,0,0.5,1,1 >. We then use 1ý to calculate the global degree of correctness 

for sa, gdc(sa) as follOws: 
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gdc(sa) ýjj 

For example, gdc(sa) =1+0+0.5 +I+1=3.5. 
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Once gdc(sa) is known for all sense assignments, we then decide which assignments are 

globally correct, which are globally incorrect and for which there is no global consensus. 

The rules of Table 8.3 are applied for the categorisation of the sense assignments: 

Condition sa Judgement 

gdc(sa) ý! tc "correct" 

gdc(sa) < tj "incorrect" 

ti < gdc(sa) < tc "undecided" 

Table 8.3: Conditions for judging the global consensus for sa 

tc and tj are thresholds used to decide if gdc(sa) reflects a global correctness or in- 

correctness of sa. These thresholds are decided based on the number of judges N (see 

Sections 8.2.1 and 8.2.2) 

SA SAc U sai Vsaj C SA sai "correct" 

SA SAI U sai Vsaj E SA sa, "incorrect" 

SA SAu U sai Vsaj E SA sai "undecided" 

Table 8.4: Correct (SAC), incorrect (SAI) and undecided (SAu) sense assignments 

Using the strategy described above and the rules of Table 8.4, we obtain the sets of 

correct, incorrect and undecided sense assignments in SA. We use SAc and SAI to 

decide the ratio, rsA of correct sense assignments in SA as follows: 

rSA ---: - 
ISAcl 

ISAcUSAII (8.1) 

SA is a randomly selected subset of A. Thus, we can assume without loss of generality, 

that the ratio of correct sense assignments in A, rA can be approximated by rSA, i. e., 

rA ý-- rSA. Yet, the number of correct sense assignments is equal to the number of 
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specific tags correctly enriched. As a result, the ratio presented in M8.1 represents the 

precision of FLOR-2 in terms of tag enrichment. 

In the following sections we detail the evaluation of the sense assignment of FLOR-2 

on two datasets A and B. 

8.2.1 Experiment A 

To evaluate the correctness of sense assignment to the tags of Dataset A we randomly 

selected SA with ISAI = 300 and asked a group of N=4 volunteers (postgraduate 

and postdoctoral researchers) to judge the correctness of the assignments. Table 8.5 

contains the numbers of individual responses for each of the four judges. JA, judged 

262 sense assignments as correct, 29 as incorrect and she could not make a judgement 

for 9 of them. 

JA1 JA2 JA3 : TAý 

Yes 262 249 230 

- 
210 

No 29 M 54 33 

Unsure 9 18 18 57 

Table 8.5: Experiment A: Individual responses of the four judges 

For each sense assignment sa E SA we transformed the response tuple R to Jý and 

calculated the gdc(sa). In order to categorise each sa we calculated the thresholds tc 

and tj using the rules of Table 8.6, which apply when N=4. We set tc =3 and tj = 1. 

If there is at rnost one negative judge and everyone else is positive, we consider that 

there is enough evidence to support the global correctness of the assignment. Equally, 

if there is at most one positive judge we consider the assignment globally incorrect. 

This is because we were interested in obtaining a strong global consensus. As a result, 

all sa with I< gdc(sa) <3 are considered undecided. 
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sa is globally correct when: 

More than half of the judges are positive 1ý =< 1,1,1,0 > gdc(sa) =3 
Half of the judges are positive and half 
are unsure (none is negative) 

1ý =< 1,1,0.5,0.5 > gdc(sa) =3 

sa is globally incorrect when: 

More tha i half of the judges are negative 1ý =< 1,0,0,0 > gdc(sa) =I 
Half of the judges are negative and half 
are unsure (none is positive) 

1ý =< 0,0,0.5,0.5 > gdc(sa) =1 

Table 8.6: Rules for deciding the global correctness thresholds tc and tj for N=4 

Calculating the gde(sa) for all sa E SA we used the rules of Tables 8.3,8.4 and 8.6 to 

obtain the subsets of SA as follows: 

9 ISAcl = 241 

9 ISM = 17 

9 ISAul = 42 

Applying the above values measure to M8.1 we calculate the approximate correctness 

in sense assignment for Dataset A as: 

rA ý-- rSA ý 
ISAcl 

= 
241 

= 0.934 ISAcUSAII ý 5-8 

Although this is an approximation of the overall precision for FLOR-2, it is a very 

close value to the one obtained from the experiments with FLOR-1,0.93. This is 

a satisfactory result, given that FLOR-2 was not created to improve precision, but 

to improve coverage of the tagspace. Although we substituted the strict WordNet- 

based disambiguation methods with hybrid graph and statistical disambiguation, the 

precision rate remained the same. Finally, the minimum agreement for all evaluators 

was calculated as 0.71. This reflects the number of globally correct sense assignments 

with gdc(sa) = 



152 

8.2.2 Experiment B 

Evaluating the Enrichment of Tagspaces 

For the evaluation of FLOR-2 on Dataset B we also selected randomly a subset I SA I= 

300 (see Appendix C for the complete set of sense assignments and the individual 

evaluations of the five judges). A different group of N=5 volunteers, also postgraduate 

and postdoctoral researchers, were the judges in this experiment. We present the 

individual responses per judge in Table 8.7. 

JB1 JB2 JB3 
- 

JB4 JB5 

Yes 272 266 ý4-4 --ý-39 -ý-20 

No 24 26 35 -25 -48 

Unsure 4 14 21 36 32 

Table 8.7: Experiment B: Individual responses of the five judges 

For each sense assignment sa E SA we transformed the response tuple R to f? and 

calculated the gdc(sa). In order to categorise each sa we calculated the thresholds tc 

and tj using the rules of Table 8.8' and set tc = 3.5 and tj = 1.5. As a result, all sa 

with 1.5 < gdc(sa) < 3.5 belong to the set of senses for which no global consensus has 

been achieved. 

sa is globally correct when: 

More than half of the judges are positive R =< 1,1,1,0.5,0 > gdc(sa) = 3.5 
and at least one is unsure 

There are at least two positive and R<1,1,0.5,0.5,0.5 > gdc (sa) = 3.5 
no negative judges 

sa is globally incorrect when: 

Mor? than half of the judges are negative R<1,0.5,0,0,0 > gdc(sa) = 1.5 
and at least one is unsure 

There are at least two negative and R<0,0,0.5,0.5,0.5 > gdc(sa) = 1.5 
no positive judges 

Table 8-8: Rules for deciding the global correctness thresholds tc and tj for N=5 

To calculate the gdc(sa) for all sa E SA we used the rules of Tables 8.3 and 8.4 to 

3These rules apply when N=5 
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obtain the subsets of SA as follows: 

4p ISACI = 252 

a ISM = 17 

* ISAcl = 31 
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Applying the above values to measure M8.1 we calculate the approximate correctness 

in sense assignment for Dataset B as: 

ISAcl 252 rA ý-- rSA TS-AcUsAl = ý6-9 = 0.936 

Although Dataset B is different to A and the results were evaluated by a different group 

of judges, the value of sense assignment correctness is consistent with the values we 

obtained both for Dataset A and also in the experiments with FLOR-1 (Section 4.6). 

This is a satisfactory result given that, as mentioned before, the main goal of FLOR-2 

was to improve tagspace coverage rather than precision. In the same line with the re- 

sults of the experiment with Dataset A, the minimum agreement among the evaluators 

for senses with gdc(sa) =5 was 0.72. 

8.3 Evaluation of Semantic Aggregation 

Here we follow an evaluation strategy based on the measures M3.2 to M3.5, defined in 

Section 3.6.1, which evaluate the structure in terms of subsenses, supersenses and syn- 

onyms. Table 8.9 shows the values obtained for the two datasets. Although measures 

M3.4 and M3.5 were defined to measure the number of subsenses and supersenses, 

in this occasion we include all subordinate and superordinate senses i. e., the senses 

connected with the relations flor: hasInstance and flor: instance0f. In addition, for the 
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easure Dataset A Dafaset, 13 

M3.2 Yll 
(SKS) 2.3 2.2 

M3.4 
- 

vb7(SKS)l 1.5 1.8 
M5 3.5, S KS) 3.0 2.9 

Table 8.9: guantitative results of the enriclinient evaluation 

Tagspaccs 

evaluation of measures M3 N13.4 and N13.5 we. used the senses which were correctly 

j() tags (using the sults of the sense assignill(, ilt, it i0ii). 

I 

evalu, 

If we compare the values 
' 
Table 8.9 with the ones of Table 6.1 (presents t lic res,, its 

of sense richness in the str ures created from WordNet, aud ont, ologies) we now fliat, 

t, he senses present a quite ilar number of synonyms (2.2-2.3). This is justific(l J)v 

F 

e 

the fact that the senses crje(d in this evaluation originate froin the same Knowledge 

Sources as the senses pres ed in Table 6.1. 

In Table 6.1 we calculate i 

sense but in Table 8.9 we o 

the difference in the nUnibi 
I 

to the number of subsenseO 

ponyms of a synset were ti 

to a tag of Dataset A. In' 

than t lie number of subsen 

Da, t, a. set, 13, the probability 

-1jh()I(Illl; lW "('11scý- I-, 

11,,, jjj, ýjlll \-; jj,, c,,, lor , tiper 

is due to tile fact that in I' 

provide common ancestors 

a tag. Furthermore, the ni 

process which integrates s 

food in Figure 7.7) and f6i 

e mean number of all subsenses ind supersenses for c; wIl 

y calculat, e those whicli are a-ssigned t, o tags. Thisjustifics 

of'subsenses for Word Net-deri ved senses (I'lible 6.1: 2.7), 

resent, ed in Table 8.9 (1.5 and 1.8). Not, all kk"ordNet hy- 

nsfOrmed by FLOR-2 to a sense which was then assigned 

dition, flie number of subsenses for Dal, aset 13 is hirger 

s f'()r Dataset A. This is because, given Hie magnitude of' 

existence of tags in its t, agspwe which ire coimccted to 

rises are larger in Table 8.9 in contrast, to Table 6.1. This 

OR-2 supersenses are added to the struchire in order t, o 

r the existing senses and they are not, required to link to 

her of supersenses is larger because of the sense merging 

ses with different parents into one sense (see example of 

ach parent it, adds its ancestors to flie hierarchY. Finally, 
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measure M3.3, which represents the mean number of candidate senses for the tags of 

the tagspace, is lower for Dataset B because of the larger number of tags. 

