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critical views made my sometimes overly complex papers more accessible. You 
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appreciate the interaction with all of you. Here I would like to especially thank 
those indivdiuals that have contributed to the contents of this thesis. Natta-
pong, thank you for guiding me in my initial explorations of physiological data 
that in the end greatly contributed to the contents of this thesis. Daisuke, thank 
you for sharing insights from your PhD journey with me and providing me with 
the opportunity to add physiological synchrony to the toolbox of implicit mea-
sures of food experience. Charelle, pursuing a PhD at TNO is far from a clearly 
set-out procedure. It was really helpful that we could go down the rabbit hole 
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me. You always cheered me on in life and in my scientific journey. Dad, you 
must be the most loyal reader of my papers. Mum, you always listen to me with 
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tion I describe that the signals that can be measured from brains and bodies 
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viduals focusing their attention on the same information in the outside world. 
Although I stand by these findings, you are the person that makes me wonder 
if really there is not more. I feel so strongly in-sync with you, my dear Fenna, that 
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Attentional engagement – the emotional, cognitive and behavioral connection 
with information to which the attention is focused – is important in all settings 
where humans process information. As it is difficult to estimate the attentional 
engagement of others, measures of attentional engagement could be helpful 
to, for instance, support teachers in online classrooms, or individuals working 
together in teams. In this thesis we aim to exploit the similarity in neurophysi-
ological responses across individuals as an implicit and continuous measure of 
attentional engagement. We refer to this similarity in physiological responses 
recorded from brain or body across individuals as physiological synchrony. We 
build upon studies indicating that physiological synchrony may act as an index 
of attentional engagement. Though physiological synchrony is said to reflect at-
tentional engagement, it is unclear how exactly modulations of attention affect 
physiological synchrony in brains, here monitored through the electroenceph-
alogram (EEG), and especially in bodies, here monitored through electroder-
mal activity (EDA) and heart rate. Furthermore, it is unclear under which limita-
tions that come with measuring in real-life conditions, physiological synchrony 
remains a valid measure of attentional engagement. In this thesis we aim to 
uncover how different types of attention modulation are captured by physio-
logical synchrony in brains and bodies (part I) and to what extent physiological 
synchrony may be used as tool to monitor attention in real-life settings (part II). 

I: attentional modulations and physiological synchrony in 
brains and bodies
In part I, we address the research question: “How do different manipulations of 
attention affect physiological synchrony in brains and bodies?”

In our first study we simultaneously monitored EEG, EDA and heart rate of in-
dividuals who all heard the exact same audio track consisting of an audiobook 
with interspersed auditory events such as affective sounds and beeps. Individ-
uals were instructed to either attend to the audiobook or to attend to and keep 
track of the interspersed events. We computed inter-subject correlations as a 
measure of physiological synchrony. Using this dataset, in Chapter 2 we inves-
tigated to what extent inter-subject correlations are higher when computed 
among individuals with the same instruction regarding the focus of attention 
compared to individuals with a different instruction regarding the focus of at-
tention. We find that inter-subject correlations in all three measures are higher 
among individuals with the same focus of attention than among individuals 
with a different focus of attention. In EEG and heart rate, inter-subject correla-
tions predict performance on a post-stimulus test. Using the same dataset, in 
Chapter 3 we investigated how well inter-subject correlations predict the oc-
currence of attentionally engaging moments in time. By doing so we aimed to 
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study the respective influences of bottom-up (stimulus driven) and top-down 
attention on the occurrence of physiological synchrony. We find that the occur-
rence of stimuli interspersed in the audiobook could be detected based on in-
ter-subject correlations and that both bottom-up and top-down attention play 
a role.

Rather than only by explicit instructions on what to focus attention on, in re-
al-life settings attention also varies across and within individuals implicitly, due 
to variations in personal trait across individuals and variations in the momen-
tary attentional state within individuals. In Chapter 4 we investigated whether 
inter-subject correlations in EEG capture interpersonal differences in attention-
al processing that originate from differences in personal trait, in this study food 
neophobia, the fear to buy or try novel foods. Indeed, we find higher inter-sub-
ject correlations in EEG among individuals with higher levels of food neophobia 
when watching a movie about the origin and production of a novel food. In 
Chapter 5 we investigated whether momentary variations in attention within 
individuals could be captured by inter-subject correlations in EDA and heart 
rate. We computed inter-subject correlations during ten movies that were pre-
sented over the course of a night in which the monitored individuals were sleep 
deprived. Inter-subject correlations in EDA predicted performance on consec-
utive vigilant attention tasks. This indicates that inter-subject correlations can 
reflect variations in general attention.

II: physiological synchrony from lab to life
In part II we address the research question: “To what extent may physiological 
synchrony be used as tool to monitor attention in real-life settings?”

In Chapter 6 we investigated whether inter-subject correlations as a measure 
of attentional engagement can also be captured with wearables instead of 
high-end lab-grade equipment. Inter-subject correlations in EDA and heart 
rate measured using wearables were found to distinguish between individuals 
with different selective focus of attention with similar, if not higher, accuracies 
than in EDA and heart rate measured using high-end lab-grade equipment. For 
monitoring physiological synchrony we are thus not dependent on expensive, 
immobile laboratory-grade equipment. This indicates that precise signals with 
high sample-rate containing information across the entire frequency spectrum 
are not essential for monitoring of physiological synchrony. In Chapter 7 we 
further investigated the preconditions in terms of group size and recording du-
ration for successful capturing of inter-subject correlations in EDA and heart 
rate recorded with wearable devices. As expected, increases in both group size 
and recording duration increase the percentage of participants with significant 
inter-subject correlations. It was found that the total amount of data (i.e., the 



16

group size times the recording duration) determines the percentage of partic-
ipants with significant inter-subject correlations, where it does not matter by 
what ratio of group size and recording duration this amount of data is achieved.

For application in real-life settings, inter-subject correlations may be combined 
with novel machine learning techniques. In Chapter 8 we combined inter-sub-
ject correlations in EEG, EDA and heart rate with unsupervised learning algo-
rithms with the aim of clustering individuals with the same selective focus of 
attention. We used the data of the study presented in Chapter 2 and attempted 
to cluster the two groups of individuals that each have a different instruction re-
garding their selective focus of attention, without using labels regarding atten-
tional instruction for any of the individuals. Using EEG, accuracies are as high 
as 85% and higher than expected based on chance. The clustering approach 
was not successful when using EDA or heart rate alone. However, combining 
inter-subject correlations in EEG, EDA and heart rate in a multimodal approach 
results in a maximum accuracy of 96%. Furthermore, results are less dependent 
on the specific algorithm used.

In Chapter 9 we moved towards an actual real-life setting, examining inter-sub-
ject correlations in EDA and heart rate data that was previously recorded among 
students in the classroom in two separate studies. As proof of concept, we show 
that inter-subject correlations are higher among students in the same com-
pared to different classrooms, but only in one of the two studies. In this study 
more data were available with more individuals of whom EDA and heart rate 
were recorded per classroom. Results were also more robust for heart rate than 
for EDA. Overall, inter-subject correlations can be monitored in the classroom, 
but only with the evident remark that sufficient amounts of data are available.

In Chapter 10 the implications of our findings regarding the overall aims of this 
thesis are discussed. In Part I inter-subject correlations were found to reflect 
multiple types of attention modulations, affected by both sensory and top-
down mechanisms of attention. This thesis adds to previous work by showing 
that not only synchronous brain, but also synchronous body metrics reflect this 
attentional processing, where synchronous brains and bodies also reflect com-
plementary aspects of attention. Top-down focus of attention is best reflected 
by synchrony in EEG measures. Emotionally salient events attracting attention 
are best reflected by synchrony in body measures, being EDA and heart rate. 
The findings presented in Part II are promising for physiological synchrony 
to be used in real-life settings, as physiological synchrony can be successful-
ly captured using wearable devices in real-life settings and can be combined 
with novel unsupervised learning algorithms. Still, the limitations in terms of 
sufficient data that are required for robust monitoring and in terms of limited 
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variance in attention explained should be considered. To advance physiolog-
ical synchrony as a tool to monitor attention in real-life settings, future work 
should focus on the applied scientific, methodological and ethical questions 
that remain unanswered. Future work could for instance investigate to what 
extent shared attentional engagement underlies the occurrence of physiolog-
ical synchrony in settings with social interaction. It could also focus on the de-
velopment novel multimodal metrics of physiological synchrony. Last, future 
work could investigate the ethics of the use of physiological synchrony as tool to 
monitor attentional engagement in each use-case that is explored.
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Aandachtige betrokkenheid (Engels: attentional engagement, vanaf nu kort-
weg aandacht) - de emotionele, cognitieve en gedragsmatige verbinding met 
informatie waarop de aandacht is gericht - is belangrijk in alle omstandighe-
den waarin mensen informatie verwerken. Omdat het vaak moeilijk is om de 
aandacht van anderen in te schatten, zouden impliciete en continue metingen 
van aandacht  nuttig kunnen zijn, bijvoorbeeld ter ondersteuning van leraren in 
online klaslokalen, of van mensen die samenwerken in teams. In dit proefschrift 
proberen we de overeenkomsten in neurofysiologische reacties tussen perso-
nen te benutten als maat voor aandacht. We noemen deze overeenkomsten 
in fysiologische metingen van de activiteit van de hersenen of het lichaam van 
verschillende personen fysiologische synchronie. We bouwen voort op studies 
die aantonen dat fysiologische synchronie zoals gemeten in hersensignalen 
kan fungeren als een index van aandacht. Hoewel fysiologische synchronie sa-
mengaat met aandacht is het onduidelijk hoe variatie in aandacht fysiologische 
synchronie exact beïnvloedt in de hersenen, hier gemeten via het elektro-ence-
falogram (EEG), en vooral in het lichaam, hier gemeten via huidgeleiding (elek-
trodermale activiteit; EDA) en hartslag. Bovendien is het onduidelijk of en hoe 
het meten van fysiologische synchronie een betrouwbaar instrument is om 
aandacht te monitoren buiten het laboratorium. In dit proefschrift onderzoeken 
we hoe verschillende soorten aandachtmodulatie worden gereflecteerd door 
fysiologische synchronie in de hersenen en het lichaam (deel I) en in hoeverre 
fysiologische synchronie kan worden gebruikt als hulpmiddel om aandacht te 
monitoren buiten het lab (deel II).

I: aandachtmodulaties en fysiologische synchronie in herse-
nen en lichamen
In deel I behandelen we de onderzoeksvraag: “Hoe beïnvloeden verschillen-
de manipulaties van aandacht de fysiologische synchronie in hersenen en li-
chaam?”.

In onze eerste studie registreerden we EEG, EDA en hartslag van proefperso-
nen die allemaal naar exact dezelfde audiotrack luisterden, bestaande uit een 
luisterboek waar korte auditieve stimuli, zoals emotionele geluiden en piepjes, 
doorheen werden gespeeld. Proefpersonen werden geïnstrueerd om ofwel op 
het luisterboek te letten of op de korte auditieve stimuli te letten. We bereken-
den inter-subject correlaties als maat voor fysiologische synchronie. Met behulp 
van deze dataset onderzochten we in Hoofdstuk 2 in hoeverre inter-subject 
correlaties hoger zijn wanneer ze berekend worden tussen proefpersonen met 
dezelfde aandachtinstructie vergeleken met individuen met een andere aan-
dachtinstructie. De resultaten lieten zien dat inter-subject correlaties in alle 
drie de maten hoger zijn bij proefpersonen met dezelfde aandachtfocus dan bij  
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proefpersonen met een verschillende aandachtfocus. In EEG en hartslag voor-
spellen inter-subject correlaties de prestatie op een achteraf afgenomen test 
die de kennis van de stimulus toetst. Met behulp van dezelfde dataset onder-
zochten we in Hoofdstuk 3 hoe goed inter-subject correlaties momenten van 
verhoogde aandacht in de tijd voorspellen. Daarmee probeerden we de invloed 
van zowel bottom-up stimulus gedreven als top-down aandacht op fysiologi-
sche synchronie te bestuderen. We ontdekten dat het presenteren van stimuli 
tijdens het audioboek gedetecteerd kon worden op basis van inter-subject cor-
relaties, en dat hierbij zowel bottom-up als top-down aandacht een rol speelt.

Aandacht varieert onder invloed van expliciete aandachtinstructie, maar vari-
eert zeker buiten het lab ook impliciet tussen en binnen personen als gevolg 
van variaties in persoonlijke eigenschappen en variaties in de aandacht over tijd. 
In Hoofdstuk 4 onderzochten we of inter-subject correlaties in EEG verschillen 
in aandacht tussen personen reflecteren die voortkomen uit verschillen in per-
soonlijke eigenschappen, in deze studie food neophobia of de mate van angst 
om nieuw voedsel uit te proberen. We vonden inderdaad hogere inter-subject 
correlaties in EEG bij individuen met een hoger niveau van food neophobia bij 
het kijken naar een film over de oorsprong en productie van nieuw voedsel. In 
Hoofdstuk 5 onderzochten we of variatie in aandacht over tijd binnen perso-
nen kon worden gevangen door inter-subject correlaties in EDA en hartslag. 
We berekenden inter-subject correlaties tijdens tien filmpjes die werden ge-
presenteerd in de loop van een nacht waarin de proefpersonen niet mochten 
slapen. Inter-subject correlaties in EDA voorspelden de prestatie op een opeen-
volgende vigilantietaak. Dit geeft aan dat inter-subject correlaties variaties in 
algemene aandacht kunnen weerspiegelen.

II: fysiologische synchronie van het laboratorium naar het da-
gelijks leven
In deel II gaan we in op de onderzoeksvraag: “In hoeverre kan fysiologische syn-
chronie gebruikt worden als hulpmiddel om aandacht te monitoren in het da-
gelijks leven?”.

In Hoofdstuk 6 onderzochten we of inter-subject correlatie als maat voor aan-
dacht ook bepaald kan worden met wearables in plaats van high-end lab-grade 
apparatuur. Inter-subject correlatie in EDA en hartslag gemeten met wearables 
bleek minstens net zo goed onderscheid te kunnen maken tussen proefper-
sonen met een verschillende aandachtinstructie als wanneer gemeten met 
nauwkeurige laboratorium apparatuur. Voor het monitoren van fysiologische 
synchronie zijn we dus niet afhankelijk van dure, immobiele laboratoriumap-
paratuur. De resultaten laten ook zien dat nauwkeurige signalen met een hoge 
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sample frequentie die informatie bevatten over het hele frequentiespectrum 
niet essentieel zijn voor het monitoren van fysiologische synchronie. In Hoofd-
stuk 7 doken we dieper in de voorwaarden in termen van groepsgrootte en 
opnameduur voor het succesvol monitoren van inter-subject correlaties in EDA 
en hartslag zoals gemeten met wearables. Zoals verwacht vergroot zowel de 
groepsgrootte als de opnameduur het percentage deelnemers met significan-
te inter-subject correlaties. Het bleek dat de totale hoeveelheid gegevens (of-
wel, de groepsgrootte maal de opnameduur) het percentage deelnemers met 
significante inter-subject correlaties bepaalt, waarbij het niet uitmaakt door 
welke verhouding van groepsgrootte en opnameduur deze hoeveelheid gege-
vens wordt bereikt.

Voor toepassing in real-life omstandigheden kunnen inter-subject correlaties 
gecombineerd worden met nieuwe machine learning technieken. In Hoofd-
stuk 8 combineerden we inter-subject correlaties in EEG, EDA en hartslag met 
unsupervised learning algoritmes met als doel om individuen met dezelfde se-
lectieve aandachtfocus te clusteren. We maakten gebruik van de dataset uit 
hoofdstuk 2 en probeerden de twee groepen individuen te clusteren die elk 
een verschillende aandachtinstructie hadden gekregen, zonder labels te ge-
bruiken met betrekking tot aandachtinstructie voor elk van de individuen. Met 
EEG werden nauwkeurigheden tot 85% bereikt, hoger dan verwacht op basis 
van toeval, wat niet mogelijk bleek te zijn bij het gebruik van EDA of hartslag. 
Echter, het combineren van inter-subject correlaties in EEG, EDA en hartslag 
in een multimodale aanpak resulteerde in een maximale nauwkeurigheid van 
96%. Bovendien bleken bij de multimodale aanpak de resultaten minder afhan-
kelijk van het specifieke algoritme dat werd gebruikt.

In Hoofdstuk 9 keken we naar een omgeving in het dagelijks leven, en onder-
zochten we inter-subject correlaties in EDA en hartslag in data die eerder was 
verzameld bij leerlingen in de klas in twee verschillende studies. We lieten zien 
dat de inter-subject correlaties hoger zijn bij leerlingen in dezelfde klas verge-
leken met in verschillende klassen, maar alleen in één van de twee studies. In 
deze studie waren meer data beschikbaar met meer personen bij wie EDA en 
hartslag waren gemeten per klas. De resultaten waren robuuster voor hartslag 
dan voor EDA. Inter-subject correlaties kunnen dus gemeten worden in de klas, 
onder voorwaarde dat voldoende hoeveelheden data beschikbaar zijn. 

In Hoofdstuk 10 bespreken we de implicaties van onze bevindingen met be-
trekking tot de algemene doelstellingen van dit proefschrift. In deel I werd ge-
vonden dat inter-subject correlaties meerdere soorten aandachtmodulaties 
weerspiegelen, beïnvloed door zowel sensorische bottom-up als top-down aan-
dachtmechanismen. Dit proefschrift vult eerder werk aan door te laten zien dat 
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niet alleen synchrone hersen-, maar ook synchrone lichaamsmaten aandacht-
mechanismen weergeven, waarbij zij complementaire aspecten van aandacht 
weerspiegelen. Top-down aandachtfocus wordt het best weergegeven door 
synchronie in EEG metingen. Emotioneel opvallende gebeurtenissen worden 
het best weergegeven door synchronie in lichaamsmaten; EDA en hartslag. De 
bevindingen in deel II zijn veelbelovend voor het gebruik van fysiologische syn-
chronie buiten het lab, omdat fysiologische synchronie met succes kan worden 
gemonitord met behulp van wearables in omstandigheden van het dagelijks 
leven en kan worden gecombineerd met nieuwe unsupervised-learning algo-
ritmen. Wel moet rekening gehouden worden met de vereiste hoeveelheid 
gegevens die nodig is voor robuuste monitoring, en met de beperkte verklaar-
de variantie in aandacht. Om fysiologische synchronie verder te ontwikkelen 
als hulpmiddel om aandacht in real-life omstandigheden te monitoren, moet 
toekomstig werk zich richten op de toegepast-wetenschappelijke, methodo-
logische en ethische vragen die nog onbeantwoord zijn. Toekomstig werk zou 
bijvoorbeeld kunnen onderzoeken in hoeverre gedeelde aandacht ten grond-
slag ligt aan het optreden van fysiologische synchronie in situaties met socia-
le interacties. Het zou nieuwe, robuuste multimodale maten van fysiologische 
synchronie kunnen ontwikkelen. Als laatste zou toekomstig werk de ethische 
aspecten van het gebruik van fysiologische synchronie als hulpmiddel om aan-
dacht te monitoren in kaart kunnen brengen.





General introduction
1.
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Chapter 1

1.1. Research motivation
Attentional engagement is important in all settings where we humans have 
to process information. For instance, attentional engagement among students 
is essential for learning (Newmann et al., 1992; Carini et al., 2006). We specifi-
cally refer to ‘attentional engagement’, as it encompasses not only the ability 
to focus one’s attention on presented information, but also active involvement 
in processing that information. Engagement is important because without ac-
tive involvement information that is presented is not well processed and stored 
(Schmidt, 1992). Parra and colleagues first introduced the concept of attentional 
engagement as “emotionally laden attention” (Dmochowski et al., 2012). Attfield 
and colleagues defined the concept user-engagement as “the emotional, cog-
nitive and behavioral connection that exists, at any point in time and possibly 
over time, between a user and a resource” (Attfield et al., 2011). We define at-
tentional engagement as the emotional, cognitive and behavioral connection 
with information to which the attention is focused. Teachers continuously try 
to assess students’ attentional engagement to monitor whether the present-
ed information is taken in. Yet, teachers’ assessments are limited to behavioral 
manifestations of student engagement, whereas cognitive and affective as-
pects of attentional engagement are hardly perceptible (Mandernach, 2015). As-
sessment is even more problematic in online educational environments, where 
teachers are seriously hampered to evaluate behavioral manifestations of stu-
dent engagement (Means et al., 2009). 

This example indicates the importance of additional measures of attentional 
engagement in the classroom. Such measures may also support individuals 
working together in a team or storytellers aiming to create the most engag-
ing experience. In all such settings, it is desirable to known how the attentional 
engagement of individuals varies over time. External referees, such as teach-
ers, may estimate attentional engagement, but they do not have access to all 
manifestations of attentional engagement such that their estimates are not al-
ways reliable. Alternatively, one can continuously ask individuals how engaged 
they are, but this disturbs the attentional engagement itself and is therefore 
undesirable as well. There thus is a need for alternative, implicit and continuous 
measures of attentional engagement. We build upon studies indicating that 
the similarity in the neural responses across individuals may act as an index of 
attentional engagement (Hasson et al., 2004; Dmochowski et al., 2012, 2014; Ki 
et al., 2016; Poulsen et al., 2017). In this thesis, we aim to exploit the similarity in 
neurophysiological responses across individuals as measure of attentional en-
gagement. We refer to this similarity in physiological responses recorded from 
brain or body across individuals as physiological synchrony. Here and further 
on the term brain refers to measures reflecting central nervous system activ-
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ity. The term body refers to measures reflecting autonomic nervous system 
activity. Figure 1-1 depicts an example of how physiological synchrony may be 
used as tool to provide feedback on the attentional engagement in a real-life 
setting, the classroom. Though physiological synchrony is said to reflect atten-
tional engagement, it is unclear how modulations of attention affect physiolog-
ical synchrony. Furthermore, it is unclear under which conditions physiological 
synchrony can be used as a tool to monitor attentional engagement in real-life 
settings. This thesis is therefore aimed at uncovering how attention may modu-
late the occurrence of physiological synchrony and to what extent physiological 
synchrony may be used as tool to monitor attention in real-life settings. 

In this introduction, we first provide background information on attentional 
processing (Section 1.2) and describe how physiological measurements of brain 
and body, including physiological synchrony, can provide insight in this atten-
tional processing (Section 1.3). We then state the difficulties of exploiting neu-
rophysiological markers of attention in real-life and illustrate why physiological 
synchrony may be a suitable index of attentional engagement (Section 1.4). We 
then argue that currently it is unclear how attentional modulations affect phys-
iological synchrony and introduce the research needed (Section 1.5). We also 
discuss the steps needed for it to be a tool in real-life settings (Section 1.6). We 
then outline how the next chapters of this thesis contribute to this thesis’ aims 
(Section 1.7).

Figure 1-1. Concept of physiological synchrony as tool to provide feedback on the at-
tentional engagement in the classroom to the teacher. Students may be equipped 
with wearables measuring neurophysiological signals. Physiological synchrony is es-
tablished among the students, from which the level of attentional engagement can 
be calculated. 
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1.2. Attentional processing and the brain and body
“Everyone knows what attention is” is a popular statement by William James 
from the late 19th century (James, 1890). Though we indeed have a feeling for 
its meaning, attention is a complex construct that is actually difficult to grasp. 
What is clear is that attention has something to do with the allocation of our 
limited cognitive processing resources to certain parts of the information in the 
environment around us (Anderson, 1985). 

Two distinct functions determine where we focus and sustain our attention on. 
Bottom-up attention refers to attentional guidance that is driven by external 
factors related to stimulus saliency. Think for instance of a flashing light along-
side the road or the sound of a horn that automatically draws your attention. 
Top-down attention, on the other hand, refers to internal guidance of attention. 
Think for instance of the conversation at a party you focus your attention on 
while ignoring the conversations others are having at that party. A prevailing 
view in literature is that attentional selection is a process of biased competition 
(Desimone and Duncan, 1995; Kastner and Ungerleider, 2001), in which the allo-
cation of attention is determined by a mix of bottom-up and top-down atten-
tional processes that influence the relative importance of specific information 
around us. The relative importance of information is determined by the char-
acteristics of that information, the characteristics of information competing for 
resources through bottom-up processes and by top-down control acting upon 
the information characteristics. 

Attention is intertwined with emotion. Emotion can alter the relative impor-
tance of information thereby affecting attentional prioritization. One of the 
ways the relative importance is affected is through bottom-up attentional pri-
oritization. Inherent characteristics of emotional stimuli increase the stimu-
lus’ salience and can thereby cause bottom-up attentional prioritization over 
other stimuli (Compton, 2003). Numerous studies have for example reported 
increased activity in cortical visual processing areas upon presentation of emo-
tionally provocative images compared to neutral images (Lane et al., 1997; Lang 
et al., 1998; Simpson et al., 2000), indicating that processing of emotional stimuli 
is prioritized. Some researchers have argued that attention may also be modu-
lated by emotion through top-down processes (Mohanty and Sussman, 2013). 
Top-down attentional prioritization can be caused by environmental context, 
past-experience or prior knowledge. For example, happy and threatening facial 
expressions capture attention when they are the target of search, but not when 
attending to them is in opposition of task-goals (Williams et al., 2005; Hahn and 
Gronlund, 2007). Top-down guidance is also active in the process of selective 
attention, when individuals must select between competing stimuli that differ 
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in their emotional salience (Elliott and Dolan, 1998). Top-down modulation may 
thus alter the bottom-up attentional capture by emotional information. 

A large part of our sensory environment consists of other individuals that also 
influence the relative importance of presented information and thus influence 
where we focus and sustain our attention on. As humans we tend to prioritize 
focusing our attentional resources at information that is also attended to by 
others. Already as babies we are especially interested in objects that are also 
attended by others (Bruner, 1985; Baron-Cohen, 1997). This similar focus of at-
tention across individuals is referred to as shared attention. As for attention con-
sidered in isolation, in situations of shared attention attentional selection is a 
process of biased competition where bottom-up and top-down mechanisms 
affect where attention is focused and sustained on. When listening to a live 
presentation together with an audience you may for instance be distracted 
through bottom-up sensory processes by a bird whistling outside or your atten-
tion may be drawn to the presentation by an emotionally salient picture. During 
a garden party, top-down mechanisms allow you to sustain your attention on 
one conversation, while ignoring speakers not involved in the conversation, 
known as the cocktail-party effect (Arons, 1992; Marchegiani et al., 2011).

Although the brain is most closely involved in attentional processing, also the 
body is involved through the peripheral nervous system. The brain and body are 
inherently and dynamically coupled; our mental processing responds to and 
changes the state of the body (Critchley et al., 2013). In this regard the concept 
arousal is important to introduce. By arousal we refer to the physiological state 
of activation, that ranges from sleep or coma on the one end, to excitement or 
panic on the other end (Coull, 1998; Critchley et al., 2013). Whereas the brain is 
generally tapped into to monitor attention, the body is generally tapped into to 
monitor arousal. Arousal and attention are inherently and dynamically coupled; 
arousal is said to enhance attention to, and enhance processing of potential-
ly relevant information (Critchley et al., 2013). Indeed, arousal can narrow the 
attentional focus (Easterbrook, 1959; Loftus et al., 1987), arousal enhances the 
attentional dwell time on stimuli and delays the disengagement from the stim-
ulus (Fox et al., 2001) and arousal causes more efficient attentional processing 
(Hansen and Hansen, 1988). Arousal and attention also share a common neural 
substrate (Critchley, 2002), such that similar brain regions are active during at-
tentional processing as during elicitation of physiological arousal.

1.3. Neurophysiological measures of attention

1.3.1. Individual neurophysiological measures
As long as researchers have been interested in conceptualizing attention they 
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have been interested in measuring attention. As the brain plays a central role in 
attention it is also the brain that is most often “tapped into” to gain information 
on the attentional processing of individuals. Since Hans Berger captured the 
first human electroencephalogram (EEG) in the 1920s (Berger, 1929), EEG fea-
tures are broadly used as index of brain activity. The EEG captures the electrical 
activity that originates from potentials of neurons in the cortex of the brain by 
electrodes placed on the scalp. As the signal is distorted by tissues and bone, it 
is mainly cortical activity close to the scalp that is captured by the EEG and not 
so much activity of deeper brain structures (Kandel et al., 2000). Through EEG 
one can capture the fast brain-responses that occur in initial attention selec-
tion processes. The EEG response that is measured directly after presentation 
of a stimulus is referred to as an event-related potential (ERP). The specific tim-
ing and form of the ERP can be informative of the attentional processes oc-
curring in relation to the presentation of the stimulus. A well-known marker of 
attention is the P300, which refers to a positive deflection in the ERP recorded 
over the parietocentral cortex that occurs roughly 300 ms after stimulus onset 
(Smith et al., 1970). It is said to index the allocation of attention to relevant stim-
uli (Polich, 2007). Upon the presentation of an infrequent distractor tone in a 
series of frequent tones that draws attention through bottom-up mechanisms, 
a positive deflection in parietocentral regions is observed (Snyder and Hillyard, 
1976). Commonly, the P300 is elicited in an oddball paradigm, where partici-
pants detect a presented target throughout a range of presented distractors 
(Picton, 1992). The P300 is amplified when participants are actively engaged 
in the task of detecting the target (Picton, 1992), indicating that also top-down 
attentional processes affect the P300. Furthermore, when participants attend 
to the auditory stimuli in one ear, but ignore the auditory stimuli in the other 
ear, an oddball only elicits a P300 if it occurs in the attended ear (Hillyard et al., 
1973; Donald and Little, 1981). We discussed before that emotional relevance can 
contribute to relative stimulus salience. Indeed, also with respect to the P300, 
emotional pictures or sounds of either high or low valence elicit larger deflec-
tions in the event-related potentials than their neutral counterparts (Schupp et 
al., 2000; Thierry and Roberts, 2007). 

In the EEG, not only ERPs can index attention. The power of the alpha oscilla-
tions, EEG activity in the frequency range of 8-12 Hz, can also index attention. 
Unlike ERPs, frequency domain metrics can provide information over longer 
periods of time. Alpha waves are thought to reflect inhibition of areas of the 
cortex not primarily in use (Palva and Palva, 2007). Alpha power is for instance 
increased during lapses in sustained attention (O’Connell et al., 2009) and is in-
creased when individuals focus their attention inward and away from externally 
presented stimuli (Ray and Cole, 1985; Cooper et al., 2003). During viewing of TV 
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commercials, alpha power was found to correlate negatively with recall of the 
commercial contents (Reeves et al., 1985), thereby showing predictive value on 
behavior reflecting attentional engagement.

An alternative mechanism to capture brain activity is functional magnetic 
resonance imaging (fMRI). It captures activation of brain activity by detecting 
changes in blood flow (Huettel et al., 2014), with the underlying reasoning that 
when an area is more active, the oxygenated blood flow to that region will also 
increase (Logothetis et al., 2001). fMRI is therefore broadly used to localize brain 
areas that are involved in attentional processes, such as those involved in vi-
sual attention (Kanwisher and Wojciulik, 2000) or auditory attention (Pugh et 
al., 1996). Additionally, with the use of fMRI a network of regions involved in the 
control of attention has been established (Pessoa et al., 2003). With the devel-
opment of ultra-high field scanners of more than 7T, one can obtain fMRI with 
high spatial resolution such that localizations are more precise than previously 
(Goense et al., 2016). This higher spatial resolution comes at a cost of relatively 
low temporal resolution (Constable, 2012). The blood oxygenation level depen-
dent (BOLD) response in captured with fMRI responds in the order of seconds, 
whereas EEG ERPs respond in the order of milliseconds. EEG is therefore much 
more suited to capture the fast responses corresponding to processes of atten-
tion selection. 

In the previous section we introduced arousal and its close connection to atten-
tion. Measuring arousal may thus also provide insight in attentional processes. 
Arousal can be captured through the autonomic nervous system; a part of the 
peripheral nervous system that is predominantly responsible for the involuntary 
control of internal organs. The autonomic nervous system innervates organs 
through two  main branches: the sympathetic nervous system, often consid-
ered to promote a fast fight-or-flight response, and the parasympathetic ner-
vous system, often considered the rest-and-digest system that slowly dampens 
activation (Cacioppo et al., 2000). It is the sympathetic branch that is mainly in-
volved in preparing the body for the rapid activation that is arousal (Cacioppo et 
al., 2000). Sympathetic activation is among others expressed through increased 
heart rate and sweating (Cacioppo et al., 2000; Boucsein, 2012). 

Electrodermal activity (EDA), the conductivity of the skin that varies with sweat 
gland activation, is unlike most indices of autonomic nervous system activity 
uniquely innervated by the sympathetic branch of the autonomic nervous sys-
tem (Boucsein, 2012). It therefore serves as a unique index of arousal, which in 
turn can reflect increased attentional processing. As for ERPs, increased EDA 
is for instance reported for emotional images or sounds that are attentionally 
prioritized through bottom-up mechanisms compared to their neutral counter-
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parts (Lang et al., 1998; Bradley and Lang, 2000).

Heart rate can also serve as index of increased arousal (Cacioppo et al., 2000). 
Indeed, increased heart rate is also reported upon presentation of emotional 
images or sounds compared to their neutral counterparts (Lang et al., 1998; 
Bradley and Lang, 2000). Unlike EDA, however, the heart is also innervated by 
the parasympathetic branch of the autonomic nervous system. This parasym-
pathetic branch can also index attention. Decreased parasympathetic activity 
is said to reflect focused attention (Cacioppo et al., 1978; Suess et al., 1994). In-
creased parasympathetic activity is said to predict relaxation and divided atten-
tion (Porges, 2001). 

1.3.2. Physiological synchrony in brains and bodies as an index of at-
tentional engagement
In the section above we focused on the responses of individual brains or bodies 
to index attentional engagement. However, there are also studies indicating 
that the similarity in the neural responses across individuals may act as an index 
of attentional engagement. Through analysis of the BOLD response in fMRI it 
was found that the brains of individuals “tick collectively” when they are all pre-
sented with the same movie (Hasson et al., 2004, 2008). More precisely, strong 
inter-subject correlations in the BOLD response were found, not only in visual 
and auditory areas, but also in higher order associating cortical areas. These in-
ter-subject correlations were higher than expected based on chance level. With 
the use of EEG, inter-subject correlations in the brain were studied at much 
higher resolution in time. Also here, inter-subject correlations where higher 
than expected based on chance level (Poulsen et al., 2017). Further findings 
suggested that peaks in the inter-subject correlations can occur in correspon-
dence with arousing moments in the film (Dmochowski et al., 2012; Poulsen et 
al., 2017), suggesting that inter-subject correlations are related to the variations 
in the level of engagement across the presentation of the film. This was fur-
ther substantiated when inter-subject correlations in the EEG of a small group 
of individuals presented with a popular television series were found to predict 
viewership over the course of the episode worldwide (Dmochowski et al., 2014). 
There are some indications that inter-subject correlations in the EEG are also 
associated with behavioral outcomes. Individuals with higher inter-subject cor-
relations during presented narratives were found to answer more questions 
about the content of these narratives correctly (Cohen and Parra, 2016; Cohen et 
al., 2018). This is an important finding, substantiating brain-to-brain synchrony 
as a measure of attentional engagement, that is actually predictive of metrics 
reflecting attentional performance. Figure 1-2 visually summarizes the concept 
of inter-subject correlations as measure of attention and indications that it may 
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be suited as measure of attentional engagement. 

In parallel to the studies investigating similarity in brain responses upon the 
presentation of narrative stimuli, other researchers focused on the similarity in 
body activity of individuals in social interaction. Researchers uncovered that the 
physiological activity between two or more individuals can show similar dynam-
ics in new and established relationships across a range of contexts (Palumbo et 
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Figure 1-2. Visual depiction of the concept of inter-subject correlations (ISC) and indi-
cations that it may be suited as measure of attentional engagement. a. When mul-
tiple individuals are presented with the same narrative stimulus, one can compute 
inter-subject correlations by averaging over the correlations with the neurophysiolog-
ical signals of all other individuals. Among individuals attending to the same stimulus, 
these inter-subject correlations are higher than expected based on chance. b. Indica-
tions inter-subject correlations may prove suitable as measure of attention. From top 
to bottom: inter-subject correlations appear in corresponding with arousing moments 
in the presented film (Dmochowski et al., 2012; Poulsen et al., 2017); individuals with 
higher inter-subject correlations during presented narratives also answer more ques-
tions about the narratives correctly. 
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al., 2017). Among others, physiological synchrony appeared in therapist-patient 
dyads (Marci et al., 2007), in teammates (Elkins et al., 2009), in singers of a choir 
(Müller and Lindenberger, 2011), in parent-child dyads (Feldman et al., 2011; Wol-
tering et al., 2015; Suveg et al., 2016) and even pairs of strangers meeting for the 
first time (Silver and Parente, 2004). The level of physiological synchrony has 
been reported to be predictive of relationship quality (Levenson and Gottman, 
1983), psychotherapy success (Koole et al., 2020), empathy (Marci et al., 2007), 
team-performance (Elkins et al., 2009), collaborative learning (Malmberg et al., 
2019) and more (Palumbo et al., 2017). Various factors have been proposed to un-
derly physiological synchrony, such as shared attention among students in the 
classroom (Dikker et al., 2017), but also synchronized breathing among couples 
instructed with the abstract task to mirror each other’s physiology (Ferrer and 
Helm, 2013), empathy among patient and therapist during a therapy session 
(Marci et al., 2007), shared arousal among performers of a fire-walking ritual and 
related spectators (Konvalinka et al., 2011; Mitkidis et al., 2015), shared metabolic 
demands through matched activity or behavior (Palumbo et al., 2017) and envi-
ronmental influences (Strang et al., 2014). 

