9 research outputs found

    Kernel-based distance metric learning for microarray data classification

    Get PDF
    BACKGROUND: The most fundamental task using gene expression data in clinical oncology is to classify tissue samples according to their gene expression levels. Compared with traditional pattern classifications, gene expression-based data classification is typically characterized by high dimensionality and small sample size, which make the task quite challenging. RESULTS: In this paper, we present a modified K-nearest-neighbor (KNN) scheme, which is based on learning an adaptive distance metric in the data space, for cancer classification using microarray data. The distance metric, derived from the procedure of a data-dependent kernel optimization, can substantially increase the class separability of the data and, consequently, lead to a significant improvement in the performance of the KNN classifier. Intensive experiments show that the performance of the proposed kernel-based KNN scheme is competitive to those of some sophisticated classifiers such as support vector machines (SVMs) and the uncorrelated linear discriminant analysis (ULDA) in classifying the gene expression data. CONCLUSION: A novel distance metric is developed and incorporated into the KNN scheme for cancer classification. This metric can substantially increase the class separability of the data in the feature space and, hence, lead to a significant improvement in the performance of the KNN classifier

    ANMM4CBR: a case-based reasoning method for gene expression data classification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate classification of microarray data is critical for successful clinical diagnosis and treatment. The "curse of dimensionality" problem and noise in the data, however, undermines the performance of many algorithms.</p> <p>Method</p> <p>In order to obtain a robust classifier, a novel Additive Nonparametric Margin Maximum for Case-Based Reasoning (ANMM4CBR) method is proposed in this article. ANMM4CBR employs a case-based reasoning (CBR) method for classification. CBR is a suitable paradigm for microarray analysis, where the rules that define the domain knowledge are difficult to obtain because usually only a small number of training samples are available. Moreover, in order to select the most informative genes, we propose to perform feature selection via additively optimizing a nonparametric margin maximum criterion, which is defined based on gene pre-selection and sample clustering. Our feature selection method is very robust to noise in the data.</p> <p>Results</p> <p>The effectiveness of our method is demonstrated on both simulated and real data sets. We show that the ANMM4CBR method performs better than some state-of-the-art methods such as support vector machine (SVM) and <it>k </it>nearest neighbor (<it>k</it>NN), especially when the data contains a high level of noise.</p> <p>Availability</p> <p>The source code is attached as an additional file of this paper.</p

    Exploiting the ensemble paradigm for stable feature selection: A case study on high-dimensional genomic data

    Get PDF
    Ensemble classification is a well-established approach that involves fusing the decisions of multiple predictive models. A similar “ensemble logic” has been recently applied to challenging feature selection tasks aimed at identifying the most informative variables (or features) for a given domain of interest. In this work, we discuss the rationale of ensemble feature selection and evaluate the effects and the implications of a specific ensemble approach, namely the data perturbation strategy. Basically, it consists in combining multiple selectors that exploit the same core algorithm but are trained on different perturbed versions of the original data. The real potential of this approach, still object of debate in the feature selection literature, is here investigated in conjunction with different kinds of core selection algorithms (both univariate and multivariate). In particular, we evaluate the extent to which the ensemble implementation improves the overall performance of the selection process, in terms of predictive accuracy and stability (i.e., robustness with respect to changes in the training data). Furthermore, we measure the impact of the ensemble approach on the final selection outcome, i.e. on the composition of the selected feature subsets. The results obtained on ten public genomic benchmarks provide useful insight on both the benefits and the limitations of such ensemble approach, paving the way to the exploration of new and wider ensemble schemes