We evaluate the number of relations between the senses using the following strategy. 

Consider 6, which is the set of senses that were connected to each other during the 

relation definition step (Figure 7.1: step 9) and A the senses which were connected 

to superordinate senses during the structure integration step (Figure 7.1: step 14). 

As shown in Table 8.10,46% of the correctly assigned senses to tags of Dataset A are 

connected to existing senses while for 11 % of the senses there was no relation to the rest 

of the structure. For Dataset B 71% of the senses were connected during the relation 

definition step while only 8% were not connected to any other sense. 

umber of Senses A B 
E 46% 71% 

connected during the structure integration step A 65% 67% 

connected in both steps 6AA 20% 36% 

Table 8.10: Senses connected with existing, E, and superordinate A relations 

Below we explain the reasons for the lack of relations for the group V A). All these 

senses for which no relations were discovered neither from Figure 7.1: step 9 nor from 

Figure 7.1: step 14 were amigned to tags using statistical disambiguation. This means 

that their lexical neighbourhood has a high statistical relatedness to the tagspaces of 

the tags with which they were connected. However, there are no senses in the tagspace 

to which they can connect or their supersenses were filtered out during Figure 7.1: 

step 11. Wood is one such sense which was correctly assigned to the tag wood in the 

context of tagspace T=Isunset, dock, water, clouds, wood, upnorth, buelah, 

crystallake, michigan, canon, sigmal020mm, wide, wow}. 
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, ubSenseOf 
Class: wood --+ solid substance 

, superSenscOf Birch 
superSenst Of 

Pine 
szzpcrSe? ise0f 

----> Beech 

(I ''ýI! l '//, / olo b /, ,, 

III the tagspacc Of DNIN-Cl A OVIliCh Is sl'-11111cmillY "Ilmller 111ý111 IIIc olle ()f datasel 

B) t here are no tags such as birch, pine and beech, xvhIch IA, 0111(1 l1av(, t 

creation of the subordinate senses of Wood. Therefore. it does not yejat(ý jo an\, (, Xist_ 

In addition. its supersense solid substancc is ot1l 1)(ý(- l(, 1.111s 

solid, substance did not tag any resources is folksonoinies. 'I'll(, saIjI(, l)Ij(, IIojII(, 1IoII 

is olys(, rved for tlic sciise of' lag dress in tlje cont("xts of '1,1 
-- 

Iragazza, abito, 

selfportrait, girl, dress, yellow, giallo, elisa, nothingdelicious, argh, 

partenzapercannesdel02O7, consuddettoabito, maancheno, questoterribile, 

loscopriremosolovivendo, alloralocancello, ormailhaiscrittoelolasci, comandij 

MIWF2ý Ired, fashion, dress, hat, reddress, redfashion, style, womensstyle, 

womensfashion, teenagefashion, teenagestyle, redandwhite, stylish). 

subSenscOf 
Class: dre8s + DurableGood 

subSense0f 
-ý EnvelopingCovering 

superSenscof 
--4 BallGown 

superSens(of CoverUpDress 
superSev. se Of 

---4 BHdalGown 
superSensrOf OffShoulderDress 
superSen, st Of 

-4 JumperDress 
"Drcss is a specialization of (, 'Iotllz'? Ig not drapc do, aul to /Ic 
feet" 

As ;j 
MIX, ()f the correctlY assigned senses NN, (, I. e yejaje(l to otll(,,. i 11 tile 

structure while the 11W failure was caused by lack ()f tags defined Nvith smimi. (jillate 

senses ()r due to filtering of supersenses. The repetition ()f'tll(' same experiment mi the 

larger Dat aset B is lik(, ].,,, to return less disconnected senses alid is a task for Our fut ure 
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8.4 Evaluation of Tagspace Coverage 
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In this section we evaluate the tagspace coverage of FLOR-2 which is given by the 

percentage of tags that were assigned to correct senses. We measure two types of 

coverage, total coverage and normalised coverage M3.8. The total coverage is the 

ratio between the number of tags enriched correctly and the total number of tags. In 

Table 8.11 we see that the total number of tags enriched correctly with FLOR-1 was 

281 and with the second is 994. We should point out that this value represents generic 

tags (because in the preliminary experiment we evaluated the enrichment in terms of 

generic tags). Therefore we calculated the approximate number of generic tags that 

were correctly enriched from FLOR-2 as 994 (the number of correctly enriched specific 

tags is 1421 and was measured using the sense assignment correctness process described 

in Section 8.2). As a result, the total coverage is calculated as 
281 

= 0.099 for FLOR-1 2819 

and 
194 

= 0.33 for FLOR-2, where 2819 is the number of generic tags in Datmet A. 
2819 

FLOR-1 FLOR-2 

Correctly Enriched 281 994 

Total Coverage 10% 33% 

Normalised coverage 49% 81% 

Table 8.11: Quantitative Improvement of the two versions of FLOR, on Dataset A. 

This is a significant improvement, yet the total coverage does not take into account the 

vocabulary gap between folksonornies and Knowledge Sources. This gap consists of 

the tags that were not enriched due to folksonomic idiosyncrasies or due to the lack 

of appropriate semantic entities that describe their meaning, namely the sparseness 

of the Knowledge Sources. As a result it does not indicate what percentage of the 
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non-coverage is caused due to knowledge sparseness and what percentage is caused by 

FLOR-2 failures (for example using a strict disambiguation in FLOR-1 restricted the 

number of covered tags). 

Using the same rationale we presented in Section 4.6 we obtain the normalised coverage 

for FLOR-2. This is the ratio of tags that were enriched, TA (see Section 3.6.1), 

compared to the tags that should be enriched but are not, SE. The tags that should 

be enriched and are not can be described in terms of classic IR as "false negatives". 

We obtain an approximate number of false negatives as follows. We extract a random 

sample of the tags that were not enriched and the tags that were incorrectly enriched 

and try to enrich them manually. For each of these tags t we: 

locate the correct semantic entity in the available Knowledge Sources4 , and 

assess if the tagset of the non-enriched tag provides adequate information for the 

assignment of this entity (sense) to this tag. 

If both conditions are met, t is added to the group of false negatives. The enriched 

tags 7A and the false negatives constitute the semantically covered tags M3.6, Tss 

7-A + SS. We then calculate the normalised coverage, M3.8 as: 

TA 
covn(T, S, FLOR - 2) = T- = 81% 

ss 

In Section 4.6 we calculated the normalised coverage as 49% for FLOR-1 and using 

the method described above we calculate that the normalised coverage for FLOR-2 

was 81%. This normalised coverage removed the bias given by the involvement of the 

Knowledge Sources and calculates the efficiency of the algorithm. Because the exper- 

iment with FLOR-1 was carried out in 2007 one may argue that since then there are 

rnore ontologies that provide adequate senses for the tags. Furthermore, the addition 

of WordNet as a Knowledge Source has indeed provided more appropriate senses for 

4For the tags that were incorrectly enriched this is not necessary as they have been assigned already 
candidate senses 
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the tags. However, in the calculation of the normalised coverage the influence of these 

factors is eliminated because the false negatives are decided based on the existence of 

appropriate semantic entities in the Knowledge Sources. 

Using the same process for Dataset B and FLOR-2 we obtained total coverage of 16% 

and a normalised coverage of 74%. We observe that the total coverage is quite low 

compared to the value we obtained for Dataset A. This is caused by the large number 

of lexical irregularities present in this dataset. We give more details on these in Section 

8.5.1- Yet the large normalised coverage for Dataset B is close to the result we obtained 

for Dataset A. This justifies our decision to obtain a second measure that measures the 

performance of the algorithm and is independent of the vocabulary gap. 

Including richer Knowledge Sources for the enrichment of folksonomies is part of our 

future work, yet we carried out a small experiment to understand the potential of such 

inclusion. We aimed to identify how additional resources can lexically cover the tags 

that were not covered by the current Knowledge Sources. We mapped the 84% of the 

tags from Dataset B that were not assigned a sense to DBpedia entities. For 87% 

of these unmapped tags we obtained at least one DBpedia entity. Yet this does not 

reflect the capability of DBpedia to semantically cover these tags in the context of 

the resource they appear. Therefore we repeated the evaluation process reported in 

Section 8.2 by selecting a random set of 100 assignments of tags to candidate entities 

and then assessing the appropriateness of one of these entities in terms of semantically 

describing the tags in their resource context. In 79 cases there was at least one DBpedia 

entity found to represent the meaning of the tag while for 21% of the tags none of the 

discovered DBpedia entities corresponded to their meaning in the tagset. Although 

this is a small experiment it already demonstrates that the inclusion of Linked Open 

Data resources can drastically improve the semantic coverage of tags. 
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8.5 Additional Analysis 

Evaluating the Emichment of Tagspaces 

FLOR-2 use a plethora of methods and heuristics during the enrichment process. The 

analysis presented in the previous sections focused on the final output of the algorithm. 

Yet, some of the results provided by the intermediate processes of FLOR-2 are also 

interesting and provide significant insights towards the improvement of the algorithm, 

and the nature of folksonornies and Knowledge Sources. 