Though attention is acknowledged to underly the occurrence of neural syn-
chrony upon the presentation of a shared stimulus, for autonomic synchrony 
in settings of social interaction there is no unified conceptual model explaining 
the variety of findings. An increasing number of studies links synchronous phys-
iological responses in some social-interactive setting to a psychological con-
struct said to be important for the interaction. However, these studies do not 
explain why physiological synchrony occurs or why it differs between groups or 
conditions (Palumbo et al., 2017). Physiological synchrony has been observed in 
absence to each of the above-mentioned mechanisms and physiological syn-
chrony does not consistently co-occur with the psychological constructs men-
tioned (Palumbo et al., 2017). There is a need for systematic, experimentally ma-
nipulated research to uncover the elements that contribute to the occurrence 
of physiological synchrony. Until then, interpretation of physiological synchrony 
results will be limited (Sbarra and Hazan, 2008).

We think that attention is an important element that contributes to physiolog-
ical synchrony. There are some studies that specifically indicate that findings of 
physiological synchrony co-occur with shared attention. For instance, Woltering 
et al. (2015) reported that synchronous heart rate between mother and child 
related to observed levels of shared attention. Dikker et al. (2017) reported that 
synchrony in brain potentials increases among students in the classroom as 
they are more attentive to the classroom activity and thus increase their shared 
attention towards the externally presented information. However, we also see 
studies in which shared attention is not specifically reported as contributor of 
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physiological synchrony. Instead, metrics such as psychotherapy success (Koole 
et al., 2020), empathy (Marci et al., 2007), team-performance (Elkins et al., 2009) 
or collaborative learning (Malmberg et al., 2019) are reported to be linked with 
physiological synchrony. Shared attention may be associated with these met-
rics and with the occurrence of physiological synchrony, such that shared atten-
tion may be underlying the reports of physiological synchrony. Take for instance 
reports of perceived empathy as factor underlying physiological synchrony in 
therapist-patient dyads (Marci et al., 2007; Palumbo et al., 2017). A simple shift 
in gaze, reducing the joint attention of therapist and patient, reduces both per-
ceived empathy and physiological synchrony (Marci and Orr, 2006). Though 
physiological synchrony could thus be linked to perceived empathy, it may ac-
tually be shared attention that underlies both the perceived empathy and phys-
iological synchrony. Similar reasoning can be made for collaborative learning. 
Physiological synchrony occurred among students during collaborative learn-
ing (Malmberg et al., 2019). The achievement of joint attention among students 
is found essential for successful collaborative learning (Barron, 2003). Though 
physiological synchrony could thus be linked to collaborative learning success, 
it may again be shared attention that underlies both the collaborative learning 
success and the findings of physiological synchrony.

1.4. Using neurophysiological measures of attention in real-life 
settings
Most of the indices of attention discussed above have for a large part been es-
tablished and further used in lab-based settings. However, research using neu-
rophysiological signals to assess mental state is shifting from lab to life. The 
research field originating with this shift is referred to as neuroergonomics, with 
the aim “to study the brain at work and in everyday life” (Parasuraman, 2003; 
Dehais et al., 2020). The need to move mental-state monitoring to real-life set-
tings has been stressed many times, as results from lab-studies may not trans-
fer to real-life settings (Brouwer et al., 2015b). Compared to lab research there 
are new challenges to be faced when moving to real-life settings (Dehais et al., 
2020). 

In real-world settings, physiological signals need to be recorded with unobtru-
sive, easy-to-use wearable sensors. Such wearable sensors for the monitoring of 
heart rate (Fuller et al., 2020), EDA (Tronstad et al., 2022) and EEG (Casson, 2019) 
are increasingly available, but these sensors often have lower signal quality than 
high-end laboratory equipment. In addition, monitoring in real-life settings of-
ten comes at the cost of less experimental control and potentially lower signal-
to-noise ratio as increased metabolic demands due to increased motion also 
affect the data. In such settings it is difficult to separate changes in physiologi-
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cal activity originating from movement from activity originating from changes 
in mental state (Brouwer et al., 2018; Linssen et al., 2022). All these characteris-
tics of real-life monitoring thus require more robust neurophysiological markers 
than lab-based settings.

A major challenge for the transition to real-life settings is that many of the indi-
ces of attention introduced above are not inherently suited for measurement in 
real-life settings. The links between the measurements and attention are often 
complex (Brouwer et al., 2015b) and suffer from large interindividual differences 
(Näpflin et al., 2007). A common approach to uncover the complex links is the 
use of supervised learning algorithms (e.g., Aliakbaryhosseinabadiet al., 2017; 
Hamadicharef et al., 2009; Liu et al., 2013). Such algorithms establish the com-
plex relationships between neurophysiological features and the mental state 
of interest using labeled training data. This labeled training data usually is a 
large dataset of neurophysiological features where data are linked to associat-
ed labels. Think for instance of a dataset of EEG data where a set of datapoints 
from different EEG channels recorded at one point in time is labeled as either 
belonging to an attentive state or distracted state. The goal of the algorithm is 
learning a function that maps the feature input to the label output based on 
many examples of input-output pairs. In our example that means learning the 
function that links the input heart rate to the output being the attentional state. 
Using such algorithms is challenging already in lab environments, let alone in 
real-life settings. First, obtaining labeled training datasets is time-consuming, 
such that sufficient amounts of training or calibration data are hardly available 
in real-life settings (Brouwer et al., 2015b; Lotte et al., 2018; Brouwer, 2021). In 
addition, determining a ‘ground-truth’ mental state that can be used for label-
ing is very difficult (Brouwer et al., 2015b). Furthermore, even under conditions 
where reliable training data is available, humans require transparency and ex-
plainability if artificial decision-making algorithms are to be used (Fellous et 
al., 2019). Many supervised learning algorithms are still a black-box, such that 
decisions are not transparent. Additionally, classification by supervised learn-
ing approaches is often limited to a small number of discrete states. Attention, 
emotion and cognition, however, are of more continuous nature, such that dis-
crete classification is only a rough estimation of the mental state of interest 
(Zehetleitner et al., 2012; Rosenberg et al., 2013).  Last, generalization of trained 
models to other individuals and context, for instance using transfer learning or 
domain adaptation, is hard (Lotte et al., 2018).

Although neurophysiological measures, capturing activity of the brain or body, 
can thus provide insight in the attentional processing of individuals, applying 
such measures in real-life is difficult. We see physiological synchrony as poten-
tial means to circumvent the problems of unsupervised learning. Unlike indi-
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viduals’ physiological responses, the analysis of physiological synchrony is not 
dependent on labeled training data. It is the degree of similarity in respons-
es across individuals that appears directly proportional with the attentional 
engagement towards the narrative. There thus is no need to train a model to 
uncover complex links between the physiological signal and the mental state 
of interest. This directly proportional relationship also appears to capture the 
continuous nature of attentional processing, such that one is not limited to 
two-classes as in a binary classification model. 

1.5. Attentional modulations and physiological synchrony in 
brains and bodies
Though, as discussed, there are indications that physiological synchrony can 
reflect attentional engagement, up to now it remains unclear how the different 
attentional processes contribute to the occurrence of inter-subject correlations. 
If inter-subject correlations indeed reflect overall attentional engagement, is 
it low-level visual or auditive features attracting attention (Itti and Koch, 2001; 
Polich, 2007), bottom-up mechanisms related to emotional relevance (Lang et 
al., 1997) and top-down mechanisms related to attentional instructions (Polich, 
2007) that all contribute to the occurrence of inter-subject correlations? If this 
is so, variations in any of the attentional mechanisms, in time or across individ-
uals, should all result in variation in the inter-subject correlations. The findings 
of synchronous neural responses upon the presentation of a shared stimulus 
we presented up to now can mainly be explained by sensory, bottom-up pro-
cesses of attention. Namely, by such sensory processes attention is especially 
drawn to arousing stimuli, such that inter-subject correlations are higher for 
structured movie clips than for unedited footage of people walking in front of 
an office building and much higher than movie clips scrambled in time (Hasson 
et al., 2004, 2008; Jääskeläinen et al., 2008; Wilson et al., 2008). Parts of stimuli 
that strongly attract attention through sensory processes as they are arousing 
also cooccur with high inter-subject correlations (e.g., Dmochowski et al., 2012; 
Poulsen et al., 2017). These moments that strongly attract attention also cause 
high viewership, such that during moments of high viewership when consid-
ering a large population worldwide also high inter-subject correlations were 
found (Dmochowski et al., 2014). We are aware of only one study manipulating 
attention separate from sensory bottom-up processes and studying the effects 
on inter-subject correlations. This study is visually depicted in Figure 1-3. Indi-
viduals watched narrative movie clips with the instruction to either focus at-
tention on the movie clip or focusing attention inward on a mental arithmetic 
task while their EEG was monitored. Individuals showed higher inter-subject 
correlations with others when actively attending to the narrative then when 
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focusing attention inward on the mental arithmetic task during presentation 
of the stimulus (Ki et al., 2016). This finding indicates that top-down mecha-
nisms of attentional instruction are involved in the occurrence of inter-subject 
correlations. This manipulation, however, is very coarse and separates between 
internally oriented versus externally directed attention. Perhaps also the sen-
sory attention attracting processes are diminished when attention is focused 
inwards. All in all, the respective contributions of bottom-up sensory processes 
and top-down processes of attention to the occurrence of physiological syn-
chrony has not been adequately monitored. For instance, it is not clear whether 
inter-subject correlations can also separate between multiple externally direct-
ed attentional foci or whether inter-subject correlations can capture when the 
attentional abilities of monitored individuals vary over time.

In investigating the respective contribution of bottom-up and top-down atten-
tional processing especial attention should be paid to the comparison of syn-
chrony in brains and bodies in their ability to reflect attentional engagement. 
Synchronous bodies and synchronous brains may both capture shared atten-
tion, but indications for this relation came from different settings for both mo-
dalities. In the paragraphs above we described that brain-to-brain synchrony 
may relate to shared attention based on findings that the cognitive process-
ing of a shared stimulus induces synchronous response in the EEG, fMRI BOLD 
response or magnetoencephalogram (MEG) (Hasson et al., 2004, 2008; Dmo-
chowski et al., 2012, 2014; Lankinen et al., 2014). On the other hand, body-to-
body synchrony may relate to shared attention based on reports of physiolog-
ical synchrony during social interaction that is predictive of constructs related 
to shared attention (Palumbo et al., 2017). There are a few exceptions in which 
body-to-body synchrony is established among individuals presented with the 
same narrative stimulus. (Golland et al., 2014) studied the dynamics of heart rate 
and EDA during the emotional cinematic film “Mystic River”. They found syn-
chronous responses in EDA and heart rate driven by the emotional experience 
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Figure 1-3. Depiction of the study by Ki and colleagues in which attention was manip-
ulated by instructing individuals to either focus attention on the movie clip or focus 
attention inward on a mental arithmetic task while EEG was monitored. When focus-
ing attention inward, inter-subject correlations with others decreased (Ki et al., 2016).
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of the film. Similarly, (Bracken et al., 2014) found synchronous responses in EDA 
and heart rate in response to a 100-second emotional film. In both studies, the 
synchronous responses correlated with moments in the stimulus that were rat-
ed as highly emotional. These results indicate that autonomic activity can also 
synchronize among individuals presented with the same stimulus. It however, 
remains unclear how inter-subject correlations in the body, such as measured 
through EDA and heart rate, relate to inter-subject correlations in the brain, 
such as measured through EEG. The limited literature suggests that body-to-
body synchrony is more affected by emotional processing (Bracken et al., 2014; 
Golland et al., 2014), whereas brain-to-brain synchrony is more affected by low-
er level factors affecting attentional processing, such as stimulus modality or 
stimulus saliency (Poulsen et al., 2017). Monitoring synchrony in brains and bod-
ies simultaneously would allow investigation of how brain-to-brain and body-
to-body synchrony compare in their reflection of attentional engagement. It 
could help increasing understanding of respective contributions of different 
attentional processes to physiological synchrony in each of these modalities. If 
synchronous bodily measures indeed reflect attentional engagement it could 
mean that in real-life settings there will not always be the need to monitor EEG 
and to take the precautions coming with its use. Directly monitoring brains and 
bodies would also allow multimodal analysis of physiological synchrony. Multi-
modal sensor fusion allows to exploit the particular strengths of multiple data 
sources and is a broader trend among neurotechnologies (Brouwer et al., 2015b; 
Fairclough and Lotte, 2020). Ultimately, multimodal analysis of physiological 
synchrony may thus result in a more sensitive index of attentional engage-
ment, capturing both low level attentional processing, higher-order cognitive 
processing and emotional engagement. 

Another question that remains about synchronous brains and bodies as poten-
tial measure of attentional processing is how the estimated levels of attention 
correspond to a momentary attentional state only valid during the narrative 
stimulus presentation or to a more long term pattern of attentional process-
ing corresponding to personal trait. The finding that individuals with higher 
inter-subject correlations during presented narratives were found to answer 
more questions about the content of these narratives correctly (Cohen and Par-
ra, 2016; Cohen et al., 2018) may be explained both by state and trait. It may be 
so that some individuals are more capable of attending to the stimulus and 
thus answer more questions correctly; a trait explanation, but it may also be so 
that some individuals were just more attentive at that specific moment in time; 
a state explanation. Indeed, there are some indications for physiological syn-
chrony to reflect both state and trait. The findings that moments of high neural 
inter-subject correlations appear in correspondence with arousing moments 
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in the film (Dmochowski et al., 2012; Poulsen et al., 2017) and that this varia-
tion in inter-subject correlations over time predicts viewership (Dmochowski 
et al., 2014) show that physiological synchrony can reflect a momentary atten-
tional state. The observation that individuals with autism spectrum disorders, 
depression or first-episode psychosis show more varying neural patterns and 
thus reduced neural inter-subject correlations during naturalistic stimulus pre-
sentations than typically developing individuals (Hasson et al., 2009; Salmi et al., 
2013; Guo et al., 2015; Mäntylä et al., 2018) shows that physiological synchrony is 
also affected by personal trait. This is supported by the finding that inter-sub-
ject correlations among students in a classroom correlated positively and sig-
nificantly with self-reported levels of group affinity and empathy (Dikker et al., 
2017). When considering physiological synchrony as tool to reflect a momentary 
attentional trait, as of yet it is not clear whether the attentional state captured 
during a narrative stimulus is an index of the general attentional processing 
capabilities at that moment in time. To answer this question it should be inves-
tigated whether physiological synchrony monitored during the presentation 
of a narrative covaries in time with another measure of attentional processing 
when variation in attentional processing are expected. Also for the influence of 
personal trait on physiological synchrony unclarities remain. Though it is shown 
that physiological synchrony is decreased among individuals with autism spec-
trum disorders, depression or first-episode psychosis, it is unclear how physio-
logical synchrony is affected when the relevance of the presented information 
varies between individuals due to variations in personal trait. 

1.6. Physiological synchrony as a tool in real-life settings
The approach of assessing physiological synchrony seems suited to capture at-
tentional processing in real-life settings. First, by utilizing the physiological re-
sponses from multiple individuals there is no need for machine learning mod-
els and the training data required for such models. Second, besides in brain 
measures such as EEG, also in body measures such as EDA and heart rate phys-
iological synchrony may have the potential to reflect attentional engagement. 
Such body measures can be more easily captured in real-life settings.

However, the pre-conditions for successful monitoring have not yet been estab-
lished. Currently it is unclear what the minimum requirements for successful 
monitoring of physiological synchrony are in terms of sensor quality and sam-
ple size. There is hardly any research on the relation between synchrony in au-
tonomic physiological measurements and attention, let alone using wearable 
devices or in real-life settings. Successful monitoring of physiological synchrony 
as measure of attentional engagement using wearable devices in real-life set-
tings is yet to be demonstrated.
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1.7. Research aim, approach and thesis outline
In this thesis we aim to uncover whether different types of attention modula-
tion are captured by physiological synchrony and to what extent physiological 
synchrony may be used as tool to monitor attention in real-life settings. In part 
I, we study how different causes of varying attention affect physiological syn-
chrony in brains and bodies. In part II we try to bridge the gap from lab to life, 
by determining minimally necessary conditions for successful monitoring of in-
ter-subject correlations and exploring whether and to what extent information 
is lost when relying on wearable sensors rather than high-end equipment and 
recording in real life conditions .

I: attentional modulations and physiological synchrony in 
brains and bodies
In part I, we address the research question: “How do different manipulations 
of attention affect physiological synchrony in brains and bodies?” This part is 
focused on manipulations of attention and their potential impact on physiolog-
ical synchrony in brains and bodies. Figure 1-4 provides a visual depiction of the 
research presented in part I.

We here focus on inter-subject correlations as measure of physiological syn-
chrony, therewith quantifying synchrony as the simple linear instantaneous 
correlation in the signals between individuals, following previous work (Dmo-
chowski et al., 2012, 2014; Cohen and Parra, 2016; Poulsen et al., 2017; Cohen et al., 
2018). There are much more complex analyses to quantify synchrony. Most such 
analyses are aimed at capturing delayed or non-linear relationships that may 
be expected in settings where the experiences of individuals are not expected 
to occur simultaneously, such as in leader-follower behavior or an audience at-
tending to a speaker (Ferrer and Helm, 2013; McAssey et al., 2013; Liu et al., 2016; 
Helm et al., 2018). In our settings, however, all individuals are presented with the 
same information at the same time. We therefore expect linear instantaneous 
correlations to capture physiological synchrony sufficiently. More complex non-
linear analysis would also require more data to be collected to set the additional 
modeling parameters, such that inter-subject correlations are the more suit-
able approach (Pérez et al., 2021).

In our collection of studies we monitor inter-subject correlations in EEG, EDA 
and heart rate. Though synchronous activation across individuals upon presen-
tation of the same narrative stimulus has also been found in fMRI (Hasson et 
al., 2004, 2008) and MEG (Lankinen et al., 2014), these modalities do not allow 
measurements in real-life settings.
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We previously introduced how attention and emotion are entangled. Emotion-
al information can attract attention and emotional information can be experi-
enced differently when attended. It is therefore not in the scope of this thesis to 
disentangle attention from emotion in their respective association with physio-
logical synchrony. Rather, we aim to identify how sensory, low-level, bottom-up 
mechanisms and higher-order cognitive, top-down mechanisms of attention 
together affect physiological synchrony and how the respective contribution of 
these processes may vary across brains and bodies.

In Chapter 2 we work towards this aim by answering the research question 
‘How do inter-subject correlations in EEG, EDA and heart rate compare in their 
ability to reflect attentional engagement?’ We investigate to what extent indi-
viduals show higher inter-subject correlations with individuals with the same 
selective attentional focus compared to individuals focusing on different stimu-
lus aspects. This allows us to investigate the ability of inter-subject correlations 
in each of these modalities capture top-down selective attentional processes. 
Relating results to stimulus retention helps us understand the meaning of vary-
ing levels of physiological synchrony for attentional ability. We hypothesize that 
individuals show higher inter-subject correlations with other individuals with 
the same versus different selective attentional focus.

In Chapter 3 we aim to study the respective influences of bottom-up sensory 
and top-down higher-level attentional processes on inter-subject correlations 
in EEG, EDA and heart rate. We aim to answer the research question: ‘How well 
do inter-subject correlations in EEG, EDA and heart rate predict the occurrence 
of attentionally engaging moments in time and do results depend on the at-
tentional instruction of participants, the type of stimuli and the physiological 
measure used?’ We investigate to what extent these inter-subject correlations 
are responsive to the occurrence of the interspersed stimuli. As we instructed 
half of the participants to focus on these sounds and the other half not to, we 
can separate effects of higher-level top-down and sensory bottom-up atten-
tional processing on the inter-subject correlations. In addition, this study design 
allows us to investigate how the sensitivity of inter-subject correlations in re-
sponse to higher-order top-down and low-level sensory events vary across EEG, 
EDA and heart rate.

In Chapter 4 and Chapter 5 we investigate to what extent inter-subject cor-
relations can capture interpersonal and intrapersonal variations in attentional 
engagement. By doing so, we aim to investigate whether inter-subject correla-
tions can capture changes in the momentary attentional state and whether 
inter-subject correlations can capture differences in attentional processing re-
lated to personal trait. In Chapter 4 we aim to answer the research question: 
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‘How are inter-subject correlations in EEG related to variations in the relevance 
of presented information across individuals?’

In Chapter 5 we investigate to what extent inter-subject correlations in EDA 
and heart rate capture intrapersonal variations in attentional engagement in-
duced by sleep deprivation verified by a response-time metric extracted from 
a low-level button press task. We aim to answer the research question: ‘How 
do inter-subject correlations in EDA and heart rate covary in time with another 
metric of attentional processing?’

2.

3.

4.

I: attentional modulations and physiological synchrony in brains and bodies
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Figure 1-4. Graphical depiction of the research presented in part I.
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II: physiological synchrony from lab to life
In part II of this thesis, we address the research question: “To what extent may 
physiological synchrony be used as tool to monitor attention in real-life set-
tings?” We explore what the requirements are for monitoring physiological syn-
chrony in ambulatory environments. In this part the use of wearable sensors for 
monitoring physiological synchrony is explored and specifically the conditions 
that are needed to monitor synchrony robustly. In addition, we move toward 
more applied methodologies by investigating how unsupervised learning algo-
rithms can assist in clustering individuals sharing attentional focus. Figure 1-5 
provides a visual depiction of the research presented in part II.

In Chapter 6 we compare inter-subject correlations in EDA and heart rate from 
wearable and high-end laboratory-grade equipment. We aim to answer the re-
search question: “How do inter-subject correlations in EDA and heart rate from 
wearable and high-end laboratory-grade equipment relate in their abilities to 
identify individuals with the same selective attentional focus?”

In Chapter 7 we then further study the preconditions for successful monitoring 
of inter-subject correlations in EDA and heart rate recorded with wearable de-
vices. We aim to answer the research questions: “How do recording length and 
group size affect the robustness of inter-subject correlations?” Specifically, we 
investigate how the recording length and group size affect the percentage of 
participants that show inter-subject correlations exceeding chance level. We 
expect that increasing recording length and group size both positively affects 
this percentage, but have no hypothesis recording the specific relation.

In Chapter 8 we combine unsupervised learning algorithms with inter-subject 
correlations in EEG, EDA and heart rate. We aim to answer the research ques-
tion: “How well can individuals  with the same selective attentional focus be 
clustered together without using information on the attentional condition of 
any of the individuals by combining inter-subject correlations and unsuper-
vised learning algorithms?” 

In Chapter 9 we move towards real-life settings, by monitoring inter-subject 
correlations in EDA and heart rate among students in the classroom. As a proof 
of concept, we aim to identify whether students show higher inter-subject cor-
relations with others in the same compared to different classrooms. We answer 
the research question: “How well can inter-subject correlations in EDA and 
heart rate distinguish between individuals in the same versus in different class-
rooms?”

Finally, in Chapter 10, the general discussion, the implications of our findings re-
garding the overall aims of this thesis are discussed. We also discuss limitations 
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of the current work and future directions.

6.

II: physiological synchrony from lab to life

7.

8.
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Figure 1-5. Graphical depiction of the research presented in part II.
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logical synchrony in brains and bodies

Attentional modulations and 
physiological synchrony in brains and 
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Part I:





Physiological synchrony in EEG, 
electrodermal activity and heart rate 
reflects selective auditory attention

Stuldreher, I.V., Thammasan, N., van Erp, J.B.F., Brouwer, A.M. (2020). Physiological 
synchrony in EEG, electrodermal activity and heart rate reflects selective auditory 
attention. Journal of Neural Engineering, 17, 046028. doi: 10.1088/1741-2552/aba87d
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Abstract
Objective: Concurrent changes in physiological signals across multiple listen-
ers (physiological synchrony – PS), as caused by shared affective or cognitive 
processes, may be a suitable marker of selective attentional focus. We aimed 
to identify the selective attention of participants based on PS with individuals 
sharing attention with respect to different stimulus aspects. 

Approach: We determined PS in electroencephalography (EEG), electroder-
mal activity (EDA) and heart rate of participants who were instructed to either 
attend to an audiobook or to interspersed auditory events such as affective 
sounds and beeps that attending participants needed to keep track of. 

Main results: Even though all participants heard the exact same audio track, 
PS in EEG and EDA, but not in heart rate, was higher for participants when 
linked to participants with the same attentional instructions than when linked 
to participants instructed to focus on different stimulus aspects. Comparing PS 
in EEG between a participant and members from the same or the different 
attentional group allowed for the correct identification of the participant’s at-
tentional instruction in 96% of the cases. For both EDA and heart rate this was 
73%. Even when only data was included coming from ‘narrative only’ time in-
tervals, classification performance was above chance level for EEG and heart 
rate, though not for EDA. PS with respect to the attentional groups predicted 
performance on post-audio questions about the groups’ stimulus content. 

Significance: Our results show that selective attention can be monitored using 
PS, not only in EEG, but also in EDA and heart rate. These results are promising 
for real-world applications, where wearables measuring peripheral metrics like 
EDA and heart rate may be preferred over EEG sensors.
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2.1. Introduction
Selective attentional engagement is critical for efficient and effective learning 
(Jiang and Chun, 2001). Sustaining attention to a single continuous stream of 
information is a constant challenge, especially when competing sensory stimuli 
are present. Individuals who suffer from learning disabilities in particular have 
troubles narrowing the focus of their attention (Richards et al., 1990). To assist 
students with learning disabilities or to evaluate learning materials, it would be 
helpful to continuously and implicitly measure selective attentional engage-
ment. Such continuous and implicit measures of attention may be extracted 
from physiological signals, such as brain potentials as measured through the 
electroencephalogram (EEG), electrodermal activity (EDA) or heart rate. Rather 
than investigating responses for specific events and individual observers as is 
commonly done in research using physiological measures to monitor mental 
state, one may also determine the relationship between individuals’ physiolog-
ical measures. Interpersonal analyses of physiological synchrony (PS) as ana-
lyzed though inter-subject correlations (ISC) in brain signals were found to be 
a strong marker of shared attentional engagement to narrative movie or audio 
clips (Hasson et al., 2004, 2010; Hanson et al., 2009; Dmochowski et al., 2012). Note 
that we refer to the term physiological synchrony not only to cover synchrony 
in peripheral measures, such as EDA and heart rate, but also to cover synchro-
ny in neural measures, such as EEG. Moments of high PS correlated strongly 
with general expressions of interest and attention (Dmochowski et al., 2014), 
supporting the validity of PS as a measure of attention. In addition, individu-
als with neural responses that were more synchronous to the group that was 
attending to a narrative stimulus, remembered more information about this 
stimulus (Cohen and Parra, 2016; Cohen et al., 2018). A first step toward real-time 
inference of engagement in the classroom was taken by (Poulsen et al., 2017), 
who demonstrated that shared attention to narrative stimuli may be quantified 
using PS in wearable EEG among students in a classroom. Other recent studies 
in the educational domain also found promising results regarding neural PS 
as measure of attentional engagement. PS in EEG among students reflected 
classroom engagement and social dynamics (Dikker et al., 2017). Further results 
suggested that the interaction between an instructor and a learner is reflected 
by the degree of PS in neural activity between the two (Zheng et al., 2018; Bev-
ilacqua et al., 2019; Pan et al., 2020). In some cases the degree of PS between an 
instructor and a learner predicted learning outcomes (Zheng et al., 2018; Liu et 
al., 2019; Pan et al., 2020), although others did not find this relation (Bevilacqua 
et al., 2019). PS in brain activity has also been related to attentional engagement 
in other settings, such as in responses to political speeches (Schmälzle et al., 
2014) or music (Madsen et al., 2019).
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There is also a body of literature on synchrony in measures of the peripheral 
autonomic nervous system, such as heart rate and EDA, reviewed by (Palumbo 
et al., 2017). Rather than as indicators of shared attention, these have generally 
been interpreted as indicators of some form of connectedness between people 
or as indicators of shared affective and cognitive processes related to specific 
events in the world. Studies are conducted in a broad range of application areas, 
including psychotherapy (Koole et al., 2020), marital counseling (Wilson et al., 
2018; Tourunen et al., 2020) and collaborative learning (Malmberg et al., 2019). PS 
in autonomic activity has for example been associated with relationship qual-
ity of romantic couples, empathy in therapist-patient dyads and team-perfor-
mance of team-mates (Levenson and Gottman, 1983; Marci et al., 2007; Elkins et 
al., 2009). Findings in this literature may also have been driven by mechanisms 
of shared attention. Shared attention has been emphasized in models of social 
rapport during social interaction (Tickle-Degnen and Rosenthal, 1990). 

In our view there are two gaps in current literature. First, it remains unclear how 
PS in central and peripheral modalities are related when capturing shared at-
tentional engagement. In fact, in earlier work we did not find any studies con-
currently monitoring PS in EEG and measures of autonomic nervous system 
activity (Stuldreher et al., 2019). For future real-world studies and applications, 
autonomic measures may be preferred over neural measures as they can more 
easily be monitored through wearable sensors that are broadly available (e.g., 
Garbarino et al., 2014). The second gap in current work is studying PS as a mea-
sure of attention during selective attention, i.e., under conditions where an indi-
vidual has to focus on one type of stimulus when other stimuli are concurrent-
ly present. A specific, famous example of such a situation is the cocktail party 
problem (Cherry, 1953), where listeners are capable to selectively attend to one 
of several simultaneously speaking voices. Research has shown that EEG in rela-
tion to sound characteristics can indicate which speaker the participant attend-
ed to in such problems using single-trial analysis (Horton et al., 2014; O’Sullivan 
et al., 2015). Even though PS is not dependent on sound characteristics, it may 
thus be expected that PS for individuals attending to the same speaker will be 
stronger compared to situations in which different speakers are attended to. 
In addition, while PS has not been used to distinguish the focus of attention 
on two concurrently presented stimuli, it has been shown that PS in EEG dis-
tinguishes conditions in which individuals attend or do not attend to external 
stimuli (Ki et al., 2016; Cohen et al., 2018). 

In the current work we try to fill the two abovementioned gaps. We compare 
PS across EEG, EDA and electrocardiographic inter-beat interval (IBI). We aim to 
determine selective auditory attention of individuals who are all presented with 
the same auditory stimulus and are all attending to it, but to different stimulus 
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aspects. Reminiscent to a classroom setting where students hear the teach-
er talk as well as hearing other, potentially interesting sounds like the school 
bell or whispering students, we present our participants with an audiobook, 
interspersed with short auditory stimuli. Participants are instructed to attend 
either to the narrative of the audiobook (audiobook-attending – AA), or to the 
interspersed stimuli (stimulus-attending – SA). Unlike the popular cocktail party 
paradigm, the two stimulus streams used in the current paradigm are not ho-
mogeneous. We selected this custom design for two main reasons. First, the se-
lected design roughly mimics the environment of a dynamic classroom, where 
a long, continuous lecture is interspersed with short, inconsistent distractors. 
During the continuous lecture of a teacher, some students focus continuously 
to the lecture. This group of students is represented by the AA group in our cur-
rent design. Another group of students may focus their attention more to other 
environmental events, such as whispering students or cars driving by outside. 
This group is represented by the SA group in our current design. It can be ar-
gued that during realistic cocktail parties, listeners also rather filter one speaker 
out of a great variety of sounds rather than out of a homogeneous collection of 
voices. For this reason, we also chose to present the audiobook and the inter-
spersed stimuli both to the left and right ear, rather than one stream of sound 
in each ear. Second, including multiple stimulus sets that intersperse the au-
diobook allowed us to investigate whether PS may occur more reliably during a 
specific type of stimulus than during other stimulus types. 

We formulated the following research questions. First, is PS of participants high-
er when paired with participants that received the same selective attentional 
instructions (within-group) than with participants that received instructions to 
focus on the other stimulus aspects (between-group)? If this is indeed the case, 
our second research question is whether the selective attentional focus of a par-
ticipant can be identified based on synchrony in physiological responses with 
participants that have known attentional instructions. While participants in the 
SA group are instructed to ignore the narrative, this is probably hard to do at 
times without concurrent short-stimuli. Our third research question therefore 
is: does zooming in on intervals with interspersed stimuli increase classification 
accuracy? We hypothesize that classification of the selective attentional focus 
is enhanced when zooming in on intervals with interspersed stimuli, whereas 
zooming in on intervals with data from ‘audiobook only’ intervals results in de-
creased classification performance. We also expect that results are different for 
different measures. Because mental workload mainly affects EEG (Hogervorst 
et al., 2014), we hypothesize the group-distinguishing capability of PS in EEG 
to work well during the beep counting task. As emotional stimuli have been 
strongly related to sympathetic nervous system activity as measured through 
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EDA (Bradley and Lang, 2000; Boucsein, 2012), we hypothesize the group-dis-
tinguishing capability of PS in EDA to work well during the affective sounds. 
Our fourth research question is: does PS of participants paired with participants 
attending to a stimulus aspect correlate with performance metrics reflective 
of paid attention? Based on earlier work relating the degree of synchrony with 
an attending group to stimulus retention (Cohen and Parra, 2016; Cohen et al., 
2018), we hypothesize that this is the case. To get a grip of what drives possible 
effects of attentional instruction on PS, we also obtain physiological response 
traces locked to the onset of interspersed stimulus events. Our final research 
question is: do traces of EEG, EDA and IBI locked to the onset of the interspersed 
stimuli differ between the attentional groups? We hypothesize stronger deflec-
tions in EEG, EDA and IBI traces for participants attending to the interspersed 
stimuli than for participants attending to the narrative of the audiobook.

2.2. Methods

2.2.1. Participants
Before recruitment, the study was approved by TNO’s Institutional Review 
Board. The approval is registered under the reference 2018–70. Twenty-sev-
en participants (17 female), aged between 18 and 48 (M = 31.6, SD = 9.8) years, 
were recruited from the institute’s participant pool. Prior to the experiment all 
participants signed informed consent, in accordance with the Declaration of 
Helsinki. After the experiment they received a small monetary reward for their 
time and travel costs. None of the participants indicated problems in hearing or 
attention. Participants were randomly assigned to one of the two experimen-
tal groups. Data of one participant were discarded due to failed physiological 
recordings, resulting in equal group size.

2.2.2. Materials
EEG, EDA and electrocardiogram (ECG) were recorded at 1024 Hz using an Ac-
tiveTwo Mk II system (BioSemi, Amsterdam, Netherlands). EEG was recorded 
with 32 active Ag/-AgCl electrodes, placed on the scalp according to the 10–20 
system, together with a common mode sense active electrode and driven right 
leg passive electrode for referencing. The electrode impedance threshold was 
set at 20 kOhm. For EDA, two passive gelled Nihon Kohden electrodes were 
placed on the ventral side of the distal phalanges of the middle and index fin-
ger. For ECG, two active gelled Ag/-AgCl electrodes were placed at the right 
clavicle and lowest floating left rib. EDA and heart rate were also recorded using 
wearable systems (Movisens EdaMove 4 and Wahoo Tickr, respectively). These 
data are not discussed here.
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2.2.3. Stimuli and design
Participants performed the experiment one by one. Each participant listened 
to the same audio file, composed of a 66 min audiobook (a Dutch thriller ‘Zure 
koekjes’, written by Corine Hartman) interspersed with other auditory stimuli. 
The 13 participants in the AA group were asked to focus on the narrative of the 
audiobook and ignore all other stimuli or instructions and the 13 participants in 
the SA group were asked to focus on the other stimuli, perform accompanying 
tasks and ignore the narrative. Figure 2-1(a) and (b) visualizes the experimen-
tal paradigm and participant instructions. The order of interspersed affective 
sounds and beeps was randomly determined, but was identical for each par-
ticipant. Intervals between the end of one stimulus and the onset of the next 
stimulus varied between 35 and 55 s (M = 45, SD = 6.1 s). In the supplementary 
material (Tables 1–3) (available online at stacks.iop.org/JNE/17/046028/mmedia) 
the exact types and order of interspersed stimuli can be found. The short audi-
tory stimuli were affective sounds, blocks of beeps, and the instruction to sing 
a song.

Affective sounds were taken from the second version of the International Affec-
tive Digitized Sounds (IADS) (Bradley and Lang, 2007a). The IADS is a collection 
of six second acoustic stimuli that have been normatively rated for emotion, 
based on valence, arousal and dominance. Examples of stimuli are the sound of 
a crying baby or a cheering sports crowd. We selected 12 neutral sounds (IADS 
number 246, 262, 373, 376, 382, 627, 698, 700, 708, 720, 723, 728), 12 pleasant 
sounds (110, 200, 201, 202, 311, 352, 353, 365, 366, 367, 415, 717) and 12 unpleasant 
sounds (115, 255, 260, 276, 277, 278, 279, 285, 286, 290, 292, 422) based on their 
normative ratings of valence and arousal.

Beeps were presented in blocks of 30 s, with every 2 s a 100-ms high (1 kHz) or 
low (250 Hz) pitched beep. SA participants were asked to separately count the 
number of high and low beeps presented in a block, as in (De Dieuleveult et al., 
2018). This task was practiced with them beforehand. In total, 27 blocks of beeps 
were presented.

