3 research outputs found

    A usability study of physiological measurement in school using wearable sensors

    Get PDF
    Measuring psychophysiological signals of adolescents using unobtrusive wearable sensors may contribute to understanding the development of emotional disorders. This study investigated the feasibility of measuring high quality physiological data and examined the validity of signal processing in a school setting. Among 86 adolescents, a total of more than 410 h of electrodermal activity (EDA) data were recorded using a wrist-worn sensor with gelled electrodes and over 370 h of heart rate data were recorded using a chest-strap sensor. The results support the feasibility of monitoring physiological signals at school. We describe specific challenges and provide recommendations for signal analysis, including dealing with invalid signals due to loose sensors, and quantization noise that can be caused by limitations in analog-to-digital conversion in wearable devices and be mistaken as physiological responses. Importantly, our results show that using toolboxes for automatic signal preprocessing, decomposition, and artifact detection with default parameters while neglecting differences between devices and measurement contexts yield misleading results. Time courses of students' physiological signals throughout the course of a class were found to be clearer after applying our proposed preprocessing steps

    Physiological synchrony in brain and body as a measure of attentional engagement

    Get PDF
    Attentional engagement – the emotional, cognitive and behavioral connection with information to which the attention is focused – is important in all settings where humans process information. Measures of attentional engagement could be helpful to, for instance, support teachers in online classrooms, or individuals working together in teams. This thesis aims to use physiological synchrony, the similarity in neurophysiological responses across individuals, as an implicit measure of attentional engagement. The research is divided into two parts: the first investigates how different attentional modulations affect physiological synchrony in brains and bodies, the second explores the feasibility of using physiological synchrony as a tool to monitor attention in real-life settings.In Part I, the effect of different manipulations of attention on physiological synchrony in brain and body is explored. We find that physiological synchrony does not only reflect attentional engagement when measured in the electroencephalogram (EEG), but also when measured in electrodermal activity (EDA) or heart rate. Moreover, we find that physiological synchrony can reflect both sensory and top-down variations in attention, where top-down focus of attention is best reflected by synchrony in EEG, and where emotionally salient events attracting attention are best reflected by EDA and heart rate. Part II transitions into the practical applications of physiological synchrony in real-life contexts. Wearables are employed to measure physiological synchrony in EDA and heart rate, demonstrating comparable accuracy to high-end lab-grade equipment. The research also incorporates machine learning techniques, showing that physiological synchrony can be combined with novel unsupervised learning algorithms. Finally, measurements in classrooms reveal that physiological synchrony can be successfully monitored in real-life settings.While the findings are promising, the thesis acknowledges limitations in terms of sufficient data that are required for robust monitoring of attentional engagement and in terms of limited variance in attention explained by physiological synchrony. To advance the field, future work should focus on the applied, methodological and ethical questions that remain unanswered

    Improving Hybrid Brainstorming Outcomes with Scripting and Group Awareness Support

    Get PDF
    Previous research has shown that hybrid brainstorming, which combines individual and group methods, generates more ideas than either approach alone. However, the quality of these ideas remains similar across different methods. This study, guided by the dual-pathway to creativity model, tested two computer-supported scaffolds – scripting and group awareness support – for enhancing idea quality in hybrid brainstorming. 94 higher education students,grouped into triads, were tasked with generating ideas in three conditions. The Control condition used standard hybrid brainstorming without extra support. In the Experimental 1 condition, students received scripting support during individual brainstorming, and students in the Experimental 2 condition were provided with group awareness support during the group phase in addition. While the quantity of ideas was similar across all conditions, the Experimental 2 condition produced ideas of higher quality, and the Experimental 1 condition also showed improved idea quality in the individual phase compared to the Control condition
    corecore