8.5.1 Lexical Isolation 

In this section we provide a short analysis of the Lexical Isolation process, described 

in Section 7.3.1. From the 2819 tags of Dataset A, 1103 were removed, resulting in 

a tagspace of 2784 tag assignments and 1716 generic tags. This is a removal of 39% 

as opposed to the 59% isolated from FLOR-1 (see Section 4-6). In this instance, the 

20% more tags kept was due to elimination of the WordNet filtering used to identify 

non-English tags in the preliminary experiment. In more detail, 3.5% of the isolated 

tags where shorter than 3, jbw, jc, wcj. 13.2% contained numbers, 11ovelyi, save2, 

topiol and 69.3% were isolated because they were infrequent (i. e., did not belong 

to clusters of frequently co- occurring tags). Finally 14% of the excluded tags were 

idiosyncratic. 

Dataset B contains 69-099 generic and 223.537 specific tags. 153.394 (68%) of the tags 

passed the isolation phase, and for the 3291c that were isolated, the distribution is as 

follows. 12.7% of the tags were ruled out by the idiosyncratic tag isolator, 5.2% contains 

numbers and 4.3% is shorter than 3.8.9 % of the tags contain special characters and 

finally 68% of the tags were infrequent. It should be pointed out that the percentages 

of isolated tags may vary depending on which isolator was used first. For example the 

tag mariasbirthday2009 is infrequent, idiodyncratic and contain numbers. However 

if the infrequent isolator is called first, this tag is classified under the infrequent tags. 
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In the next section we describe the overlap of vocabularies between the datasets and 

the Knowledge Sources. 

8.5.2 Semantic Entity Discovery 

In this section we discuss the process of matching a tag to a semantic entity either 

from online ontologies or WordNet and explore the vocabulary gap and the vocabulary 

overlap among tagspaces and Knowledge Sources. 

The tags that passed through the lexical isolation, 61% of Dataset A and 68% of 

Dataset B, were used in the semantic entity discovery phase (Figure 7.1: step 3) to 

identify entities which may define their meaning. 59% of the generic tags from Dataset 

A and 47% of Dataset B were matched against at least one semantic entity. For the 

rest of the generic tags there was no semantic entity in any Knowledge Source that 

could match them. Table 8.12 depicts the percentages of non-covered tags for the two 

datasets. We obtained these numbers by evaluating a random sample of the non-covered 

tags. 

Tag Type Example Dat. A Dat. B 

Non-English bleu, caer, abito 31% 35% 

Idiosyncratic allstars, catchycolors, cmwd 17% 13% 

Adjectives cool, lovely, alone 15% 15% 

Person Names julia, ahmed, deby 3% 2% 

Not Covered agip, bicyclette, chrysler 15% 12% 

Compoun Misspelled d ý& cityhall, bodylanguage 19% 23% 

Table 8.12: Tags for which FLOR-2 failed to identify candidate senses 

The percentages shown in Table 8.12 are approximate values since they were acquired 

from a random sample of the uncovered tags. 31 - 35% of them are non-english, and 

as a result cannot be found either in online ontologies, whose majority is written in 
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English, or in WordNet. Idiosyncratic tags (17 - 13%), are also not likely to be found in 

online ontologies or WordNet. Adjectives (15%) and person names (3 - 2%) are out of 

the scope of FLOR-2 enrichment. This is because adjectives usually describe personal 

opinions [51] and are thus excluded from the entity search in WordNet. Personal names 

are underspecified in the tagspaces and not covered by online ontologies therefore are 

excluded from the enrichment process. 

Also, 15 - 12% of tags could not be found in the online ontologies indexed by Watson, 

but are commonly used in folksonomies. For example, the tag agip, does not appear 

either in ontologies or in WordNet. Yet, it is frequent enough in the tagspace of Flickr, 

to have clusters of related tags: 

f errari, marlboro, f iat, mountain, f ormulal, nikon, motorsportf 
- -------------- jsardinýl-a-, sar--degnýa 

-Uý-Jst`ation, -gas 

: a: 

_ýýtribýuýtore,:: 

it Llia, I d- ý4 dis býenzina, gas3statlo-nj--------j 

the majority of which indicate that "agiP" is the brand name of a gas distributor. The 

case of brand names such as agip is a common case of non-coverage from FLOR-2 

due to lack of semantic entities that define them in Knowledge Sources. Neither online 

ontologies nor WordNet cover these concepts, however, they are quite frequent in the 

tagspaces 5- 

In addition to these, which are not covered lexically, there are other tags, which are 

covered lexically but they are not covered semantically, i. e., the correct sense is not 

available. This is the case of Iconverse, poij, which exist in the Knowledge Sources 

but only with one of their meanings. Consider for example, the tag poi, which is en- 

countered in the context of tagset T= Isingapore, asia, night, movement, blur, 

f ire, panorama, panoramic, handheld, poi} 6- The only candidate sense discov- 

5They are frequent enough to have clusters of related tags 

6http: //Www. flickr. com/photos/arjunpurky/179834257/ 
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ered for this tag is: 

* ,, bSenscO, f bSense0f 
Sense: pot dish "" 

--4 nutriment 
Nv(l) '-Hawahan disli of taro root J 

.. 
j allowc(l f0f( 

iI-ý 

However. die correct sense for the tag iii the context ()f T refers to the sphiijilig fire 

ganic. 111cide"tallY. ()"C Of 111C tý401' chister", extrilcted fn)tii Fhckr f(w poi (-()waiiis the 

tags If ire, night, flame I which ovei-1,11) xvit 11 T al ]d (-()111(1 I)c I Ised t() (I is"I II lbiglu I Ic 

the sense offire game. This is a fi-cque"t case where t he iiii'(wiiud i0ii pr()vidcd bY f'()Ik- 

sonoinies is adequate for the definition of at itg, ineiiiiing but I he respect ive kiiowledge 

ilable in air\- Knowledge Source. a ý1291 studied how differcill is liot ava Yeting et. -I 

contexts of tags (ideiitified statistically) overhip xvitli WordNel. Thcy als() f()uiid tliýlt 

aI arge percent age oft I iese coi it exts c()u I (I il()t be ni; i I) ped t() \\'()t dNc t. F(w tIw resolti- 

tioli Of slich issucs furflier Knowledge Swirces, which c()III'lill 111(we "Alwild he 

illvestigated. This is part Of 01-11' fUtUre work. 

F, ilijilly I he 19 - 2T/( ()f tags I liat was II()t mapped against a "'emmit ic ent it. \. nn, (. ()III- 

()I- misspelled tags that FLOR-2 failed to tokenise mid m 1() 111ap I, 

an elititY. The larger value ohtained for Dataset B. 23(/(, Justifies its 1(m, cr normalisc(l 

coverage. In additioij. the total number of 11011-cmercd tags ill I he ('111 itY discm-crY 
. "'t ep 

is larger for BIIia 11 A (53 versus 41( Yc) 'which just ifies t he lwwer t Ot al cm-enip, presclit ed 

ii, Section 8.4. 

11, tjle following sections we amilYse t he execill ioll alld mit put fl-mll I lic llcXj 1-'I, ( )IJ- 

2 pr(wesses using the results for Dit, aset A. Considering th;, t scilc ,.,; sigl it and 

tag coverage results for both Dýilaset A and B (which were ()btamcd usilig 

groups of evaluators) were similar we cmi assume tlial tll(- ()I' 

studies provided for Dataset A (-all approxhimtely apply to Ditasct B without 

geller"fitY. 
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Figure S-1: I'l-01 Iý I]'((' ()I "II"III didi IIc -c I im-, assigned to the tags of DataSet A. 

8.5.3 Sense Creation 

The next step in the enrichinew process. after the tags have been inapped to filler(, (l 

semantic entities, is the exploitation of these entities for the creation of candidate 

senses. In this section we look into the statistics associated with sense provenance and 

present, some indicative cases for sense creation. 

For the tags of Dataset B the number of total candidate senses was 9672 and t1le, 

approximate number of senses correctly assigned to the tags was 4105. For t Ile tags 

of Dataset A, a total of 3760 candidate senses were created that potentially represent 

their meaning and 849 senses were correctly assigned to tags finally. This equals to a 

mean 3.7 candidate senses per tag. As shown in Figure 8.1,51% of the candidate senses 

originated from WordNet synsets, 41% of them from ontological entities and only 8% 

were created using a combination of semantic entities from both Knowledge Sources. 

Furthermore, 35% of the candidate senses were created fro", a single ontological entity 

and 4891c, from one WordNet, synset. Examples of senses created from unique WordNet. 

, ts whicli do riot share synonyms wit li other synsets are: synse - 
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Synset: Maui, Maui Island ---ý Island 
-tlu- swowl larycst of the Hu. tramrii Isla7i. ds" 

Synset. Parmesan --ý Cheese 
"/iard dry sliarp-iflavorcd Itahwi Chcesc- 

TYpical examples of senses i lial xvcre created fi-om a smg1c (. 111 Ity: 

Class: Beauty" Wlas 
) Sof Abstract Idea 

"flic pality of bein zz _q plmslng w'sthOkally, 'n an (kal scns( 

The sinillarlty of this entity with the -; \, ii. s(, ts for beaniv: 

Syns(A: Beauty ---ý Appearauce 
-thc qualities that give pleasure to the senses" 

Synset: Beauty ---ý Exemplar 
--an oidslanding c, rumpic of its A; 'Itjd- 

16 1') 

low duc to the. hi,, h licterogeneltv iii II n dic defill't iolis of, the sellses 

their lexical information. SimilarlY. dile lo ()f defillitiolls aild Imv lexical 

1-clatediiess the following senses failed to becolliol 011C S(Illsv and IvIllailled ScpnrllC 

senses. created from different semantic entities. 

bCla. ssOf Class: Bridge'" --+ Spot Features 
(Ontology 1) 

, ubClo. ý., Of 
Class: Bridge ---ý LandTransitway 

(Ontolop, 2) *, B7-? d. qc is the subelass of L(vidTninsitways that (in urtif(ITI"Sl 
a natural sit7fax-c" 
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, WlassOf 
Class: Bridge '" ý SolidSurfacePathThroughAir 