At the end of the audiobook, the instruction was presented to sing a song aloud 
after the subsequent auditory countdown reached 0. This instruction had to 
be followed by the SA group and was expected to induce stress and a strong 
increase in EDA and a strong decrease in IBI (Brouwer and Hogervorst, 2014). 
Physiological data obtained after this stimulus are discarded in further analysis 
as some participants started talking during or right after this stimulus. In total, 
we consider 3800 s of data in further analyses, out of which 1026 s involved con-
current presentation of the audiobook and interspersed stimuli.
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After the experiment, all participants were asked to answer two questionnaires. 
In the first questionnaire, participants used a slider on a horizontal visual ana-
logue scale running from ‘not at all’ to ‘extremely’ to rate their mental effort, dis-
traction and emotion during the short emotional sounds, and the level of stress 
induced by the sing-a-song assignment. The second questionnaire was on the 
content of the stimuli: participants were asked to report as many emotional 
sounds as they could remember, they were asked to estimate the average num-
ber of beeps in a block, and they were asked questions about the content of the 
narrative. The questions and correct answers can be found in the supplemen-
tary material (Table 4).

a. b.

c. d.

Figure 2-1. Overview of the experimental paradigm. a. The paradigm consists of a nar-
rative auditory stimulus of 66 min that is interspersed with short auditory cognitive 
(depicted in green) and affective (in orange) stimuli. b. Half of the participants were 
instructed to focus their attention on the audiobook (AA group), while the other half 
of the participants were instructed to focus on the interspersed stimuli (SA group). c. 
For each participant, the inter-subject correlations (ISC) of her/his EEG, electrodermal 
activity and inter-beat interval with those of all other participants in the AA condition 
(ISC-AA) and SA condition (ISC-SA) are computed. d. If the physiological responses of a 
participant are more correlated with those of participants in the AA group, the partici-
pant is classified as a AA participant, if the responses are more correlated with those of 
participants in the SA group, the participant is classified as a SA participant.
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2.2.4. Analysis

2.2.4.1. Pre-processing
Data processing was done using MATLAB 2019a software (Mathworks, Natick, 
MA, USA). EEG was pre-processed using EEGLAB v14.1.2 for MATLAB (Delo-
rme and Makeig 2004). To remove potentials not reflecting sources of neural 
activity, like ocular or muscle-related artefacts, logistic infomax independent 
component analysis (Bell and Sejnowski, 1995) was performed. EEG was first 
downsampled to 256 Hz and high-pass filtered at 1 Hz. This relatively high cut-
off frequency has shown to work better for independent component analysis 
compared to lower cut-off frequencies (Winkler et al., 2015). Data were then 
notch filtered at 50 Hz, using the standard finite-impulse-response filter imple-
mented in EEGLAB function pop_eegfiltnew. Channels were re-referenced to 
the average channel value. Independent component analysis was performed 
and the Multiple Artifact Rejection Algorithm (Winkler et al., 2011) was used to 
classify artefactual independent components, i.e. components not reflecting 
sources of neural activity, but ocular or muscle-related activity. Components 
that were marked as artefactual were removed from the data. Then, samples 
whose squared amplitude magnitude exceeded the mean-squared amplitude 
of that channel by more than four standard deviations were marked as missing 
data ('NaN') in an iterative way with four repetitions to remove outliers. By doing 
so, 0.8% of data were marked as missing.

EDA was downsampled to 32 Hz. The fast changing phasic and slowly varying 
tonic components of the signal were extracted using Continuous Decompo-
sition Analysis as implemented in the Ledalab toolbox for MATLAB (Benedek 
and Kaernbach, 2010). In further analyses we use the phasic component, as this 
component of the EDA signal is mainly related to responses to external stimuli.

ECG measurements were processed to acquire the inter-beat interval (IBI—in-
versely proportional to heart rate). After downsampling to 256 Hz, ECG was high-
pass filtered at 0.5 Hz. R-peaks of the ECG signal were detected following (Pan 
and Tompkins, 1985), resulting in a semi-timeseries of consecutive IBIs. This IBI 
semi-time series was transformed into a timeseries by interpolating consecu-
tive intervals at 32 Hz.

2.2.4.2. Computation of inter-subject correlations as a measure of physiological 
synchrony
For EEG, we computed ISC in the time-domain as a measure of PS. Rather than 
treating EEG signals separately, the ISC were evaluated in the correlated com-
ponents of the EEG (Dmochowski et al., 2014, 2012). The goal of the correlat-
ed component analysis is to find underlying neural sources that are maximally 
correlated between participants, using linear combinations of electrodes. The 
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technique is similar to the more familiar principle component analysis, differing 
in that projections capture maximal correlation between sets of data instead 
of maximal variance within a set of data. EEG data from each participant were 
projected on the component vectors. Participant-to-group ISC were then com-
puted as the sum of correlations in the first three component projections. Cor-
relations in higher order projections are usually discarded as they are close to 
chance level correlations (Ki et al., 2016).

For EDA and IBI, we also computed ISC in the time-domain as a measure of 
PS. We followed the approach of (Marci et al., 2007). Pearson correlations were 
calculated over successive, running 15 s windows at 1 s increments. The overall 
correlation between two responses was computed as the natural logarithm of 
the sum of all positive correlations divided by the sum of the absolute values of 
all negative correlations. Participant-to-group ISC were computed by averaging 
over all correlations with other participants in the group.

2.2.4.3. Identifying selective attention through comparing within-group and 
between-group physiological synchrony
To investigate whether within-group PS was higher than between-group PS, 
we computed for each participant the ISC with participants with the same at-
tentional instructions (within-group) and the ISC with participants with other 
attentional instructions (between-group). For EEG, correlated component vec-
tors were extracted from both the AA and SA groups. Data from each partici-
pant were then projected on both of these component vectors. Data from the 
to-be tested participant were excluded in the component extraction step of 
EEG. We then tested whether the ISC scores were normally distributed using 
the Shapiro-Wilk tests for both the AA and SA groups in EEG, EDA and IBI. If the 
null hypothesis of normally distributed data was not rejected, we conducted 
paired-sample t-tests to test for differences between within-group PS versus 
between-group PS, otherwise the non-parametric Wilcoxon signed rank test 
was used.

To examine how well PS can be used to identify whether an individual par-
ticipant had been attending to the narrative of the audiobook or to the inter-
spersed stimuli, we also classified each participant into the attentional condi-
tion that he or she showed more synchrony with, for EEG, EDA and IBI. Chance 
level classification performance was determined using surrogate data with 100 
renditions of randomly shuffled attentional condition labels. For each shuffle 
the same procedure as above was followed. Two sample one-tailed t-tests were 
conducted to test whether classification performance was above chance level. 
Figure 2-1(c) and (d) visualizes the classification paradigm.
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2.2.4.4. Influence of interspersed stimuli on the difference between with-
in-group and between-group physiological synchrony
We hypothesized that differences between attentional groups are present 
during interspersed stimulus presentation, but not or to a lesser extent when 
the audiostream only contains the audiobook. Therefore, we zoomed in on in-
tervals with concurrent audiobook and stimulus presentation, and, as a com-
parison, audiobook parts without interspersed stimuli. We computed with-
in-group and between-group PS three extra times; when considering only 
physiological responses recorded during blocks of beeps; during presentation 
of affective sounds; and during parts of the audiobook without interspersed 
stimuli. For EEG, we extracted new correlated components in each of the three 
data selections before computing correlations in the projections. Procedures 
that followed were identical to those for the whole narrative stimulus; we used 
paired-sample t-tests or the non-parametric Wilcoxon signed rank test to test 
for differences between within-group and between-group PS and we classified 
the attentional condition of each participant as the condition of the attentional 
group he or she showed more synchrony with.

2.2.4.5. Behavioral performance and its association with physiological synchro-
ny
To examine whether participants followed their attentional instructions, we 
tested if the performance metrics on the questionnaires about the content of 
the interspersed stimuli and narrative differed between groups using non-para-
metric Wilcoxon rank sum tests. We then tested whether higher PS with re-
spect to an attentional group also results in higher performance on the post-au-
dio questions about that group’s stimulus content. Outliers in the performance 
metrics were first removed. Three participants were left out for this analysis be-
cause of outlying performance data. Two of these participants reported ‘395’ and 
‘110’, respectively, to the number of beeps, while the correct answer was 15; one 
correctly identified 25 of the 36 IADS sounds. Values were then ranked based on 
relative performance across all participants: the participant performing best on 
a question received score 26, the worst performing participant received score 1. 
This was done for each of the three metrics of performance (correct questions 
of the narrative, number of reproduced affective sounds and absolute devia-
tion from the correct number of beeps). The correlations between these perfor-
mance scores with ISC toward the AA group and ISC toward the SA group were 
computed. We also tested whether a large difference between PS with respect 
to both attentional groups in a participant leads to a large difference between 
the performance metrics reflective of attention toward the AA and SA groups. 
To do so, for each participant ISC toward the AA group was subtracted from ISC 
toward the SA group. The score corresponding to narrative performance was 
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subtracted from the average of the affective sound score and beeps score (e.g. 
for a participant with a score of 10 for the narrative, a score of 26 for the affective 
sounds and a score of 16 for the beeps this thus results in a score of 10−(26 + 16)/2 
= − 11). We computed the correlations between the subtracted ISC metric and 
the subtracted performance-metric.

As an exploratory comparative analysis, we also computed correlations between 
the self-reported measures of mental effort, distraction and emotion with the 
performance metrics reflective of paid attention.

2.2.4.6. Short-stimulus response traces
To get an understanding of what drives possible effects of attentional instruc-
tion on PS, response traces were extracted for EEG, EDA and IBI in response 
to the beeps and affective sounds. EEG event-related potentials were obtained 
from the parietal site on the anterior-posterior midline of the scalp (Pz). We 
chose this location as responses here have been shown to reflect attentional, 
emotional and working memory processes (Polich and Kok, 1995; Polich, 2007; 
Hettich et al., 2016). Pre-processed EEG was cut in 1100 ms short stimulus-locked 
epochs (100 ms pre-stimulus onset, 1000 ms post-stimulus onset) and baseline 
corrected based on the average value of the 100 ms before stimulus onset. For 
the blocks of beeps, responses were locked to each beep in a block and then av-
eraged over all beeps in that block. Grand-average potentials were obtained by 
averaging over all participants in each condition. Running independent-sam-
ple t-tests were conducted to test for significant between-group differences 
over time. Tests were adjusted for multiple comparisons by controlling the false 
discovery rate (FDR) using the Benjamini–Hochberg procedure (Benjamini and 
Hochberg, 1995). In this procedure, р-values are sorted and ranked. The smallest 
value gets rank 1, the largest rank N. All р-values are then multiplied by N and di-
vided by their rank to obtain adjusted q values. The FDR threshold was set at q = 
.05. Phasic EDA and IBI were cut in 31 s stimulus-locked epochs (1 s pre-stimulus 
onset, 30 s post-stimulus onset) and baseline corrected based on the average 
value of the 1 s before stimulus onset. As for EEG, grand-average responses were 
obtained by averaging over all participants in each condition. Phasic EDA was 
standardized into z-scores - i.e. mean of zero, standard deviation of one - fol-
lowing (Ben‐Shakhar, 1985). Running independent t-tests corrected for multiple 
comparison using FDR were conducted to test for significant between-group 
differences over time.

2.3. Results

2.3.1. Physiological synchrony as a measure of selective attention
Figure 2-2 shows the within-group and between-group ISC averaged across AA 
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participants and SA participants in EEG, EDA and IBI. Within-group and be-
tween-group ISC of individual participants are plotted on top of the bars. Fig-
ure 2-2(a) shows ISC over the whole audiobook. Results for EEG are in line with 
our hypothesis. ISC are higher for participants when paired to participants from 
their own attentional group compared to participants from the other group. 
This is the case both for participants in the AA group (t(12) = 4.72, p = 10-4) and 
SA group (t(12) = 4.79, p = 10-4). EDA partly follows our hypothesis. Within-group 
PS is higher than between-group PS for SA participants (t(12) = 4.07, p = .002), 
but not for AA participants (t(12) = 0.74, p = .476). In IBI, no significant group-level 
effects were found: (AA: t(12) = 2.17, p = .051, SA: W = 1.64, p = .110). When assuming 
for each participant that she or he follows the attentional instruction as indicat-
ed by the group with whom she or he shows the highest averaged synchrony, 
classification accuracies are high and well above chance level, as shown in the 
first column of Table 2-1. Using this leave-one-participant-out paradigm, ISC in 
EEG correctly identifies the attentional condition of all but one of the partici-
pants. Using EDA and IBI, 73% of the participant are correctly identified. Figure 
2-2(b)–(d) shows ISC averaged across AA participants and SA participants when 
paired with participants of the AA group or SA group during beep presenta-
tion (b), affective sound presentation (c) and when considering only audiobook 
parts without interspersed stimuli (d). The classification accuracies are shown in 
columns two to four of Table 2-1. During beep presentation, ISC-EEG are clearly 
higher for SA participants when paired with other SA participants than when 
paired with AA participants (t(12) = 5.59, p = 10-4). AA participants do not syn-
chronize more within-group than between-groups (t(12) = 2.05, p = .062). During 
affective sound presentation both groups have higher within-group PS than 
between-group PS (AA: t(12) = 2.35, p = .037; SA: t(12) = 2.26, p = .043). Overall, 
classification accuracy is lower rather than higher with respect to the whole 
audiobook, both during the beeps (88%) and especially during affective sounds 
(73%). When excluding experiment parts with interspersed stimulus presenta-
tion (audiobook only), AA participants clearly have stronger ISC with other par-
ticipants attending to the narrative, than with participants not attending to the 
narrative (t(12) = 5.05, p < .001). For SA participants there is no significant differ-
ence between ISC with respect to both groups (t(12) = 0.63, p = .541). In EDA sim-
ilar effects are found as in EEG. Figure 2-2 shows that again ISC during blocks 
of beeps are higher for SA participants when paired with participants in their 
own attentional group (t(12) = 4.66, p < .001), but this does not hold for AA par-
ticipants (t(12) = -1.52, p = .155). During affective sound presentation both groups 
have higher within-group than between-group PS (AA: t(12) = 2.40, p = .034; SA: 
t(12) = 2.34, p = .038). Compared to the whole stimulus, classification accuracy 
drops (69%) during beeps, but remains constant (73%) during affective sounds. 
When considering audiobook parts without interspersed stimulus presenta-
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tion, no significant differences are found (AA: t(12) = 1.15, p = .273; SA: t(12) = -0.34, 
p = .738). Classification accuracy is not significantly higher than chance (62%) for 
narrative only. Results for IBI differ from the other measures. During beep pre-
sentation IBI ISC are not higher within-group than between-groups for both AA 
(t(12) = -0.36, p = .725) and SA groups (t(12) = 0.09, p = .927). Also during affective 
sound presentation there are no higher ISC within-group than between-groups 
(AA: t(12) = -0.76, p = .460; SA: t(12) = 1.06, p = .310). Table 2-1 shows that these re-
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Figure 2-2. Within-group and between-group inter-subject correlations (ISC) for au-
diobook-attending participants (AA, left bars) and stimulus-attending participants 
(SA, right bars) for EEG, electrodermal activity (EDA) and inter-beat interval (IBI). a. 
shows ISC computed over the whole audiobook, b. when considering only parts with 
concurrent beep presentation, c. when considering only parts with concurrent affec-
tive sounds and d. when considering only audiobook parts without interspersed stim-
uli. Connected dots display participant-to-group ISC of each participant, where blue 
lines indicate participants for whom within-group ISC are higher than between-group 
ISC and pink dotted lines indicate individuals for whom between-group ISC are higher 
than within-group ISC. Paired sample t-test were conducted to test whether with-
in-group correlations were higher than between-group correlations (* p < .05 , ** p < 
.01, *** p < .005).
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sults are reflected in classification accuracies. Classification accuracies are not 
higher than chance level for beeps (58%) and affective sounds (42%). For the 
audiobook parts without interspersed stimuli, PS is higher within-group than 
between groups for AA participants (t(12) = 2.64, p = .022), but not for SA par-
ticipants (W = 1.57, p = .116). Classification accuracy is identical to performance 
considering the whole stimulus (73%). 

2.3.2. Correlations between physiological synchrony and perfor-
mance measures indicative of attentional focus
The results on the post-audio stimulus-content questionnaire confirmed that 
participants followed their attentional instructions. SA participants remem-
bered more affective sounds (Mdn = 6) than AA participants (Mdn = 4) (W = 2.68, 
p = .007) and more accurately estimated the number of beeps in the counting 
task than AA participants, with significantly smaller estimation error for SA par-
ticipants (Mdn = 1) than AA participants (Mdn = 10), (W = 2.82, p = .005). AA partic-
ipants recalled the narrative of the audiobook more accurately. They answered 
more questions about the narrative correctly (Mdn = 6) than SA participants 
(Mdn = 3), (Z = 2.68, p = .007). Strong attentional focus, following the instruction 
to attend either to the narrative or to the short stimuli, can be expected to result 
in high performance on respectively the AA or the SA questionnaires and high 
ISC toward the AA and SA group. To investigate whether ISC were predictive of 
performance on the questionnaires, we computed correlations of the direction-
al synchrony measures ISC-AA and ISC-SA with the questionnaire performance 
measures. Table 2-2 shows the correlation coefficients r and corresponding p 
values for the different combinations. In the grey cells we hypothesized posi-

Table 2-1. The percentage of participants of which the attentional condition is correct-
ly identified using inter-subject-correlations in EEG, electrodermal activity (EDA) and 
inter-beat interval (IBI) considering all four time intervals. In brackets the mean and 
standard deviation chance level classification performance is shown. Bold text depict 
classification accuracies significantly higher than this chance level distribution. p-val-
ues are shown in the table.

Whole audiobook Beeps Affective sounds Audiobook only

EEG
96 (49 ± 11)

p < .001

88 (52 ± 13)

p < .001

73 (50 ± 13)

p = .037

73  (50 ± 10)

p = .010

EDA
73 (50 ± 10)

p = .009

69 (50 ± 10)

p = .032

73 (49 ± 10)

p = .009

62 (49 ± 11)

p = .115

IBI
73 (50 ± 11)

p = .009

58 (52 ± 9)

p = .266

42 (49 ± 10)

p = .742

73 (50 ± 10)

p = .009
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tive correlations: attending to short stimuli would result in both high ISC with 
respect to the SA group and high performance on the questions about the af-
fective sounds and beeps; attending to the narrative would result in both high 
ISC with respect to the AA group and high performance on the questions about 
the narrative. The significant correlations are shown in bold. For EEG, results are 
in line with our hypothesis. ISC with respect to the SA group strongly correlates 
with the number of reproduced affective sounds, whereas ISC with respect to 
the AA group strongly correlates with the number of correctly answered narra-
tive questions. In IBI, ISC with respect to the AA group is also significantly cor-
related with the number of correctly answered narrative questions. Correlations 
were not significant for the other combinations in the grey cells. However, cor-
relations tend to be positive in the grey cells, and negative in the other cells as 

Table 2-2. Correlation coefficients (r) and corresponding p-values between inter-sub-
ject correlations (ISC) with the audiobook-attending group or stimulus-attending 
group and the number of correctly answered narrative questions, the number of re-
produced affective sounds, estimated average number of beeps, for EEG, electroder-
mal activity (EDA) and inter-beat interval (IBI). Additionally, correlations between the 
difference of ISC toward the Audiobook Attending group and ISC toward the Stimulus 
Attending group with the difference of the performance metrics are shown. Bold text 
depicts significant correlations. Italics depicts hypothesized positive correlations.

ISC toward Audiobook 
Attending group

ISC toward Stimulus 
Attending group

Ranked performance 
of number of correctly 
answered narrative 
questions

EEG r = .50, p = .010 r = -.01, p = .978

EDA r = -.16, p = .462 r = -.28, p = .168

IBI r = .59, p = .002 r = .08, p = .697

Ranked performance of 
number of reproduced 
affective sounds

EEG r = -.02, p = .912 r = .61, p = .001

EDA r = .00, p = .985 r = .16, p = .453

IBI r = -.09, p = .686 r = .08, p = .715

Ranked performance 
of estimated average 
number of beeps

EEG r = -.11, p = .615 r = .38, p = .071

EDA r = -.19, p = .387 r = -.06, p = .770

IBI r = -.04, p = .858 r = .18, p = .402

Difference between ISC toward Audiobook Attending group 
and ISC toward Stimulus Attending group

Ranked performance 
difference

EEG r = .65, p = .001

EDA r = .34, p = .128

IBI r = .61, p = .003
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might be expected when attending to the one aspect (narrative or short stim-
uli) decreases performance on questions about the other aspect (short stimuli 
or narrative). Some participants might be able to attend to all of the stimulus 
content while others might not even be able to attend to their own stimulus 
content. We tested whether the difference between the directional synchrony 
measures was also predictive of the difference between the performance met-
rics. Table 2-2 therefore also shows correlations between ISC-SA minus ISC-AA 
with the difference in performance on SA and AA questionnaires. Correlations 
are in line with our hypothesis, with strong positive significant correlations for 
EEG and IBI.

Table 2-3 shows that none of the self-reported measures of distraction and men-
tal effort predicted performance on post-stimulus questions for SA participants. 
For AA participants, reported overall mental effort predicted the number of cor-
rectly answered narrative questions (r = -0.56, p = .045), where a high reported 
mental effort was associated with low performance. Reported distraction by the 

Table 2-3. Correlations coefficients (r) and corresponding p-values between self-re-
ported measures of distraction and mental effort with performance metrics reflec-
tive of paid attention. In all cells with text we hypothesized correlations. In the case of 
self-reported distraction, these were expected to be negative, in the case of mental 
effort these correlations could be either negative or positive. Cells with significant cor-
relations are depicted in bold.

Audiobook Attending Stimulus Attending

Ranked performance 
of number of correctly 
answered narrative 
questions

Ranked performance 
of number of 
reproduced affective 
sounds

Ranked performance 
of number of estimate 
average number of 
beeps

Distraction by the 
other stream of audio

r = -.22, p = .465 r = -.20, p = .529 r = -.11, p = .738

Mental effort during 
the experiment

r = -.56, p = .045 r = -.18, p = .586 r = .25, p = .465

Distraction by blocks 
of beeps

r = -.66, p = .015 x x

Distraction by 
affective sounds

r = .00, p = .999 x x

Distraction by the 
audiobook

x r = -.21, p = .512 r = -.12, p = .735

Mental effort during 
beep counting

x x r = .25, p = .461
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beep blocks correlated negatively with performance (r = -0.66, p = .015), while no 
significant correlations were found between self-reported distraction and dis-
traction by the affective sounds with performance on the narrative questions. 

2.3.3. Stimulus-locked response traces
In the first section of the Results, the effect of interspersed stimulus presen-
tation on ISC was presented. In this section we further focus on epochs with 
interspersed stimuli to investigate their effect on the physiological responses. 
Figure 2-3 shows midline parietal (Pz) event-related potentials, time-locked to 
interspersed stimulus onset (respectively beeps and affective sounds). Indepen-
dent-sample running t-tests corrected for multiple comparisons revealed sig-
nificant between-group differences (q < .05) in response toward the beeps, with 
larger deflections in SA participants than AA participants. In response to affec-
tive sounds, no between-group differences in responses were found. Figure 2-3 
also shows response traces for standardized phasic EDA and IBI. Although for 
EDA, on average responses of SA participants seem to show larger deflections 
than those of AA participants, statistical tests do not reveal significant between 
group differences in response to any of the stimuli. For IBI, response traces are 
very similar and no significant between-group differences were found.

2.4. Discussion

2.4.1. Summary of findings
In the current study we determined physiological synchrony (PS) through in-
ter-subject correlations (ISC) in EEG, EDA and IBI to determine the selective at-
tentional focus of individuals who were all presented with the same auditory 
stimulus and were all attending to it, but were attending to different stimulus 
aspects. PS in all three modalities was associated with selective attention. EEG 
and EDA responses of participants were more synchronized with those of par-
ticipants sharing attentional focus than with those of participants attending to 
other stimulus aspects, but for IBI no significant effects were found. Using the 
correlations of an individual’s EEG with the two groups of differently attending 
individuals as a predictor of attentional instruction resulted in a classification 
accuracy of 96%. For EDA and IBI, accuracies of 73% were reached. All of the 
classification accuracies are well above chance level. Even when only data was 
included coming from ‘audiobook only’ intervals, classification performance 
was above chance level for EEG and IBI, although not for EDA. The level of syn-
chrony toward the groups also correlated with post-stimulus performance met-
rics reflective of paid attention, reinforcing the validity of PS as measure of at-
tention and suggesting PS as a suitable predictor of performance. The results 
are framed in terms of a broader picture in the following sections.
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2.4.2. Physiological synchrony as measure of selective attention
This is not the first study associating PS in EEG with attentional engagement 
to naturalistic stimuli, but our study differs from previous studies in several im-
portant aspects. Rather than relating PS in EEG to shared attentional engage-
ment toward a single stream of information or distinguishing between atten-
tive and inattentive conditions (Cohen et al., 2018; Dmochowski et al., 2014, 2012; 
Ki et al., 2016), we here show that we can also distinguish between two different 
selective outward auditory attentional conditions with 96% accuracy. 

EDA and IBI performed quite well in distinguishing between groups too. To our 
best knowledge, this is the first time that PS in EDA or IBI was shown to be 
modulated by attentional focus only. The promising performance of these mea-

Figure 2-3. Midline parietal event-related EEG potentials, standardized phasic electro-
dermal responses (EDA) and inter-beat interval (IBI) time-locked to stimulus onset of a. 
the beeps in each block and b. affective sounds, averaged over Audiobook-Attending 
participants (blue, solid line) and Stimulus-Attending participants (pink, dotted line). 
The standard error of the mean across participants in each group is depicted in shad-
ed areas around the grand average potentials. Significant between-group differences 
(q < .05, corrected for multiple comparisons using false discovery rate) are depicted 
with gray areas in the potential plots.
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sures is important from a user perspective, as EDA and IBI can be more easily 
monitored in ambulatory environments than EEG. We must note that effects 
for IBI are not as strong as for EEG and EDA. Classification accuracies for the 
whole stimulus and audiobook-only-parts were at least as high or higher for 
IBI than for EDA. However, when considering the whole stimulus, ISC values in 
IBI were not significantly different for between- and within-attentional groups. 
As can be seen in the IBI panel in Figure 2-2(a), IBI ISC is higher within than 
between attentional groups for the same number of participants as in EDA, 
presented in the panel above it. However, because the size of this difference in 
IBI is relatively variable across participants, the statistical test did not produce a 
significant effect for IBI while it did for EDA. This may be explained by the fact 
that the relation between IBI and mental processing seems less straightfor-
ward, and more person dependent than for EDA. Whereas EDA has consistently 
shown a positive relation with arousal (Boucsein, 2012), IBI shows a more com-
plex relation with arousal, as both heart rate accelerations (e.g. Brouwer and 
Hogervorst, 2014) and heart rate decelerations (e.g. Brouwer et al., 2015a) have 
been reported. The reason for this is probably that arousal can be associated 
with the body being prepared for action (the defense reflex) or with a concen-
trated, focused state (the orienting reflex), that have been associated with heart 
rate accelerations and decelerations, respectively (Graham and Clifton, 1966). As 
increased physiological arousal has been associated with increased emotional 
and attentional engagement (Boucsein, 2012; Critchley, 2002), a more complex 
relation with arousal may result in attenuated PS in IBI for some participants.

2.4.3. Influence of interspersed stimuli on the identification of selec-
tive attention
We hypothesized that high classification performance would be driven by mo-
ments in the audiobook with concurrent stimulus presentation. We expected 
that in the large parts of the experiment where only the audiobook was played 
it was probably hard for SA participants to ignore the narrative. This would re-
sult in similar physiological activation across all participants. Our results sug-
gest otherwise. When considering parts of the audiobook where no stimuli 
were interspersed, classification accuracies were still above chance level for 
EEG and IBI, although not for EDA. EEG and IBI of AA participants were also 
found to synchronize significantly more with other AA participants than with 
SA participants, revealing the difference in shared attentional focus between 
participant groups, also during audiobook only. This result does not mean that 
PS was not influenced by the interspersed stimuli, although we did not find our 
hypothesized effect that classification accuracies would be higher when con-
sidering only data with concurrent stimulus presentation. This may partly be 
due to the specific chosen interspersed stimuli durations and presentation fre-



69

Physiological synchrony as measure of selective attention

2

quency. Nonetheless, during presentation of beeps and affective sounds, EEG 
and EDA of SA participants were much more strongly synchronized with the 
signals of other SA participants than with those of AA participants. Figure 2-2 
suggests that this effect is more pronounced than when considering the entire 
experiment. 

PS results were different for different modalities. Because mental workload 
mainly affects EEG, and because it is expected to respond in a similar way 
across participants to a well-timed, attended stimuli (Hogervorst et al., 2014), 
we hypothesized the group distinguishing capability of ISC in EEG to work well 
during the beep counting task. As emotional stimuli have been strongly related 
to sympathetic nervous system activity as measured through EDA (Boucsein, 
2012; Bradley and Lang, 2000), we hypothesized the group-distinguishing capa-
bility of ISC in EDA to work well during the affective sounds. Indeed, we found 
no strong drop in classification performance for EEG during the beeps as com-
pared to the whole stimulus and no strong drop for EDA during the affective 
sounds. In addition to this, ISC in IBI identified the selective attention relatively 
well during audiobook parts without interspersed stimuli. These findings sup-
port a multimodal approach that can exploit the particular strength of each 
neural and peripheral measure. Also note that that the attentional condition of 
all participants was correctly classified by at least one of the three physiological 
measures (see the identification of the selective attention for each participant 
and each physiological measure in Table 5 in the supplementary material). 

PS in different modalities are not only expected to differ in reflecting selective 
attention because they are associated with different types of mental activity, 
but also because they unfold on different timescales. Whereas EEG unfolds in 
the range of milliseconds, response latencies of the peripheral physiological 
measures are two orders of magnitude larger. Especially when interested in fu-
sion data from all three sensors into a single index of multimodal PS, the issue 
of timescales has to be resolved in future work.

2.4.4. Behavioral performance and its association with physiological 
synchrony
We hypothesized that more synchronized physiological responses with respect 
to an attentional group would lead to better performance on the accompany-
ing post-stimulus questionnaires. Participants with high PS elicit physiologi-
cal activity that is similar to that of their peers and they are therefore thought 
to be more engaged with the stimulus (Cohen et al., 2017; Dmochowski et al., 
2014). For EEG, this has indeed been found to result in correlations with per-
formance on immediate and delayed memory retention questions (Cohen et 
al., 2018; Cohen and Parra, 2016). Following our hypothesis, ISC in EEG strongly 
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correlated with performance on questionnaires reflective of paid attention. The 
degree of synchrony with respect to AA participants predicted performance on 
questions about the narrative, whereas the degree of synchrony with respect 
to SA participants predicted performance on questions about the short stimuli. 
Also in IBI the degree of synchrony with the SA group predicted short-stim-
ulus retention. For both EEG and IBI, we also found that the degree to which 
participants synchronize more with one of the attentional groups significantly 
correlates with the degree to which they score better on that groups’ reten-
tion questions than on questions reflective of the other group’s content. This 
is important when monitoring selective attentional engagement. Rather than 
only being able to distinguish overall attentive individuals (generally high PS 
toward both attentional groups) from overall inattentive individuals (general-
ly low PS toward both attentional groups), this finding enables the identifica-
tion of well-focused individuals, that attend well to specific information, while 
shutting-off other information (high PS toward one attentional group, low PS 
toward the other attentional group). These differences are found to be mean-
ingful in terms of performance. Simply asking participants how distracted they 
were by other stimulus aspects or how much mental effort they invested during 
the experiment was not as informative of performance on post-stimulus ques-
tions as measures of PS. Performance of AA participants on the questions about 
the narrative of the audiobook was predicted by the degree of invested mental 
effort and the degree of distraction by blocks of beeps. However, these results 
were inconsistent with other self-reported measures - performance on narra-
tive questions was not predicted by the degree of distraction by all interspersed 
stimuli. Furthermore, for SA participants none of the self-reported metrics of 
mental state predicted performance resulting in an incomplete view.

2.4.5. Interspersed stimulus response traces
To obtain an understanding of what drives the found effects of attentional 
instruction on PS, we locked the physiological response traces locked to the 
onset of the interspersed stimuli. We hypothesized larger deflections for SA 
participants than for AA participants. For the blocks of beeps, this hypothesis 
was confirmed; event-related responses in parietal EEG in response to beeps 
were significantly more deflected for SA participants than AA participants and 
responses of phasic EDA show a similar although non-significant effect. How-
ever, responses to affective sounds were indistinguishable between groups, 
with deflections for both attentional groups. Our stimuli, beeps and affective 
sounds, differed with respect to their capacity to draw attention. The blocks of 
beeps mainly attract attention through top-down mechanisms related to task 
instructions, whereas the affective sounds also attract attention through bot-
tom-up mechanisms related to salience or emotional relevance (Öhman et al., 
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2001). The affective sounds could thus be expected to attract attention of all 
participants and therefore to induce responses in physiological measures of all 
participants. This may have resulted in responses to affective sounds that were 
indistinguishable between groups.

2.4.6. Processes underlying physiological synchrony
Our findings, together with those of others who found PS in electroenceph-
alographic and hemodynamic cortical responses as a function of attentional 
instruction, suggest that neural correlates of cognitive processes are reliable 
and reproducible (Hasson et al., 2004, 2010; Furman et al., 2007; Jääskeläinen 
et al., 2008; Wilson et al., 2008). It is not yet clear which underlying processes 
are reflected in cortical synchronization. The inter-subject synchronization has 
been associated with a broad range of higher-level processes, such as memory 
encoding, emotional processing and stimulus preference (Furman et al., 2007; 
Hasson et al., 2008; Jääskeläinen et al., 2008; Wilson et al., 2008; Dumas et al., 
2010; Nummenmaa et al., 2012; Dmochowski et al., 2014; Ki et al., 2016). The sim-
ilarity of scalp topographies of the cortical correlated components across sen-
sory modalities indicates that the fundamental processes underlying cortical 
ISC are low-level and supramodal (Cohen and Parra, 2016; Ki et al., 2016). Our 
findings of synchrony in peripheral measures suggest that both systems are to 
some degree influenced by the same high-level processes. Research has shown 
that sympathetic autonomic activity is indeed influenced by higher subcortical 
and cortical brain areas implicated in high-level processes of attention, emo-
tion and motivation (Kaada, 1951; Neafsey, 1991). Some of these brain areas were 
found to covariate with synchronization in EEG of participants sharing atten-
tion to a narrative visual stimulus (Dmochowski et al., 2014). It may be the case 
that activation of the autonomic measures is induced through mechanisms of 
arousal, as increased attention has been shown to be associated with height-
ened arousal (Critchley, 2002). However, future research is needed to unravel 
the underlying mechanisms of PS in cortical and autonomic measures. 

Nonetheless, determining how strongly physiological measures synchronize 
across individuals is a valuable way to monitor attentional or emotional engage-
ment. The simplicity of the current analysis may make this a valuable approach 
compared to other ways to determine emotional or attentional engagement 
using physiological variables. A common approach for the assessment of at-
tention or engagement in this field is based on supervised learning algorithms, 
where a machine learning model is trained to predict attentional engagement 
(Liu et al., 2013; Aliakbaryhosseinabadi et al., 2017) or emotional engagement 
(Bailenson et al., 2008) from a feature set of physiological variables. These ap-
proaches require labeled training data, i.e. a set of physiological responses that 
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are labeled with the degree of attentional or emotional engagement. Not only is 
this time-consuming, it is also very difficult to determine a ‘ground truth’ men-
tal state than can be used for data labeling (Brouwer et al., 2015b). Determining 
the degree of PS does not depend on labeled training data. This is especially 
valuable when there is limited information about events in the world, as is the 
case in real-world environments like classrooms, where it is difficult to obtain a 
set of labeled training data.

2.4.7. Future work
While the current study and analyses produced interesting findings, there are 
a number of topics we have in mind in order to improve and add to our current 
results. Firstly, we will investigate ways of combining PS in the three modalities 
into one multimodal measure of PS. 

Furthermore, in the current work PS in EDA and IBI was computed using simple 
Pearson correlations in moving windows. While this method is computational-
ly inexpensive and easily adaptable for online use, limitations of the method 
include oversampling as a result of overlapping windows as well as potential-
ly spurious correlations as a result of not controlling for autocorrelation (Lev-
enson and Gottman, 1983). While such correlations would not explain the dif-
ference between selective attentional conditions, they could influence overall 
correlation levels. Future research could investigate whether other methods of 
synchrony assessment would result in similar findings. Synchrony assessment 
would not even have to be limited to the time domain, but could also include 
frequency domain metrics, such as wavelet coherence in IBI (Quer et al., 2016) 
or one of the many coherence metrics in neural measures (Babiloni and As-
tolfi, 2014). An innovative method of synchrony assessment for ECG was pre-
sented by (Verdiere et al., 2020) who analyzed concurrent ECG peaks and found 
this to be a relatively effective method to detect concurrent, high workload in 
teams. Future work could also compare the currently obtained results with oth-
er methods of attention monitoring. For example, (Ki et al., 2016) showed that 
not only EEG ISC but also alpha power could distinguish naturally attending 
participants form inward focused participants, be it with a weaker modulation. 