    A framework for feature selection in high-dimensional domains

    Get PDF
    The introduction of DNA microarray technology has lead to enormous impact in cancer research, allowing researchers to analyze expression of thousands of genes in concert and relate gene expression patterns to clinical phenotypes. At the same time, machine learning methods have become one of the dominant approaches in an effort to identify cancer gene signatures, which could increase the accuracy of cancer diagnosis and prognosis. The central challenges is to identify the group of features (i.e. the biomarker) which take part in the same biological process or are regulated by the same mechanism, while minimizing the biomarker size, as it is known that few gene expression signatures are most accurate for phenotype discrimination. To account for these competing concerns, previous studies have proposed different methods for selecting a single subset of features that can be used as an accurate biomarker, capable of differentiating cancer from normal tissues, predicting outcome, detecting recurrence, and monitoring response to cancer treatment. The aim of this thesis is to propose a novel approach that pursues the concept of finding many potential predictive biomarkers. It is motivated from the biological assumption that, given the large numbers of different relationships which are possible between genes, it is highly possible to combine genes in many ways to produce signatures with similar predictive power. An intriguing advantage of our approach is that it increases the statistical power to capture more reliable and consistent biomarkers while a single predictor may not necessarily provide important clues as to biological differences of interest. Specifically, this thesis presents a framework for feature selection that is based upon a genetic algorithm, a well known approach recently proposed for feature selection. To mitigate the high computationally cost usually required by this algorithm, the framework structures the feature selection process into a multi-step approach which combines different categories of data mining methods. Starting from a ranking process performed at the first step, the following steps detail a wrapper approach where a genetic algorithm is coupled with a classifier to explore different feature subspaces looking for optimal biomarkers. The thesis presents in detail the framework and its validation on popular datasets which are usually considered as benchmark by the research community. The competitive classification power of the framework has been carefully evaluated and empirically confirms the benefits of its adoption. As well, experimental results obtained by the proposed framework are comparable to those obtained by analogous literature proposals. Finally, the thesis contributes with additional experiments which confirm the framework applicability to the categorization of the subject matter of documents

    Texture Analysis Platform for Imaging Biomarker Research

    Get PDF
    abstract: The rate of progress in improving survival of patients with solid tumors is slow due to late stage diagnosis and poor tumor characterization processes that fail to effectively reflect the nature of tumor before treatment or the subsequent change in its dynamics because of treatment. Further advancement of targeted therapies relies on advancements in biomarker research. In the context of solid tumors, bio-specimen samples such as biopsies serve as the main source of biomarkers used in the treatment and monitoring of cancer, even though biopsy samples are susceptible to sampling error and more importantly, are local and offer a narrow temporal scope. Because of its established role in cancer care and its non-invasive nature imaging offers the potential to complement the findings of cancer biology. Over the past decade, a compelling body of literature has emerged suggesting a more pivotal role for imaging in the diagnosis, prognosis, and monitoring of diseases. These advances have facilitated the rise of an emerging practice known as Radiomics: the extraction and analysis of large numbers of quantitative features from medical images to improve disease characterization and prediction of outcome. It has been suggested that radiomics can contribute to biomarker discovery by detecting imaging traits that are complementary or interchangeable with other markers. This thesis seeks further advancement of imaging biomarker discovery. This research unfolds over two aims: I) developing a comprehensive methodological pipeline for converting diagnostic imaging data into mineable sources of information, and II) investigating the utility of imaging data in clinical diagnostic applications. Four validation studies were conducted using the radiomics pipeline developed in aim I. These studies had the following goals: (1 distinguishing between benign and malignant head and neck lesions (2) differentiating benign and malignant breast cancers, (3) predicting the status of Human Papillomavirus in head and neck cancers, and (4) predicting neuropsychological performances as they relate to Alzheimer’s disease progression. The long-term objective of this thesis is to improve patient outcome and survival by facilitating incorporation of routine care imaging data into decision making processes.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    Using uncorrelated discriminant analysis for tissue classification with gene expression data

    No full text
    Abstract—The classification of tissue samples based on gene expression data is an important problem in medical diagnosis of diseases such as cancer. In gene expression data, the number of genes is usually very high (in the thousands) compared to the number of data samples (in the tens or low hundreds); that is, the data dimension is large compared to the number of data points (such data is said to be undersampled). To cope with performance and accuracy problems associated with high dimensionality, it is commonplace to apply a preprocessing step that transforms the data to a space of significantly lower dimension with limited loss of the information present in the original data. Linear Discriminant Analysis (LDA) is a well-known technique for dimension reduction and feature extraction, but it is not applicable for undersampled data due to singularity problems associated with the matrices in the underlying representation. This paper presents a dimension reduction and feature extraction scheme, called Uncorrelated Linear Discriminant Analysis (ULDA), for undersampled problems and illustrates its utility on gene expression data. ULDA employs the Generalized Singular Value Decomposition method to handle undersampled data and the features that it produces in the transformed space are uncorrelated, which makes it attractive for gene expression data. The properties of ULDA are established rigorously and extensive experimental results on gene expression data are presented to illustrate its effectiveness in classifying tissue samples. These results provide a comparative study of various state-of-the-art classification methods on well-known gene expression data sets. Index Terms—Microarray data analysis, discriminant analysis, generalized singular value decomposition, classification.