, ubClassOf 
(011tology 3) ) Path-Simple 

"BHdges are clevatctl roadways, usually ovcrivatcr or so, 111c, 
other pathway artifact" 

WlassOf 
Class: Bridge "u 

--+ ManmadeOutdoorLocation 
(OntologY 4) --Perhaps a br?, *dg( i. ý not a locatZ'on... " 7 

This example denionstrates the phenomenon that many ontologies define entities tai- 

lored to (. (, I-t it in tasks, and va IA in specific scopes. they are poor I exica I Iy Or st ruct uni IIY 

(therefore do not provide enough evidence for sense integration) and their value oil tll(. 

enricliment is low. The entity filtering step (Figure 7.1: steps 4,11) uses various 

heuristics to exclude such ("'titles but further analysis is needed in order to iinprmv 

the process of filt("'ing Out sll('11 lioisc. This is important for supporting the reuse Of 

existing oiil()Iogi(,,, oil tile NVCI)- 

III tll(,, following we discuss another phenoilienon t1j; jI tll(, 

modelled kiiOwledgc in ()iitoIogi(,,,,. lll(. ()Ilsi, Fiwircs 8.2 and 8.3 displov 1\\'() 

' ltlti('s' Obtaill('d when searching oidine olll()I()gies I'm- party. semantic (I 

Tl jese Nverc trall, '401-Mcd i"tO the sClIses: 

Class: Party Actor 

(011tologY I) 

subClassOf 
(, lass: Party --+ Locatable 

snb('Ia. ýsOf 
<-- Actor 

(()jjt, oj()gy 

\\, (, ll()tc, tjjýjt 011tology I' defilles Parly as a sul)(liss of Aclor mid milology 2" as a 

superclass. 
FLOH-2 does nol deal with such types of colitradick)ry kn(mledge ml(l 

- I, tp: //,.,, ý, sL, 6xom/iiwrs/denker/owksec/toii/-, e(-iii-itý, tjjjpjý, te. O\\. j 
ýIllttp: //tl-,, jajjoj. us. es/ isabel/Elili/D(, iiiograplii(, -RT\I. owI 
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Deta& for http: Hnjano. us. es/-isabei/EHR/Deniographic_RM. owl#PARTY (view 
g-raph) 
Back 

In hLtp: //Iraiano. us. es, /-i&abcUEHR/Dcmop-raphic RM. owl 
*0 Class 
* abstract: twe 
* label: ENTIDAD 
" CEN: healthcare agent 
" HL7: Entity 

" label: PARTY 
" Purpose: Ancestor of all party types, including mal world entities and their roles. A party is any 

entity which can participate in an activity. The meaning attribute inherited from LOCATABLE 
used to indicate the actual type of party 

" subClassM. hLip. /Itraigno-uszs/-isabel/EHR/Commn RM. owl#LOCATABLE 
" hllp: //traigno. uszs/-isabel/EHR/Demgrgphic RM. owl#reverse relationship : domain 

" hLtp: /AraM(-). Usest-isabeVEHR/DemmphLc RM. owl#ROLE: subCla. %-Or 
" hgp: //traoo. us. es/-isabel/EHR/Deniograt)hic RM. owl#Telationship : domain 

" hjgp7//Irajgno. usesl-isabel/EHR/Demop-raphic RM. owl#source: range 
" b! W: //Iraigno-uszs/-isabel/EHR/Deffiomphic RM. owl#identi. fieg: domain 

" hiip: //traiano. uszs/-isabel/EHR/DemogtaDhic RM. owl#ACTOR: subClassOf 
" bnp: /ttraigno. uses/-isabeL/EHR/DenioglgDhic RM. owLftMet: range 
" bMI27/AraAo. uses/-isabeVEHR/Dermmptiic RM. owl#contacts: domain 

Figure 8.2: A semani ic entitY fOr Party 

Deta& for http: //knii-webO5, open. ac. uk: 8I/cache/I/8bbt5959/67443/f422-524090/1a9258731283283&C#Party (view 

gmph) 
Back 

Figure 8.3: Anotherseinantic entity for Parly 
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therefore these two senses are not merged despite the fact that they represent the same 

meaning. 

Due to such failures of sense integration there are some cases where the tags are assigned 

a large number of candidate senses, which is disproportionate to their senses in reality 

(and leads to the large number of candidate senses 3.7). 30% of the tags are assigned 

only one sense, 18% two and 14% three candidate senses. The 38% is assigned more 

than three senses, This justifies our decision to perform sense ranking (Figure 7.1: step 

7) prior to sense disambiguation. 

8.5.4 Sense Disambiguation 

In this section we present an overview of the correctly assigned senses in terms of 

the disambiguation method used (graph-based or statistical) and in terms of their 

provenance. In particular, we calculate the distribution of sense assignment correctness 

for graph-based disambiguated versus cluster disambiguated senses. In addition we 

estimate the ratio of correctness for senses originating from WordNet, ontologies and 

a combination of the two. 

Figure 8.4 presents the distribution of correct, incorrect and undecided senses in three 

categories based on their provenance. As we can see in Figure 8.4, the majority of 

the correctly assigned senses (42%) has been created with a combination of semantic 

entities from WordNet and ontologies. This is an interesting outcome compared to the 

result of Figure 8.1, which shows that the minority of candidate senses is of mixed 

provenance. This also justifies our decisions on sense ranking based on their mixed 

provenance. 

With regards to the performance of disambiguation methods, the graph-based disam- 

biguation (relation) performed slightly better (51%) than statistical disambiguation 

(cluster) which accounts for the 49% of the correctly assigned senses. However, in 
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Figure 8.6 xvc observe that cluster base disailibiguation performed slightly better wit I, 

senses of conibille. cl provenance. This Is CxPlailled as f'()11()w,,,. The combined provenance 

,s have more diverse lexical neighhourhood. and the probabilitY of' higher sense iI 

, less with the tagset. evcn when formal rclations a, -e. lacking, is higher. Ownill tjjjý, 

justifies our decision to itio)rpo""' a Stýlllstl('al disallibioliation method iii FLOR-2. 

the following we highlight so'lle cases of disambiguation failures for grapli-bosc(l 

and , tatistical disambiguatioll alld highlight the of inadequate tag context for 

(I isal nbigii at ion. 

Failures of graph-based disambiguatioll 

t1lis ý,, ection xve describe a case of grapli-based disambiguanon Failure. Colisi(l(,,. I I, (, 

tag roller, which belongs to the tagset T= fride, roller, coster, life, time, 

lifetime, scary, tall, white, red, brown, light, wow, yahoo, air, hands, 

Combined 

cluster 
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people, sky, clouds, colors, shiny, curej. The sonse assigned 1() roller is: 

s bS(-vscOf '11bSclis, Of 
Sense: roller, curler "' 

--+ Wheel mcchanical dcvice 
"a sniall 11,11cc/ (I'I'mind which thl balt. Is w(Mild to 
C11171 z III 

I ii tI iis t lie ahove wa-s' ass I gii(w IN) rol I er via tI ic gi-apli mvi-la p w1111 II Ic candidale 

sense Or ride. AM is Am sulwinc (9 "urhavuel (h M. This disambiguaiiOn failm-c 

Nva", calum'd by t lie incorivo mapping of senscsý h) tags'. The I ags roller and coster. 

(jesignafe on(, concept -I 
111fin-1 linat (AY such cases mv not addi-essed by FIA M-2 which 

tr(mits emb tag as an WSW comil, 

Failures of statistical disambiguation 

Statistical disallibigilatioll exploils the collcolvc I-chiledile". " ()I' III(' klg. scl w0h ýl 

didate sellse"', lexical Ileighboill-11m)(I 11silig Ilwo. suiv N17.7. I 1()\vvvci-. iiwa. sin-e N17.7 pe- 

1181ise", tile sell"W", t hit have n 1,11. gel- lexical livIgIlImIll-11(m)(I which (I(ws II()I ()vel-1,11) well 
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.. SvHs(,: 

bSenscOf 
Setise: artist "" 

---4 agent 
()(1) "A pci-swi w, p-oup oi- (tyclit who ruw-/(. 'ý of 

Nva's assigiled to I he tag hccallse of' t lic highc]. ()verlap ()I' its lexical licigillmill-11(m)(I 

compared to the iwighbourhood of Ilic sense: 

, ibSetim ( ). / bSe-list Of 
Sense: artist '' -4 creator participant 

subScmse, Of Of 
creator person 

a p(,, i, smi, whom, ci-cat'n, wovk sholl', " ýS( /1-SIl V t! l (Illd I'lll(l.! j17U1110jj- 

('oniparing dic I ags of-l' %vIt li t he I wo lexic; il iielghhum, hoods I agent I and I creator, 
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participant, personj we observed that they overlap best with the terms creator 

and agent. However, the terms participant and person return a low relatedness 

with the tags of T and this reduces the overlap of the second sense with T. This 

disambiguation is not incorrect, because the first sense, which was assigned to artist, 

describes the meaning of the tag. However, this sense is not the optimal because it is 

not as descriptive as the second one. 

Ambiguous language and underspecified tags 

In some cases tags are not used with their literal meaning or the context is quite vague. 

An example of this was presented in Chapter 4, Figure 4.6 for the tag volume. A 

similar case to this was discovered for the image of the tag beer which was used to 

annotate the image of Figure 8.710. The correct candidate sense was found for beer, 

but the tagset does not provide useful information either for graph-based disambigua- 

tion or for statistical disambiguation. The tagset is Jknit, knitting, beer, knit 

beer, proj ect365, moments, 30820071 and belongs to the groups " Crazy for Knit- 

ting, The Knitting Club", CRAFT", tricot e crochet", Project 365P, 365 Moments", 

Play Food! ". Such photos are taken in order to participate in a topic specific group of 

interest and therefore are cases for idiosyncratic tagging. In Section 7.3 we presented 

our heuristics for ruling out idiosyncratic tags they do not rule out idiosyncratic re- 

sources (this is the first instance we encountered such an example). The identification 

of idiosyncratic resources remains an issue of our future work. 