Finally, we want to suggest future work to focus on more unsupervised mecha-
nisms identifying groups with different attentional focus. Unsupervised cluster-
ing techniques may be applied to this dataset. As we encourage other research-
ers to test other synchrony metrics or classification paradigms, the MATLAB 
scripts and physiological data reproducing the results in this study are publicly 
available on https://github.com/ivostuldreher/physiologicalsynchrony-selec-
tive-attention.
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2.5. Conclusion
In this study we monitored EEG, EDA and IBI responses and assessed phys-
iological synchrony within and between groups, that were either instructed 
to focus attention on an audiobook or on interspersed auditory stimuli. We 
showed that PS in neural and autonomic measures reflects selective attention-
al engagement. Out of the complete set of measures, EEG showed the best 
results, with strong group-level differences and correct identification of the se-
lective attentional focus in 96% of the cases. PS in EDA and IBI also showed 
good results, with significant group level differences in EDA and classification 
accuracies of 73%. Even when only data was included coming from ‘audiobook 
only’ time intervals, classification performance was above chance level for EEG 
and IBI, though not for EDA. The level of synchrony toward the groups also pre-
dicted performance on post-stimulus questions reflective of paid attention. Our 
results support that synchrony in physiological responses with others reflects 
selective attentional engagement. To our best knowledge this is the first time 
PS has been monitored in neural and autonomic measures concurrently. The 
relatively high classification accuracies with the use of PS in EDA and IBI are 
convenient from a user perspective and should enable researchers to monitor 
PS in autonomic measures in situations where intrusive neural measurements 
are not suited. However, as each modality performed relatively good in specific 
stimulus conditions, we also have the ambition to combine the physiological 
measures into a multimodal index of PS. Work in this area may lead to applica-
tions for evaluating educational material or provide feedback to educators or 
other types of presenters in real time.
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Abstract
Interpersonal physiological synchrony (PS), or the similarity of physiological sig-
nals between individuals over time, may be used to detect attentionally engag-
ing moments in time. We here investigated whether PS in the electroencepha-
logram (EEG), electrodermal activity (EDA), heart rate and a multimodal metric 
signals the occurrence of attentionally relevant events in time in two groups 
of participants. Both groups were presented with the same auditory stimulus, 
but were instructed to attend either to the narrative of an audiobook (audio-
book-attending: AA group) or to interspersed emotional sounds and beeps 
(stimulus-attending: SA group). We hypothesized that emotional sounds could 
be detected in both groups as they are expected to draw attention involuntari-
ly, in a bottom-up fashion. Indeed, we found this to be the case for PS in EDA 
or the multimodal metric. Beeps, that are expected to be only relevant due to 
specific “top-down” attentional instructions, could indeed only be detected us-
ing PS among SA participants, for EDA, EEG and the multimodal metric. We 
further hypothesized that moments in the audiobook accompanied by high 
PS in either EEG, EDA, heart rate or the multimodal metric for AA participants 
would be rated as more engaging by an independent group of participants 
compared to moments corresponding to low PS. This hypothesis was not sup-
ported. Our results show that PS can support the detection of attentionally en-
gaging events over time. Currently, the relation between PS and engagement 
is only established for well-defined, interspersed stimuli, whereas the relation 
between PS and a more abstract self-reported metric of engagement over 
time has not been established. As the relation between PS and engagement 
is dependent on event type and physiological measure, we suggest to choose 
a measure matching with the stimulus of interest. When the stimulus type is 
unknown, a multimodal metric is most robust.
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3.1. Introduction
Knowing what events in the external environment people attend to, and how 
their shared attentional engagement to events varies over time, can be use-
ful in a range of settings, from evaluating educational or entertaining materi-
al, to real time adjustment of important instructions. Unlike explicit measures, 
such as questionnaires in which people are asked to specify their attentional 
engagement, physiological signals can provide continuous and implicit infor-
mation on mental state (Zander and Kothe, 2011). However, the link between 
mental state and physiological measures [e.g., electroencephalography (EEG), 
electrodermal activity (EDA) or heart rate] is not straightforward (Brouwer et al., 
2015b). A popular approach to uncover the complex links between physiology 
and mental state is the use of supervised learning algorithms. These algorithms 
predict mental state based on a set of features extracted from physiological 
variables (Hamadicharef et al., 2009; Hussain et al., 2011; Fleureau et al., 2012; Liu 
et al., 2013; Aliakbaryhosseinabadi et al., 2017). A disadvantage of these types of 
analyses is the need for labeled training data, i.e., a set of physiological data that 
are labeled with a known value for the mental state of interest. Not only is it time 
consuming to obtain such a labeled dataset, it is also very difficult to determine 
the ‘ground truth’ mental state than can be used for data labeling (Brouwer et 
al., 2015b). A second drawback of these supervised learning approaches is that 
classification is often limited to a small number of discrete states. Attentional, 
emotional or cognitive state, however, cannot realistically be represented by a 
small number of discrete states, but are naturally of more continuous nature 
(Zehetleitner et al., 2012; Rosenberg et al., 2013).

For monitoring attentional engagement, an approach that may be suited to 
circumvent both of the abovementioned problems is to monitor the physio-
logical synchrony (PS) between individuals. PS is the degree to which physio-
logical measures of multiple people uniformly change. Studies exploring PS in 
functional magnetic resonance imaging data have revealed strong voxel-wise 
inter-subject correlations across participants exposed to a common narrative 
stimulus (Hasson et al., 2004, 2010; Hanson et al., 2009). In the faster EEG sig-
nals, similar results were found (Dmochowski et al., 2012, 2014). The fast-chang-
ing EEG enabled the computation of a continuous measure of PS in time and 
suggested that moments of high PS corresponded with emotionally arousing 
scenes of the movie clips (Poulsen et al., 2017). For instance, high PS was found 
when scenes were viewed that involved the threat of a gun. Dmochowski et 
al. (2014) further showed that moment-to-moment variation in the PS predict-
ed the general expressions of interest and attention of the public as indicated 
by number of tweets during a popular television series. Davidesco et al. (2019) 
found that PS over time indicated what specific information was retained by 
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students in a lecture. Namely, PS was higher in lecture parts that provided an-
swers for questions that students answered incorrectly in the pre-test and cor-
rectly in the delayed post-test than for questions where students’ answers did 
not change. The relationship between neural PS and attentional engagement 
was also found to be less complex than most traditional physiological metrics. 
Neural PS was found to be directly proportional to attentional engagement, 
as strong correlations were found between PS and performance on question-
naires reflective of paid attention (Cohen and Parra, 2016; Cohen et al., 2018; Stul-
dreher et al., 2020b). This directly proportional relationship may thus be used to 
circumvent supervised learning approaches and the problems that come with 
such approaches, such as the dependency on labeled training data.

In the current work, we aim to employ the relation between PS and attentional 
engagement to detect the occurrence of attentionally relevant events in time. 
Rather than limiting the analyses to EEG, we also include PS measures of pe-
ripheral nervous system activity (EDA and heart rate), and quantify their com-
parative sensitivity of detecting relevant events. Up to recently, PS in peripheral 
physiological measures has been studied mainly as a metric of some form of 
affective connectedness between individuals (reviewed by Palumbo et al., 2017). 
Examples include peripheral PS in therapist-patient dyads as a measure of psy-
chotherapy success (Koole et al., 2020), in couples in marital counseling as a 
measure of therapy outcome (Tourunen et al., 2020) and as measure of collab-
orative learning (Malmberg et al., 2019). Positive results found in these contexts 
may (partly) be driven by shared attentional engagement to external events, as 
connectedness between people may be strongly associated with mutual atten-
tiveness (Tickle-Degnen and Rosenthal, 1990). Recently, it was found that PS in 
EDA and heart rate can indeed reflect shared attention toward narrative stimuli 
(Stuldreher et al., 2020b; Pérez et al., 2021).

The advantage of peripheral physiological measures over EEG is that they can 
be recorded more easily and less obtrusively. In addition, EEG and peripheral 
measures may complement each other since they likely reflect different men-
tal processes. EEG is, for example, sensitive to selective attention (Polich, 2007), 
whereas EDA and heart rate are sensitive to (emotional) arousal (Cacioppo et al., 
2000; Boucsein, 2012).

As of yet, it is unknown whether PS in EEG, EDA and heart rate can be used 
to detect relevant moments in time. For EDA and heart rate, time-resolved 
dynamics of PS have not been investigated at all in the context of attentional 
engagement. For EEG, time-resolved dynamics have been explored (see for in-
stance Dmochowski et al., 2014; Poulsen et al., 2017), but this has not been done 
systematically, using a-priori known cognitively or emotionally engaging stimu-
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li for which detection performance can be evaluated. We here evaluate whether 
PS in EEG, EDA and heart rate can be used to detect cognitively or emotionally 
relevant moments in time. Our goal is not to compare detection performance 
directly between the different types of stimuli, but to evaluate PS for a range 
of events differing in terms of total duration, sound onset, mental processes 
addressed and more. Just as in real-world conditions, some event may capture 
attention in a bottom-up fashion, related to salience or emotional relevance, 
whereas others may only capture attention due to top-down mechanisms re-
lated to task instruction (Lang, 1995; Öhman et al., 2001; Schupp et al., 2003). 
We invited participants to come to our lab and listen to an audiobook that was 
interspersed with short auditory events, that we expected to induce emotional 
and cognitive load. We divided the participants in two equal-sized groups. Par-
ticipants in the audiobook-attending group (AA) were instructed to focus their 
attention on the audiobook and ignore the interspersed stimuli. Participants in 
the stimulus-attending group (SA) were instructed to focus their attention on 
the interspersed stimuli and ignore the audiobook. In a previous paper on this 
experiment (Stuldreher et al., 2020b), we showed that PS can be used to cor-
rectly classify a listener as being instructed to attend to the audiobook or to the 
sounds. In the current paper, we use PS among individuals in the same group 
to predict the occurrence of interspersed stimuli over time, for each of the three 
physiological measures. In addition, we investigated if the PS across AA partic-
ipants was predictive of the occurrence of engaging moments in the book. We 
aimed to answer the following research questions:

Does PS in EEG and EDA, heart rate and a multimodal metric predict the oc-
currence of attentionally engaging moments in time? And does this depend on 
the attentional instruction, type of stimuli and physiological measure?

We expect that interspersed stimulus detection performance of PS measures 
depends on combinations of the attentional group (AA or SA), the interspersed 
stimulus type (emotional sounds or beeps) and the physiological measure (EEG 
and EDA, heart rate or the multimodal metric). We hypothesized the following;

(1) Attentional instruction and stimulus type: (a) for the SA group, detection per-
formance based on PS is above chance for all interspersed stimuli. (b) For the 
AA group, detection performance based on PS is above chance for emotional 
sounds, since these attract attention through bottom-up mechanisms related 
to salience or emotional relevance (Lang, 1995; Öhman et al., 2001; Schupp et 
al., 2003) irrespective of task instruction. (c) For the AA group, detection per-
formance based on PS is not above chance for beeps, as these are expected 
to mainly attract attention through top-down mechanisms related to task-in-
structions.
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(2) Physiological measure and stimulus type (a) PS based on peripheral signals 
(EDA and heart rate) performs better on the detection of emotional sounds 
than on beeps, because they primarily reflect emotional state (Cacioppo et al., 
2000; Boucsein, 2012). (b) PS based on EEG performs better on the detection 
of beeps than on the detection of emotional sounds, because they primarily 
reflect top-down selective attention or mental effort (Hogervorst et al., 2014).

(3) Combining physiological measures: combining the physiological measures 
into a single multimodal metric of PS would result in relatively high detection 
accuracies when disregarding the differences between stimulus types.

While for the SA group, the timing of short stimuli serve as “ground truth” rel-
evant events to compare to the moments of high PS, we do not know a priori 
what constitutes relevant events or engaging moments in the audiobook. We 
therefore investigate ratings of post-hoc determined moments of high and low 
PS in the audiobook by an independent group of participants. We hypothesized 
that;

(4) Events in audiobook: moments of the audiobook that were associated with 
high PS in the AA group are rated as more engaging than moments of the au-
diobook that were associated with low PS.

3.2. Materials and methods

3.2.1. Participants
Twenty-seven participants (17 female), between 18 and 48 years old, with an av-
erage of 31.6 years and a standard deviation of 9.8 years, were recruited through 
the institute’s participant pool. Before performing the study, approval was ob-
tained from the TNO Institutional Review Board (IRB). The approval is registered 
under the reference 2018–70. Prior to the experiment all participants signed in-
formed consent, in accordance with the Declaration of Helsinki. After signing, 
all participants were randomly assigned to either the AA group or the SA group. 
After the experiment they received a small monetary reward for their time and 
traveling costs. None of the participants indicated problems in hearing or atten-
tion. Data of one participant were discarded due to failed physiological record-
ings, resulting in two equal-sized groups.

3.2.2. Materials
EEG, EDA, and electrocardiogram (ECG) were recorded at 1024 Hz using an Ac-
tiveTwo Mk II system (BioSemi, Amsterdam, Netherlands). EEG was recorded 
with 32 active Ag-AgCl electrodes, placed on the scalp according to the 10–20 
system, together with a common mode sense active electrode and driven right 
leg passive electrode for referencing. The electrode impedance threshold was 
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maintained below 20 kOhm. For EDA, two passive gelled Nihon Kohden elec-
trodes were placed on the ventral side of the distal phalanges of the middle and 
index finger. For ECG, two active gelled Ag-AgCl electrodes were placed at the 
right clavicle and lowest floating left rib. EDA and heart rate were also recorded 
using wearable systems (Movisens EdaMove 4 and Wahoo Tickr, respectively). 
These data are discussed elsewhere (Borovac et al., 2020; Van Beers et al., 2020).

3.2.3. Stimuli and design
Participants performed the experiment one by one. Each participant was pre-
sented with the exact same audio file, composed of a 66 min audiobook (a Dutch 
thriller “Zure koekjes,” written by Corine Hartman) interspersed with other short, 
auditory stimuli. Half of the participants were asked to focus on the narrative of 
the audiobook and ignore all other stimuli or instructions (AA group); and half 
of the participants were asked to focus on the short, interspersed stimuli and 
perform accompanying tasks, and ignore the narrative (SA group). The auditory 
stimuli were 36 emotional sounds, 27 blocks of beeps that SA participants had 
to keep track of, and an auditory instruction to sing a song. The order of sounds 
and beeps was randomly determined but was identical for each participant. In-
ter-stimulus intervals varied between 35 and 55 s, with an average of 45 s and a 
standard deviation of 6.1 s. We selected these stimuli to evaluate PS for a broad 
range of events, differing in e.g., audio profile and expected effect on mental 
processes as a function of task instructions.

Emotional sounds were taken from the second version of the Internation-
al Affective Digitized Sounds (IADS) (Bradley and Lang, 2007a). The IADS is a 
collection of 6-s acoustic stimuli that have been normatively rated for valence 
(positive or negative affect), arousal and dominance. Examples of stimuli are 
the sound of a crying baby or a cheering sports crowd. We selected 12 neutral 
sounds (IADS number 246, 262, 373, 376, 382, 627, 698, 700, 708, 720, 723, 728), 
12 pleasant sounds (110, 200, 201, 202, 311, 352, 353, 365, 366, 367, 415, 717) and 12 
unpleasant sounds (115, 255, 260, 276, 277, 278, 279, 285, 286, 290, 292, 422) based 
on their normative ratings of valence and arousal. We expected these sounds 
to attract attention of all participants, even those instructed to ignore the inter-
spersed sounds.

Beeps were presented in blocks of 30 s, with every 2 s a 100 ms high (1 kHz) 
or low (250 Hz) pitched beep. SA participants needed to separately count the 
number of high and low beeps presented in a block, as in (De Dieuleveult et al., 
2018). This task was practiced with them beforehand. In total, 27 blocks of beeps 
were presented. We expected these sounds to only attract attention of partici-
pants clearly instructed to keep track of them.
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Toward the end of the audiobook, the instruction was presented to sing a song 
aloud after a subsequent auditory countdown reached 0. This instruction had 
to be followed by the SA group and was expected to induce stress and a strong 
increase in EDA and heart rate (Brouwer and Hogervorst, 2014). For the cur-
rent analyses, data following the onset of this stimulus were discarded, because 
some participants started singing before the counter reached 0. This prohibited 
analysis of the data in terms of mental processes due to confounding move-
ment effects and artifacts in the data recording.

In total, we consider 3,800 s of data in further analyses, out of which 1,026 s in-
volved concurrent presentation of the audiobook and interspersed stimuli.

3.2.4. Analysis

3.2.4.1. Pre-processing
Data processing was done using MATLAB 2019a software (Mathworks, Natick, 
MA, United States). For EEG pre-processing we also used EEGLAB v14.1.2 for MAT-
LAB (Delorme and Makeig, 2004). To remove potentials not reflecting sources of 
neural activity, but ocular or muscle-related artifacts, logistic infomax indepen-
dent component analysis (ICA) (Bell and Sejnowski, 1995) was performed. EEG 
was first down sampled to 256 Hz and high-pass filtered at 1 Hz. This relatively 
high cut-off frequency has shown to work better for ICA compared to lower 
cut-off frequencies (Winkler et al., 2015). Data were then notch filtered at 50 
Hz, using the standard FIR-filter implemented in EEGLAB function pop_eegfilt-
new. ICA was performed and the Multiple Artifact Rejection Algorithm (MARA) 
(Winkler et al., 2011) was used to identify artifactual independent components, 
i.e., components not reflecting sources of neural activity, but ocular or mus-
cle-related artifacts. These components were removed from re-referenced, but 
uncleaned data. In these data, samples whose squared amplitude magnitude 
exceeded the mean-squared amplitude of that channel by more than four stan-
dard deviations were marked as missing data (“NaN”) in an iterative way with 
four repetitions. By doing so, 0.82 % of data were marked as missing.

EDA was downsampled to 32 Hz. The fast changing phasic and slowly varying 
tonic components of the signal were extracted using Continuous Decomposi-
tion Analysis as implemented in the Ledalab toolbox for MATLAB (Benedek and 
Kaernbach, 2010). In the further analyses we use the phasic component of the 
signal as this component of the EDA signal is mainly related to responses to 
external stimuli.

ECG measurements were processed to acquire the inter-beat interval (IBI – 
inversely proportional to heart rate). After downsampling to 256 Hz, ECG was 
high-pass filtered at 0.5 Hz. Peaks were detected following Pan and Tompkins 
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(1985). The IBI semi-time series was transformed into a timeseries by interpolat-
ing consecutive intervals and resampling at 32 Hz.

3.2.4.2. Computation of inter-subject correlations as measure of physiological 
synchrony
We computed PS by measuring the inter-subject correlations of the neurophys-
iological signals. For EEG, rather than treating the signals from the 32 channels 
separately, we evaluated the inter-subject correlations in the correlated com-
ponents of the EEG (Dmochowski et al., 2012, 2014). The goal of the correlat-
ed component analysis is to find underlying neural sources that are maximally 
correlated between participants, based on linear combinations of electrodes. 
Components were extracted separately from the AA group and SA group. EEG 
data from each participant were projected on the component vectors. Partic-
ipant-to-group inter-subject correlations were then computed as the sum of 
correlations in the first three component projections, following (Dmochowski 
et al., 2012, 2014; Cohen and Parra, 2016; Ki et al., 2016; Cohen et al., 2018). Even 
though we used fewer participants in each attentional group than earlier work 
on auditory PS (e.g., Cohen and Parra, 2016; Ki et al., 2016), scalp projections of 
the components were very similar to those obtained in these earlier works, and 
our EEG PS values were in a similar range of 0.01 to 0.04. For the computation 
of time-resolved inter-subject correlations, correlations were computed in run-
ning 5 s windows at 1 s increments.

Inter-subject correlations in EDA and IBI were computed following (Marci et 
al., 2007). We computed Pearson correlations over successive, running 15 s win-
dows at 1 s increments as measure of time-resolved inter-subject correlations. 
Participant-to-group correlations were computed by averaging over all correla-
tions with all other participants in a group.

3.2.4.3. Physiological synchrony for the detection of interspersed stimuli
We designed a paradigm to detect relevant events using gradually increasing 
thresholds to capture the gradual nature of attentional engagement. Figure 
3-1 provides a visual explanation of our detection paradigm. Consider the EEG, 
EDA and IBI response traces that were recorded during the experiment. The 
timestamps of the data recordings can be separated in moments where in-
terspersed stimuli were presented and where an event detection would thus 
be considered correct (True) and moments where no interspersed stimuli were 
presented and where an event detection would be considered incorrect (False). 
Rather than using the raw physiological responses, the detection paradigm is 
based on the PS between the participants as a function of time. Now let us 
define a threshold t. The moments in time where the synchrony is higher than 
t are marked as an event (Positive) and the moments in time where the syn-
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chrony is lower than t are marked as a non-event (Negative). Rather than using 
a single value for t, we consider a gradually changing threshold t, ranging from 
the minimum inter-subject correlation value to the maximum inter-subject 
correlation value. For each iteration of t, we can now define the true positives 
(TP), false positives (FP), true negatives (TN) and false negatives (FN). Using this, 
the true-positive rate or sensitivity (TPR) is then computed as,

and the false-positive rate (FPR) or specificity as,

Plotting TPR against FPR provides the receiver operating curve (ROC). Detec-
tion performance was assessed using the standard metric of the area under the 

False
True

a.

Pa
rti

ci
pa

nt
Sy

nc
hr

on
y

b. c.

d. e. f.

Negative
Positive

Time
Time

Time

Time Time

Sy
nc

hr
on

y

Sy
nc

hr
on

y

AUC of ROC

Threshold

Threshold

TP
FP
TN
FN

Sy
nc

hr
on

y

Figure 3-1. Illustration of the event detection paradigm. a. Consider the physiological 
response traces recorded from N participants who were presented with the same ex-
ternal stimuli at the same time. The timestamps of the data recordings can be sepa-
rated in moments where events were presented and where an event detection would 
thus be correct (True) and moments where no events where presented and where an 
event detection would thus be incorrect (False). b. Rather than considering the raw 
physiological responses, the detection paradigm is based on the PS between the par-
ticipants. c. Now let us define a threshold t. The moments in time where the synchrony 
is higher than t are marked as an event (Positive) and the moments in time where the 
synchrony is lower than t are marked as a non-event (Negative). d. Rather than using 
a single value for t, we consider a gradually changing threshold t0 to tn, so that at t0 all 
data are marked as Positive and at tn all data are marked as Negative. e. For each itera-
tion t, we can now define the true positives (TP), false positives (FP), true negatives (TN), 
and false negatives (FN) and thus compute the true-positive rate (TPR) and false-pos-
itive rate (FPR). f. Plotting the FPR versus the TPR – both as a function of t – results in 
the receiver operating curve (ROC). Detection performance is defined as the standard 
metric of area under the ROC (AUC of ROC).
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ROC (AUC of ROC).

Chance level performance was assessed using permutations with randomized 
stimulus timing. In each permutation, the timing of all interspersed stimuli was 
randomized between the start and the end of the experiment. The same pro-
cedure as above was then applied to obtain the AUC of ROC metric of perfor-
mance with random stimuli. This procedure was performed on 1000 renditions 
of such randomized data.

The above-mentioned procedure was repeated 2 × 3 × 4 times, namely for:

(1) Two attentional groups; considering PS between AA participants and PS be-
tween SA participants.

(2) Three stimulus types; considering as events (True) either blocks of beeps, 
emotional sounds, or both of these.

(3) Four physiological measures in which PS is computed; EEG, EDA, heart rate 
and a multimodal metric that is composed of PS in EEG, EDA and heart rate. To 
compose this multimodal metric, the PS in EEG, EDA and heart rate were each 
z-scored. The multimodal PS value at each timestamp was then computed as 
the average of the z-scored PS values in EEG, EDA and heart rate at that time-
stamp, for all timestamps ranging from zero to the end of the experiment.

In each condition, one-tailed two-sample t-tests were conducted to test wheth-
er detection performance was higher than chance level performance.

3.2.4.4. Correspondence between physiological synchrony and reported en-
gagement with the audiobook
While for the SA group, the timing of short stimuli served as “ground truth” rel-
evant events to compare to the moments of high PS, we did not know a priori 
what constituted relevant, engaging moments in the audiobook. To systemat-
ically examine whether moments of high PS were associated with moments 
of high relevance in the audiobook, we performed a follow-up test in which a 
second cohort of participants judged clips of the audiobook that were found to 
be associated with either high or low PS. We recruited 29 participants through 
the Prolific online experiment environment. All participants signed informed 
consent before participating. The participants received a small monetary re-
ward for the invested time. We only included participants who indicated to be 
fluent in Dutch.

We selected clips based on continuous signals of PS among AA participants. 
We detected the positive and negative peaks in the signals using the ‘find-
peaks’ function in MATLAB. For each measure (EEG, EDA, heart rate and the 
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multimodal metric), the six peaks with highest positive peak-amplitude and six 
peaks with largest negative peak-amplitude were selected. For each detected 
peak, we created a 10 s sound clip, that was composed of the 10 s of audio before 
the detected peak. For four measures, this thus resulted in a total of 48 clips. 
Clips associated with peaks that were within 10 s of each other were considered 
to be overlapping, and were merged into one clip by using only the latest of the 
two clips in time. This resulted in a total of 38 clips that were presented to the 
participants.

The procedure of the online test was similar to the initial experiment. The par-
ticipants were first presented with the same audiostream that was presented 
to the initial cohort of participants. The participants were instructed as partici-
pants from the AA group, i.e., to focus their attention on the narrative of the au-
diobook and ignore any interspersed stimuli as much as possible. After listening 
to the book, the participants were asked the same questions about the content 
of the narrative as participants in the initial cohort. We then presented the par-
ticipants with the sound clips, each of them directly followed by a rating scale. 
Participants were instructed to rate the preceding clip using an 11-point Likert 
scale, ranging from 0 to 10. The lower the score, the more the participant’s expe-
rience corresponded to the words on the left side of the scale (Dutch: ‘verveeld’, 
‘kalm’, ‘ontspannen’; Translated to English: ‘bored’, ‘calm’, ‘relaxed’). The higher 
the score, the more the participant’s experience corresponded to the words on 
the right side of the scale (Dutch: ‘geïnteresseerd’, ‘geboeid’, ‘emotioneel’, ‘in-
tens’; Translated to English: ‘interested’, ‘fascinated’, ‘emotional’, ‘intense’). Us-
ing these words, we intended to capture mental states that are expected to be 
associated with perceiving relevant events, such as engagement, attention and 
arousal.

For each modality, we tested whether audio clips corresponding to a positive 
peak in PS were rated as more ‘engaging’ than audio clips corresponding to 
a negative peak in PS, using a Wilcoxon signed-rank test. Participants who 
answered less than three out of ten questions correctly on the questionnaire 
about the content of the audiobook were considered as not having participated 
seriously (AA participants in the main experiment answered 5.8 ± 2.0 questions 
correctly). This concerned three participants. Removing their data left us with 
data of 26 participants.

3.3. Results

3.3.1. Detection of interspersed stimuli using physiological synchrony
Figure 3-2 and Table 3-1 show our measure of interspersed stimuli detection 
performance, the AUC of ROC as described in the methods. It is presented sep-
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arately for AA and SA participants; in EEG, EDA, heart rate, and the multimodal 
metric; and for blocks of beeps, emotional sounds or both of these stimuli to-
gether as to-be identified events. Figure 3-2 and Table 3-1 also show the mean 
and standard deviation AUC of ROC of permutations with randomized event 
timing as a chance level baseline. Detection performance was largely in line 
with hypotheses 1 - 3. For the AA group, we found that, as expected, only the oc-
currence of emotional sounds could be predicted, using PS in EDA (p < .001) or 
the multimodal metric (p = .003). For the SA group, occurrences of beep blocks 
could be detected well above chance level by PS in EEG, EDA and the multi-
modal metric (p < .001, p = .002 and p < .001, respectively). The occurrence of 
emotional sounds could be detected significantly better than chance using PS 
in EDA, heart rate and the multimodal combination (p = .043, p = .023 and p=.011, 
respectively). When stimuli were not differentiated according to stimulus type, 
detection performance was well above chance level for PS in EEG (p < .001), EDA 
(p < .001) and the multimodal metric (p < .001), but not for PS in heart rate.

Table 3-1. AUC of ROC metric of stimulus detection performance using PS in EEG, 
EDA, IBI and a multi-modal combination of the three (MM).

AA SA

EEG EDA IBI MM EEG EDA IBI MM

Beep blocks
.506

(.500 ± 
.026)

p = .410

.470

(.500 ± 
.042)

p = .769

.463

(.500 ± 
.042)

p = .813

.468

(.500 ± 
.040)

p = .790

.642

(.499 ± 
.030)

p < .001

.627

(.501 ± 
.044)

p = .002

.475

(.498 ± 
.042)

p = .708

.635

(.499 ± 
.039)

p < .001

Emotional 
sounds

.540

(.502 ± 
.039)

p = .168

.658

(.501 ± 
.048)

p < .001

.576

(.500 ± 
.047)

p = .055

.629

(.501 ± 
.046)

p = .003

.505

(.498 ± 
.040)

p = .433

.580

(.500 ± 
.046)

p = .043

.592

(.500 ± 
.045)

p = .023

.604

(.500 ± 
.045)

p = .011

Both stimuli
.517

(.501 ± 
.023)

p = .238

.522

(.500 ± 
.036)

p = .273

.492

(.500 ± 
.036)

p = .596

.512

(.501 ± 
.034)

p = .370

.621

(.499 ± 
.026)

p < .001

.631

(.501 ± 
.036)

p < .001

.507

(.499 ± 
.036)

p = .415

.644

(.499 ± 
.033)

p < .001
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3.3.2. Correspondence between physiological synchrony and report-
ed engagement
Figure 3-3 shows engagement ratings of audio clips corresponding to positive 
peaks and ratings of audio clips corresponding to negative peaks for PS in EEG, 
EDA, heart rate and the multimodal metric. Results did not follow our hypothe-
sis that audio clips corresponding to positive peaks were rated as more engag-
ing than audio clips corresponding to negative peaks. In fact, in EEG and EDA 
the opposite effect was found (Wilcoxon test statistic: W = -3.06, p = .002; W = 
-3.44, p < .001, respectively). In heart rate and the multimodal metric no signif-
icant difference between ratings corresponding to either positive or negative 
peaks was found (W = 0.70, p = .486, W = 0.87, p = .385).

3.4. Discussion
In the sections below, the hypotheses as stated in the Introduction are dis-

Figure 3-2. AUC of ROC metric of stimulus detection performance using PS in EEG, 
EDA, IBI and a multi-modal combination of the three (MM). Performance is shown 
for the AA and SA groups, when considering only beep blocks or emotional sounds as 
true positives and when considering both types of stimuli as true positives. In addition, 
the mean and standard deviation chance level detection performance based on 1,000 
renditions with randomized stimulus timing is shown with test results comparing de-
tection performance to chance level (*p < .05,**p < .01, ***p < .001). Note that for the AA 
group, the emotional sounds but not the beeps are expected to draw (bottom-up) 
attention, i.e., for the AA group we expect high AUC for emotional sounds only. For the 
SA group, both beep sequences and emotional sounds are relevant and expected to 
draw attention.



89

Physiological synchrony detects events in time

3

cussed separately.

3.4.1. Hypothesis 1: attentional instruction and stimulus type
We hypothesized that interspersed stimulus detection performance would de-
pend on the attentional group (AA or SA) and the interspersed stimulus type 
(emotional sounds or beeps), due to bottom-up and top-down mechanisms of 
attention (Lang, 1995; Öhman et al., 2001; Schupp et al., 2003). For the SA group, 
we hypothesized that detection performance based on PS would be above 
chance for all interspersed stimuli, whereas for the AA group we hypothesized 
that detection performance would be above chance only for emotional sounds, 
but not for beeps. Results were largely in line with this hypothesis: for the AA 
group only the emotional sounds were detected with an accuracy above chance 
level, whereas for the SA group both stimulus types could be detected with 
above chance level accuracy. Note again that detection performance cannot be 
directly compared between the different stimulus conditions. There were dif-
ferences in detection performance between the used physiological measures, 
these are discussed in the next section.

3.4.2. Hypothesis 2: physiological measure and stimulus type
Besides the dependency of detection performance on the attentional group 
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Figure 3-3. Self-reported engagement scores for audio clips corresponding to mo-
ments in the audiobook with high PS (blue, open markers) or low PS (pink, closed 
markers) in EEG, EDA, IBI and the multimodal metric (MM) (**p < .01, ***p < .001).
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and interspersed stimulus type, we expected that detection performance 
would depend on the used physiological measure and stimulus type. As hy-
pothesized, EEG worked best for the detection of blocks of beeps, while it did 
not work well for the detection of emotional sounds. We also found EDA to per-
form well for detecting blocks of beeps. For the detection of emotional sounds, 
we hypothesized that the peripheral measures (EDA and heart rate) would per-
form well relative to EEG. Indeed, for both attentional groups, PS in EDA and 
heart rate perform relatively well for the detection of emotional sounds. De-
tection performance was significantly above chance using EDA in both groups 
and using heart rate in the SA group, and near significance (p = .055) using 
heart rate in the AA group, whereas detection performance using PS in EEG 
was far from significant for emotional sounds in both groups. We think that 
the observed EEG PS differences between the types of stimuli are the result 
of both the difference in mental processing (top-down, effortful attention for 
beeps, versus bottom-up, affective processing for emotional sounds) and low 
level stimulus features. The beep blocks consisted of precisely-timed, repeated 
beep occurrences, with constant sound levels, while our emotional stimuli con-
sisted of sounds with irregular sound profiles. The positive results obtained with 
peripheral measures provide further insight in the mechanisms underlying PS. 
Whereas previous findings on peripheral PS have been viewed in terms of social 
relation (Palumbo et al., 2017), we here show that PS in peripheral measures can 
also be explained by shared attentional engagement. It may be the case that 
shared attention also underlies results found in contexts of social relation.

3.4.3. Hypothesis 3: combining physiological measures
As the three used physiological measures vary with respect to their ability to 
reflect different mental states, we hypothesized that combining the physiolog-
ical measures into a single multimodal metric of PS would result in relative-
ly high detection performance when differences between stimulus types are 
disregarded. Indeed, the multimodal metric performs best when considering 
both emotional sounds and beeps as relevant events. Detection accuracies are 
slightly higher than for the best performing unimodal measure when consider-
ing emotional sounds or both types of stimuli but not when considering blocks 
of beeps. We expect that sensor fusion is not beneficial when variables are high-
ly correlated (Hogervorst et al., 2014) – for example for physiological variables all 
reflecting mental effort – but that sensor fusion can benefit from tasks involv-
ing emotional processing besides effortful attentional processing. Besides po-
tentially higher detection performance, the main advantage of multimodal PS 
seems to be the robustness regarding different types of stimuli, i.e., detection 
performance varies less between different types of stimuli than for single physi-
ological metrics. In previous work similar effects have been found. For example, 
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when using sensor fusion on machine learning models to distinguish between 
13 emotional states, maximum performance was not higher for the multimodal 
metric, but performance was more robust across the range of emotional states 
(Verma and Tiwary, 2014). In the end, although adding sensors does not lead to 
much higher performance compared to the most suitable unimodal recording, 
a multimodal approach seems to enable detection of relevant events when it is 
unknown what the best measure for certain stimulus types is. Also note that it is 
not always known whether certain stimuli will induce mostly effortful cognitive 
or emotional processing; in many practical cases such processes can co-occur 
and vary between individuals.

3.4.4. Hypothesis 4: events in audiobook
We hypothesized that audio clips corresponding to moments of highest PS 
would be post-hoc scored as more engaging than audio clips corresponding 
to moments of lowest PS, but our findings indicated rather the opposite. These 
findings may be caused by a mismatch between our index of PS and the rat-
ing scale of experienced engagement. Post-hoc qualitative analysis of the se-
lected audio-clips revealed that part of the audio clips corresponding to very 
high PS in EEG coincided with short-term moments of tension or engagement, 
as expressed through keywords (e.g., swear words) and salient intonation (e.g., 
a phrase spoken in a very indignant manner). This is in line with earlier work, 
where moments of high PS in EEG were found to correspond to moments in 
video clips marked by a high level of short-term suspense, tension or surprise, 
such as the sight of a gun (Poulsen et al., 2017). Indeed, emotional images and 
sounds that are rated as highly arousing induce responses in peripheral and 
central physiological measures (Bradley and Lang, 2000, 2007b), which in term 
may lead to strong PS. In our used audiobook, the keywords that may have 
driven the particularly high PS contained relatively little important information 
about the narrative of the story. It seems that this could have been the aspect 
rated by participants using our engagement scale, leading to a mismatch be-
tween self-reported engagement and PS. However, this speculation would 
need to be investigated further, preferably without having to rely on varying 
engagement judgements after the fact, but for instance with systematic senti-
ment analysis (Wollmer et al., 2013). It is important to further specify what types 
of attentional engagement can and cannot be captured by PS and how that 
is dependent on the psychological measure used. Attentional engagement to 
well-timed events will be better reflected in PS than attentional engagement to 
less well-timed event on a more abstract level.

3.4.5. Limitations
It should be noted that the stimulus detection performance when not taking 
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stimulus type into consideration (‘both stimuli’) were mainly driven by detec-
tion performance of beep blocks. These beep blocks were interspersed for a 
total of 810 s, whereas the emotional sounds were only interspersed for a total 
of 216 s. The stimuli also differed on other aspects. For instance, the beep blocks 
consisted of precisely timed beeps with immediate stimulus onset equal across 
trials, whereas the emotional sounds all differed in sound profile. For the AUC of 
ROC metrics when considering detection of both types of stimuli, beep blocks 
thus influence the performance metric more than the emotional sounds. While 
this can be seen as a limitation, this is exemplary for real life situations, where 
one is interested in detecting relevant, attentionally engaging events, without 
further specifying or knowing the different types of stimuli, and the proportion 
of in which they occur; i.e., in such a situation, the ‘both stimuli’ situation is the 
default.