    Biometric face recognition using multilinear projection and artificial intelligence

    Get PDF
    PhD ThesisNumerous problems of automatic facial recognition in the linear and multilinear subspace learning have been addressed; nevertheless, many difficulties remain. This work focuses on two key problems for automatic facial recognition and feature extraction: object representation and high dimensionality. To address these problems, a bidirectional two-dimensional neighborhood preserving projection (B2DNPP) approach for human facial recognition has been developed. Compared with 2DNPP, the proposed method operates on 2-D facial images and performs reductions on the directions of both rows and columns of images. Furthermore, it has the ability to reveal variations between these directions. To further improve the performance of the B2DNPP method, a new B2DNPP based on the curvelet decomposition of human facial images is introduced. The curvelet multi- resolution tool enhances the edges representation and other singularities along curves, and thus improves directional features. In this method, an extreme learning machine (ELM) classifier is used which significantly improves classification rate. The proposed C-B2DNPP method decreases error rate from 5.9% to 3.5%, from 3.7% to 2.0% and from 19.7% to 14.2% using ORL, AR, and FERET databases compared with 2DNPP. Therefore, it achieves decreases in error rate more than 40%, 45%, and 27% respectively with the ORL, AR, and FERET databases. Facial images have particular natural structures in the form of two-, three-, or even higher-order tensors. Therefore, a novel method of supervised and unsupervised multilinear neighborhood preserving projection (MNPP) is proposed for face recognition. This allows the natural representation of multidimensional images 2-D, 3-D or higher-order tensors and extracts useful information directly from tensotial data rather than from matrices or vectors. As opposed to a B2DNPP which derives only two subspaces, in the MNPP method multiple interrelated subspaces are obtained over different tensor directions, so that the subspaces are learned iteratively by unfolding the tensor along the different directions. The performance of the MNPP has performed in terms of the two modes of facial recognition biometrics systems of identification and verification. The proposed supervised MNPP method achieved decrease over 50.8%, 75.6%, and 44.6% in error rate using ORL, AR, and FERET databases respectively, compared with 2DNPP. Therefore, the results demonstrate that the MNPP approach obtains the best overall performance in various learning scenarios

    Sequential Dimension Reduction and Prediction Methods with High-dimensional Microarray Data

    Get PDF
    In this thesis, a novel sequential genes selection and classification (k-SS) method is proposed. The method is analogous to the classical non-linear stepwise variable selection (SVS) methods but unlike any of the SVS methods, this new method uses the misclassification error rates (MERs) as its search criteria for informative marker genes in any given microarray data. Here, the importance of any selected gene is determined based on its marginal contribution at improving the prediction accuracy of the classification rule. This method ensures continuous selection of more genes in as much as the improvements brought into the decision models by the selected genes are considered to be significant enough by some established test criteria. However, further gene selection terminates when none of the remaining genes is capable at improving the prediction accuracy (lowering the MER) of the current model. Therefore, our approach only seeks to select the best combination of k marker genes that are most predictive of the biological samples in any given microarray data sets. An important feature of our new k-SS method is that the size α used by its test is not arbitrarily fixed by the user as common to some of the classical SVS methods. Rather, the value of α at which the best prediction accuracy is achieved (or the best combination of genes is selected) is determined by cross-validation. The new k-SS classifier competes favourably with selected eight existing classification methods using eleven published microarray data sets. The k-SS classifier is very simple to apply and does not require any rigid assumption for its implementation. Another merit of this method lies in its ability to select only those genes that are of biological relevance to the existing cancer sub-groups in microarray data sets. Lastly, we proposed a new preliminary feature selection procedure that employs the cross-validated area under the ROC curve (CVAUC) for gene selection. This method is capable at removing all the irrelevant genes at the preliminary selection stage before any standard classifier like the k-SS method is employed on the remaining data set for final optimum gene selection and classification of mRNA samples. Unlike some other data pruning methods, the new method employs the sub-sampling technique of the v-fold cross-validation to ensure consistency and efficiency of selections made at the preliminary selection stage
    corecore