Another example of poor context, consider the tag alberta which belongs to tagset T= 

itrees, sunrise, sky, red, clouds, albertal. The only candidate sense for this 

tag refers to the canadian province. Although looking at the image and other textual 

information the user can infer that this is the correct sense for the tag, the contextual 

information given by its tagset is low and results to a failure of disambiguation with 

10http: //ww. flickr. com/photos/katknits/1000096206/ 
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We evaluated FLOR-2 from three different perspectives, sense assignment (Section 8.2), 

semantic aggregation (Section 8.3) and tagspace coverage (Section 8.4) using two 

datasets of 250 and 25000 resources. For each of the two datasets FLOR-2 assigned 

correct senses to the 81% and 74% of the tags which were discovered in Knowledge 

Sources, with an approximate precision of 93%. The processes of entity discovery, 

sense integration and sense disambiguation account for the failures. Yet, the compari- 

son of FLOR-2 to FLOR-1 showed a significant improvement in the coverage of 

tags, while the enrichment precision was maintained to the same levels. In terms of 

semantic aggregation FLOR-2 discovered relations among 89% of the senses that were 

correctly assigned to tags, while failure to identify relations was caused by the lack of 

overlap of the senses with the vocabulary of the tagspaces. 

The low vocabulary overlap accounts also for the low total coverage of FLOR-2. Indeed 

only 33% of the tags from Dataset A and 16% from Dataset B were correctly enriched 

with senses. These are quite low percentages but are not caused by failures of the 

algorithm but by the following issues: 

" There is a plethora of idiosyncratic and underspecified tags in folksonomies. 

" These tag categories are difficult to distinguish and they are not covered by the 

Knowledge Sources. 

e The Knowledge Sources are sparse even for tags that do not belong in the above 

categories. 

In Sections 8.5-2,8.5.3 and 8.5.4 we described how the combination of different Knowl- 

edge Sources and different disambiguation methods contributes to the correctness of 

sense assignment. We identified issues that need further analysis including: 

* investigation of methods for the selection and evaluation of entities valuable to 

the enrichment process 
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e identification of additional context for underspecified tags 

9 resolution of conflicting knowledge 

Still, despite these issues the performance of the algorithm was satisfactory. The major 

challenge we identified is the selection of additional Knowledge Sources which can 

complement the enrichment with entities that do not belong to ontologies and WordNet. 

These issues are part of our future work. 



Chapter 9 

exFLORe: Search on Enriched 

Tagspaces 

In this chapter we describe exFLORe, an algorithm that exploits the semantic structures pro- 

duced by FLOR-2 for the purposes of improving search in folksonomies. exFLORe translates 

the query keywords to senses and retrieves the resources associated with these senses. Finally, 

it presents the results in ranked groups. 

9.1 Introduction 

exFLORe is a query algorithm that makes use of the semantic structures created by 

FLOR-2 in order to improve search in folksonomies. Currently, folksonomy search is 

limited to matching search keywords against the tags (or other textual descriptions) 

of resources. For example, consider a query for resources related to European lakes 

phrased as feurope lakel. This can only return those resources that are explicitly 

tagged with both these keywords. However, other relevant resources might exist that 

are not tagged with exactly these keywords but rather with their semantic vaxiations, 

for example jitaly, lake} and fbalaton, hungary}. This is an example of basic 
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level variation which, along with polysemy and synonymy, pose limitations on folkson- 

omy search. Existing approaches have been proposed for the improvement of search 

in folksonornies (Section 2.3.2) either utilising semantics [72,73,95] or statistical ap- 

proaches [17,27,85,133] to address some of the phenomena of polysemy, synonymy 

and basic level variation and allow for additional functionalities such as result diversifi- 

cation [421. Our approach addresses the underlying cause of these phenomena which is 

the lack of a semantic structure that can explicitly express the relations among lit aly, 

lake, europe, balaton, hungaryl and so on. 

In the previous chapters we explained how FLOR-2 automatically structures the in- 

put tagspaces. In this chapter we introduce exFLORe, an algorithm that exploits this 

structure to improve folksonomy search. exFLORe supports traditional keyword-based 

querying, and does not introduce a new search paradigm. Its novelty lies in the trans- 

lation of user keywords to senses, which are then used for the retrieval of relevant 

resources. 

The approach used by exFLORe is different to other approaches that address the 

problem of Semantic Search on the web [46]. The latter make use of semantics as 

a means to expand the user queries, which are then compared against the textual 

annotations of the resources. Our approach exploits the fact that the resource space 

itself is annotated with a semantic structure. Therefore, rather that matching the 

user queries to the textual annotations of the resources (i. e., tags) they are matched 

against the resources' semantic descriptions (i. e., senses). In the following sections we 

present the details of exFLORe (Section 9.2) and exemplify its use on the scenario of 

folksonomy search (Section 9.3). 
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9.2 The exFLORe query algorithm 

9.2.1 Approach 

exFLORe exploits the semantic annotation of tagspaces created by FLOR. Consider 

the structure presented in Figure 9.1 which was created in accordance to the FLOR 

ontology (Section 3.5). At the bottom we observe the specific tags f 16668-Balaton, 

16668-Hungary, 16668-Europe} assigned to resource 16668. Each of them is linked to 

a sense via the relation hasDefinition. Although not explicitly, the resources are also 

linked to these senses in the following manner: 

"a resource is related to a tag: 16668 
isTaýj! rith 

16668-Balaton 

haaDefinition 
"a tag is related to a sense: 16668-Balaton : --4 Balaton 

Therefore, we can assume that the relation: 

isTa ith hasD! f inition 
16668 ýKr 16668-Balaton 4 Balaton 

means that resource 16668 is connected to the sense Balaton, which is a richer anno- 

tation compared to the one provided by tag 16668-Balaton. 

Our approach is influenced by the work of Navigh et. al [89]. This approach exploits 

the semantic networks of senses as a means for query expansion. For each query key- 

word, they discover candidate senses (using WordNet and ontologies) and extracts their 

semantic networks, which are equivalent to our definition of semantic neighbourhoods. 

Then, the semantic networks of different senses are intersected in order to find connect- 

ing paths among candidate senses. A score is assigned to each connecting path. The 

senses which lead to the highest path score are selected and their lexical information 

(synonyms, hypernyms, related terms) is used to expand the query. The expanded 

query is then matched against the textual description of the resources. 
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Figure 9.1: A structure of'senses for ihe resource 1666S 

Our approach is. similar because we also select the most appr()priatc senses using (lis- 

anibiguation that exploits their connecting path. we also use stitistical (lis- 

allibiguation to cater for the lack of' such paths. Once tlie appropriate senses are 

identified. instead of comparing their lexical inf'ormatiol, to the textu. 11 

the resources. we look f'or resources whose tags are defined by these senses. 

9.2.2 Algorithm 

Thc process of'(, xl-'1,011(' I., d('scrihed in Altgoritlini : 3. exFLORe takes ns Inpill ý1 kc. v- 

word qtl(,,,. \, Q-1ki. k2- ... 
kNj (111d foi- cach keyword, k, it locates its candi(hile scilses. 

Sk. 
- 

from IIIe se, 111antic structure of thc tagspace (Algorithm 3: 1-7). 'I'll(, superset of 

(-. 11didate sellses for 811 query keYwords So, is, used ill the sallic dismilhigmitioll pro(vSS 

(Jescribed ill Section 7.5.2. Each keyword. ki is considered ýis the tag to be disam- 

I)igllateo_jý t. all(I the ,,, (, t of keywords Qý contextuallses ki ill Ole same 111almer 11lat a 

tagset context ualises t. The disainbiguation of So, leads to a set of scnses, S, oil(, for 

eacl, query keyword (Algorithm 3: 8). For example, for Q=11ake. europej \vc obtall, 

two senses defining their meaning. i. e., S=f L(iA-(. Eump 1. 
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Algorithm 3 exFLORe Algorithm 
1: Input Q=Ikl, k21 

.., 
kNj 

2: SC, set of candidate senses. 
3: R, set of retrieved resources. 
4: for all ki EQ do 
5: Ski senses(ki) 
6: SC SC U Ski 

7: end for 
8: S= Disambiguate (Sc) 
9: for all si ES do 

10: Si = si U sub(si) U part(si) U ins(si) 
11: for all sE Si do 
12: R=RU res(s) 
13: end for 
14: end for 
15: for all rER do 
16: for all s, E S1, S2 E S21-- SN E SN do 
17: Create Sl, 2,.., N 

18: if Overlap (r, Sl, 
2,.., N)=TRUE then 

19: SI, 2,.., N : 
RA Ur 

20: end if 
21: end for 
22: end for 
23: Organise(IRA, RBi--j Rm 
24: if If RA, RB,.., Rm 11 <4 then 
25: Si = Si U SUP(si) U type(si) 
26: Repeat Steps 11-23 
27: end if 
28: Rank(IRA, RB,.., Rm 1) 
29: Output = (IRA, RBj.. 

j 
Rm 1) 

For each of the senses in S, si, a sense space Si is created using its subordinate senses 

(subsenses, instances and parts of si) from the semantic structure (Algorithm 3: 9-10). 

For example: 

flake, balaton, como, .. I and 
Seurope :"I europe, italy, hungary, 

.. 
} 

For each sense in the sense space of si, the resources that are connected with it are added 

in the result set R (Algorithm 3: 11-14). This step concludes the resource retrieval 
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process. All the resources that are connected with the senses of the query keywords, or 

their subordinate senses are included in R. The following steps of Algorithm 3 concern 

the categorisation and ranking of results. 

The algorithm creates different combinations of senses (Algorithm 3: 16-17), Sl, 2,.., N 

using si from different Si's as follows: 

europe, lakel, I europe, balatonj, 
... 