We must also note that our simple multimodal approach is certainly not the op-
timal approach to combine data. In particular, we expect that detection perfor-
mance can be enhanced by compensating for differences in response latencies 
across measures. To illustrate the difference in response latency, in response to 
the same set of emotional sounds, response peak latency ranges from a few 
100 ms for EEG to multiple seconds in EDA heart rate (Bradley and Lang, 2000; 
Hettich et al., 2016). In this paper we simply averaged over response traces in a 
point-wise fashion, meaning that response-induced peaks may be spread out 
and their amplitude reduced. Our current results should therefore be interpret-
ed as a first confirmation that multimodal sensor fusion can be of added value, 
but we expect that other approaches can greatly enhance performance. In fu-
ture work we would like to explore other methods for the combination of phys-
iological measures into a multimodal metric of PS.

3.4.6. Conclusion
We determined PS in EEG and EDA, heart rate and a multimodal fusion of these 
three sensors in two groups of participants, that were instructed to attend ei-
ther to the narrative of an audiobook or to interspersed auditory events. We 
found that PS could detect the relevant interspersed stimuli with accuracies 
well above chance level, but also found that moments in the audiobook cor-
responding to high PS were not rated as more engaging than moments cor-
responding to low PS. Our results support the notion that PS can be valuable 
when interested in the course of attentional engagement over time. Currently 
the relation between PS and engagement is only established for well-defined, 
interspersed emotional or effortful cognitive stimuli, whereas the relation be-
tween PS and a more abstract self-reported metric of engagement is not yet 
established. We further note that obtained results vary between the used phys-
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iological measures. Interesting from a user perspective, EDA worked best over-
all. These results should enable researchers to monitor PS in situations where 
intrusive EEG measurements are not suited. However, we also note that the 
optimal physiological metric may be dependent on the goal of a study and sug-
gest to choose a measure matching with the stimulus of interest. EEG works 
especially well for well-timed effortful cognitive stimuli, heart rate works espe-
cially well for emotional stimuli and EDA works quite well on both types of stim-
uli. When the stimulus type is unknown, a multimodal metric may work best as 
it seems most robust across a broad range of stimuli.
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Abstract
Humans differ strongly in their willingness to try novel foods. Hesitance to try 
new foods is referred to as food neophobia. Understanding food neophobia 
is important, as it can be a significant barrier to adopt a healthy, balanced or 
plant-based diet. We here use electroencephalogram (EEG) recordings to ob-
tain insight in the early attentional processes towards food stimuli as a function 
of food neophobia. 43 Dutch participants completed the food neophobia scale 
after which they were presented with pictures of familiar and unfamiliar foods 
and a 15-minute movie about the origin and production of an unfamiliar food. 
We extracted two EEG-based metrics of attention: the late positive potential 
(LPP) amplitude in response to the food pictures, and inter-subject correlations 
(ISC-EEG) during the movie. The latter is a novel metric, based on similarities in 
EEG over time between individuals who are presented with the same stimulus, 
and suitable for examining attention towards continuous stimuli such as mov-
ies. Additionally, participants were asked to taste familiar and unfamiliar soups, 
and they were asked to rate the pictures and soups for valence and arousal. ISC-
EEG and the LPP amplitude increased and sip size decreased with food neo-
phobia, not only for unfamiliar food pictures, but also for familiar food pictures. 
Self-reported emotional experience was affected by food neophobia for unfa-
miliar food pictures or soups, but not for familiar ones. We conclude that food 
neophobia is associated with increased attentional processing and immediate 
implicit behavior, for all food stimuli and not only for unfamiliar food stimuli. 
This indicates that all food-related stimuli are of high importance to food neo-
phobic individuals and that self-reported emotion does not capture the entire 
experience of food. The results also indicates that, unlike the name suggest, 
food neophobia does not only affect processing of novel foods, but of any food 
regardless of familiarity.
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4.1. Introduction
Humans differ strongly in their willingness to try novel foods. This willingness 
can be captured through the food neophobia scale (Pliner and Hobden, 1992). 
Individuals that score high on the food neophobia scale are generally hesitant 
to try or buy new foods (Arvola et al., 1999; Tuorila et al., 2001; Bäckström et al., 
2004; Schickenberg et al., 2008; Henriques et al., 2009; Chung et al., 2012; Siegrist 
et al., 2013), including ethnic, unfamiliar foods (Choe and Cho, 2011; Filippo D’An-
tuono and Bignami, 2012). Food neophobia can be a significant barrier for a 
healthy, balanced or sustainable diet and can thereby lead to disordered eating 
patterns (Falciglia et al., 2000; Eertmans et al., 2005; Knaapila et al., 2011; Jaeger 
et al., 2017). Understanding food neophobia is important to remove the barrier 
and threat eating disorders.

Rozin and Fallon, 1980 proposed three main reasons for rejection of novel foods: 
dislike of its sensory characteristics, a fear of negative consequences of eating it, 
and disgust arising from the food’s origin. Food neophobia may be part of wid-
er cross-modal avoidance behavior of novel stimuli (Pliner and Hobden, 1992; 
Raudenbush and Frank, 1999). An increasing number of studies demonstrate a 
role of anxiety mediation in food neophobia, with studies showing significant 
correlations between measures of food neophobia and anxiety (Pliner and Hob-
den, 1992; Galloway et al., 2003). Anxiety traits can cause attentional biases to-
ward threatening pictures compared to nonthreatening pictures (Li et al., 2005; 
Holmes et al., 2008; Berggren and Eimer, 2021). In a similar fashion, one could 
expect that food neophobia is associated with attentional biases toward novel 
foods. Indeed, there are indications that food neophobia results in changes in 
attention. For instance, children with high food neophobia showed a greater 
attentional bias as measured with a visual probe task towards pictures of un-
familiar fruits and vegetables compared to familiar fruits and vegetables than 
children with low food neophobia (Maratos and Staples, 2015).

We know of only one study that examined effects of food neophobia on neuro-
physiological measures. (Raudenbush and Capiola, 2012) found that heart rate, 
electrodermal activity and respiration were significantly higher in individuals 
with high food neophobia compared to controls when they were presented 
with a variety of food pictures. This indicated that food phobic individuals ex-
perience heightened arousal upon the presentation of food, and heightened 
arousal often co-occurs with heightened attention. 

While the studies above suggest a role for attention in food neophobia, we are 
not aware of studies using electroencephalogram (EEG) to examine this. EEG is 
of special interest, because not only is it more directly related to attention than 
other, peripheral, physiological measures as mentioned above, it also offers a 



98

Chapter 4

view on the very early stages of the attentional process (Polich, 2007), before 
any behavioral response has taken place. 

In the current work we evaluate the association between food neophobia and 
attention toward food-related stimuli. We explore two EEG-based measures of 
attention: event-related potentials (ERP) upon presentation of food pictures 
and physiological synchrony as captured through inter-subject correlations in 
EEG (ISC-EEG) over the course of a narrative movie clip about ethnic food.

ERPs are extracted from the EEG in response to repeated presentation of stim-
uli such as pictures or sounds. Positive potentials obtained from the electrodes 
over the parietal cortex are often interpreted as reflecting differences in the 
allocation of attention (Näätänen, 1988). The P3 component, a positive deflec-
tion at roughly 300ms after stimulus onset, is known to be larger in response 
to oddball stimuli or to stimuli that are instructed to be attended (Polich, 2007). 
In response to affective pictures, similar, positive deflections over the parietal 
cortex have been reported. These positive deflections are often referred to as 
the Late Positive Potential (LPP), as the peak of this ERP occurs somewhat later 
than the traditional P3 in response to simpler stimuli. The slight timing differ-
ence is assumed to be due to the relatively high information load in affective 
pictures (Bradley et al., 2007). Still, the LPP can be interpreted as reflecting in-
creased attention for motivationally relevant stimuli (Lang et al., 1997). Indeed, 
larger amplitudes in the LPP are observed for emotionally engaging than for 
neutral stimuli, where highly arousing pictures result in the largest amplitudes 
(Bradley et al., 2007).

ERPs have been studied in the context of food before. Participants with binge 
eating disorder showed greater LPP in response to high-caloric food pictures 
than control participants (Svaldi et al., 2010). Similarly, high external eaters – 
people with the tendency to eat when exposed to food-related cues – showed 
larger P3 amplitudes in response to food pictures than low external eaters (Nijs 
et al., 2009). 

A recent measure of attention is based on the similarity of the EEG across in-
dividuals presented with the same stimulus, as assessed through ISC-EEG. A 
major advantage of this measure is that it enables the use of more naturalistic 
and dynamic stimuli than traditional controlled and repeated picture presenta-
tion. Parts of narrative stimuli that attract attention, such as engaging scenes of 
a popular television series, or emotionally salient sounds, result in heightened 
ISC-EEG (Dmochowski et al., 2014; Stuldreher et al., 2020a). Studies have also 
shown that individuals with higher ISC-EEG have better recall of the narrative, 
which further substantiates the association between ISC-EEG and attentional 



99

EEG measures of attention vary with food neophobia

4

engagement (Cohen and Parra, 2016; Stuldreher et al., 2020b).

As for ERPs, top-down guided selective attention affects ISC-EEG. Individuals 
showed significantly higher ISC-EEG when instructed to focus their attention 
on the stimulus than when instructed to focus their attention inward upon pre-
sentation of the stimulus (Cohen et al., 2018). Furthermore, two groups of in-
dividuals with different selective attentional instructions to the same stimulus 
showed distinct patterns of ISC-EEG, where individuals show higher ISC-EEG 
with others in the same selective attentional condition than with individuals in 
the other condition (Stuldreher et al., 2020b). 

In the current study, we investigate how attentional processes in response to 
food-related stimuli vary with food neophobia, using EEG ERPs in response to 
familiar and unfamiliar food pictures, and ISC-EEG in response to a movie about 
unfamiliar food. Dutch and Japanese food serve as familiar and unfamiliar food 
types for the Dutch participants (cf. (Kaneko et al., 2021)). 

Besides EEG measures, we also examine a behavioral measure and explicit 
self-reports that reflect food experience after the initial attentional stage. To 
obtain self-reported experience we use the EmojiGrid, a 2D pictorial scale spe-
cifically designed to rate experience elicited by food-related stimuli (Toet et al., 
2018; Kaneko et al., 2019b). As a behavioral measure, we record sip size upon tast-
ing a familiar and unfamiliar soups. Sip size has shown to distinguish between 
high and low-valence drinks with more discriminative power than self-reports, 
or neuro- and psychophysiological response measures (Kaneko et al., 2019a). 
These three types of measures reflect different levels of emotional processing 
(Kaneko et al., 2018). Where EEG is an implicit measure that is capable of reflect-
ing unconscious and early processes, and self-report is an explicit measure that 
can only reflect conscious experience, sip size can be considered as an implicit 
measure that is somewhere in between. 

In sum, we here investigate how attentional processes in response to food-relat-
ed stimuli, as indicated by EEG, vary with food neophobia. To align these results 
to explicit judgements, and implicit initial behavior, we additionally examine 
the association between food neophobia and rated food experience as well as 
sip size, in the same participants, and partly for the same stimuli that were used 
to elicit EEG responses. We hypothesize:

1) Food neophobia is positively correlated with attention toward unfamiliar but 
not toward familiar food stimuli, as captured by LPP ERP amplitude and ISC-
EEG.

2) Food neophobia is negatively correlated with rated pleasantness of unfamil-
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iar but not of familiar foods, as captured by EmojiGrid reports.

3) Food neophobia is negatively correlated with sip size of unfamiliar but not of 
familiar soups. 

4.2. Materials and methods

4.2.1. Participants
53 participants were recruited through the institutes participant pool. Before 
performing the study, ethical approval was obtained from the TNO Institution-
al Review Board (IRB). The approval is registered under reference 2020-117. All 
participants signed informed consent before participating in the experiment, 
in accordance with the Declaration of Helsinki. After successful participation, 
participants received a small monetary compensation for their time and trav-
eling costs.

Due to processing errors in the experiment script, the time-synchronization of 
the EEG with the stimuli could not be guaranteed for 10 participants. From 53 
participants, data of only 43 participants (19 female) are therefore used in fur-
ther analysis. Their age ranged from 19 to 64 years (M = 46.6, SD = 15.3) and Body 
Mass Index ranged from 18.4 to 46.4 (M = 25.6, SD = 5.2). The average time since 
their last meal consumption was 2.75 hours (SD = 2.4).

4.2.2. Materials
EEG was recorded at 1024 Hz using an ActiveTwo Mk II system (BioSemi, Am-
sterdam, Netherlands) with 32 active Ag/-AgCl electrodes, placed on the scalp 
according to the 10–20 system, together with a common mode sense active 
electrode and driven right leg passive electrode for referencing. The electrode 
impedance threshold was set at 20 kOhm.

4.2.3. Stimuli and design
The experiment consisted of three phases: a first picture phase, a movie phase 
and a second picture phase. The experimental procedure is depicted in Figure 
4-1. 

In each of the two picture phases, participants were presented with 80 imag-
es of food from the Cross Cultural Food Images Database (CROCUFID, (Toet et 
al., 2019)) on a computer screen in a randomized order. The presented imag-
es were of four different categories: unfamiliar Japanese food, familiar Dutch 
food, palatable food (i.e., universal food, such as fruits) and unpalatable food (i.e., 
molded food and food that was beleaguered by insects or snails). The latter two 
image categories represented ‘ground truth’ pleasant/neutral and unpleasant 
food and served to allow checking for sensitivity of the different measures and 
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are not further discussed in the present manuscript. Twenty pictures of each 
category were presented per picture phase. For easier recognition a symbol in 
the right bottom corner of the food image displayed whether the depicted food 
is Dutch, Japanese or universal (palatable and unpalatable). An example of the 
Japanese and Dutch categories with symbols is displayed in Figure 4-2. Each 

Figure 4-1. Overview of the experimental procedure. The experiment consisted of a 
picture phase and tasting phase, followed by a movie phase and then followed by 
another picture and tasting phase.
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image was presented for two seconds preceded by a fixation cross displayed 
for half a second. Immediately after viewing each picture, participants were 
prompted to rate their emotion using the EmojiGrid (Toet et al., 2018). The Emo-
jiGrid is a graphical and language-independent self-reporting tool to measure 
the emotional dimensions of valence (x-axis) and arousal (y-axis) in a food-relat-
ed context. At the end of each picture phase a Dutch and a Japanese soup were 
presented in counterbalanced order to the participants to taste. The four soups 
were vegetable soup, tomato soup (familiar Dutch soups) and sumashi soup, 
Miso soup (unfamiliar Japanese soups). After tasting each soup, food-evoked 
emotions were rated using the EmojiGrid. The amount of soup consumed was 
recorded as an implicit measure of positive emotion.

Following the first picture phase, participants were presented with a 15-minute 
movie about the origin and production of Japanese Kikkoman soy sauce. Prior 
to the movie, participants were instructed differently based on a social pressure 
condition they were assigned to. Participants in the control group were told 
that their EEG sensors would be calibrated and meanwhile they could watch 
this movie. Participants in the social pressure condition were told a story aimed 
to increase social pressure to report liking of Japanese food after watching the 
movie. 

After the movie phase the second picture phase started. The entire experimen-
tal procedure, including fitting the EEG electrodes, took about 60 minutes. 

The social pressure intervention did not result in any between-group difference 
(Sabu et al., 2022). For the purpose of the current study, we collapse over the two 
social-pressure related instructions.

Figure 4-2. Examples of CROCUFID pictures in Japanese and Dutch food categories 
including the symbols indicating either a Japanese or Dutch food picture.
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4.2.4. Self-report measures
Before the presentation of food pictures, participants answered a set of ques-
tionnaires. They provided a number of descriptives. In addition, participants 
filled out the food neophobia scale (Pliner and Hobden, 1992). This question-
naire consists of ten statements, for which a rating on a 7-point Likert scale, 
ranging from ’strongly disagree’ to ’strongly agree’, can be given. The outcome 
– a score from 10 to 70 – indicates the willingness to try novel foods. High scores 
indicate high food neophobia, meaning unwillingness to try new foods, while 
low scores indicate enthusiasm to try novel food.

4.2.5. Analysis

4.2.5.1. Pre-processing
EEG was processed using MATLAB 2021a (Mathworks, Natick, MA, United States) 
and the EEGLAB v14.1.2 toolbox for MATLAB (Delorme and Makeig, 2004). Poten-
tials reflecting ocular or muscle-related artifacts were removed using logistic in-
fomax independent component analysis (ICA; Bell and Sejnowski, 1995). Before 
doing so, EEG was down-sampled to 256 Hz and high-pass filtered with a 1 Hz 
passband frequency using the standard FIR-filter implemented in the EEGLAB 
function pop_eegfiltnew. The 1 Hz high-pass cut-off frequency was chosen as it 
has shown to work better for ICA compared to lower cut-off frequencies (Win-
kler et al., 2015). 50 Hz line noise was then removed using the cleanline plugin 
as implemented in PREP pipeline (Bigdely-Shamlo et al., 2015). Further artifacts 
were then removed using the clean_rawdata plugin for EEGLAB. Removed 
channels were interpolated and an average channel reference was applied. For 
ERP analysis, continuous data was epoched from -500 to 2000 ms with respect 
to the onset of pictures. For ISC analysis, the continuous EEG over the course 
of the movie was used. ICA was performed on either the epoched or continu-
ous data and ICLabel was used to identify and remove artifactual independent 
components reflecting ocular or muscle-related artifacts (Pion-Tonachini et al., 
2019). 

4.2.5.2. Event-related potentials in response to the pictures
For each individual, the event-related potentials in response to unfamiliar and 
familiar food pictures were extracted. First, the epoched data were lowpass fil-
tered with a passband at 30 Hz using pop_eegfiltnew. Then, data were base-
lined by extracting the average value of the signal from 200 ms to 0 ms be-
fore stimulus onset. Data of each participant were averaged over all pictures 
from the same picture category, aggregating over the picture phases before 
and after the movie. For each picture category and each participant, the LPP 
amplitude was extracted by finding the maximum of the averaged ERP at the 
midline-parietal site (electrode Pz) from 500 to 1000 ms after picture onset. 
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4.2.5.3. ISC-EEG in response to the movie
We computed physiological synchrony by computing ISC-EEG. ISC-EEG was 
evaluated in the correlated components of the data, following earlier work 
(Dmochowski et al., 2012, 2014; Stuldreher et al., 2020b). The goal of the cor-
related component analysis is to find underlying neural sources that are maxi-
mally correlated between participants, using linear combinations of electrodes. 
The components were extracted based on all datasets, after which EEG data 
from each participant were projected on the component vectors. Partici-
pant-to-group ISC-EEG was then computed as the sum of correlations in the 
first three component projections. The first three components were used as 
correlations in higher order projections are usually close to chance level (Ki et 
al., 2016). 

4.2.5.4. Association with food neophobia
Results were analyzed in relation with the food neophobia score. We performed 
correlation analyses to highlight the continuous spectrum of the food neo-
phobia scale, following (Jaeger et al., 2021). We investigated correlations with 
all the implicit and explicit measures included in the study, i.e. LPP amplitude, 
ISC-EEG, sip size and self-reported valence and arousal. These analysis were 
performed using Pearson correlations as implemented in the ‘corr’ function of 
MATLAB 2021a (Mathworks, Natick, MA, United States).

4.3. Results

4.3.1. Event-related potentials in response to food pictures
We investigated the relation between LPP ERP amplitude and food neophobia 
score. Figure 4-3 shows the average event-related potentials separately for each 
picture category, food neophobic and food neophiliac participants (participants 
scoring above and below the median food neophobia score, respectively – note 
that this is not an absolute categorization, but relative to scores in our specific 
sample of participants). The figure suggests higher LPP amplitudes for neo-
phobic compared to neophiliac participants for all picture categories. In line 
with this, Figure 4-4 shows significant correlations between LPP amplitude in 
response to unfamiliar and familiar food pictures and food neophobia (r = 0.36, 
p = .017; r = 0.36, p = .018).

4.3.2. ISC-EEG during the movie
We investigated the relation between ISC-EEG and the food neophobia score. 
Figure 4-5 shows that food neophobia and ISC-EEG are significantly correlated 
(r = 0.44, p = .003)  where higher food neophobia scores are associated with 
higher ISC-EEG.
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4.3.3. EmojiGrid after image presentation 
Figure 4-6 shows that self-reported valence in response to unfamiliar food pic-
tures is strongly correlated with food neophobia (r = -0.53, p < .001) where high 
food neophobia is associated with low valence scores. As shown in the same 
figure, this correlation is not significant for any of the familiar food pictures. Al-
though to a lesser degree than for valence, self-reported arousal in response to 

Figure 4-3. Event-related potentials averaged over familiar and unfamiliar picture 
types and averaged over neophobic and neophiliac participants. Shaded areas depict 
standard error of the mean. 

Figure 4-4. Correlations between food neophobia and LPP amplitude in response to 
unfamiliar and familiar food pictures. Each data point represents a participant.
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Figure 4-5. Correlation between food neophobia and ISC-EEG during presentation of 
the movie on the origin and production of an unfamiliar food. Each data point rep-
resents a participant.

Figure 4-6. Correlations between food neophobia and self-reported valence (top) and 
arousal (bottom) for unfamiliar (left) and familiar (right) food pictures. Each data point 
represents a participant.
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unfamiliar food pictures is also significantly correlated with food neophobia (r = 
-0.32, p = .036), where high food neophobia is associated with low arousal scores. 
Again, no significant correlations are found for familiar food pictures. 

4.3.4. Sip size 
Figure 4-7 shows significant correlations between food neophobia and average 
sip size for all soups (unfamiliar sumashi: r = -0.47, p = .002; unfamiliar miso: r 
= -0.44, p = .004; familiar vegetable: r = -0.15, p = .336; familiar tomato: r = -0.33, 
p = .033), where food neophobia is associated with smaller sip size, except the 
familiar vegetable soup. 

4.3.5. EmojiGrid after soup tasting
Figure 4-8 shows a significant negative correlation between food neophobia 
and self-reported valence after tasting the unfamiliar miso soup (r = -0.31, p = 
.047) and a near significant negative correlation after tasting the unfamiliar su-
mashi soup (r = -0.28, p = .069). No significant correlations with self-reported va-
lence are found after tasting familiar soups. No significant correlations between 
food neophobia and self-reported arousal are found for any of the soups.
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Figure 4-7. Correlation between food neophobia and sip size for unfamiliar sumashi 
and miso soups and familiar vegetable and tomato soups and. Each data point rep-
resents a participant.
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Figure 4-8. Correlations between food neophobia and self-reported valence (top) and 
arousal (bottom) for familiar tomato and vegetable soups and unfamiliar miso and 
sumashi soups. Each data point represents a participant.
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4.4. Discussion
In the current work we investigated how food neophobia is associated with at-
tention toward food-related stimuli as elucidated by two EEG measures: ERPs 
and ISC-EEG. We also examined the association between food neophobia and 
self-reported emotional experience, as well as the association between food 
neophobia and an implicit behavioral response (sip size). Below, the results will 
first be discussed for each of the hypotheses, followed by overall conclusions.

4.4.1. Hypothesis 1: LPP ERP amplitude
As hypothesized, the LPP amplitude in response to unfamiliar food pictures cor-
related with food neophobia, where participants with higher food neophobia 
showed higher LPP amplitude. However, nearly identical results were found for 
familiar food pictures. A higher LPP amplitude indicates increased attention to, 
and facilitated processing of motivationally relevant stimuli (Schupp et al., 2000; 
Schupp et al., 2003). It appears that, unlike its name suggests, food neophobia 
does not only have an effect on the attentional processing of novel foods, but 
on any food-related stimulus. 

Comparable observations have occurred in other phobic populations. Individu-
als with social anxiety do not only show increased LPPs to threatening faces, but 
also to faces overall, regardless of valence (Mühlberger et al., 2009). The authors 
conclude that faces in general are important stimuli for socially anxious people 
(Moser et al., 2008). Similarly, our results indicate that not only novel foods, but 
all food-related stimuli are of high importance to food neophobic individuals. 
Previous work showed higher arousal in food neophobic individuals than food 
neophiliacs when presented with successively presented pictures of a range 
of food types, as indicated by increased heart rate, EDA and respiration rate 
(Raudenbush and Capiola, 2012). We now show specifically for different types 
of food images that this increased arousal is likely associated with increased 
attention to food pictures in general.The current study did not include non-food 
stimuli. Including such stimuli would have allowed us to examine the specificity 
of the relation between food neophobia and responses to food, rather than to 
stimuli more in general. As discussed in the introduction, food neophobia may 
be part of wider avoidance behavior of novel stimuli (Pliner and Hobden, 1992; 
B. Raudenbush and Frank, 1999), food neophobia and anxiety are positively as-
sociated (Galloway et al., 2003; Pliner and Hobden, 1992) and anxiety traits can 
cause attentional biases toward threatening pictures compared to nonthreat-
ening pictures (Berggren and Eimer, 2021; Holmes et al., 2008; Li et al., 2005). 
Therefore, we would expect that higher LPP amplitudes and stronger ISC-EEG 
in individuals scoring high on food neophobia might be found for other, non-
food stimuli as well.
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4.4.2. Hypothesis 2: ISC-EEG
As for the LPP amplitude, ISC-EEG showed the hypothesized positive correla-
tion with food neophobia. As higher ISC-EEG indicate higher levels of attention 
toward the presented stimulus (Stuldreher et al., 2020b), this result indicates 
that participants with higher food neophobia also show higher levels of atten-
tion directed to a naturalistic, narrative stimulus about the origin of an unfamil-
iar food product.

Several authors have argued that ISC-EEG is likely driven for a large part by 
consecutive ERPs occurring from attentionally relevant or emotionally salient 
events in the stimulus (Poulsen et al., 2017; Stuldreher et al., 2020a). Our cur-
rent findings that both ERP LPP amplitude and ISC-EEG correlate with food 
neophobia are in line with this reasoning. Participants with high food neopho-
bia likely showed higher and more consistent ERPs in response to food-related 
events throughout the movie, leading to higher overall ISC-EEG.

Compared to ERPs, requiring the controlled presentation of successive stimuli, 
assessing ISC-EEG enables the use of much more naturalistic and continuous 
stimuli, such as video clips (Cohen et al., 2018; Dmochowski et al., 2014) or audio-
books (Stuldreher et al.., 2020b). Up to now, ISC-EEG was shown to be modulat-
ed by explicit instructions to focus attention on specific stimulus aspects (Ki et 
al., 2016; Stuldreher et al., 2020b). To the best of our knowledge, we here show for 
the first time that ISC-EEG during such naturalistic stimuli is modulated by per-
sonal trait. This is an important development for the use of ISC-EEG as implicit 
measure of attentional processing in natural environments, where one usually 
does not aim to capture variations in attention due to explicit instructions, but 
due to natural variations, for instance related to personal trait.

4.4.3. Self-reported experienced emotion for images 
To examine how the early attentional processes culminate in food experience 
we also obtained self-reported emotional experience. The more pronounced al-
location of attentional resources of high food neophobic individuals to all food 
related stimuli did not result in different reported emotional experience for all 
food related stimuli. 

Whereas food neophobia was positively associated with LPP amplitude for all 
types of food pictures, food neophobia was only associated with self-reported 
experienced emotion for unfamiliar food pictures, not for any of the other pic-
ture types. Specifically, individuals with higher food neophobia reported a lower 
valence after being presented with pictures of unfamiliar food, in line with pre-
vious reports (Brouwer et al., 2021). These individuals also reported lower arous-
al, as can be expected for food images scores that are shifted from pleasant to 
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neutral, given the U-shaped relation between reports of valence and arousal 
(Kaneko et al., 2019a; Kuppens et al., 2013).

In contrast to the short-term attention allocation as captured by the ERPs, 
self-reported food-evoked emotions only reflected food neophobia after  pre-
sentation of unfamiliar food pictures. Though individuals with higher food neo-
phobia thus allocate more attentional resources to any food stimulus, only for 
the pictures of the unfamiliar foods they report different food-evoked emotions 
than individuals with lower food neophobia. 

Note that the pictures of food were presented with either a Japanese or Dutch 
flag indicating the origin of the food. It might be that these flags also primed 
the expectations of participants. 

4.4.4. Sip size and self-reported experienced emotion for soups
Similar to LPP amplitude, sip size reflected food neophobia for both familiar 
(tomato) and unfamiliar (miso and sumashi) soups - food neophobic individuals 
tend to take smaller sips of soups. However, this association appeared stronger 
for the unfamiliar soups, and did not reach significance for the familiar vegeta-
ble soup. 

This association between behavior and food neophobia is in line with a study 
by (Raudenbush et al., 2003). They reported that severe food neophobic and 
neophiliac individuals differed in salivary response when presented with food 
items, regardless of the familiarity with the food item. For participants with av-
erage food neophobia, salivary response was dependent on the familiarity with 
the presented food items. 

Just as with picture presentation, self-reported emotional experience of the 
soups only varies with food neophobia for the unfamiliar food stimulus. Food 
neophobia scores correlated negatively with self-reported valence for unfa-
miliar soups, but not for familiar soups. 

These results indicate that implicit measures, taken before further evaluation 
processes took place and outside awareness, can be more sensitive to detect 
differences in food experience. (Kaneko et al., 2019a) also found that sip size dis-
tinguished between ground truth disliked and liked drinks better than self-re-
ported experience.

4.4.5. Conclusions
Using different types of measures and stimuli, we here examined and described 
how early attentional, behavioral and emotional processing of familiar and un-
familiar food stimuli vary with food neophobia. Food neophobia seems to affect 
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the short term attentional processing of all food-related stimuli, regardless of 
familiarity. Individuals with high food neophobia allocate more attentional re-
sources for the processing of food-related stimuli than individuals with low food 
neophobia. When tasting, sip size was also found to covary with food neophobia 
for both familiar and unfamiliar stimuli, even though the association appeared 
stronger for unfamiliar stimuli. The differences in attentional resource alloca-
tion between individuals with varying food neophobia did not result in different 
emotional experience for all stimuli. After initial attention allocation, the pre-
sented stimulus is identified and evaluated in more detail. The result of this 
appraisal that is accessible for conscious awareness, i.e. the self-reported food 
experience, only covaried with food neophobia after presentation of unfamiliar 
food stimuli, both for viewing pictures and for tasting soups. 

Taken together, these results indicate that cognitive, self-reported instru-
ments to assess food experience do not capture the entire food experience. 
Based on those results, one would conclude that food neophobia only affects 
the experiences of novel food, whereas the implicit behavioral and attention-
al processing are affected for all food types, regardless of familiarity. One can 
therefore also argue that the food neophobia scale, unlike the name suggests, 
does not capture the fear of novel foods, but the fear of food experience in gen-
eral.

All in all, our work revealed that there is a more profound difference between 
food neophobic and food neophiliac individuals than only the appreciation of 
novel food.
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Abstract
Introduction: When multiple individuals are presented with narrative movie or 
audio clips, their electrodermal activity (EDA) and heart rate show significant 
similarities. Higher levels of such inter-subject physiological synchrony are re-
lated with higher levels of attention towards the narrative, as for instance ex-
pressed by more correctly answered questions about the narrative. We here 
investigate whether physiological synchrony in EDA and heart rate during 
watching of movie clips predicts performance on a subsequent vigilant atten-
tion task among participants exposed to a night of total sleep deprivation. 

Methods: We recorded EDA and heart rate of 54 participants during a night of 
total sleep deprivation. Every hour from 22:00 to 07:00 participants watched 
a 10-minute movie clip during which we computed inter-subject physiologi-
cal synchrony. Afterwards, they answered questions about the movie and per-
formed the psychomotor vigilance task (PVT) to capture attentional perfor-
mance. 

Results: We replicated findings that inter-subject correlations in EDA and heart 
rate predicted the number of correct answers on questions about the movie 
clips. Furthermore, we found that inter-subject correlations in EDA, but not in 
heart rate, predicted PVT performance. Individuals’ mean EDA and heart rate 
also predicted their PVT performance. For EDA, inter-subject correlations ex-
plained more variance of PVT performance than individuals’ mean EDA. 

Discussion: Together, these findings confirm the association between phys-
iological synchrony and attention. Physiological synchrony in EDA does not 
only capture the attentional processing during the time that it is determined, 
but also proves valuable for capturing more general changes in the attentional 
state of monitored individuals. 
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5.1. Introduction
When individuals are engaged in social interaction, their physiological signals 
can align (Palumbo et al., 2017). This similarity in physiological activity across in-
dividuals is referred to as physiological synchrony. Physiological synchrony has 
been shown for diverse groups of socially interacting individuals, such as par-
ent-child dyads (Feldman et al., 2011), therapist-patient dyads (Marci et al., 2007), 
teammates (Elkins et al., 2009) and pairs of strangers meeting for the first time 
(Silver and Parente, 2004). 

We think that findings of physiological synchrony may be at least partially ex-
plained by shared attention. Therefore, we argue that physiological synchro-
ny can be a valuable tool to study shared attention in groups of individuals. In 
recent years physiological synchrony was indeed shown to reflect shared at-
tention. When individuals attend to a joint narrative stimulus, the inter-subject 
correlations in the electroencephalogram (EEG), electrodermal activity (EDA) 
and heart rate are higher than one would expect based on chance (Poulsen 
et al., 2017; Stuldreher et al., 2023a). Altering the attentional focus of individu-
als was found to affect inter-subject correlations. Individuals showed decreased 
physiological synchrony when instructed to focus attention inward on a mental 
arithmetic task instead of the joint stimulus (Ki et al., 2016; Pérez et al., 2021). 
Individuals instructed to focus only on specific stimulus parts showed higher in-
ter-subject correlations with individuals instructed to focus on the same instead 
of on different stimulus parts (Stuldreher et al., 2020b). Individuals with higher 
participant-to-group inter-subject correlations in EEG or heart rate better re-
called the narrative (Cohen and Parra, 2016; Stuldreher et al., 2020b). In sum, 
physiological synchrony can be altered by interventions on attention and has 
been found to be associated with performance on a task that reflects how well 
a presented narrative was attended to.

There are also indications that inter-subject correlations in EEG and function-
al magnetic resonance imaging can capture interpersonal variations in atten-
tional processing that relate to personality traits. For instance, we found that 
food neophobia, the hesitance to try new foods, was positively correlated with 
inter-subject correlations in EEG during a movie about a foreign food (Stuldre-
her et al., 2023b). That is, individuals who scored higher on the food neophobia 
scale showed less inter-subject correlations in EEG. In addition, individuals with 
autism spectrum disorders, depression or first-episode psychosis, are known to 
show more varying neural patterns and thus reduced neural inter-subject cor-
relations during naturalistic stimuli than typically developing individuals (Has-
son et al., 2009; Salmi et al., 2013; Guo et al., 2015; Mäntylä et al., 2018). 

The indications that variations in attentional processing within an individual 
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can also be captured by inter-subject correlations are limited. It is established 
that inter-subject correlations in EEG decrease when viewing the same stimu-
lus for the second time (Dmochowski et al., 2012; Ki et al., 2016), consistent with 
participants being less interested in the stimulus upon a second viewing. We 
may expect that inter-subject correlations as established during a short narra-
tive can capture the momentary attentional state of an individual, and there-
fore predict performance on subsequent attentional tasks. However, inter-sub-
ject correlations have never been related to performance on attentional tasks 
separate from the narrative. As of yet, it is not clear whether inter-subject cor-
relations monitored during a narrative presentation can capture variations in 
attentional processing abilities as also reflected in another task.

In the current work, we manipulate the attentional abilities within individu-
als over time by exposing them to a night of total sleep deprivation. During 
the night, we monitor inter-subject correlations in EDA and heart rate during 
the presentation of movie clips. Although work on inter-subject correlation as 
measure of attention originated in measures of brain activity such as function-
al magnetic resonance imaging (e.g. Hasson et al., 2004, 2008) and EEG (e.g. 
Dmochowski et al., 2012), we and others found that inter-subject correlations in 
body measures such as EDA and heart rate reflect attention as well (Stuldreher 
et al., 2020b, 2020a; Pérez et al., 2021; Madsen and Parra, 2022). This also holds 
when using measurements from wearables (Van Beers et al., 2020). 

Sleep deprivation is known to have strong detrimental effects on attention, 
working memory and decision making (Alhola and Polo-Kantola, 2007; Pilcher 
et al., 2007). It especially impacts cognitive functioning in long, simple and mo-
notonous tasks requiring reaction speed or vigilance (Alhola and Polo-Kantola, 
2007; Lim and Dinges, 2008; Hudson et al., 2020). Pilcher et al., 2007 provide a 
reasoning for the especially strong effects of sleep deprivation on undemand-
ing tasks through their model of attentional control. Undemanding cognitive 
tasks, like vigilance tasks, require more internal control over one’s attention, 
since there are less external stimuli to keep one engaged. Sleep deprived in-
dividuals are thought to have difficulty exerting this internal control over their 
attention. We investigate whether inter-subject correlations in EDA and heart 
rate can predict performance on a task demanding vigilant attention, i.e., a task 
that is expected to be strongly affected by sleep deprivation. A positive result 
in this study would indicate that physiological synchrony may indeed capture 
the varying attentional abilities of individuals and would extend the predictive 
value of physiological synchrony on attentional performance to moments be-
yond the time that physiological synchrony was determined. Instead of inves-
tigating whether inter-subject correlations vary between discrete attentional 
conditions, this study allows us to explore the predictive value of inter-subject 
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correlations on differences in attention that are of more continuous nature.

We compare the predictive value of inter-subject correlations in EDA and heart 
rate to the predictive value of individuals’ mean EDA and heart rate. EDA and 
heart rate on individual level are known to be affected by sleep deprivation, 
and have been associated with cognitive performance during a sleep deprived 
night before (Miró et al., 2002; Posada-Quintero et al., 2017). Directly comparing 
the predictive value of inter-subject correlations with the individual physiologi-
cal features allows us to display potential added value of inter-subject analyses. 

In sum, we aim to answer the following main research question:

1.	 How well does physiological synchrony in EDA and heart rate predict 
later vigilant attention during a night of sleep deprivation?

Additionally, we aim to answer the following secondary research question:

2.	 How does the predictive value of physiological synchrony relate to pre-
dictive value of individual’s mean physiological activity?

5.2. Materials and methods

5.2.1. Participants
101 Dutch speaking volunteers took part in a two-day study on the effects of 
sleep deprivation on cognitive performance. They were randomly assigned to 
the sleep deprivation condition (N = 54) or control condition (N = 48). This study 
describes results obtained from participants in sleep deprivation condition 
during the night. These 54 participants (29 female) were between 18 and 55 
years old (M = 29.4, SD = 11.9). The study was approved by the Medical Research 
Ethics Committee (MREC) Brabant (reference number P2045, approval number 
NL74961.028.20). All participants provided written informed consent before par-
taking in the experiment. Exclusion criteria were: smoking, drug use in the last 
three months, signs of flue or viral infection in the last ten days, pregnant, his-
tory of psychiatric illness, including sleep disorders, autoimmune disease and/
or hyperactive thyroid and people with known heart, kidney or liver disease or 
neurological complaints.

5.2.2. Physiological measurements
Participants’ EDA and heart rate were recorded throughout the night. EDA was 
recorded at 32 Hz with an EdaMove 4 (Movisens GmbH, Karlsruhe, Germany), 
that was recording signals from the palmar surface of the non-dominant hand 
using two solid gelled Ag/AgCl electrodes (MTG IMIELLA electrode, MTG Mediz-
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intechnik, Lugau, Germany, W55 SG, textured fleece electrodes, 55 mm diam-
eter). Heart rate was recorded at 1 Hz and with 1 bpm resolution using a Tickr 
chest-strap (Wahoo Fitness, Atlanta, GA, USA) that was coupled to an Android 
smartphone (Samsung Galaxy A41, Android version 10) via Bluetooth. Data were 
received, processed and saved with the use of the Wahoo Fitness Workout Ap-
plication (version 1.40.0.56).

5.2.3. Stimuli

5.2.3.1. Movie clips
Over the course of the night, participants were presented with ten 10-minute 
movie clips (M = 9:56, min. = 9:04, max. = 10:58) every hour from 22:00 to 07:00. 
The movie clips were selected from the Dutch YouTube channels NPO3 and 
KORT! and featured short, moderately engaging stories. In a previous study us-
ing six of these movies we showed that they were effective in eliciting signifi-
cant inter-subject correlations in EDA and heart rate (Stuldreher et al., 2023a). 
The order of presentation was the same for each participant. This presentation 
order, movie duration and URL for each movie can be found in Table 5-1. Di-
rectly after each movie, participants answered ten multiple-choice questions 
(four answers of which one correct). The questions concerned both general and 
specific details of the movie. The questions and answer options can be found in 
the Supplementary Table 1.

5.2.3.2. Psychomotor vigilance task (PVT)
After every sequence of watching a movie and answering the questions, par-
ticipants performed the psychomotor vigilance task (PVT). The experimental 
software that presented the PVT was custom-made for this experiment using 
Python (version 3.8) and the compatible PsychoPy toolbox (Peirce et al., 2019). 

Table 5-1. Details and order of the presented movie clips

Order Name Duration (min) URL

1 Chauffeur 09:45 https://www.youtube.com/watch?v=jaFmvyH7dW8

2 El Mourabbi 09:04 https://www.youtube.com/watch?v=X9bJou2gKxo

3 De Chinese Muur 09:50 https://www.youtube.com/watch?v=yjGFuhPy3Qo

4 One of the boys 10:58 https://www.youtube.com/watch?v=PsGAuhgQ97k 

5 Samual 09:45 https://www.youtube.com/watch?v=VUseoqCVnj4

6 Turn it around 09:26 https://www.youtube.com/watch?v=beC7IpQpTz4 

7 En route 10:05 https://www.youtube.com/watch?v=M6ebApnH_XE

8 Mowgli en Fidel 10:03 https://www.youtube.com/watch?v=MocrSQW_r_M

9 Heen en weer dag 10:25 https://www.youtube.com/watch?v=yPueHzj9STE

10 Gutmensch 10:02 https://www.youtube.com/watch?v=P7MABwTYa58

https://www.youtube.com/watch?v=jaFmvyH7dW8
https://www.youtube.com/watch?v=X9bJou2gKxo
https://www.youtube.com/watch?v=yjGFuhPy3Qo
https://www.youtube.com/watch?v=VUseoqCVnj4
https://www.youtube.com/watch?v=M6ebApnH_XE
https://www.youtube.com/watch?v=MocrSQW_r_M
https://www.youtube.com/watch?v=yPueHzj9STE
https://www.youtube.com/watch?v=P7MABwTYa58
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The PVT was designed to be maximally sensitive to the effects of sleep depriva-
tion by following recommendations from (Basner and Dinges, (2011). The course 
of the PVT was as follows. After pressing the spacebar to initialize the task, a 
black square (9.5 degrees of visual angle) surrounded by a red border centered 
in the middle of a grey screen was shown. For each trial, a random interval be-
tween 2-10 seconds was selected, after which a counter appeared in the center 
of the black square. The counter consisted of three yellow digits displaying the 
milliseconds since the onset of the counter. The participants’ task was to press 
spacebar as soon as possible after appearance of the counter. As soon as they 
did, the reaction time was displayed for two seconds. If participants failed to 
press the spacebar within 3 seconds of the counter appearing or if participants 
pressed the spacebar without a counter being present, a yellow ‘X’ appeared in 
the black square instead of the digits. This error message stayed present for 2 
seconds, after which the black square was cleared again and a new trial started. 
The PVT lasted 10 minutes, and the amount of trials varied based on the reac-
tion times and misses of each participant.

5.2.4. Procedure
Data from participants was collected as part of a larger study over the course of 
seven experimental sessions conducted in 2021 between March and June. Each 
experimental session consisted of two morning sessions that are discussed in 
more detail in (Bottenheft et al., 2023), and the night spent at the research insti-
tute between the two mornings in which the measurements for this study were 
performed. In each experimental session on average 7.7 participants (SD = 1.48) 
participated. Participants joined a training session two weeks before the exper-
imental session. During the training session, participants were familiarized with 
tasks they would have to perform during the course of the experiment. Of rele-
vance for the current study is that the participants familiarized themselves with 
the PVT for five minutes. Additionally, they were taught how to self-apply the 
Tickr chest strap and EdaMove 4 (a safety measure taken to reduce the risk of 
spreading the COVID-19 virus). Furthermore, participants received instructions 
not to consume any caffeinated substance after 18:00 on the day of their ex-
perimental session and not to consume any alcohol in the 24 hours prior to the 
experiment. 

On the day of the night session, participants came to the research institute at 
21:00. Figure 5-1 describes the full procedure of the night session. Participants 
were led to the cafeteria of the research institute, where they spent most of the 
time during the night. Participants were instructed to apply the Wahoo Tickr 
and start a new measuring session in the Wahoo Fitness Workout Tracker ap-
plication on the smart phone they had received for the duration of the study. 
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Participants also applied the EdaMove 4 and corresponding electrodes. A re-
searcher checked whether the data recording of both devices was running. Af-
ter this procedure, participants were given a 30 minute rest period. During this 
and other resting periods, participants were allowed to move around freely and 
talk to one another or entertain themselves with a book, game or electronic de-
vice they brought from home. They were not allowed to exercise. If a participant 
fell asleep the researcher woke the participant.

During the subsequent time of the experimental session, participants followed 
a standard procedure every hour, depicted in Figure 5-1. The procedure consist-
ed of the following elements: watching a 10-minute movie clip and answering 
ten questions about the presented movie, performing a 10-minute PVT and re-
porting their sleepiness on the Stanford Sleepiness Scale (SSS). After they had 
completed the procedure (about 30 minutes), participants were allowed to rest 
until the initiation of the next cycle. The first cycle was initiated at 22:00, and ev-
ery subsequent cycle was initiated on the following hour. The last cycle was per-
formed at 07:00. At 23:30, 01:30 and 04:30, participants received a snack. They 
received 150 grams of full fat quark, 150 grams of fresh vegetables with hum-
mus or 30 grams of walnuts and could pick which snack they wanted at which 
point in time. They were allowed to drink water and theine-free teas. 

5.2.5. Analysis
Data were analyzed using MATLAB R2021a (Mathworks, Natick, MA, USA). The 
data and MATLAB scripts used are available online at https://osf.io/69u8h/.

To be able to directly compare the predictive results of inter-subject correla-
tions in EDA and heart rate, we used only data of participants for which EDA 
and heart rate recordings were available. Heart rate data of six participants were 
unavailable due to lost data recordings. EDA data of an additional two partici-
pants were lost due to sensor failure. For 10 additional participants, EDA or heart 

23:00 01:00 03:00 05:00 07:0021:00

10 min video 10 min PVT sleepiness score

Figure 5-1. The experiment consisted of 10 blocks of a 10 minute movie clip, followed 
by questions about the movie, a 10 minute vigilance task and the Stanford sleepiness 
scale. These blocks started each hour from 22:00 to 07:00 o’clock.
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rate data during part of the recording blocks were lost due to detached elec-
trodes or disconnected Bluetooth connection. In total 21 recording blocks were 
lost across these participants. In sum, the following analyses are conducted us-
ing 46 participants, with in total 439 recording blocks.

5.2.5.1. PVT analysis
PVT response times were processed to obtain the lapse probability. A PVT re-
sponse was considered valid if given between 100 ms and 3000 ms after stimu-
lus onsets. Responses within 100 ms of stimulus onset and responses without a 
stimulus being present were considered false alarms. Responses that occurred 
more than 500 ms after stimulus onset were considered lapses (Basner and 
Dinges, 2011). The lapse probability was computed by dividing the amount of 
lapses with the amount of correct responses excluding lapses. Invalid responses 
are thus not considered in the lapse probability.

5.2.5.2. EDA and heart rate
EDA was resampled to 8 Hz. EDA and heart rate were epoched to the on- and 
offset of each movie using markers sent by the experimental program. EDA 
was then further processed to obtain the phasic component, also called skin 
conductance response (SCR), as this component of EDA is characterized by fast 
consecutive response-like changes. To do so, we used continuous decomposi-
tion analysis as implemented in the Ledalab toolbox for MATLAB (Benedek and 
Kaernbach, 2010). We use the SCR, as external stimuli mainly affect this compo-
nent of EDA.

The average SCR and heart rate over each epoch were used as input for the 
predictive models that use individuals’ physiological signals as predictor, as de-
scribed below. The time-course of the SCR and heart rate were used for com-
putation of inter-subject correlations. In the following parts of the manuscript, 
when we use the term EDA we refer to the SCR component of the electroder-
mal signal.

5.2.5.3. Inter-subject correlations
Physiological synchrony was quantified with the use of inter-subject correla-
tions. For each participant’s EDA and heart rate during a given movie, inter-sub-
ject correlations were computed with the EDA and heart rate of every other par-
ticipant during that same movie, following our previous procedure (Stuldreher 
et al., 2023a). When averaging over the inter-subject correlations with all other 
participants, we obtain a metric we refer to as participant-to-group inter-sub-
ject correlation. This metric is used as the predictor variable. From here on, if we 
refer to inter-subject correlation we refer to this participant-to-group metric.
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To test the significance of participant-to-group inter-subject correlation values 
over chance level, we used the circular shuffle statistic, following (Pérez et al., 
2021; Madsen and Parra, 2022). Each participant’s physiological signal during 
each movie was circular shifted by a random amount within the epoch length. 
The inter-subject correlations and participant-to-group inter-subject correla-
tions were then computed with this circular shuffled data. This procedure was 
repeated 500 times for each participant and each movie to estimate the chance 
distribution of inter-subject correlations. Note that a higher number of shuffles 
(e.g., 10.000 as in Pérez et al., 2021; Madsen and Parra, 2022) would result in a 
better estimation of the chance distribution. The p-value then is the fraction of 
circular shuffles with inter-subject correlation values higher than the original 
unshuffled inter-subject correlations.

As an additional check, we computed participant-to-group inter-subject cor-
relation values using data from non-matching movies to compare the real val-
ue to. That is, instead of computing inter-subject correlations of participant x 
with participant y using data from the same movie m1, we computed inter-sub-
ject correlations between data of participant x from movie  m1  with data of 
participant y from all movie clips m2  in M2, where M2  are all videos not equal to 
m1. For the most stringent test, we then selected the maximum inter-subject 
correlation value to compare to the real inter-subject correlation values. Com-
parisons were done using paired sample t-tests.

Note that we do not necessarily expect inter-subject correlations higher than 
chance level for all times at night. We expect low, or even absent inter-subject 
correlations if participants do not attend to the movies because of sleepiness.

5.2.5.4. Hierarchical linear analysis
We used an hierarchical linear model (HLM) for the main statistical analysis. An 
HLM was selected since the data is organized hierarchically and clustered with-
in individuals. Therefore, the assumption of independent observations required 
for a regular regression is violated.

We performed the hierarchical linear regression in four steps, shown in Table 
5-2. In the first step, that serves as a baseline, only the dependent variable is 
added to the model. In the second step, the level two variable individual is add-
ed to the model, to investigate if allowing the means of the dependent variable 
to vary across individuals leads to improvement of the model. In the third step, 
the predictor is added with a fixed slope and random intercept. This step al-
lowed us to investigate whether the predictor has a main predictive effect on 
the dependent variable. In the fourth and final step, the predictor variable is 
added with a random slope and random intercept, meaning that the model 
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allows the relationship between the predictor and the dependent variable to 
vary between individuals.

We first built models with number of correct answers on questions about the 
movie as dependent variable, individual as level two variable and inter-sub-
ject correlations in EDA or heart rate as predictor. This was done to investigate 
whether the previously found relation between narrative retention and in-
ter-subject correlations could be replicated in the current setting.

We then built models with PVT lapse probability as a dependent variable, indi-
vidual as a level two variable and inter-subject correlations in EDA or heart rate 
as predictor. This analysis was conducted to answer the main research question, 
to explore the potential association between inter-subject correlation and per-
formance on a subsequent task requiring a different form of attention. 

Then, we used individuals’ mean EDA or heart rate as predictor of PVT lapse 
probability. This was done to compare the predictive value of inter-subject cor-
relations to individuals’ physiological activation.

Before performing the HLM analyses, inter-subject correlation scores were cen-
tered using grand-mean sampling to avoid collinearity problems. PVT lapse 
probability was log transformed as untransformed data were positively skewed.

5.3. Results

5.3.1. Significance of inter-subject correlations as measure of atten-
tional engagement
Before exploring potential associations between inter-subject correlations and 
attention, we establish to what extent the inter-subject correlations are higher 
than one would expect based on chance using two approaches. First, we in-
vestigated whether real inter-subject correlations were higher than inter-sub-

Table 5-2. Steps of the hierarchical linear model analysis

Step Formula

1 Vdep  ~ 1

2 Vdep ~ 1 + (1 | participant)

3 Vdep ~ p1 + (1 | participant)

4 Vdep ~ p1 + (p1 | participant)

Vdep: dependent variable, either log transformed PVT lapse probability scores or number of correctly 
answered on questions about the movies, p1: predictor variable 1, either inter-subject correlations in 
EDA or heart rate, mean EDA or heart rate
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ject correlations obtained from circular shuffled data. Figure 5-2 depicts the 
inter-subject correlations in EDA and heart rate for each individual and each 
movie clip ordered from low to high. In each panel, each marker refers to a 
single participant. Filled markers depict inter-subject correlations that are sig-
nificantly higher than chance level, open markers depict inter-subject correla-
tions that are not significantly higher than chance level. For heart rate, during 
each movie on average 73.2% (SD: 12.3%) of the participants show significant in-
ter-subject correlations. In EDA, during each movie on average 36.6% (SD: 18.8%) 
of the participants show significant inter-subject correlations. Supplementary 
Figure 1 shows the same inter-subject correlations and compares these to the 
chance level distributions obtained through 500 instances of circular shuffling. 
We then investigated whether real inter-subject correlations where higher 
than inter-subject correlations obtained when movies did not match between 
participants. Figure 5-3 depicts the inter-subject correlations in EDA and heart 
rate for each individual and each movie and compares these to inter-subject 
correlations obtained after a permutation in which non-matching movies were 
used. In each panel each line refers to data of a single participant. Blue lines 
depict participants where the permuted inter-subject correlations are lower 
than the original values, orange lines depict participants where the permuted 
inter-subject correlations are higher than the original values. A set of paired 
sample t-tests showed that the real inter-subject correlation values were signifi-
cantly higher than the permuted ones in most cases. The t-test statistics can be 
found in Supplementary Table 2.

5.3.2. Inter-subject correlations as predictor of number of correctly 
answered questions about the movie.
Our next step was to check whether we could replicate previous reports of an 
association between inter-subject correlations and the number of correctly an-
swered questions about the presented movie clips. Figure 5-4 shows how the 
number of correct answers varies over the course of the night. It suggests a 
slight drop in the number of correct answers up to 05:00 o’clock, followed by 
an increase up to 07:00 o’clock. Table 5-3 shows the statistical parameters of 
the HLM analysis used to identify a potential association between inter-subject 
correlations and the number of correct answers. For each step, the table dis-
plays the minus 2 Log Likelihood statistic (-2LL), degrees of freedom (DF) and 
the Akaike Information Criterion (AIC). The -2LL is a statistic that can be used 
to compare whether a model is a significant improvement of another model 
(Field, 2013). The AIC is a more complex measure that can also be used to com-
pare models. The model that best fits the data will display lowest AIC. The table 
also shows the Chi-square (χ2) -2LL change statistic, that describes whether the 
change in -2LL is significantly different from the previous model. Also displayed 
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is the percentage of total explained variance and the -statistics of the fixed ef-
fects.

In step one, only the dependent variable (i.e., the number of correct answers) 
was added to the model to serve as a baseline. The AIC is in this model is 1593.5.

In step two, the level two variable participant was added to the model to in-

a.

b.

Figure 5-2. Inter-subject correlations in a. EDA (ISC-EDA) and b. heart rate (ISC-HR) for 
each individual and each movie clip ordered from low to high. Each marker refers to 
the participant-to-group inter-subject correlations of a participant. Filled markers de-
pict inter-subject correlations significantly higher than chance, open markers depict 
inter-subject correlations not higher than chance level.
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vestigate whether allowing for individual differences improves the model pre-
diction. The AIC is in this model is 1595.5, and the model did not significantly 
improve compared to step one, χ2 (1, N = 439) = 0, p = 1. 

In step three, the predictor inter-subject correlations in either EDA (step 3a) or 
heart rate (step 3b) was added to the model with fixed slope and random in-

a.

b.

Figure 5-3. Inter-subject correlations in a. EDA (ISC-EDA) and b. heart rate (ISC-HR) for 
each individual and each movie compared to a permuted inter-subject correlations 
obtained by not matching the movies between participants. Pink lines depict par-
ticipants where the permuted inter-subject correlations are lower than the original 
values, blue lines depict participants where the permuted inter-subject correlations 
are higher than the original values.
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tercept. Both for EDA, χ2 (1, N = 439) = 5.75, p = .016, and heart rate, χ2 (1, N = 439) 
= 22.04, p < .001, the prediction significantly improved compared to model step 
2. Inter-subject correlations thus have a main predictive effect of the number 
of correctly answered questions about the movie clips, both for EDA (β = .17, p = 
.017) and heart rate (β = .33, p < .001). 

Figure 5-4. Number of correct answers to questions about the content of the movie 
over the course of the night. Markers depict the mean across participants, shaded area 
depicts the standard deviation.

Table 5-3. Statistical parameters of the two hierarchical linear models using inter-sub-
ject correlations in either EDA (ISC-EDA) or heart rate (ISC-HR) as predictor of the 
number of correct answers about the content of the movies.

Step Predictor -2LL DF AIC χ2 -2LL change R2 t fixed effect

1 -794.76 2 1593.2

2 -794.76 3 1595.5 (1, N = 439) = 0, p = 1 0 112.48

3a ISC-EDA -791.89 4 1591.8 (1, N = 439) = 5.75, p = .016 .013 2.41*

3b ISC-HR -783.74 4 1575.5 (1,N = 439) = 22.04, p < .001 .049 4.75***

4a ISC-EDA -783.82 6 1579.6 (2, N = 439) = 16.15, p < .001 .084 2.70**

4b ISC-HR -779.5 6 1571.1 (2, N = 439) = 8.40, p = .015 .088 4.03***

* p < .05, ** p < .01, *** p < .001 

Abbreviations: -2LL: = minus 2 Log Likelihood statistic; DF = degrees of freedom; AIC = Akaike Informa-
tion Criterion
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In step four, the predictor was added with random slope and random inter-
cept, meaning that the model allows the relationship between the predictor 
and dependent variable to vary across participants. The prediction significantly 
improved compared to step three, both for EDA (step 4a), χ2 (2, N = 439) = 16.15, p 
< .001, and heart rate (step 4b), χ2 (2, N = 439) = 8.40, p = .015. This indicates that 
the specific association between inter-subject correlations and number of cor-
rect answers is individual specific.

We repeated the four steps of the analysis using the permuted inter-subject 
correlation values obtained after using non-matching movies. If physiological 
synchrony indeed reflects the level of attention to the same presented stimulus, 
no association between the permuted inter-subject correlation values and the 
number of correct answers is expected. Indeed, there was no significant main 
predictive effect of the permuted inter-subject correlation values of EDA and 
heart rate on the number of correct answers on the content of the movie. The 
statistical parameters of the HLMs used for this analysis can be found in Sup-
plementary Table 3.

5.3.3. Inter-subject correlations in EDA or heart rate as predictor of 
vigilance
Next, we investigated the potential association between inter-subject correla-
tion in EDA and heart rate and performance on a subsequent attentional task, 
i.e. the PVT. A premise for our analysis is that vigilant performance is affected 
by sleep deprivation and thus varies over the course of the night. Figure 5-5 
shows the PVT lapse probability over the course of the night. The median lapse 
probability gradually increases from close to zero up to 0.4 at 05:00 o’clock. This 
is followed by a strong decrease to the initial level at 06:00 o’clock. This overall 
pattern is consistent with previous findings  (Hudson et al., 2020). Also consis-
tent with previous findings are the large individual differences in vigilant per-
formance during the night (Hudson et al., 2020), indicated by the shaded area 
in the figure.

A second premise for inter-subject correlations to be predictive of vigilant 
performance throughout the night is that the inter-subject correlations vary 
throughout the night. Figure 5-6 shows inter-subject correlations in EDA and 
heart rate over the course of the night. Inter-subject correlations in heart rate 
do not seem to follow a consistent pattern throughout the night. Inter-subject 
correlations in EDA seem more consistent with the overall lapse probability. The 
figure suggests a decreasing trend of inter-subject correlations in EDA up to 
05:00 o’clock, followed by an increase from 06:00 o’clock.

Table 5-4 summarizes the results of the four steps of HLM analyses used to in-
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vestigate how well inter-subject correlations in either EDA or heart rate predict 
PVT lapse probability. In step one, only the dependent variable PVT lapse prob-
ability was added to the model to serve as a baseline. The AIC is in this model 
is 701.69.

In step two, the level two variable participant was added to the model to inves-

Figure 5-5. PVT lapse probability over the course of the night. The markers depict the 
median across participants, shaded area depict the 25th to 75th percentile.

Table 5-4. Statistical parameters of the two hierarchical linear models using inter-sub-
ject correlations in either EDA (ISC-EDA) or heart rate (ISC-HR) as predictor of PVT 
lapse probability. 

Step Predictor -2LL DF AIC χ2  -2LL change R2 t fixed effect

1 -348.85 2 701.69

2 -288.12 3 582.24 (1,N = 439) = 121.45, p < .001 .365 -17.18***

3a ISC-EDA -275.59 4 559.18 (1, N = 439) = 25.06, p < .001 .414 -5.12***

3b ISC-HR -287.63 4 583.27 (1, N = 439) = 0.97, p = .323 .366 -0.99

4a ISC-EDA -275.43 6 562.87 (2, N = 439) = 0.31, p = .856 .414 -5.23***

4b ISC-HR -287.61 6 587.22 (2, N = 439) = 0.05, p = .977 .366 -1.01

*** p < .001 

Abbreviations: -2LL: = minus 2 Log Likelihood statistic; DF = degrees of freedom; AIC = Akaike Informa-
tion Criterion
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tigate whether allowing for individual differences improves the model predic-
tion. The AIC is in this model is 582.24. There is a highly significant change in 
the -2LL, χ2 (1, N = 439) = 121.45, p < .001. This step of the model explains 36.5% of 
the variance in PVT lapse probability. The fixed effect of individual on PVT lapse 
probability is highly significant (p < .001).

In step three, the predictor, being inter-subject correlations in either EDA (step 
3a) or heart rate (step 3b), was added to the model with a fixed slope and random 
intercept. The results in this step indicate whether the predictor has a main pre-
dictive effect on PVT lapse probability. Adding the predictor with a fixed slope 
means that the model assumes that for all individuals, the relationship between 
the predictor and PVT lapse probability is identical (Grinsted et al., 2004). In this 
step, the AIC value is 559.18 for EDA and 583.27 for heart rate. The -2LL value for 
EDA is -275.59, a significant improvement compared to the previous step, χ2 (1, 
N = 439) = 25.06, p < .001.  The total variance explained is 41.4% and the fixed ef-
fect is highly significant (p < .001). For heart rate, the -2LL value (-287.63) is not 

a.

b.

Figure 5-6. Inter-subject correlations in a. EDA and b. heart rate (HR) over the course 
of the night. Markers depict the mean across participants, shaded area depicts the 
standard deviation.
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significantly lower than the model in step two, χ2 (1, N = 439) = 0.97, p = .323. The 
total variance explained is 36.6 percent and fixed effect is not significant.

In step four, the predictor variable was added with a random slope and a ran-
dom intercept, meaning that the model allows the relationship between in-
ter-subject correlations and PVT lapse probabilities to vary between individuals. 
Neither for EDA (step 4a) nor for heart rate (step 4b) the model in this step 
was significantly better than the model in step three (EDA: AIC = 562.87, -2LL = 
-275.43, -2LL χ2 (2, N = 439) = 0.31, p = .856; heart rate: AIC = 587.22, -2LL = -287.61, 
-2LL χ2 (2, N = 439) = 0.05, p = .977).

5.3.4. Individuals’ mean EDA or heart rate as predictor of vigilance
To allow comparison of the predictive value of inter-subject correlations with in-
dividual physiological responses, we repeated steps three and four of the above 
analyses with mean EDA or heart rate as predictor. Figure 5-7 shows the median 
EDA and heart rate across participants during the movies over the course of 
the night. Shaded area depicts the 25th to 75th percentile, to reflect the variation 
across individuals. Both median EDA and heart rate seem to gradually decrease 
up to about 02:00, and then  steadily increase, except for a relatively high me-
dian heart rate at 2:00. Indeed, median EDA and median heart rate are signifi-
cantly and positively correlated (r = .18, p < .001).

Table 5-5 depicts the HLM statistics corresponding to the analyses with indi-
vidual mean EDA and heart rate values as predictors. When added as predictor 
with fixed slope, both for EDA (step 3a) and heart rate (step 3b) the model sig-
nificantly improves over models in which EDA or heart rate were not included 
as predictor (EDA: χ2 (1, N = 439) = 5.44, p = .019, p = .016; heart rate: χ2 (1, N = 439) = 
9.45, p = .002. Both EDA and heart rate have a main significant predictive effect 
on lapse probability (p < .05, p < .01, respectively). Neither for EDA nor for heart 
rate the model improved when the predictors were added with random slope 
to allow variation in the relationship between the predictor and PVT lapse prob-
ability across participants. 

When comparing the AIC scores of the predictions using inter-subject correla-
tions and individuals’ physiological activation, for EDA the former appears a bet-
ter predictor. For heart rate, mean heart rate has more predictive value than 
inter-subject correlations in heart rate.

5.3.5. Individuals’ mean EDA and inter-subject correlations in EDA as 
predictor of vigilance
As both mean EDA and inter-subject correlations in EDA had a significant main 
predictive effect on PVT lapse probability, we investigated the potential add-
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ed value of inter-subject correlations in EDA over one’s individual mean phasic 
EDA. Table 5-6 shows the statistical parameters of the hierarchical linear model 
using both individuals’ mean EDA and inter-subject correlations in EDA as pre-
dictor with random intercept and fixed slope. It shows that that the prediction 
of lapse probability is significantly better with mean EDA and inter-subject cor-
relations in EDA compared to only mean EDA (p < .001).

5.4. Discussion

5.4.1. Physiological synchrony as predictor of vigilant attention
The main aim of the current work was to investigate whether variations in vig-
ilant attention that arise from sleep deprivation can be captured by inter-sub-
ject correlations in EDA and heart rate as measures of physiological synchro-
ny. To do so we investigated whether inter-subject correlations in the phasic 
component of EDA and heart rate could predict the variations in subsequent 
vigilant attentional performance throughout a night of sleep deprivation. We 
found that inter-subject correlations in EDA had a significant main predictive 

Figure 5-7. a. Phasic EDA and b. heart rate (HR) during the ten movies over the course 
of the night. The markers depict the median across participants, shaded area depict 
the 25th to 75th percentile.

a.

b.
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effect on the performance of a vigilant attention task. This was not the case for 
inter-subject correlations in heart rate. 

Using two separate permutation methods, we established that the inter-sub-
ject correlations in EDA and heart rate were higher than expected based on 
chance for most participants and most movies.

We first replicated the relation between inter-subject correlations in signals re-
corded during the narrative and narrative retention. Inter-subject correlations in 
heart rate and EDA were both positively correlated with the number of correctly 
answered questions about the movie clips. In previous work we only found this 
relation to be statistically significant for inter-subject correlations in heart rate 
(Stuldreher et al., 2020b, 2023a). Now we find that in EDA such inter-subject 
correlations are associated with performance as well. Additionally, we extended 

Table 5-5. Statistical parameters of the hierarchical linear models using individuals’ av-
erage EDA or heart rate (HR) as predictor of PVT lapse probability. 

Step Predictor -2LL DF AIC χ2  -2LL change R2 t fixed effect

1 -348.85 2 701.69

2 -288.12 3 582.24 (1, N = 439) = 121.45, p < .001 .365 -17.18***

3a EDA -285.4 4 578.81 (1, N = 439) = 5.44, p = .019 .378 -2.35*

3b HR -283.4 4 574.79 (1, N = 439) = 9.45, p = .002 .380 -3.09**

4a EDA -285.29 6 582.58 (2, N = 439) = 0.23, p = .891 .378 -2.30*

4b HR -282.81 6 577.61 (2, N = 439) = 1.18, p = .554 .381 -3.22**

* p < .05, ** p < .01, *** p < .001 

Abbreviations: -2LL: = minus 2 Log Likelihood statistic; DF = degrees of freedom; AIC = Akaike Informa-
tion Criterion

Table 5-6. Statistical parameters of the hierarchical linear models using individuals’ av-
erage EDA or heart rate (HR) as predictor of PVT lapse probability. 

Step Predictor -2LL DF AIC χ2  -2LL change R2 t fixed effect

3c
EDA

ISC-EDA
-273.04 5 556.08 (1, N = 439) = 24.73, p < .001 .425

-2.28*

-5.08***
* p < .05, ** p < .01, *** p < .001 

Abbreviations: -2LL: = minus 2 Log Likelihood statistic; DF = degrees of freedom; AIC = Akaike Informa-
tion Criterion
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previous work by showing that inter-subject correlations do not only capture 
performance differences between individuals, who received different attention-
al instructions, or with different personal characteristics, but that inter-subject 
correlations also capture the variations in performance within an individual. The 
prediction of the number of correct answers using inter-subject correlations 
improved when the hierarchical linear model allowed the relation to vary be-
tween individuals. This indicates that the relation between inter-subject cor-
relation and attentional performance is different for everyone and confirms the 
benefit of personalized models in neuroergonomics (Dehais et al., 2020).

Importantly, we also find that the inter-subject correlations in EDA during nar-
rative movie clips predict performance on a consecutive vigilant attention task. 
This suggests that the momentary attentional processing capabilities captured 
by inter-subject correlations during the presented narrative reflect longer last-
ing variations in general attentional capability of individuals that also affects 
other types of tasks. Although significant, the association between inter-sub-
ject correlations and vigilant attention, and the predictive value of inter-subject 
correlations in the model, was modest. This may be explained by a discrepan-
cy in the attentional processes that are captured by inter-subject correlations 
in response to relatively engaging movies and the subsequent PVT, and the 
effect sleep deprivation has on each of these processes. Lapses in attention, 
i.e. short moments of inattentiveness, have been considered the main reason 
for a decline in cognitive functioning through sleep deprivation (Williams et 
al., 1959; Kjellberg, 1977), though later it was found that in between lapses cog-
nitive functioning was also impacted through slowing of cognitive processing 
(Kjellberg, 1977; Dorrian and Dinges, 2005) and fluctuations in alertness (Doran 
et al., 2001). Still, sleep deprivation especially impacts cognitive functioning in 
long, simple and monotonous tasks requiring reaction speed or vigilance (Al-
hola and Polo-Kantola, 2007; Lim and Dinges, 2008; Hudson et al., 2020). The 
PVT is specifically designed to show a strong effect of sleep deprivation. It is a 
long monotonous task, that captures the lapses in attention and does not re-
quire cognitively complex or emotional processing. Inter-subject correlations, 
on the other hand, have been reported to capture the cognitive processing of a 
shared stimulus and to be modulated by the level of “attentional engagement” 
with the stimulus (Dmochowski et al., 2012; Stuldreher et al., 2020b; Madsen and 
Parra, 2022). The concept attentional engagement implies a broad type of at-
tention and entails processes like logical reasoning, emotional processing, em-
pathy elicitation and low level visual processing (Dmochowski et al., 2012). The 
stimuli during which we monitored inter-subject correlations were not simple 
and monotonous, but relatively engaging movies. Thereby, attending to these 
movies does not require strong vigilant abilities as the movies’ features attract 
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attention automatically in addition to the internal guidance of attention to the 
movie. Attentional engagement and the inter-subject correlations that are said 
to capture it, may thus not be influenced as strongly by sleep deprivation as the 
psychomotor vigilance task. Sleep deprivation generally does not show such a 
strong decline in performance for tasks that encourage participants to remain 
engaged and attentive compared to vigilance tasks (Pilcher et al., 2007). 

As we presented all participants with the same order of movies, we cannot sep-
arate effects of sleep deprivation on inter-subject correlation with the effect of 
individual movies on inter-subject correlations in the current experiment. In a 
previous experiment with six of the ten current movies we did  not find the 
same pattern in the inter-subject correlations in EDA and heart rate as in the 
current study (Stuldreher et al., 2023a), suggesting it is sleep deprivation that 
affects the inter-subject correlations over the night and not movie-specific fea-
tures.

5.4.2. Individuals’ physiological activity as predictor of vigilant at-
tention
We compared the predictive value of inter-subject correlations in heart rate and 
EDA to the predictive value of individual’s mean EDA and heart rate. Mean EDA 
and heart rate both predicted vigilant performance. Since inter-subject correla-
tions in heart rate did not predict performance at all, the mean heart rate thus 
had a higher predictive value. The mean EDA explained less variance of the vig-
ilant attention than inter-subject correlations in EDA. Also when comparing the 
AIC, inter-subject correlations in EDA seemed to provide a better model fit than 
the mean value. To further investigate the potential added value of inter-sub-
ject correlations, we added both individuals’ mean EDA and inter-subject cor-
relations in EDA to an HLM. We compared performance to that of the model 
using only individuals’ mean EDA. The predictive performance was found to sig-
nificantly improve when inter-subject correlations were added, indicating that 
interpersonal analysis of EDA is of added value when interested in monitoring 
attention. 

Our finding that EDA and heart rate were negatively associated with subse-
quent lapse probability is in line with the established relation between de-
creased vigilant performance when arousal decreases. Miró et al. (2002) report-
ed a steady decrease in skin conductance throughout the first sleep deprived 
night, indicating that arousal decreases over the course of a sleep deprived 
night. Posada-Quintero et al. (2017) found a high negative correlation between 
the mean values of the skin conductance level and reaction time among sleep 
deprived individuals, indicating that the arousal decrease indeed results in 
worse task performance. Van Den Berg and Neely (2006) found similar effects 
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using heart rate, as they reported a strong negative correlation between heart 
rate and reaction time in sleep deprived individuals. 

5.4.3. Differences between results using EDA and heart rate
For EDA, both the model using inter-subject correlations and the model using 
individuals’ mean activity predict vigilant performance. However, for heart rate, 
only the mean activity could significantly predict vigilant performance. It thus 
appears that for heart rate, it is specifically the congruency in timing of the re-
sponse across individuals that cannot capture decreased vigilant performance. 
We are not sure what underlies this observation. It is not the case that inter-sub-
ject correlations in heart rate could not capture attention altogether. For the 
majority of participants, inter-subject correlations in heart rate were higher 
than one would expect based on chance, indicating that attending to a shared 
stimulus causes fluctuations in heart rate to synchronize across participants. 
Additionally, inter-subject correlations in EDA and heart rate had a significant 
main predictive effect on the number of corrects answers on questions about 
the movies. For this latter analysis, the predictive effect of inter-subject correla-
tions was actually larger for heart rate then EDA.