* litaly, lakel, ... 

o lhungary, como}, 

Then, the overlap of each resource rER with these combinations of senses is calculated 

(Algorithm 3: 18) by verifying that r is connected to the senses of the group. If the 

overlap is positive, then r is placed in RA which contains the resources that overlap with 

SI, 2,.., N (Algorithm 3: 19). This categorisation process, leads to multiple appearances 

of r in different groups, since it is quite likely for r to overlap with many groups of 

senses (for example, if resource r is connected with the senses of jeurope, lake, balaton} 

it will appear in both resource groups jeurope, lakel and jeurope, balatonj). 

To overcome this problem, the groups of resources are organised (Algorithm 3: 23), 

ba, sed on the following rule. Each resource that belongs to more than one group is 

maintained only in the set with the most specific senses. For example if r appears both 

in the groups representing jeurope, lakel and f europe, balatonj, it will be removed 

from the group that represents jeurope, lakel, because its concepts are more generic. 

In case the groups of resources based on subordinate senses are less than 4 the su- 

perordinate senses, supersenses (if the sense originates from classes) and types (if the 

sense originates from instances) are extracted the process is repeated with these (Algo- 

rithrn 3: 24-27). The reason we expand with superordinate if the subordinate groups 
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are less than 4 is because 4 is the average number of clusters returned by folksonomy 

search. 

Finally, the resources and the groups are ranked based on the following. 

9 For two resource groups RA and RB, rank(RA) > rank(RB) if: 

- 
IRAI > IRBI 

=R,, rank(ra) > E,, 
cR. rank(rb) - E'. e 

* For two resources r, and r2, rank(rl) > rank(r2) if: 

- r, is connected to more senses than r2 

- r, is connected to more specific senses r2 

- r, contains more un-mapped query keywords than r2. The un-mapped query 

keywords, are those that were not matched against a sense from the struc- 

ture'. 

This algorithm addresses the phenomena of polysemy, synonymy and basic level varia- 

tion in the following manner. First, it aligns the query keywords to senses. The senses 

are charaderised by a set of synonyms and are used to define a set of tags, which 

lexically match some of these synonyms. Therefore, even if the query keyword does 

not explicitly match synonym tags, these tags (and the resources they tag) are con- 

sidered because they are defined by the same sense as the query keyword. With this 

process exFLORe addresses the issue of synonymy. Second, the query keywords are 

disambiguated using the disambiguation algorithms of FLOR-2 aiming to identify the 

appropriate sense for each keyword. In this way exFLORe address issues caused by the 

polysemy of keywords. Finally, by expanding the keywords's senses with subordinate 

senses, it addresses the issue of basic level variation by returning resources which refer 

to subordinate concepts without being explicitly tagged with them. 

'These were used to help disambiguate the other keywords in (Algorithm 3: 8), but they were not, 
used for retrieving resources. 
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9.3 Using exFLORe to improve search 

In this section we present a web search application powered by FLOR and exFLORe, 

We use Dataset B, used for the evaluation of the FLOR algorithm (Section 8.2.2). 

As mentioned before, exFLORe supports traditional keyword-based search, hence the 

front page of the application consists of a search box. The results are presented in 

ranked groups based on their combination of senses and keywords and for each group, 

a short explanation for its results is provided (addressing the outcomes of our search 

experiments L5.4, L6.3 and L6.4). 

Figure 9.3 depicts the results of the system for the query "europe lake". While the 

exact matching of keywords to tags used by the conventional folksonomy search would 

not have retrieved any results on this dataset, our system did return relevant images. 

Screen A shows the entire result set for the query. The results are grouped according to 

the various ways in which they match the query. For example, the first group of images 

contains four resources that are tagged with italy and lake and are connected to the 

respective senses. The sense of Lake exists in the query and is related to the resources, 

however the sense of Italy is included in the expanded query since according to the 

semantic structure of Figure 9.1 Italy Pýýf Europe. Similarly the second group of 

partOf images, contains lake and Aust? -ia and Austria Europe. The third group contains 
(instanceO (Pa f 

images tagged with Balaton --+ 
fLake), Hungary --r-t-04 Europe and Europe. The 

first group of results is ranked higher because it contains a larger number of resources. 

The second group was ranked higher than the third, first because it contains more senses 

related to the query (Balaton, Hungary and Europe while the other group represents 

only Austria and Lake) and second because it contains more specific senses (Balaton 

C: Lake and Hungary ý; Europe). Finally the user can view a maximised version of a 

result and its tags (Screen B) by clicking on it. 

For single keyword queries, for example, janimai}, where no disambiguation can take 

place, the system returns different groups of results for each different narrower sense 
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ated? What measures and evaluation strategies should be established to quantify 

the performance of the enrichment methods? 

RQ4: How can the enriched tagspaces be exploited and evaluated in the 

context of content retrieval? What methods should be created for improving 

folksonomy search utilising the enriched tagspaces? What measures should be 

established to asses the value of enriched tagspaces in search? 

We have used an iterative approach and experimented with different Knowledge Sources, 

techniques and datasets in order to identify the most appropriate methods for auto- 

matic folksonomy enrichment. In particular, in chapters 4-6 we presented our initial 

approaches to enrichment and search and then built a folksonomy enrichment algo- 

rithm (Chapter 7) and a search mechanism (Chapter 9) that takes advantage of the 

semantic layer associated with folksonornies. Below we surnmarise the work and the 

outcomes presented in each chapter. 

10.1 Summary of work 

In Chapter 2 we performed an analysis of the existing work on tagging systems from 

the perspectives of semantically structuring tagspaces and improving search. Although 

a plethora of approaches that improve search exist, the majority of them use statistical 

methods and address only some of the limitations posed by the phenomena of polysemy, 

synonymy and basic level variation. Approaches that structure folksonomies either 

require preselection of resources, or impose a different annotation process on the users, 

or they yield a generic hierarchical structure without explicitly specifying the relations 

arnong tags. Hence, we identified the need for an approach, which automatically applies 

structure on tagging systems by reusing existing semantics and without the need to 

preselect knowledge. Such an approach can explicitly specify the meaning of tags and 

their relations within a semantic structure. 
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In Chapter 3 we described the problem at hand in more detail and defined the con- 

cepts of resources, tagsets, clusters and tags and their associations in folksonornies. 

We introduced the core objects of our approach, Knowledge Sources, sentantic enti- 

ties and senses and presented an ontology for the representation of the semantically 

enriched tagspaces. Finally, we introduced a set of measures for the evaluation of the 

semantically enriched tagspaces in terms of sense richness and tagspace coverage. 

In Chapter 4 we described the first version of the folksonomY enrichment, algorithm 

FLOR-1 which disambiguates and semantically expands the tags using WordNet, an(] 

then enriches them with semantic entities from online ontologies. Evaluating FLORA 

with a randomly selected dataset from Flickr we observed that using a hierarchical 

similarity measure on WordNet is too restrictive, given that tags in the tagsets tend 

not to be related with each other hierarchically. Therefore, the need to reconsider the 

usage ofWordNet as a disambiguation source emerged (L4.3). We also identified the 

need for alternative relatedness measures between tags (L4.1) and for the exploitation 

of statistical tag co-occurrence when semantic measures fail (L4.2). 

In Chapter 5 we studied the value of enriched tagspaces to the user in a search 

scenario. We applied FLOR-1 on a larger dataset from Flickr and used the enriched 

tagspace to perform query expansion using lexical variations, synonyms and hyponyms 

of the query keywords. Because of the low percentage of tags that was linked to 

ontological entities we conducted the experiment using only WordNet as a source of 

data. WordNet enabled satisfactory query expansion therefore we calculated that it. 

can be considered as a Knowledge Source for enrichment (L5.3). We obtained the same 

outcomes of Chapter 4 (L4.1, L4.2) on the need for statistical relatedness measures for 

disambiguation of senses (L5.2). Aligning semantics with tags in a search scenario we 

observed that the enrichment value of semantic entities does not only depend on the 

richness of their specification in the Knowledge Source of provenance but also oil how 

well their semantic neighbourhoods match the tagspace (L5.1). In terms of search we 

obtained useful insights on the user experience which included the fact that presentation 
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of results in groups is useful to the users and helps with query reformulation (L5.4) 

Motivated by outcome (L5.3), in Chapter 6 we performed a comparative study of 

WordNet and ontologies in terms of search and structure richness using the measures 

defined in Chapter 3. Our results showed that WordNet provides more synonyms for a 

sense compared to ontologies but ontological neighbourhoods of senses map better to 

the tagspace. Therefore a combination of the two Knowledge Sources would be bene- 

ficial for the enrichment of tagspaces (L6.1). We also compared the knowledge-based 

search algorithm with the cluster enabled search in folksonomies. We observed that 

statistically clustering the results returns fewer groups, caters for idiosyncratic tags but 

does not explain why a result belongs to a group (L6.2). On the contrary semantically- 

enabled search returns more meaningfully organised results with explanations but the 

number of groups should be restricted (L6.3). 

Using the outcomes of the previous studies we created a set of requirements based on 

which we built the second version of the Folksonomy Enrichment Algorithm, FLOR- 

2, presented in Chapter 7. The improvements in FLOR-2 compared to FLOR-1 

involve the processes of sense disambiguation (FLOR-2 uses a hybrid method that 

handle cases where no formal semantic relations between tags can be established), 

sense integration (the similarity for two senses exploits statistical co-occurrence of their 

lexical neighbourhoods) and semantic aggregation (FLOR-2 aggregates senses to a 

semantic structure, in contrast to FLOR-1). In addition, FLOR-2 exploits WordNet as 

a Knowledge Source for semantic entity discovery. 

In Chapter 8 we evaluated FLOR-2 in terms of sense assignment, coverage and relation 

discovery using two datasets. We used the results on the first dataset to compare 

the enrichment precision and average tag coverage obtained by FLOR-1 and FLOR-2. 