The discrepancy in findings using EDA and heart rate points in the direction 
that inter-subject correlations in these signals both capture different aspects 
of attentional processing. Higher inter-subject correlations in heart rate were 
related to better memory retention during the movies. Also in previous work, 
we and others found heart rate to be associated with memory retention of the 
presented stimulus (Stuldreher et al., 2020b; Pérez et al., 2021; Madsen and Par-
ra, 2022). In previous work, inter-subject correlations in heart rate did not reflect 
the occurrence of emotional sounds attracting attention bottom-up among 
individuals instructed not to focus on them, but to focus instead on the simul-
taneously presented audiobook (Stuldreher et al., 2020a). It thus appears that 
inter-subject correlation in heart rate are more associated with higher order 
cognitive processes of attentional engagement than with shorter moments of 
attentiveness driven by sensory processes. Higher inter-subject correlations in 
EDA were related to better memory retention during the movies and better 
subsequent vigilant performance . We previously did not find an association 
between inter-subject correlations in EDA and memory retention for narratives 
(Stuldreher et al., 2020b). Here we do find this association, but still to a lesser de-
gree than for heart rate. In previous work, inter-subject correlations in EDA oc-
curred after emotional sounds attracting bottom-up attention (Stuldreher et al., 
2020a). We speculate that compared to inter-subject correlations in heart rate, 
inter-subject correlations in EDA are more associated with shorter moments 
of attentiveness due to discrete, arousing sensory events and less so to longer 
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periods of attentional engagement driven by higher-order cognitive processes. 
This could also explain why inter-subject correlations in EDA were sensitive to 
sleep deprivation, but inter-subject correlation in heart rate were not. Short mo-
ments of inattentiveness, or lapses in attention, are thought to be the main con-
tributor to the cognitive decline induced by sleep deprivation (Williams et al., 
1959; Kjellberg, 1977). Such lapses may be associated in reduced electrodermal 
responses to otherwise arousing events in the movie in sleep-deprived individ-
uals. As the lapses do not occur at the same points in time across individuals, 
they would result in reduced inter-subject correlations in EDA.

5.4.4. Conclusions
We replicated findings that physiological synchrony during presented narra-
tives is associated with performance on questions about the narratives. In addi-
tion, we found that physiological synchrony was associated with performance 
on a subsequent vigilant attention task. These findings confirm the association 
between physiological synchrony and attention. Physiological synchrony cap-
tures the attentional processing during the narratives, and proves valuable for 
capturing more general changes in the attentional state of monitored individ-
uals. The discrepancy in findings using EDA and heart rate suggest that physi-
ological synchrony in these measures captures different aspects of attentional 
processing. Physiological synchrony in EDA may especially reflect short mo-
ments of attentiveness caused by arousing sensory events. Synchrony in heart 
rate may rather reflect longer intervals of attention driven by higher-level cog-
nitive control. Individuals’ mean EDA and heart rate were also associated with 
performance on the subsequent vigilant attention task. For EDA, inter-subject 
correlations explained more variance if vigilant performance than individual’s 
mean activity. Using inter-subject correlations in EDA in addition to mean EDA 
to predict vigilant performance yielded better performance than prediction 
based on mean EDA alone. Our results are an important step towards the use 
of physiological synchrony as implicit measure of shared attention, as we show 
that variations in the attentional abilities within individuals can be captured. 
We see physiological synchrony as potential tool to monitor the changes in at-
tentional engagement within and between individuals in a group. It may for 
instance be used to assist teachers in evaluating the attentional engagement 
of students in an (online) classroom or to track the shared attention among 
cooperating teammates.
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Abstract
Measuring concurrent changes in autonomic physiological responses aggre-
gated across individuals (Physiological Synchrony; PS) can provide insight into 
group level cognitive or emotional processes. Utilizing cheap and easy to use 
wearable sensors to measure physiology rather than their high-end laboratory 
counterparts is desirable. Since it is currently ambiguous how different signal 
properties (arising from different types of measuring equipment) influence the 
detection of PS associated with mental processes, it is unclear whether, or to 
what extent, PS based on data from wearables compares to that from their 
laboratory equivalents. Existing literature has investigated PS using both types 
of equipment, but none compared them directly. In this study, we measure PS 
in electrodermal activity (EDA) and inter beat interval (IBI, inverse of heart rate) 
of participants who listened to the same audio stream but were either instruct-
ed to attend to the presented narrative (N = 13) or to the interspersed audito-
ry events (N = 13). Both laboratory and wearable sensors were used (ActiveTwo 
electrocardiogram (ECG) and EDA; Wahoo Tickr and EdaMove 4). A participant’s 
attentional condition was classified based on which attentional group they 
shared greater synchrony with. For both types of sensors, we found classifica-
tion accuracies of 73% or higher in both EDA and IBI. We found no significant 
difference in classification accuracies between the laboratory and wearable 
sensors. These findings encourage the use of wearables for PS based research 
and for in the field measurements.
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6.1. Introduction
Autonomic physiological responses can provide informative insights into an 
individual’s cognitive and emotional state. When aggregated across multiple 
individuals, group level dynamics may be investigated through similarities in 
their physiological activity. This concept is known as physiological synchrony 
(PS).

One prevalent domain in which autonomic PS has been extensively employed 
is that of interpersonal interactions (Palumbo et al., 2017). Use of PS can also 
be envisioned in various human computer interactions, such as in competitive 
multiplayer video games. Interest in autonomic PS is gaining traction in part 
due to the rapid development and growing maturity of wearable sensor tech-
nology (Mukhopadhyay, 2015; Seshadri et al., 2019; van Lier et al., 2020) com-
pounded with the possibility to combine a myriad of different wearable devices. 
Moreover, synchrony within different physiological modalities could be reflec-
tive of different processes, such as stress or empathy (Palumbo et al., 2017), and 
may provide insight into the mechanisms driving PS. It is suspected that PS can 
be used to measure shared attention (Brouwer et al., 2019), where shared at-
tention may be an underlying explaining factor of other findings such as those 
by (Gashi et al., 2019) on audience engagement. Attention itself plays an im-
portant role in learning capabilities (Jiang and Chun, 2001; Jamet et al., 2008), 
task performance (Pashler et al., 2001), and social interactions (Andrade et al., 
2009). Jamet et al. demonstrated the benefits of using attention guiding tech-
niques to facilitate learning, resulting in improved performance for retention 
(e.g. memory) based tasks (Jamet et al., 2008). As such, PS may be of interest as 
a tool to monitor attention continuously and unobtrusively in the classroom to 
assist students with learning disabilities, or to improve upon existing teaching 
methods (Dikker et al., 2017).

Wearable sensors are typically unobtrusive, affordable, and mobile, enabling ‘in 
the field’ research which may provide for more realistic insights into natural hu-
man behavior. However, these benefits usually come at the cost of a diminished 
signal. For instance, the Wahoo Tickr, a wearable used to measure heart rate 
(HR), high frequency HR information is lost due to the low sampling rate and on 
board processing (Borovac et al., 2020). It is still unclear what physiological sig-
nal aspects are relevant for measuring PS and how the limitations imposed by 
wearables influence their ability to measure meaningful affective/cognitive PS. 
Therefore, we chose to directly compare PS obtained through both laboratory 
and wearable sensors. Indeed, there are a few studies which compare wearable 
and laboratory grade equipment, such as that conducted by Ragot et al. on 
recognizing emotion (Ragot et al., 2018). However, these lie outside the domain 
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of PS and thus may rely on different signal aspects.

To directly compare laboratory and wearable equipment, data obtained from 
an experiment described in (Brouwer et al., 2019; Stuldreher et al., 2020b) were 
used. In this experiment, participants were instructed to listen to the same audio 
track, but to attend to different stimulus aspects with the aim of determining 
the selective attention in groups using PS. In (Brouwer et al., 2019; Stuldreher et 
al., 2020b), EDA and HR data obtained from laboratory equipment (ActiveTwo) 
were analyzed. During the experiment, EDA and HR were concurrently mea-
sured with wearable sensors (Wahoo Tickr, HR; EdaMove4, EDA). The current 
study elaborates on this experiment and directly compares autonomic PS re-
sults between wearable data and their laboratory counterparts, when subject 
to the same conditions and analysis methods. Therein, we aim to evaluate the 
feasibility of the use of wearables, spanning two physiological modalities, in the 
domain of PS. To the best of our knowledge, this is the first study that compares 
PS from wearable data with PS from high end laboratory equipment.

6.2. Methods

6.2.1. Participants
Participants (N = 27, aged between 18 and 48), with no self-reported problems 
in hearing or attention, were recruited from the research institute’s (TNO) par-
ticipant pool. All participants signed an informed consent form prior to the ex-
periment and were given a small monetary reward after the experiment. Data 
of one participant was removed due to failed recordings. The study was ap-
proved by the TNO Institutional Review Board (TCPE) and the TU Delft Human 
Research Ethics Committee.

6.2.2. Materials
For the laboratory equipment, both EDA and electrocardiogram (ECG) were 
measured via an ActiveTwo system (BioSemi, Amsterdam, Netherlands) at 1024 
Hz. For EDA, two passive gelled Nihon Kohden electrodes were placed on the 
ventral side of the distal phalanges of the middle and index finger on partici-
pants’ left hand. For ECG, two active gelled Ag AgCl electrodes were placed at 
the right clavicle and lowest floating left rib. Regarding the wearable equip-
ment, EDA was recorded through an EdaMove4 (movisens GmbH, Karlsruhe, 
Germany) at 32Hz while HR was measured with a Wahoo Tickr (Wahoo Fitness, 
Atlanta, Georgia, USA) at 1Hz. The EdaMove4 was attached by two self-adhesive 
electrodes placed on the palm on participants’ left hand. The Wahoo Ticker was 
fitted around the chest of participants after applying gel on its sensors. The 
Wahoo Tickr outputs a filtered HR signal with a minimum increment of 1 bpm 
derived from a measured electrical signal and thus does not provide raw inter 
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beat intervals (IBI). The signal resolution (1 bpm) and sampling rate (1 Hz) are 
independent of each other, but the amount of information contained in the 
signal is dependent on both. Thus, the Wahoo Tickr lacks high frequency HR 
information (e.g. respiratory sinus arrhythmia RSA), that are present in the Ac-
tiveTwo ECG.

6.2.3. Stimuli and design
Each participant completed the experiment individually and listened to the 
same audio file. This file was composed of a 66 min audiobook (a Dutch thriller 
written by Corine Hartman: ‘Zure koekjes’) with interspersed auditory stimuli 
(beeps and affective sounds). These short stimuli were randomly ordered with 
intervals between stimuli ranging from 35 to 55 seconds. Half of the participants 
were assigned to attend to the narrative (NA) of the audiobook and to ignore all 
other stimuli. The other half of the participants were asked to focus on the short 
stimuli (SSA) and ignore the narrative.

The affective sounds, of 6 second durations, are taken from the Internation-
al Affective Digitized Sounds (IADS) (Bradley and Lang, 2007a): a collection of 
acoustic stimuli normatively rated for emotion, valence and dominance. Exam-
ples include sounds of a crying baby or the cheers of a sports crowd. 12 neutral 
sounds, 12 pleasant sounds and 12 unpleasant sounds were elected. Beeps were 
presented in blocks of 30 seconds, with every two seconds a 100ms high (1kHz) 
or low (250Hz) pitched beep. SSA participants were tasked with counting the 
number of high and the number of low tones (De Dieuleveult et al., 2018). 27 
blocks of sounds were presented.

6.2.4. Analysis
Data processing was done using MATLAB R2018b (Mathworks, Natick, MA, 
USA). ActiveTwo EDA measurements were downsampled to 32 Hz. For both 
ActiveTwo and EdaMove4, the phasic component of the EDA response was 
extracted for further analysis using the Ledalab toolbox for MATLAB (Bened-
ek and Kaernbach, 2010). Studies on EDA typically show a certain number of 
‘non responders’ (Braithwaite et al., 2013), or weak responders participants with 
a low EDA magnitude and near zero phasic response. Weak responders in our 
study were identified through visual inspection by the individual authors of the 
manuscript. Data of these participants were not discarded since the weak re-
sponses of these participants appeared to contain information pertaining to 
the shape of the response, which may be useful for synchrony. However, the 
phasic responses of the EdaMove4 weak responders were contaminated with 
peaks arising from noise and jitter due to on board processing, distorting the 
signal shape. Therefore, the full EDA traces of the EdaMove4 weak responders 
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were filtered using a Savitzky Golay filter with a three second window and the 
phasic components were recomputed. Since the experiment event markers are 
expressed in the ActiveTwo timeline, we accounted for delays between EdaM-
ove4 and ActiveTwo, among others arising from on board processing on EdaM-
ove4. The phasic response obtained via EdaMove4 was time corrected through 
a normalized cross correlation with the phasic response from ActiveTwo. Here, 
the lag maximizing the correlation of the two signals is assumed to represent 
the accumulated delay (inconsistent across participants).

ECG measurements acquired from ActiveTwo were first downsampled to 256Hz, 
then high pass filtered at 0.5Hz. R peaks of the ECG signal were detected follow-
ing (Pan and Tompkins, 1985). The resulting semi timeseries of consecutive IBIs 
were subsequently interpolated and resampled at 32Hz to transform them into 
a timeseries. The Wahoo Tickr HR signal was first upsampled to 32 Hz, then time 
corrected through a normalized cross correlation with the ActiveTwo derived 
HR (i.e. inverse of IBI). The pre-processed Wahoo Tickr HR was then converted 
to IBI.

Regardless of sensor type and physiological signal, inter-subject correlations 
(ISC) were determined using a moving window, as introduced by (Marci et al., 
2007). A window of size 15 seconds traverses the signal at 1 second increments 
with Pearson correlations calculated over successive windows. The overall cor-
relation between two responses is given by the natural logarithm of the sum 
of all positive correlations divided by the absolute value of the sum of all neg-
ative correlations. Classifications were based on the average ISC of a partici-
pant with all members from the NA group and all members from SSA group, 
excluding the participant in question. Participants were classified with the at-
tentional group that they were more correlated with (i.e. shared the highest 
ISC). Paired sample t-tests were conducted to determine whether the NA ISC 
and SSA ISC were significantly different within each attentional group for EDA 
and IBI. Chance level classifications were determined through surrogate data 
with 100 instances of randomly shuffled attentional group labels. To evaluate if 
the classification accuracies between the laboratory and wearable sensors are 
statistically different, an exact McNemar’s test was used. This test is suitable 
to compare paired nominal data with small sample sizes, such as ours (Foody, 
2009; Adedokun and Burgess, 2011).

6.3. Results
Figure 6-1 illustrates that the patterns in ISC are similar between the laboratory 
and wearable sensors, and that overall, withingroup ISC is higher than between 
group ISC for both types of equipment. Figure 6-1 also presents results for both 
NA and SSA participants. For EDA, the within group ISC is significantly higher 
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than the between group ISC for NA participants with the EdaMove4 (t(12) = 4.16, 
p = .001) but not for the ActiveTwo (t(12) = 0.74, p = .476). For SSA participants, 
within group ISC is significantly higher than between group ISC for the ActiveT-
wo (t(12) = 4.07, p = .002) but not for the EdaMove4 (t(12) = 1.98, p = .072). Regard-
ing IBI, the significance of the patterns in group level ISC are consistent be-
tween the ActiveTwo and Wahoo Tickr. For SSA participants, the within-group 
ISC is significantly higher than the between group ISC (ActiveTwo: t(12) = 2.27, 
p = .043; Wahoo Tickr: t(12) = 4.75, p < .001). Within group ISC is not significantly 

Figure 6-1. Within-group and between-group inter-subject correlations (ISC) of elec-
trodermal activity (EDA, top) and inter-beat interval (IBI, bottom) for both attentional 
groups (NA, left bars; SSA, right bars) derived from laboratory (ActiveTwo, left column) 
and wearable (EdaMove & Wahoo Tickr, right column) sensors. Also illustrated are con-
nected dots which represent the individual participants. Full blue lines indicate higher 
within-group ISC. Dotted pink lines denote higher between-group ISC. Paired sample 
t-tests were used to determine if within-group ISC are significantly higher than be-
tween-group ISC (* p < .05,** p < .01,*** p < .001).
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higher than between group ISC for NA participants (ActiveTwo: t(12) = 2.02, p = 
.066; Wahoo Tickr: t(12) = 1.38, p = .192).

Table 6-1 presents the percentage of participants whose attentional condition 
(i.e. NA or SSA) was correctly identified. The corresponding chance level clas-
sification accuracies are also shown in accompanying brackets. For EDA, the 
classification accuracy is significantly above chance for both ActiveTwo (t(99) 
= 2.39, p = .009) and EdaMove4 (t(99) = 2.91, p = .005). Likewise, the IBI classifi-
cation accuracy is significantly above chance for both ActiveTwo (t(99) = 2.43, p 
= .009) and Wahoo Tickr (t(99) = 3.38, p = .001). Rather than performing worse, 
wearables tend to outperform their laboratory counterparts. EdaMove4 classi-
fies 81% of the participants correctly as opposed to 73% with ActiveTwo. Simi-
larly, Wahoo Tickr classifies 81% of the participants correctly, in comparison to 
77% with ActiveTwo. However, an exact McNemar’s test showed no statistical 
difference between the classification accuracy of ActiveTwo and EdaMove4, p = 
.727, or between ActiveTwo and Wahoo Tickr, p = 1.000.

6.4. Discussion
Through this study, we have shown that PS in selective attention can be derived 
from wearable sensors, EdaMove4 and Wahoo Tickr, equally well as their labo-
ratory based counterparts.

Our results are especially notable for the Wahoo Tickr, given its poor resolution 
(1 bpm) and sampling rate (1Hz). This suggests that wearables with lower bi-
trates may also be appropriate for PS based research, broadening the potential 
applications of autonomic PS. The relatively good performance of the Wahoo 
Tickr could suggest that the very low to low frequency HR (i.e. 0.003 to 0.15Hz) 
(Quer et al., 2016) is an influential feature for determining synchrony in selective 
attention. The lower frequency components of the ActiveTwo and Wahoo Tickr 
HR traces are mostly coincident, hence, the presence of high frequency HR (e.g. 
due to breathing) could act as ‘noise’ and may explain some of the differenc-
es in classification performance between these sensors. Consequently, future 

Table 6-1. Overall classification accuracy (in percentage) of correctly identified partici-
pant attentional conditions based on their inter-subject correlations (ISC). The chance 
level values, and associated standard deviations, are given in brackets. The corre-
sponding p-values are also presented.

ActiveTwo Wearables (EdaMove4, Wahoo Tickr)

EDA
73 (50 ± 10)

p = .009

81 (52 ± 9)

p = .005

IBI
77 (50 ± 11)

p = .009

81 (50 ± 9)

p = .001



151

Comparison of physiological synchrony from laboratory and wearable sensors

6

work should investigate methods to remove breathing from the ActiveTwo 
data to compare results more directly with the Wahoo Tickr. Under conditions 
of movement, synchrony in HR due to shared attention may be strengthened, 
if the movements are associated with shared attention such as in (Quer et al., 
2016), or overshadowed when unrelated as seen in (Verdiere et al., 2020). How-
ever, any synchrony in HR induced by quick breathing pattens, as with (Quer et 
al., 2016), will not be captured by the wearable sensor used here.

Differences between EdaMove4 and ActiveTwo can, in part, be explained 
through the ‘weak responders’. In total, there were three weak responders for 
ActiveTwo, two of which were in the SSA group, and seven weak responders 
for EdaMove4, five of which were in the SSA group. The large concentration of 
weak responders among the EdaMove4 SSA participants may explain the dif-
ference in significance of the group level ISC between ActiveTwo and EdaMove4 
seen at the top of Figure 6-1. Phasic responses of the EdaMove4 weak respond-
ers may have lacked some synchrony relevant features (e.g. peaks) which were 
either filtered out or were not present in the initial signal, resulting in poorer 
classification performance. For instance, two participants who were weak re-
sponders for EdaMove4 but not for ActiveTwo were misclassified with EdaM-
ove4 data and correctly classified with ActiveTwo data. This misclassification of 
weak responders is not unique to EdaMove4 since ActiveTwo also misclassifies 
some weak responders. In general, weak responders are difficult to classify due 
to a lack of informative features. This lack of features may also artificially sup-
press the magnitude of the group level ISC, leading to unreliable classifications 
which extend beyond these weak responders. To mitigate this, a different phys-
iological modality (such as IBI) may be used to compliment the classification 
result. In the current study, all but one of the EdaMove4 weak responders were 
correctly identified by the Wahoo Tickr, motivating the use of various modalities 
to augment classification accuracies.

For participants who were not weak responders, any discrepancies in perfor-
mance between ActiveTwo and EdaMove4 may be explained by the long re-
covery time of the EdaMove4 (Borovac et al., 2020). We suspect that the long 
recovery time is due to the large adhesive pads of EdaMove4 which impair the 
evaporation of sweat. In this region, the magnitude of the phasic response is lo-
cally reduced while the noise level remains constant. This culminates in a lower 
signal to noise ratio within the affected region and mirrors challenges observed 
with weak responders. Moreover, this locally reduced response may artificially 
inflate synchrony since this feature has a large temporal footprint and is pres-
ent across all participants (high chance of overlap between participants). Due 
to this, using EdaMove4 may be limited to experiments which aim to measure 
synchrony across temporally sparse events, or that combine various physiolog-
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ical modalities.

The exact McNemar’s tests show that there is no statistical difference in classi-
fication accuracy between wearables and laboratory equipment when measur-
ing PS in shared attention, and the trend is even such that wearables perform 
better rather than worse. Clearly, our findings encourage the use of wearables 
for PS based experiments and for in the field research. Limitations of this study 
are that the experiment was conducted in laboratory conditions with minimal 
movement and that only two types of wearables were used for comparison. 
Therefore, it is yet unclear as to how appropriate other wearables are for com-
puting PS and how suitable wearables in general for more active applications.

6.5. Conclusion
The current study indicates that measuring PS in shared attention with labora-
tory and wearable sensors can result in similar performance between the two. 
PS derived from the wearable sensors used in this study distinguished between 
the two attentional conditions (NA and SSA) equally well as PS obtained from 
laboratory equipment, in both physiological modalities (EDA and IBI). Since 
wearables are less obtrusive and are inherently mobile, these results motivate 
the use of wearable sensors for both in the lab and in the field measurements, 
such as for measuring PS in an audience during artistic performances or stu-
dents in a classroom.
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Abstract
Individuals that pay attention to narrative stimuli show synchronized heart rate 
(HR) and electrodermal activity (EDA) responses. The degree to which this phys-
iological synchrony occurs is related to attentional engagement. Factors that 
can influence attention, such as instructions, salience of the narrative stimu-
lus and characteristics of the individual, affect physiological synchrony. The de-
monstrability of synchrony depends on the amount of data used in the analysis. 
We investigated how demonstrability of physiological synchrony varies with 
varying group size and stimulus duration. Thirty participants watched six 10 min 
movie clips while their HR and EDA were monitored using wearable sensors 
(Movisens EdaMove 4 and Wahoo Tickr, respectively). We calculated inter-sub-
ject correlations as a measure of synchrony. Group size and stimulus duration 
were varied by using data from subsets of the participants and movie clips in 
the analysis. We found that for HR, higher synchrony correlated significantly 
with the number of answers correct for questions about the movie, confirm-
ing that physiological synchrony is associated with attention. For both HR and 
EDA, with increasing amounts of data used, the percentage of participants with 
significant synchrony increased. Importantly, we found that it did not matter 
how the amount of data was increased. Increasing the group size or increasing 
the stimulus duration led to the same results. Initial comparisons with results 
from other studies suggest that our results do not only apply to our specific 
set of stimuli and participants. All in all, the current work can act as a guideline 
for future research, indicating the amount of data minimally needed for robust 
analysis of synchrony based on inter-subject correlations.
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7.1. Introduction
Individuals that attend to narrative stimuli (e.g. movie clips or auditory narra-
tives) show synchronized neurophysiological responses such as brain potentials 
and heart rate (HR) (Ki et al., 2016; Stuldreher et al., 2020b; Pérez et al., 2021). 
This is referred to as physiological synchrony. Stronger physiological synchrony 
among participants is generally related to higher degrees of shared attentional 
engagement (Dmochowski et al., 2012, 2014; Cohen and Parra, 2016; Cohen et 
al., 2018; Pérez et al., 2021). Physiological synchrony is for instance higher among 
individuals who actively attend to a presented narrative compared to individu-
als who focus attention inward on a distracting task (Ki et al., 2016; Pérez et al., 
2021). Additionally, when engagement decreases due to being presented with 
a narrative for the second time, physiological synchrony also decreases (Dmo-
chowski et al., 2012). Physiological synchrony as marker of attentional engage-
ment is even informative on the level of an individual within a group: the more 
the physiological responses of an individual synchronize with those of others 
attending to the narrative, the better this individual can recall the narrative (Co-
hen and Parra, 2016; Stuldreher et al., 2020b; Pérez et al., 2021).

Narrative-driven synchrony is most studied and most pronounced for neuroim-
aging modalities, such as the electroencephalogram (EEG), magnetoenceph-
alogram (MEG) or functional magnetic resonance imaging (fMRI) (Hasson et 
al., 2004; Dmochowski et al., 2012; Liu et al., 2017). Brain-to-brain synchrony is 
often quantified through inter-subject correlations (Parra et al., 2019). Such in-
ter-subject correlations amongst attending individuals are significantly higher 
than chance upon presentation of narrative stimuli (Poulsen et al., 2017), are 
reduced when individuals are distracted from the narrative(Ki et al., 2016), dis-
tinguish between individuals with different selective attentional focus to part 
of the presented stimulus (Stuldreher et al., 2020b) and are predictive of the 
occurrence of attentionally relevant stimuli in time (Stuldreher et al., 2020a). In 
addition, brain-to-brain synchrony has been related with numerous behavioral 
metrics, such as stimulus retention, efficacy of advertising and efficacy of com-
munication (Dmochowski et al., 2014; Schmälzle et al., 2014; Cohen et al., 2018; 
Stuldreher et al., 2020b). This relation between brain-to-brain synchronization, 
attention and behavioral outcomes has been established for both auditory and 
audiovisual narratives (Cohen and Parra, 2016).

Narrative-driven synchrony has also been established in measures that reflect 
autonomic nervous system activity, such as HR and electrodermal activity (EDA) 
(Stuldreher et al., 2020b, Pérez et el., 2021). We refer to this as body-to-body syn-
chrony. Although the brain is most closely involved in attentional processing, 
body measures can also index attention through reflecting arousal: the physio-
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logical state of activation of the body. Arousal and attention are closely related 
and share a common neural substrate (Critchley, 2002). HR and EDA are sensi-
tive to changes in arousal and thereby also associated with changes in atten-
tion. Indeed, HR and EDA respond to arousing, emotionally relevant events that 
are attentionally prioritized (Lang et al., 1998; Bradley and Lang, 2000) and con-
tribute to the monitoring of driver attention (Awais et al., 2017; Najafi et al., 2023).

Similar to brain-to-brain synchrony, it has indeed been found that body-to-body 
synchrony reflects attentional engagement. Inter-subject correlations in such 
measures are significantly higher than chance upon presentation of narrative 
stimuli (Pérez et al., 2021), are reduced when individuals are distracted from 
the narrative (Pérez et al., 2021), distinguish between individuals with different 
selective attentional focus to part of the presented stimuli (Stuldreher et al., 
2020b) and are predictive of the occurrence of attentionally relevant stimuli in 
time (Poulsen et al., 2017). Although to a lesser degree than brain-to-brain syn-
chrony, body-to-body synchrony has been related to some behavioral metrics, 
such as stimulus retention (Stuldreher et al., 2020b; Pérez et al., 2021).

While body-to-body synchrony is associated with attentional engagement, 
it appears to be less robust and to a lesser degree related to attention than 
brain-to-brain synchrony. It has been argued that this may be so because body-
to-body synchrony rather reflects arousal or emotional engagement, whereas 
brain-to-brain synchrony more directly reflects attention (Golland et al., 2014; 
Steiger et al., 2019; Stuldreher et al., 2020b). In addition, the potential informa-
tion density of most brain measures strongly exceeds that of body measures in 
terms of modulation frequency and number of sensors. In general the num-
ber of participants with significant inter-subject correlations (i.e. correlations 
exceeding chance level expectations) was lower for HR than for EEG (Madsen 
and Parra, 2022). Inter-subject correlations in EDA and HR also distinguished 
less reliably between two selective attentional conditions than inter-subject 
correlations in EEG, though inter-subject correlations in HR were correlated 
with performance metrics in a similar way as inter-subject correlations in EEG 
(Stuldreher et al., 2020b).

In comparison with methods based on machine learning models, physiologi-
cal synchrony is a potentially valuable method to implicitly monitor attention 
in real life situations. Analyzing physiological synchrony allows the use of eco-
logical stimuli (movies and narratives). Additionally, there is no need to train a 
model beforehand on previously collected (personal) data. While as reviewed 
above, brain-to-brain synchrony seems more sensitive than body-to-body syn-
chrony, the latter has advantages from the perspective of user comfort and 
costs. The use of wearable EDA and HR sensors allows for the monitoring of 
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physiological synchrony in real-world settings, such as classrooms or confer-
ences (Gashi et al., 2019; Liu et al., 2021). The need to move to real-life settings 
has been stressed many times (Brouwer et al., 2015b). While physiological syn-
chrony as determined using wearables seems very suitable for real-life research 
and applications, questions regarding the analysis of physiological synchrony 
remain. The computational approach used to quantify physiological synchro-
ny may affect potential outcomes. Algumaei for instance reported that physio-
logical synchrony in the electrocardiogram (ECG) had predictive value of team 
performance using a multidimensional recurrence quantification analysis, but 
not using dyadic linear cross correlations (Algumaei et al., 2023). Linear cross 
correlations, on the other hand, are successfully employed to assess the atten-
tional engagement towards narrative stimuli (Stuldreher et al., 2020b; Pérez et 
al., 2021). In settings where individuals are presented with the same narrative 
stimulus, nonlinear analyses may not be required as there are no asymmetric 
relationships to be captured. More complex nonlinear analysis may also require 
more data to be collected to set the additional modeling parameters, such that 
inter-subject correlations are the more suitable approach. 

However, also for such inter-subject correlations, the requirements in terms of 
amount of data needed to obtain robust inter-subject correlations remains un-
clear. There are still few studies employing inter-subject correlations in HR and 
EDA and reporting requirements in terms of data used. Pérez et al. (Pérez et al., 
2021) report that for single 60-second movie clips only a few participants show 
significant inter-subject correlations, but when aggregating over all 16 movie 
clips that they used in their study, the majority of participants show significant 
inter-subject correlations. Stuldreher et al. (2020b) found that when selecting 
parts of an entire 66 minute audio stimulus, generally less participants could 
be classified in the correct attentional condition. Though these results indicate 
that significance of inter-subject correlations depends on the amount of data 
used, it remains unclear what the specific relationship is between the amount 
of data and inter-subject correlations. There are no criterions for minimum 
group size or minimum stimulus length for sensible physiological synchrony 
results. In addition, it is unclear whether it is wise to increase the amount of data 
through recording from more people, or longer stimuli if the option is there.

We here explore the amount of data that is required to obtain robust results 
of body-to-body synchrony (HR and EDA) recorded with wearable equipment 
during watching movies. The amount of data is varied by the number of partici-
pants and the duration of (audiovisual) stimuli. In addition, we varied attention-
al instruction such that participants were either asked to attend to the movie, or 
to respond to a certain visual cue. As described later, this manipulation did not, 
or hardly, affect any outcome measure and is not the focus of the paper, but will 
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be discussed at the end.

7.2. Materials and methods

7.2.1. Participants
Thirty participants (14 female), between 19 and 64 years old, with an average age 
of 39.4 years and a standard deviation of 15.8 years, were recruited through the 
institutes participant pool. Before performing the study, approval was obtained 
from the TNO Institutional Review Board (IRB). The approval is registered under 
reference 2020-117. All participants signed informed consent before participat-
ing in the experiment, in accordance with the Declaration of Helsinki. After suc-
cessful participation, participants received a small monetary compensation for 
their time and traveling costs. 

7.2.2. Materials
EDA and HR were recorded using wearable systems. EDA was recorded us-
ing EdaMove 4 (Movisens GmbH, Karlsruhe, Germany) worn at the wrist of the 
non-dominant hand. The EdaMove 4 uses two solid gelled Ag/AgCl electrodes 
(MTG IMIELLA electrode, MTG Medizintechnik, Lugau, Germany, W55 SG, tex-
tured fleece electrodes, 55 mm diameter) recording signals from the palmar 
surface of the hand. A constant direct current (DC) voltage of 0.5 V was applied 
to the skin. Measurements were conducted at a sampling rate of 32 Hz with 
an input range of 2 – 100 μS and with a resolution of 14 bits. HR was recorded 
using the commercially available and sport-oriented Tickr chest-strap (Wahoo 
Fitness, Atlanta, GA, USA). The device reports HR in beats per minute (bpm), at a 
rate of one value per second and a resolution of one bpm. Data were streamed 
over Bluetooth to a smartphone for local saving on the device through the Wa-
hoo Fitness application (version 1.36.0.291). Both EdaMove 4 and Tickr have been 
demonstrated before to provide signal quality close to high-end lab equipment 
(Borovac et al., 2020), and to be suitable to measure attention-modulated phys-
iological synchrony (Van Beers et al., 2020).

7.2.3. Design
Participants performed the experiment one by one. All participants were pre-
sented with six movie clips of approximately 10 minute duration (09:48 ± 00:41 
minutes). The details and URLs can be found in Table 7-1. The movie clips were 
selected from the Dutch YouTube channels NPO3 and KORT! and featured 
10-minute stories. The presentation order was randomized across participants. 
We chose these clips as we are not aware of any affective movie databases con-
taining six approximately 10-minute videos of neutral valence and moderate 
arousal, preferably in Dutch. Although the clips are not standardized in terms of 
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valence and arousal, the movies are comparable in terms of length and type. All 
contain an emotional narrative that develops throughout the 10-minute video, 
as judged at face value by two of the authors. We avoided films with strongly 
arousing content, such as the death of characters, physical violence and verbal 
violence. The films are of the arthouse genre.

Besides the robustness of inter-subject correlations as a function of measure-
ment duration and group size, we also aimed to study the effect of a double 
task on inter-subject correlations. For this, every 2-10 seconds a millisecond 
counter (red font) was displayed in the center of the screen on top of the movie. 
This counter disappeared after 5 seconds or upon a button press of the partic-
ipant. Alternating between movie clips, participants were instructed to attend 
to the movie clip and to ignore the counter or to respond as quickly as possible 
to the appearance of the counter by pressing the spacebar (i.e., performing the 
psychomotor vigilance task (PVT); (Thomann et al., 2014)). These conditions are 
referred to as movie attending (MA) and task attending (TA), respectively. In the 
TA condition, PVT performance was determined by the mean reaction time af-
ter appearance of the counter.

To gain insight in the effect of the attentional instructions on the selective at-
tentional performance of participants and to relate attentional performance to 
physiological synchrony, participants in both conditions were asked to answer 
10 questions about the narrative of the movie clips immediately after each mov-
ie clip. These questions and the correct answers (in Dutch) can be found in the 
supplementary Table S2., which can be found online at: https://www.mdpi.com/
article/10.3390/s23063006/s1. 

7.2.4. Analysis

7.2.4.1.  Pre-processing
All data and scripts are available on https://github.com/ivostuldreher/robust-
ness-of-physiological-synchrony. Data processing was performed using MAT-
LAB 2021a software (Mathworks, Natick, MA, USA). Both EDA and HR were time-

Table 7-1. Description of shown movie clips, categorized by name, duration and URL.

Name Duration URL

Chauffeur 09:45 https://www.youtube.com/watch?v=jaFmvyH7dW8 

El Mourabbi 09:04 https://www.youtube.com/watch?v=X9bJou2gKxo

De Chinese Muur 09:50 https://www.youtube.com/watch?v=yjGFuhPy3Qo

One of the boys 10:58 https://www.youtube.com/watch?v=PsGAuhgQ97k 

Samual 09:45 https://www.youtube.com/watch?v=VUseoqCVnj4

Turn it around 09:26 https://www.youtube.com/watch?v=beC7IpQpTz4 

https://www.youtube.com/watch?v=jaFmvyH7dW8
https://www.youtube.com/watch?v=X9bJou2gKxo
https://www.youtube.com/watch?v=yjGFuhPy3Qo
https://www.youtube.com/watch?v=PsGAuhgQ97k
https://www.youtube.com/watch?v=VUseoqCVnj4
https://www.youtube.com/watch?v=beC7IpQpTz4
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locked to the onset of the movie clips using locally saved timestamps. Before 
starting the experiment, we synchronized device clocks by using the same on-
line clock on all devices. EDA was imported using proprietary scripts using the 
unisens4matlab toolbox. We followed the pre-processing procedure of recent 
work using the same sensor (Thammasan et al., 2020). Periods of signal loss due 
to loose electrodes were identified and marked for removal later on in the pro-
cess. The signal was filtered using a 3-second Savitzky-Golay filter to overcome 
the quantization noise in the signal. The fast changing phasic component and 
slowly changing tonic component of the EDA were then separated using Con-
tinuous Decomposition Analysis as implemented in the Ledalab toolbox for 
MATLAB (Benedek and Kaernbach, 2010). In further analysis, we use the phasic 
component of EDA as this component is mainly related to responses to external 
stimuli. With EDA we will from now on refer to the phasic component of EDA. 
After decomposition of the signal, we removed those parts of the signal that 
were marked for removal earlier on. If more than 30% of data recorded from an 
individual were marked for removal, the entire recording was removed for fur-
ther analysis. Based on this criterion data of three out of the thirty participants 
were removed from further analysis. From three additional participants, part of 
the EDA data were removed as they contained periods marked as artifactual. 
From these participants 0.8%, 6.0% and 10.8% of data were removed. In total, we 
thus used datasets of 27 individuals in further analysis, of which for three partic-
ipants 0.8%, 6.0% and 10.8% of the EDA data were removed.