While the enrichment precision was maintained at the same levels as in FLOR-1, the 

normalised coverage significantly improved from 49% to 81%. The same precision and 

sirnilar coverage values were obtained for the second dataset. A further analysis of the 
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senses that were correctly associated with tags, showed that the majority of correct 

assignments was obtained for senses of variable provenance (WordNet and ontologies) 

and for the combination of graph and statistical disambiguation. In sum, FLOR-2 

achieved the same precision in sense assignment and a significantly larger normalised 

coverage than FLOR-1 (Chapter 4 ), where one resource (WordNet) and one method 

(hierarchical similarity) had been used to disambiguate the senses of tags. Furthermore, 

the FLOR-2 algorithm discovered relations for 89% of the senses in the tagspace, while 

the 11% that were not connected to any relations were senses whose neighbourhoods 

did not match the tagspace. This is an indication that the senses assigned to tags are 

valuable to the output semantic structure when their neighbour senses also cover the 

tagspace. 

In Chapter 9 we presented an algorithm that exploits the structure created by FLOR-2 

and takes into account the outcomes of the search experiments (L5.4) (L6.3) and (L6.4). 

This algorithm aligns the query keywords to senses (addressing synonymy) and then 

applies the disambiguation methods used by FLOR-2 to decide the correct meaning 

of the query (addressing polysemy). Using subsumption and meronymy expansion 

(addressing basic level variation) the algorithm retrieves the relevant resources and 

presents them categorised in a meaningful way (result diversification), 

10.2 Contributions 

In this section we present the contributions of this thesis and discuss how they address 

the research questions. 

Folksonomy Enrichment Algorithm. In Chapter 8 we presented FLOR-2, an al- 

gorithm that automatically applies semantics to tagspaces. FLOR-2 is domain 

independent, can be applied to any tagspace, does not require user feedback 

during the tagging activity (hence it does not interfere with the tagging activ- 
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ity), automatically selects the appropriate ontologies available in Watson, is able 

to handle heterogeneous knowledge, is unsupervised, and creates an explicit se- 

mantic structure supported by the FLOR ontology. The semantics of tags is 

discovered by using their resource context (tagset), semantic entities from the 

Knowledge Sources, and a combination of graph-based and statistical relatedness 

measures. FLOR-2 exploits the relations among semantic entities in Knowledge 

Sources to create relations between the senses that define the tags (RQ1: Part 

1). The Knowledge Sources employed by the algorithm include all available on- 

tologies in the Watson Semantic Web Repository. Appropriate ontological en- 

tities are selected, processed and reused for the creation of senses and relations 

for tags (RQI: Part 2). The studies presented in chapters 4-6 highlighted the 

value of WordNet as a Knowledge Source for enrichment, therefore FLOR-2 in- 

cludes WordNet in the employed Knowledge Sources. The evaluation performed 

in Chapter 9 confirmed the value of WordNet in the enrichment process (RQ2). 

Evaluation measures for the semantic structures that represent the tagspaces. In 

Chapter 3 we introduced a set of measures for the evaluation of the semantic 

structures and used them in chapters 6 and 8 to asses the outputs of the 

enrichment algorithms. We described measures that evaluate the sense richness in 

terms of synonyms, subsenses and supersenses. In addition we provided a measure 

for the semantic coverage of tagspaces in semantic structures, and a measure 

for normalised coverage to asses the performance of FLOR-2. In Chapter 8 we 

presented an evaluation strategy for the correctness of sense assignments using 

random sampling and human evaluators and the measure of enrichment precision 

(RQ3). Finally we presented the measure of normalised increase which quantifies 

the percentage of results obtained using the enriched tagspaces compared to all 

the correct results (RQ4: Part 2). 

Search Algorithm for enriched tagspaces. Finally, we presented a search algo- 

rithm that exploits the enriched tagspaces to improve search by addressing the 
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issues of polysemy, synonymy and basic level variation and at the same time 

allows for result diversification (RQ4: Part 1). 

10.3 Outcomes and Future work 

In this section we highlight the limitations of our approach, the characteristics of folk- 

sonornies and ontologies, as well as the lessons learnt from their combination. 

10.3.1 Limitations of our approach and Extensions 

The following are known limitations of our approach and are going to form part of our 

future work. 

9 In this thesis we focused on the ontologies available in the Watson Semantic. Web 

Gateway and WordNet. This decision limited the lexical and semantic coverage 

of tags. As part of our future work, we plan to investigate additional ontology 

repositories and semantic resources, such as DBpedia, as well as exploit structured 

data sources, such as Freebase. In Section 8.4 we presented a small experiment 

that provided initial evidence on the significant improvement in semantic, cov- 

erage of tags by such resources. Due to the modular architecture of FLOR-2 

the integration of new Knowledge Sources with the existing ones depends on the 

process of sense creation (transformation of the semantic entities from the new 

Knowledge Sources to senses and transformation of the relations between entities 

to relations between senses). The rest of the processes operate on senses, therefore 

no significant alterations are needed in order to integrate additional Knowledge 

Sources. The integration of multilingual Knowledge Sources can improve the cov- 

erage of non English tags. Given that the only English source used by FLOR-2 

is WordNet (during the process of sense integration in order to discover semantic 
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similarity among superordinate senses, see measure M7.3) and given that there 

are translated versions of WordNet in other languages', such an extension could 

be integrated in FLOR-2 with limited effort. 

o The lexical isolation process of FLOR-2 rules out more than one third of the 

tags. We isolate different types of tags based on the assumption that they are 

less useful to the enrichment process because they are likely to represent other 

information than the content of the tag. For example, they may represent opin- 

ions of the users, membership in groups of interest, dates and symbolisms (tags 

with special characters). Although such tags axe difficult to match against on- 

tologies (there are no entities with the name of these tags e. g., catchycolors) they 

may be useful in the cases of underspecified tags or lack of adequate context for 

disambiguation. We plan to investigate the influence of idiosyncratic tags on the 

semantic enrichment further. 

Our approach is independent of the social interdependencies of tags and resources. 

Flickr is one folksonomy where in principle the tagsets of the resources are created 

by a single user'. We selected our evaluation datasets from Flickr and assume that 

the same performance of FLOR-2 can be achieved with additional folksonomies, 

such as Delicious or Last. fm, since the relations of tags and resources are the 

same across all tagging systems. Although this is a valid hypothesis we plan to 

evaluate FLOR-2 with data from other tagging systems. 

Another limitation of the work presented in this thesis is the lack of evaluation for 

exFLORe. Although empirical experimentations showed the value of FLOR-2 and 

exFLORe on search, we plan to perform an in depth evaluation with respect to the 

user experience in search, precision, normalised increase, and time performance. 

* The lexical coverage of tags was also impeded by the failure of the lexical pro- 

cessing step to decompose compound tags (Table 8.12, compound tags). This is 

ihttp: //www. illc. uva. nl/EuroWordNet/ 
2FIickr allows for annotation of other users resources, however this functionality is not commonly 

used 
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also going to be part of our future work. 

10.3.2 Characteristics of Knowledge Sources 

One of the challenges addressed in this thesis was the reuse of ontologies in order 

to apply semantics to tagspaces. In the course of this study we identified a set of 

characteristics of ontologies that influence the performance of FLOR-2. 

Ontologies may include entities tailored to certain tasks and valid only in specific 

contexts, which from the point of view of folksonomy enrichment may provide 

low value. Such entities are poor either lexically or structurally (therefore do not, 

provide enough evidence for sense integration) or their semantic neighbourhoods 

do not cover the tagspace (therefore they do not contribute relations). The entity 

filtering step of FLOR-2 (Section 7-4.2) uses a set of heuristics to exclude such 

entities but further analysis is needed in order to evaluate and select the most 

appropriate knowledge for reuse. 

Definitions of a concept across different ontologies can vary to a large degree. 

In Section 8.5.3 we presented an example of different definitions for bridge and 

we observed that the lexical and structural heterogeneity among the different 

senses of bridge caused a failure of merging and led to different senses for the 

same concept. FLOR-2 employs entity filtering and sense ranking to select the 

most appropriate senses for a given context. Yet, the existence of different, senses 

referring to the same concept can lead to search problems (L6.4). Therefore, we 

plan to investigate the issue of sense integration further. 

Knowledge in ontologies can be defined in inconsistent ways and this was shown 

in Section 8.5.3 in the example of party, which different ontologies defined as 

a subclass or a superclass of actor. FLOR-2 does not attempt to resolve such 

conflicts and this issue will be part of our future work. 



196 Conclusions 

o Finally we observed some cases of non-coverage of tags by the Knowledge Sources. 

In particular, in some cases WordNet and ontologies did not cover tags either 

lexically (agip) or semantically (poi, converse). In the latter case the tags were 

mapped lexically but their intended senses in their resource contexts did not exist 

in the Knowledge Sources, leading to disambiguation failures. The introduction of 

richer Knowledge Sources is part of our future work as discussed in Section 10.3.1. 

10.3.3 Characteristics of Folksonomies 

In this study we focused on the tags of resources rather than other lexical descrip- 

tions, such as titles and comments. We assumed that the resource context of a tag 

provides sufficient information for its disambiguation. This hypothesis applies to 

most of the cases, however, we encountered some examples where the resource 

context for a tag is vague or sparse. For example, during the evaluation of sense 

assignment correctness (Section 8.2) the judges commented that they were unable 

to make a decision due to the ambiguous tagset and requested to view the image 

that was tagged with it. In Section 8.5.4 we presented a case of disambiguation 

failure due to the sparse context of the tagspace for the tag alberta. Context 

expansion using statistical tag co-occurrence has been proposed in the literature 

and we plan to investigate how it can improve the disambiguation process. 

An opposite issue to the one of sparse context was observed in the experiment 

presented in Chapter 5. The tagset of beetle contained three different and 

non related contexts (one related to cars, one related to plants and one related 

to Japan). FLOR-2 exploits the tagset context to perform tag disambiguation, 

therefore the existence of more than one contexts may cause disambiguation errors 

when disambiguating the tag with an incorrect context. As part of our future 

work, we plan to investigate further the influence of multi contextual tagsets on 

sense disambiguation. 
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FLOR-2 assumes that each tag in the tagset represents one sense, yet a different 

case was encountered in Section 8.5.4 for the tags roller and coaster. These 

were used to describe the meaning of roller coaster but were split during the 

tagging process resulting to two separate tags/ concepts that do not reflect the 

intended meaning. The identification of senses from composite tags will also be 

an issue of our future work. 

10.4 Outlook 

In this thesis we presented our approach on automatically applying semantics to folk- 

sonomies and exploiting the enriched tagspaces in a search scenario. We combined the 

open ended and continuously evolving tagspaces of folksonornies with formal knowl- 

edge extracted from online ontologies and created semantic structures to represent the 

meaning and relations of tags. In this work we focused on semantically describing 

the meaning of tags that represent the content of the resources. Nevertheless, not all 

tags refer to resource topic. Specifically, tagspaces contain different types of descrip- 

tions such as dates, user information, places, user interests and more. The semantic 

description of such tags apart from content related tags can allow for a multifaceted or- 

ganisation of the content and facilitate new intelligent retrieval applications. Although 

the strictly textual approaches (free tagging and keyword based search) are currently 

well established, initial efforts for the semantification of the content at annotation time 

have been adopted by the users in Web2.0. An early example of this is the usage of 

hashtags by Twitter 3 users. Hashtags are specially abbreviated names of the concepts 

and topics inherent in Twitter items and allow for the organisation and unambiguous 

retrieval of items referring to a particular concept or topic. Although this is not a 

fully fledged semantic approach, it shows that intelligent yet subtle diversions from the 

text-based paradigms are well received by the users. Additional semantically-enabled 

3http: //twitter. com 
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approa, ches, such as Semantic MediaWiki4 and RDFa' already enable the generation 

of semantic content to a certain extent. Nevertheless, it is not realistic to believe that 

users will embrace paradigms that involve processes of laborious semantic annotation. 

Therefore, methods and algorithms such as the ones presented in this thesis that can 

exploit semantics, as well as unstructured content, are needed. 

41, ttp: //semantic-mediawiki. org/ 
5http: //www. w3. org/TR/xhtml-rdfa-primer/ 
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Glossary 

Tagspace 

Specific Tag 

Generic Tag 

Tag Context (Resource) 

Tag Context (Cluster) 

Knowledge Source 

Semantic Entity 

Sense 

Semantic Neighbourhood 

a set of resources ? Z=IR,, .., RI-Rl} and a set of tags 
T =Itll -. 7 

tIT11 

a tag t that belongs to a resource R and is annotated 
with the resource name, i. e., R-t. 

if no reference is made to the instance of a tag t with 
respect to a specific resource then it is generic. 

the set of tags assigned to the same resource as the 
tag. 

the set of tags globally associated with the tag in all 
entities of the tagspace (either resources or users). 

a body of knowledge that contains semantic descrip- 
tions of concepts and explicitly defined semantic re- 
lations between them. 

a Knowledge Source object that contains information 
that defines one concept. 

an object that defines the meaning of a tag. 

a set of the explicitly related concepts of a semantic 
entity or sense. 
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Lexical Neighbourhood 

Lexical Coverage 

Semantic Coverage 

Normalised Coverage 

Glossary 

a set of lexical terms of the explicitly related concepts 
of a semantic entity or sense. 

the ratio of tags that are lexically covered by entities 
of a knowledge source. 

the ratio of tags that are semantically covered by enti- 
ties of a knowledge source (when the meaning of tags 
is explicitly described by the entities of the knowledge 
source). 

(with respect to an enrichment algorithm) the ratio 
of tags correctly associated to entities of a knowledge 
source with respect to the tags that are semantically 
covered by this knowledge source. 
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FLOR Ontology 

Class: TaggedResource 

This class represents all folksonomy resources that are tagged with at least one tag. 

VRE IZ : ITRI >03 (TaggedRecourceR), E (TaggedRecource)' 

This means that for each resource R in the set of resources 1Z which is tagged with 

at least one tag (thus the cardinality of its tagset is not zero ITRI > 0) there exists 

one individual (TaggedRecourceR)l of the class (TaggedRecource)c that represents 

the tagged resource. In the example of Figure 3.8 Resourcex is an instantiation of the 

class TaggedResource. 

Class: SpecificTag 

This class represents all tags R-t E tagspace T that belong to the tagset of the 

resource 

V R-t E 7- 3 (Specif icTagR-t), E (Specif icTag)c 
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In other words, every tag R_t that annotates a resource R is represented by an instance 

of the class (SpecificTag)c. This class represents the specific occurrence of the tag in 

the tagspace of a single resource. For example, in Figure 3.8 there is a tag X-Europe 

that belongs to the resource X and is denoted with the resource identifier. One instance 

of (SpecificTag)c is created for each occurrence of the tag europe in each resource. 

Property: isTaggedWith 

This is an object property that formalises the relation "A tagged resource R is tagged 

with tag R-C. Therefore, the domain of this property is (TaggedRecource)c and the 

range is (SpecificTag)c. The cardinality of this relation is One-to-Many in order to 

represent the fact that one resource can be tagged with many tags, but each of these 

specific tags is only assigned to this specific resource. In the example of Figure 3.8 the 

following hold: 

(TaggedRecourcex)I isTa ýKý ith (Specif icTagx 
-Hungary) 

(TaggedRecourcex)' isTa E! r ith (SpecificTagx 
-Balaton) 

I 

and (SpecificTagx_E.,,, p, )I, (SpecificTagx 
-Hungary) 

Ii (SpecificTagx 
-Balaton) 

I 
can only 

tag the resource X. To this end, (SpecificTagy-Balaton)l is assigned to resource Y and 

so on 

Class: Sense 

This class represents the sense (concept or meaning) that is assigned to a specific tag 

in accordance to Definition 6 from Section 3.4. Each individual of this class has the 

properties described in the following. 

Syllonyms This is a set of words that denote the meaning of the specific individual. 

For example, the synonyms of (SenseEurope) I could be I europe, europa, evropi 1. 
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The Synonyms are associated with the sense via a Datatype, property, defined in 

the ontology, the property hasSynonym. 

(SenseEurope y hasSnrym 
europe 

(SenseEurope) , hasSIE2rym 
europa 

Glosses Glosses is a set of natural language descriptions of the meaning of (SenseE,,,, 
P, 

)I- 

The glosses are also associated with a sense via a Datatype property hasGIoss. 

(SenseEurope) I hasGýss "the 2nd smallest continent" 

Semantic Entities These are the semantic entities discovered in the Knowledge Sources 

where this sense was initially defined and from where it was extracted. Such se- 

mantic entities can be ontological entities or WordNet synsets (Definition 5, Sec- 

tion 3.4) where a concept or entity is defined. Each semantic entity is associated 

with the sense via the property isFoundIn. 

(SenseEurope)I "F2ýVn http: / lontology 1. europa 

(SenseEurope) I isFLuyln WordNet. synset. europe 

Property: hasDefinition 

This object property represents the relation between a specific tag and a sense that, 

describes its meaning. 

V R-t ET3 (SenseA), E (Sense)' : Dfn(R-t, SenSeA) " 

Its domain is (SpecificTag)c and its range (Sense)'. The cardinality of this relation 

is Many-to-One, i. e. many specific tags may have the same sense, but the meaning of a 

specific tag in the context of the particular tagged resource is uniquely defined by one 

sense. 



204 FLOR Ontol 

hasDSf inition I (Specif icTagx-Hungary)I 
(SenseHungary) 

hasDLfi. nition (Specif icTagy 
-Hungary) 

I (SenseHungary Y 

This property, the (Sense)c and the properties described in Section B models the out- 

put of FLOR which is the explicit representation of tag meaning and the relations of the 

tags (via the relations of their senses). This property and the property isFoundIn allow 

for the implicit link of a tag to a semantic entity, in line with the existing ontologies 

[63,981 as fOllOws: 

Y hasDefinition isFoundIn 
(Specif icTagx-Europe (SenseEurope)I 4 

http: / lontology 1. europa 

Sense Relations Properties 

The final set of properties specified in the ontology are abstractly depicted in Figure 3.7 

with a property named relation. This set of properties have both domain and range 

the (Sense)c. In the following sections we briefly describe the most popular relations 

that connect the various senses and were discovered in the Knowledge Sources. 

Property: subSense0f This property is used to represent more specific (subordinate) 

senses of a sense. This is a broad relation used to represent rdfS: subCIassOf [34] 

and WordNet hyponym. 

subSenie0f (SenSeCountry)I (SenseRgi,, 
n), 

Property: superSense0f This property, is the inverse of subSense0f, and represents 

the inverse of rdfs: 8ubClassOf and WordNet hypernym. 

superSen, geOf (SenseR, 
gi,, n), (Sensecýunt,,, )I 
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Property: instance0f This property is used to represent rdf. -type and WordNet in- 

stance. 

), instance0f (SenseHungary (SenseCountry)I 

Property: hasInstance This property, inverse of instance0f, represents the inverse of 

rdf. -type and WordNet has instance. 

(SenseCountry y hasI! 2Vnce (SenseHungary 

Property: hasPart This property is a super-property for all the WordNet relations for 

meronymy such as substance meronyms, part meronyms and member meronyms. 

)I h-L-V (SenseEurope p' (Senselt,,,,, )I 

Property: isPartOf This property is the inverse relation of hasPart represents the 

holonym relations form WorclNet. 

isPartOf I (SenseHungary)I + (SenseEurope) 
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Sample of Sense Assignments from 

Dataset B 
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