The HR data were exported from the Wahoo Fitness application in a .fit format 
and imported in MATLAB using proprietary scripts based on FIT SDK 21.38.00 
(FIT SDK RELEASE NOTES, 2020). Data of one participant was lost due to a failed 
recording. Suspicious samples in the data were removed based on two criteria: 
1) samples higher than 200 bpm or lower than 30 bpm because we consider 
such values unrealistic in the current setting and 2) samples more than 25% 
different from the value 1 second before such changes in HR are considered un-
realistic (Cheung, 1981). This was only true for one participant, for whom 0.3% of 
data were removed. Data of participants where samples equal to the previous 
sample are 50 times more prevalent than samples different from the previous 
sample were also removed from further analyses, as they indicate a malfunc-
tioning HR sensor. This affected six participants. HR data of three participants 
were completely removed from further analyses, for the three other partici-
pants data recorded during two of the six movie clips were removed. In sum, 
the HR data of 26 participants were used in further analysis, of which for three 
participants data of two out of six movie clips was discarded. 

EDA and HR data were then epoched and time-locked to the start of each mov-
ie clip as further analysis are conducted on the physiological data recorded 
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during the movie presentation. Data were time-locked to the movie based on 
the computer time at the start of each movie presentation, that were saved to a 
.csv file and cut to the duration of each movie. 

7.2.4.2. Inter-subject correlations
We computed physiological synchrony between participants during each mov-
ie clip using inter-subject correlations, following methods used in earlier work 
(Stuldreher et al., 2020b, 2020a; Pérez et al., 2021). Dyadic inter-subject correla-
tions were computed for all unique dyads. Inter-subject correlations were com-
puted in 15 second windows sliding at 1 second increments over the entire ep-
och of interest (here the entire movie clip), that were subsequently averaged 
across the entire epoch. For each physiological measure and each epoch, we 
thus obtain an N×N matrix of inter-subject correlations, where N represents the 
number of participants. For each participant, participant-to-group inter-subject 
correlations were computed by averaging over all values in a row, excluding the 
diagonal. 

To investigate whether the movies and attentional instruction affected in-
ter-subject correlation, a two-way ANOVA with independent variables movie 
and attentional condition was performed.

7.2.4.3. Circular-shuffle based significance test
To test the significance of participant-to-group inter-subject correlation values, 
we used the circular shuffle statistic, following (Pérez et al., 2021). Each partic-
ipant’s physiological signal was circular shifted by a random amount within 
the epoch length. The inter-subject correlations and participant-to-group in-
ter-subject correlations were then computed with this circular shuffled data. 
This procedure was repeated 50 times for each participant. Statistical signifi-
cance of the inter-subject correlations was assessed using a one-sided inde-
pendent sample t-test comparing the actual correlations to those resulting 
from the shuffled data (significance threshold p < .05).

7.2.4.4. Effect of stimulus duration and group size on inter-subject correlation 
significance
Our aim is to investigate how stimulus duration and group size affect the in-
ter-subject correlation significance. 

To investigate the effect of stimulus duration, we artificially created shorter and 
longer movie clips. The first step was to combine the six 10-minute movie clips 
after each other into 60-minute movie clips. 720 different orders of combining 
the 10-minute movie clips are theoretically possible, namely six factorial. Due to 
computational constraints we chose to combine the movie clips in six different 
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orders based on the following Latin square, where each row corresponds to one 
of the six orders used:

1 2 3
2 5 4
5 1 6

4 5 6
6 1 3
3 2 4

3 4 5
6 3 2
4 6 1

1 6 2
5 4 1
2 3 5

The second step was to only select the first x minutes of data, where we varied 
x:  30 seconds, 1 minute, then in 2 minute increments up to 19 minutes and then 
from 24 minutes in 4 minute increments to 60 minutes. For each subsegment 
of data, we performed the abovementioned circular shuffle analysis to investi-
gate the statistical significance of the inter-subject correlations. 

To investigate the effect of group size on inter-subject correlations, we varied 
the group size from two to 27 participants, at one participant increments. As 
there are many subsets of participants possible, for each group size we selected 
50 random subsets of participants using the ‘randsample’ function as imple-
mented in Matlab. For each subset of participants we investigated for all of the 
above subsegments of data which fraction of participants showed significant 
synchrony.

7.3. Results

7.3.1. Effect of movie and condition on inter-subject correlation
To investigate whether the movies and attentional instruction affected in-
ter-subject correlation, a two-way ANOVA with independent variables movie 
and attentional condition was performed. There was no effect of attentional 
instruction on inter-subject correlations in HR (F(1,5) < 10-4, p = .979) and EDA 
(F(1,5) = 0.15, p = .698). While there was a main effect of movie on inter-subject 
correlations, both for HR (F(1,5) = 7.57, p < .001) and EDA (F(1,5) = 3.79, p < .003), 
there was no interaction with attentional instruction (HR: F(1,5) = 0.88, p = .498, 
EDA: F(1,5) = 1.25, p = .286). In the remaining analyses we therefore collapse over 
the two conditions.

7.3.2. Significance of inter-subject correlations
We first investigated the significance of inter-subject correlations in response 
to each of the movie clips separately. Figure 7-1 depicts the HR and EDA partic-
ipant-to-group inter-subject correlations for each participant and each movie 
clip compared to a circular-shuffle-based chance level distribution. The figure il-
lustrates the effect of movie clip on inter-subject correlation as described in the 
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previous section. The majority of participants show significant HR inter-subject 
correlations in response to the movies “Chauffer”, “De Chinese Muur” and “One 
of the Boys” while this is not the case for “El Mourrabi”, “Samuel” and “Turn it 
Around”. Inter-subject correlations in EDA show a similar pattern.

a. HR

b. EDA

Figure 7-1. Participant-to-group physiological synchrony for each participant’s a. HR 
and b. EDA. In each window, each marker refers to a participant. Filled markers depict 
inter-subject correlations exceeding chance level correlations based on 500 trials of 
circular shuffle (depicted by the grey distributions), open markers depict inter-subject 
correlations not exceeding chance level. Crosses depict missing data.
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7.3.3. Dependency of significant inter-subject correlation on stimu-
lus duration and group size
We then investigated how the percentage of participants with significant in-
ter-subject correlations varied with stimulus duration and group size. Figure 7-2 
shows how the percentage of participants with significant inter-subject cor-
relations varies with stimulus duration and group size, for HR (top plots) and 
EDA (bottom plots) when averaged over the six movie orders and the fifty ran-
dom subsets of participants. The left plots depict how the percentage varies 
with stimulus duration, for different group sizes. The right plots depict how the 
percentage varies with group size, for different stimulus durations. Additional-
ly, Figure 7-3 shows the standard deviation of this percentage of participants 
with significant inter-subject correlations across the different movie orders as a 
function of stimulus duration in the left plots and across the fifty random sub-
sets of participants as a function of group size in the right plots.
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a. HR b. HR

c. EDA d. EDA

Figure 7-2. Percentage of participants with significant inter-subject correlations for HR 
(top; a, b) and EDA (bottom; c, d) as a function of stimulus duration (left; a, c) and par-
ticipant group size (right; b, d), averaged over the six movie orders and 50 subsets of 
participant combinations. The color of the lines refers to the group size in the left plots 
and to the stimulus duration in the right plots, as do the numbers on the right side of 
some of the lines.
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In Figure 7-2, the left plots show a generally increasing percentage of partici-
pants with significant inter-subject correlations with increasing stimulus du-
ration, for all group sizes and for both EDA and HR. A small exception occurs 
in EDA when including only the first 30 seconds or one minute of data in the 
analysis; the percentage of participants with significant inter-subject correla-
tions is actually higher for these stimulus durations than when including two 
to four minutes of data. The left plots in Figure 7-3 show that the percentage 
of participants with significant inter-subject correlations is strongly affected by 
the specific movie clip, depicted by the relatively large standard deviations for 
short stimulus durations (including only a single movie clip). 

The right plots in Figure 7-2 show a generally increasing percentage of partici-
pants with significant inter-subject correlations with increasing group size, for 
all stimulus durations and for both EDA and HR. We observe that a larger group 
size leads to less dependence on the specific sample of participants, indicated 
by the decreasing standard deviation for increasing group size as depicted in 

a. HR b. HR

c. EDA d. EDA
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Figure 7-3. Standard deviation across movies (left a, c) and subgroups (right; b, d) of 
the percentage of participants with significant inter-subject correlations for HR (top; a, 
b) and EDA (bottom; c, d) as a function of stimulus duration (left; a, c) and participant 
group size (right; b, d). The color of the lines refers to the group size in the left plots and 
to the stimulus duration in the right plots.
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the right plots of Figure 7-3.

7.3.4. Comparing effects of stimulus duration and group size on sig-
nificant inter-subject correlation
The previous section describes two methods of increasing the total amount of 
data used (more movies – stimulus duration, and more participants – group 
size) and show the expected pattern that more data leads to a higher percent-
age of participants with significant inter-subject correlations. This raises the 
question if it is wise to increase the number of participants or the length of the 
stimulus if the option is there. Therefore, we expressed both methods of varying 
the amount of data in terms of total duration of included data. For instance, a 
group size of 10 participants and stimulus duration of 40 minutes leads to a to-
tal duration of included data of 400 minutes and a group size of 20 participants 
and stimulus duration of 20 minutes also leads to a total duration of included 
data of 400 minutes. Figure 7-4 shows the effects of both stimulus duration and 
group size in terms of total amount of data included as expressed in minutes 
for HR (top) and EDA (bottom). Each dot in the plot refers to the average per-
centage of participants with significant inter-subject correlations for a specific 
stimulus duration and group size. The color of the dots varies with group size, 
the size of the dots varies with stimulus duration. The shaded areas depict the 
standard deviation across the fifty random subsets of participants and six mov-
ie orders. The dots close in total amount of data included are also close in the 
percentage of participants with significant inter-subject correlations; dots are 
all on the same curve. The graphs thus show that while increasing the amount 
of data increases the percentage of participants showing significant inter-sub-
ject correlations, it does not seem to matter whether the amount of data is in-
creased by increasing the stimulus duration or the number of participants.

7.3.5. Correlation between performance measures and inter-subject 
correlation
Last, we investigated whether the inter-subject correlation correlate with per-
formance on questions about the content of the movie clips. Correlations be-
tween inter-subject correlations and performance on questions about the con-
tent of the movie clips are non-significant, as indicated in Table 7-2. However, 
when collapsing over all movies, there is a significant correlation between HR 
participant-to-group synchrony and number of correct movie questions (last 
row in Table 7-2). 
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7.4. Discussion

7.4.1. Significance of inter-subject correlations for different stimuli
In the current work we investigated the robustness of physiological synchrony 
in EDA and HR when presented with narrative stimuli. This is of interest be-
cause physiological synchrony can reflect shared attentional engagement. A 
first premise for a robust relation between physiological synchrony (assessed 
through inter-subject correlations) and attention is significant inter-subject 

a. HR

b. EDA

Figure 7-4. Fraction of participants with significant inter-subject correlations for a. 
HR  and b. EDA as a function of the total minutes of data included in analysis, varied 
through varying stimulus duration and group size. For each datapoint, the stimulus 
duration is reflected by the marker size and the group size is reflected by the marker 
color.
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correlations. That is, inter-subject correlations that are higher than one would 
expect based on chance. We found that inter-subject correlations depend on 
the specific movie stimulus. For some movies 78% of participants show signif-
icant participant-to-group inter-subject correlations, while for others only 30% 
of participants show significant inter-subject correlations. We do not know 
what movie characteristics cause this difference. It may be so that some movies 
were more engaging than others. It may also be that low-level characteristics 
drawing attention in a bottom-up fashion were more prevalent in some movies 
than in others. Inter-subject correlations are known to be  affected by low-level 
characteristics of the movie that draw attention in a bottom-up fashion (Gol-
land et al., 2014; Steiger et al., 2019; Stuldreher et al., 2020a). Previously, we found 
that moments of high synchrony when listening to an audiobook did not corre-
spond with scenes identified as overall ‘attentionally engaging’ by an indepen-
dent group of listeners. Instead, we suggested that moments of high synchro-
ny corresponded with relatively low-level engaging moments, such as swear 
words or salient intonation (Stuldreher et al., 2020a). With the use of EEG, it has 
been reported that moments of high inter-subject correlations corresponded 
to short suspenseful moments in the movie (Dmochowski et al., 2012; Poulsen 
et al., 2017). Though the present study did not show an effect of attentional 
task (either performing the PVT or not), several studies, including (Stuldreher 
et al., 2020b), demonstrate the effect of top-down guided attention on physi-
ology. Such findings refute the idea that physiological synchrony is completely 
caused by involuntary, bottom-up drawn attention. However, the exact relation 
between inter-subject correlations in HR and EDA and experienced attentional 
engagement is not clear yet.

7.4.2. Significance of inter-subject correlations with varying amount 
of data included
Our main question was how the prevalence of significant inter-subject correla-
tions depends on the duration of the stimulus and on the size of the participant 

Table 7-2. Spearman correlations between number of correct answers on questions 
about the content of the movie and participant-to-group physiological synchrony

Movie HR EDA

Chauffeur r = .13, p = .522 r = .02, p = .905

El Mourabbi r = .14, p = .502 r = .14, p = .490

De Chinese Muur r = .27, p = .171 r = .12, p = .541

One of the boys r = .12, p = .550 r = .18, p = .341

Samual r = .06, p = .751 r = .12, p = .571

Turn it around r = .20, p = .320 r = -.08, p = .659

Overall r = .20, p = .010 r = .09, p = .234
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group. As expected, with increasing stimulus duration and increasing group 
size, the percentage of participants that show significant inter-subject correla-
tions also increases. When using data of all participants, but stimulus durations 
of up to ten minutes, the percentage of significant inter-subject correlations is 
movie dependent and low on average (< 50%). Aggregating over two or three 
ten-minute movies already results in fairly robust significance levels of above 
80%. Similarly, when using all 60 minutes of stimuli, for small group sizes up 
to 10 participants the percentage of significant inter-subject correlations is de-
pendent on the specific sample of participants and low on average. With larger 
group sizes, the fraction of significant inter-subject correlations is high on aver-
age (> 85%) and less dependent on the specific sample. 

It appears that it does not matter in which way the total amount of data is 
reached. Robust inter-subject correlations (80% of participants with significant 
inter-subject correlations) is reached with a total amount of data of roughly 10 
hours for both HR and EDA. It does not matter whether this total amount of 
data is reached by increasing the number of participants or by increasing the 
stimulus duration. Note that for small group sizes the percentage of partici-
pants with significant synchrony strongly depends on the specific sample of 
participants (see Figure 7-3). We therefore suggest researchers conducting sim-
ilar studies to include at least 10 participants.

A small exception occurs in EDA when including only the first 30 seconds or first 
minute of each movie stimulus in the analysis. The significance of inter-subject 
correlations is actually higher with only the first minute of data than when in-
cluding the first two up to the first four minutes of data (Figure 7-2, bottom left 
panel). When examining how EDA inter-subject correlations change over the 
course of the movies (see supplementary Figure S1), we observe high correla-
tion values in the first 60 seconds of the each of the six movies. The figures in 
(Golland et al., 2014) show a similar pattern, with relatively high inter-subject 
correlations in the first 60 seconds of the stimulus. We think this is related to 
the very high levels of EDA at the beginning of each stimulus movie, that are 
necessarily followed by a sharp drop (see bottom panel in supplemenary Figure 
S2). Such EDA patterns are commonly found in studies displaying stimuli to 
observers, and presumably related to arousal associated with the presentation 
of ‘something new’. Also note that HR shows a similar, be it more modest pat-
tern of high values at the start of each movie, followed by a drop (top panel in 
supplementary Figure S2). We think arousal and attentional engagement are 
closely linked. For the special case of the start of a stimulus, high levels of EDA, 
and high inter-subject correlations, may reflect general stimulus-driven arousal 
and engagement, that is somewhat apart from attentional engagement with 
the stimulus’ content. 
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We cannot be sure whether our results are generalizable to similar studies 
or a finding specific for our sample of participants and videos. There is a very 
limited number of studies assessing inter-subject correlations in EDA or HR of 
observers, let alone report their significance. However, two recent studies as-
sessing significance of inter-subject correlations in HR present results similar 
to ours. Pérez et al. (Pérez et al., 2021) report significance of the inter-subject 
correlations in HR of 27 participants presented with 16 one-minute audiobook 
fragments. When aggregating over all audiobook fragments, thus including 
27 × 16 = 432 minutes of data in total, 63% of participants show significant in-
ter-subject correlations. This point coincides with the curve in Figure 7-4, indi-
cating the results presented here may be comparable to results found using 
other stimuli. Madsen and Parra (Madsen and Parra, 2022) obtain significant 
inter-subject correlations in HR for 66% participants, while using 920 minutes 
of data recorded during viewing of instructional videos in total. This reported 
prevalence of significance is on the lower end compared to our average results, 
but is still higher than the minimum percentage of participants with significant 
inter-subject correlations that we found for the same amount of data. These re-
sults suggest that the reported relation between amount of included data and 
inter-subject correlation significance applies to data beyond our specific set.

A premise for inter-subject correlations when presented with narrative stim-
uli is that individuals process narrative stimuli comparably (Madsen and Par-
ra, 2022). While our sample of participants varied quite widely in age and con-
tained about equal numbers of males and females, samples of participants that 
contain even more differing individuals may start to violate the premise of com-
parable processing. For instance, individuals with autism spectrum disorders 
(ASD), depression or first-episode psychosis, are known to show more varying 
neural patterns and thus reduced neural inter-subject correlations during nat-
uralistic stimulus presentations (Hasson et al., 2009; Salmi et al., 2013; Guo et al., 
2015; Mäntylä et al., 2018). When measuring inter-subject correlations across a 
group of individuals among which there are individuals with non-typical neural 
patterns, we expect that adding more data by including longer stimuli will re-
sult in a lower fraction of participants with significant inter-subject correlations 
than when adding more data by including more individuals with typical neural 
patterns. Conversely, when measuring inter-subject correlations across a group 
of ‘typical’ individuals, adding more data by using a longer stimulus is expected 
to lead to a higher fraction of participants that show significant synchrony than 
when adding ‘non-typical’ participants. 
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7.4.3. Inter-subject correlations as measure of attentional engage-
ment
For validating inter-subject correlation as a measure of attentional engagement, 
and with an eye on potential application of this marker, a demonstrated relation 
between inter-subject correlation and behavioral, attentional outcomes is im-
portant. For individual movie clips, we did not find significant correlations be-
tween participant-to-group inter-subject correlations and correctly answered 
movie questions in this study. When aggregating over all six movie clips, the 
correlation was significant for HR (r = .20, p = .010), though not for EDA (r = .09, p 
= .234). These results are in line with higher proportions of participants showing 
significant inter-subject correlation for HR than for EDA. It indicates that also 
for a robust relation between inter-subject correlations and attention, sufficient 
amounts of data are needed. 

The finding presented here is consistent with our previous work, in which in-
ter-subject correlations in HR were predictive of selective attentional perfor-
mance, but inter-subject correlations in EDA were not (Stuldreher et al., 2020b). 
The correlations between inter-subject correlations and number of correctly an-
swered questions presented here are low (r = .20 when aggregated across mov-
ies). Inter-subject correlations thus only explain a small part of the variance in 
the answers to questions about the content of the video. Note that the strength 
of the relation between attentional engagement (as estimated through in-
ter-subject correlation) and performance strongly depends on the sensitivity of 
the behavioral measures. E.g., when questions are used that are too easy or too 
hard, an association will not be found. Furthermore, whereas answers to ques-
tions on the movie contain information on content-level attention, inter-subject 
correlations most likely also capture more low-level attentional characteristics, 
driven among others by stimulus saliency (Stuldreher et al., 2020a) and emo-
tional engagement (Golland et al., 2014; Steiger et al., 2019).

7.4.4. Is higher inter-subject correlations always better?
In the current work we tested how participant group size and stimulus dura-
tion influence inter-subject correlations and their significance, with the goal of 
maximizing the fraction of participants with significant inter-subject correla-
tions. This does not mean that higher inter-subject correlation is always better 
from the point of view of its potential value as a measure of attentional engage-
ment. In fact, in the theoretical case that physiological signals of all participants 
are perfectly synchronized, the inter-subject correlations would lose their value 
since there is no physiological variability to relate to behavioral variability (Hedge 
et al., 2018). However, if the inter-subject correlations do not exceed chance level 
because of a lack of data, any differences in attentional engagement due to an 
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intervention or personal differences will also not be visible. An important ques-
tion is where the sweet spot lies where a stimulus evokes just enough synchro-
ny to obtain significant inter-subject correlations, but not enough to saturate 
the individual signals of interest (Finn et al., 2020). This sweet-spot may also 
be context dependent. For instance, when evaluating how effective a certain 
stimulus is in attracting attention compared to a second stimulus, the inter-in-
dividual differences are of less interest than when investigating which group of 
participants shows most engagement with a certain stimulus.

7.4.5. Conclusion
This study explored how the amount of data included in analyses influences 
the fraction of participants that show significant inter-subject correlations and 
showed that the source of the data (i.e. more participants or longer stimuli) is 
irrelevant. Future research should investigate the generalizability of this finding 
over different sets of stimuli and participants. We hope our results can help 
guide future researchers when setting up studies on narrative driven inter-sub-
ject correlations. Through our work we hope to contribute to the shift in re-
search from controlled laboratory settings and high-end equipment, to real-life 
settings and wearable sensors. 
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Abstract
Research on brain signals as indicators of a certain attentional state is moving 
from laboratory environments to everyday settings. Uncovering the attention-
al focus of individuals in such settings is challenging because there is usually 
limited information about real-world events, as well as a lack of data from the 
real-world context at hand that is correctly labeled with respect to individuals’ 
attentional state. In most approaches, such data is needed to train attention 
monitoring models. We here investigate whether unsupervised clustering can 
be combined with physiological synchrony in the electroencephalogram (EEG), 
electrodermal activity (EDA), and heart rate to automatically identify groups of 
individuals sharing attentional focus without using knowledge of the sensory 
stimuli or attentional focus of any of the individuals. We used data from an ex-
periment in which 26 participants listened to an audiobook interspersed with 
emotional sounds and beeps. Thirteen participants were instructed to focus 
on the narrative of the audiobook and 13 participants were instructed to focus 
on the interspersed emotional sounds and beeps. We used a broad range of 
commonly applied dimensionality reduction ordination techniques - further 
referred to as mappings - in combination with unsupervised clustering algo-
rithms to identify the two groups of individuals sharing attentional focus based 
on physiological synchrony. Analyses were performed using the three modali-
ties EEG, EDA, and heart rate separately, and using all possible combinations 
of these modalities. The best unimodal results were obtained when applying 
clustering algorithms on physiological synchrony data in EEG, yielding a maxi-
mum clustering accuracy of 85%. Even though the use of EDA or heart rate by 
itself did not lead to accuracies significantly higher than chance level, combin-
ing EEG with these measures in a multimodal approach generally resulted in 
higher classification accuracies than when using only EEG. Additionally, clas-
sification results of multimodal data were found to be more consistent across 
algorithms than unimodal data, making algorithm choice less important. Our 
finding that unsupervised classification into attentional groups is possible is 
important to support studies on attentional engagement in everyday settings.
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8.1. Introduction
Research on brain signals as indicators of mental state, such as attention, is 
moving from laboratory environments to everyday settings. This comes with 
several challenges. Firstly, contextual information about the environment and 
the people acting in it is limited. It is, for instance, usually unknown what events 
occur in the environment that are of potential interest to individuals. This 
complicates the process of uncovering attentional state by referring to known 
events through traditional analysis of event-related brain potentials. Secondly, 
everyday settings make it difficult to acquire suitable data to train algorithms 
that uncover mental state. Machine learning techniques have increased our 
ability to uncover complex mental states even with limited contextual informa-
tion, but user-specific data from a similar context is required to train well-per-
forming machine learning models. In a supervised machine learning approach, 
a model is trained with data recorded when information was available about 
events, and about the mental state of the individuals, to enable discrimination 
between the mental states of interest for unseen data collected when contex-
tual information is limited. Such paradigms have been widely applied, for in-
stance to recognize the emotional response to videos (Soleymani et al., 2012, 
2016), to distinguish between different mental workload conditions (Hogervorst 
et al., 2014) or to estimate the attentional state of individuals (Abiri et al., 2019; 
Vortmann et al., 2019). The requirement of context-specific training for discrim-
ination between mental states is the major drawback of supervised machine 
learning (Arico et al., 2018). Especially in everyday settings, the ground truth 
mental state information needed in the training phase is often not available 
(Brouwer et al., 2015b).

We here focus on further exploring an alternative approach that requires lit-
tle information about the individuals’ environment and does not require train-
ing. This approach is based on the interdependence of physiological signals in 
groups of individuals and may be used to probe attentional engagement. A 
number of everyday settings exist in which groups of individuals share their 
attention to some degree. An example is a group of students listening to the 
instruction of a teacher in a classroom. The degree to which physiological sig-
nals in such groups of individuals uniformly change is often referred to as phys-
iological synchrony (Palumbo et al., 2017). It has been related to the attentional 
engagement of individuals in a group, for example when presented with the 
same narrative stimulus, such as a movie or audio clip (Hasson et al., 2010; Dmo-
chowski et al., 2012). Ki et al. (2016) found that when a participant was actively 
attending to a movie, his or her electroencephalogram (EEG) was more syn-
chronized with the EEG of others attending to the same movie than when the 
participant’s attention was focused inwardly on a mental arithmetic task. Perez 
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et al. (2021) found similar results when using heart rate instead of EEG. Stul-
dreher et al. (2020b) found that physiological synchrony in EEG, heart rate and 
electrodermal activity (EDA) could not only distinguish between different atten-
tional conditions within an individual, but could also distinguish between par-
ticipants who had received different selective attentional instructions toward 
the exact same external stimulus. That is, a majority of participants showed 
more physiological synchrony with others who received the same attentional 
instructions than with others who received opposite attentional instructions.

Previous work indicates that both similarities in emotional and cognitive pro-
cessing may underlie physiological synchrony across individuals. Poulsen et al. 
(2017) found that moments in time with high physiological synchrony often co-
incided with emotionally arousing scenes of presented movie clips, suggesting 
that emotional engagement underlies high physiological synchrony. Stuldre-
her et al. (2020a) showed that not only presentation of emotionally arousing 
sounds led to high physiological synchrony, but also the presentation of to-be-
counted beeps, suggesting shared cognitive processing can also underlie high 
physiological synchrony. Dmochowski et al. (2014) showed that physiological 
synchrony over time was predictive of the number of tweets and viewership 
during a popular television series, where emotional and/or cognitive engage-
ment may have resulted in being compelled to view the stimulus. The contri-
bution of shared emotional or cognitive processing of specific stimuli to the 
overall interpersonal physiological synchrony seems to depend on the specific 
physiological measure. Stuldreher et al. (2020a) found that moments of high 
physiological synchrony in EEG corresponded with the occurrence of cognitive 
processing, but not with emotionally arousing events. Moments of high phys-
iological synchrony in heart rate, on the other hand, corresponded well with 
emotionally arousing events, but not with cognitive processing. Nonetheless, 
physiological synchrony in all of the above measures was shown to distinguish 
between groups with different selective attentional focus toward the same nar-
rative stimulus (Stuldreher et al., 2020b).

Physiological synchrony thus enables monitoring the degree of attentional en-
gagement without training of a model, and without detailed information about 
the environment. However, researchers up to now have only identified the spe-
cific attentional focus of an individual by putting physiological synchrony in 
context of other individuals of whom the attentional focus is known, such as 
inwardly vs. outwardly focused attention (Cohen and Parra, 2016; Ki et al., 2016; 
Pérez et al., 2021) or one of two specific types of selective attentional instructions 
(Stuldreher et al., 2020b). In everyday settings, such knowledge is not always 
available. For example, it is not known a priori who out of a group of students 
are attending to key elements of the lecture, and who are attending to what is 
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happening in the classroom around them, which would be required to classify 
an unknown individual into one or the other attentional group following the 
earlier used methods. For such cases, we require unsupervised identification of 
groups of individuals sharing attentional focus.

Unsupervised learning techniques may be used to find clusters of individuals 
sharing attentional state. Unlike supervised learning, unsupervised learning 
techniques are not based on a model that is trained on a labeled dataset. In-
stead, these techniques form clusters of samples that are proximate in a high-di-
mensional space (Grira et al., 2004). Numerous algorithms are available, from 
well-known algorithms such as traditional k-means (Lloyd, 1982), and its more 
modern iterations (Yu et al., 2018; Sinaga and Yang, 2020), to spectral clustering 
(Von Luxburg, 2007) or hierarchical clustering (Ward, 1963). Complementary to 
data clustering are ordination techniques, that pre-order objects in such a way 
so that similar objects are close to each other and dissimilar objects are far away 
from each other. Often used are the algorithms that are part of the family of 
multidimensional scaling (Borg et al., 2018).

Unsupervised learning techniques have been explored before in research using 
physiological measures to assess mental state. For instance, Schultze-Kraft et 
al. (2016) successfully employed unsupervised learning techniques to classify ei-
ther low or high operator workload in a laboratory setting based on EEG signals. 
Existing work focuses on within-subject classification of mental state (Carreiras 
et al., 2016; Schultze-Kraft et al., 2016; Maaoui and Pruski, 2018). To the best of 
our knowledge, unsupervised clustering of individuals sharing their attentional 
focus has not been demonstrated before.

The goals of the current work are therefore two-fold. First, we establish the 
feasibility of unsupervised clustering of individuals based on physiological syn-
chrony, to automatically identify groups of individuals sharing attentional focus 
without pre-knowledge of attentional focus of any of the individuals. Cluster-
ing performance is evaluated by using ground truth information on attentional 
state. Second, we investigate how performance depends on the type of physio-
logical measure used. While distinguishing between different attentional con-
ditions using synchrony in EEG, EDA, and heart rate has been explored before 
(Stuldreher et al., 2020b), we do not know how such results transfer to an unsu-
pervised approach. Additionally, we test performance when multiple physiolog-
ical measures are combined. We investigate all of this with the use of a broad 
range of classic and more modern unsupervised learning techniques. A sec-
ondary goal therefore is to compare clustering performance across algorithms.

In this study, we use the (Stuldreher et al., 2020b) publicly available dataset 
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(https://osf.io/8kh36/) in which ground-truth information about the attentional 
state of individuals is available. Though such information is generally not avail-
able in everyday—and if it is, one would use supervised learning techniques due 
to their higher performance compared to unsupervised learning (Schultze-Kraft 
et al., 2016; Arico et al., 2018) – we here need the ground truth information to re-
flect on the performance of this novel approach. We also investigate the use of 
the silhouette coefficient as a potential way to evaluate unsupervised cluster-
ing performance in scenarios where no ground-truth information is available 
(Rousseeuw, 1987).

In sum, we investigate whether attentional focus can be determined using un-
supervised clustering, and if so, whether clustering performance depends on 
the type of physiological modality (EEG, EDA, and heart rate).

We hypothesize that:

1) Attentional focus can be determined using unsupervised clustering tech-
niques.

2) Classification accuracies are higher when using EEG rather than EDA or heart 
rate.

3) Combining modalities into a multimodal approach leads to higher classifi-
cation accuracies than unimodal approaches because a multimodal approach 
includes information of more mental processes in the classification decision.

4) The silhouette coefficient is correlated with clustering accuracy.

When testing these hypotheses, we use multiple clustering algorithms. An ad-
ditional exploratory research question is how performance depends on cluster-
ing algorithm.

8.2. Methods

8.2.1. Participants
Twenty-seven participants (17 female), aged between 18 and 48 years (M = 31.6, 
SD = 9.8 years), took part in the experiment. They were recruited through the 
participant pool of the research institute where the study took place. None of 
the participants reported problems with hearing. Prior to the experiment all 
participants signed an informed consent, in accordance with the Declaration of 
Helsinki. All participants received a small monetary compensation for their par-
ticipation in the experiment and for traveling costs. Data from 26 participants 
were further processed due to a recording failure in one case. The experiment 
was approved by the TNO Institutional Review Board. The approval is registered 
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under reference 2018-70.

8.2.2. Materials
Electroencephalogram, EDA, and electrocardiogram (ECG) were recorded at 
1,024 Hz using an ActiveTwo Mk II system (BioSemi, Amsterdam, Netherlands). 
Electroencephalogram was recorded with 32 active Ag/AgCl electrodes, placed 
on the scalp according to the 10–20 system, together with a common mode 
sense active electrode and driven right leg passive electrode for referencing. 
The electrode impedance was maintained below 20 kOhm. For EDA, two pas-
sive gelled Nihon Kohden electrodes were placed on the ventral side of the 
distal phalanges of the middle and index finger. For ECG, two active gelled 
Ag/-AgCl electrodes were placed at the right clavicle and lowest floating left rib. 
Electrodermal activity and heart rate were also recorded using wearable sys-
tems (Movisens EdaMove 4 and Wahoo Tickr, respectively). These data are not 
discussed here, but are publicly available on https://osf.io/8kh36/ and compared 
to the data recorded using the ActiveTwo in van Beers et al. (2020).

8.2.3. Stimuli and design
Participants performed the experiment one by one. Each participant listened 
to the same audio file, composed of a 66 min audiobook (a Dutch thriller “Zure 
koekjes,” written by Corine Hartman) interspersed with other auditory stimuli. 
The 13 participants in the audiobook attending (AA) group were asked to focus 
on the narrative of the audiobook and ignore all other stimuli or instructions. 
The 13 participants in the stimulus attending (SA) group were asked to focus 
on the other stimuli, perform accompanying tasks, and ignore the audiobook. 
The order of interspersed stimuli was randomly determined, but was identical 
for each participant. Intervals between the end of one stimulus and the onset 
of the next one varied between 35 and 55 s (M = 45, SD = 6.1 s). The short audito-
ry stimuli were affective sounds, blocks of beeps, and the instruction to sing a 
song. For the exact types and order of interspersed stimuli we refer the reader 
to Stuldreher et al. (2020b).

After the experiment, all participants were asked to answer two questionnaires. 
In the first questionnaire, participants used a slider on a horizontal visual an-
alog scale running from “not at all” to “extremely” to rate their mental effort, 
distraction and emotion during the short emotional sounds. The second ques-
tionnaire was on the content of the stimuli: participants were asked to report as 
many emotional sounds as they could remember, they were asked to estimate 
the average number of beeps in a block, and they were asked questions about 
the content of the narrative. For more details we refer the reader to Stuldreher 
et al. (2020b).
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Figure 8-1. Overview of the processing pipeline, divided in signal pre-processing, map-
ping, clustering, and evaluation. EEG, electroencephalogram; EDA, electrodermal ac-
tivity; ECG, electrocardiogram; HR, heart rate; PS, physiological synchrony; PCoA, prin-
ciple coordinate analysis; mMDS, metric multidimensional scaling; nMDS, non-metric 
multidimensional scaling; UMAP, uniform manifold approximation and projection; 
MVMDS, multiview multidimensional scaling; MVSC, multiview spectral clustering.
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8.2.4. Analysis
An outline of the complete analysis is depicted in Figure 8-1. In the sections be-
low, each part of the analysis is elaborated upon separately.

8.2.4.1. Signal pre-processing
Data pre-processing was done using MATLAB 2019a software (Mathworks, 
Natick, MA, USA). Electroencephalogram was pre-processed using EEGLAB 
v14.1.2 for MATLAB (Delorme and Makeig, 2004). To remove potentials not re-
flecting sources of neural activity, like ocular or muscle-related artifacts, logistic 
infomax independent component analysis (Bell and Sejnowski, 1995) was per-
formed. Electroencephalogram was first downsampled to 256 Hz and high-pass 
filtered with the passband edge at 1 Hz using the standard finite-impulse-re-
sponse filter implemented in EEGLAB function pop_eegfiltnew. This relatively 
high cut-off frequency has shown to work better for independent component 
analysis compared to lower cut-off frequencies (Winkler et al., 2015). Data were 
then notch filtered at 50 Hz, again using the standard finite-impulse-response 
filter implemented in EEGLAB function pop_eegfiltnew. Channels were re-ref-
erenced to the average channel value. Independent component analysis was 
performed and the Multiple Artifact Rejection Algorithm (Winkler et al., 2011) 
was used to classify artifactual independent components. Components that 
were marked as artifactual were removed from the data. Then, samples whose 
squared amplitude magnitude exceeded the mean-squared amplitude of that 
channel by more than four standard deviations were marked as missing data 
(“NaN”) in an iterative way with four repetitions to remove outliers. By doing so, 
0.8% of data were marked as missing.

Electrodermal activity was downsampled to 32 Hz. The fast changing phasic 
and slowly varying tonic components of the signal were extracted using Con-
tinuous Decomposition Analysis as implemented in the Ledalab toolbox for 
MATLAB (Benedek and Kaernbach, 2010). In further analyses we use the phasic 
component, as this component of the EDA signal is mainly related to responses 
to external stimuli (Boucsein, 2012).

Electrocardiogram measurements were processed to acquire the inter-beat in-
terval (inversely proportional to heart rate). After downsampling to 256 Hz, ECG 
was high-pass filtered at 0.5 Hz. R-peaks of the ECG signal were detected fol-
lowing Pan and Tompkins (1985), resulting in a semi-time series of consecutive 
inter-beat intervals. This inter-beat interval semi-time series was transformed 
into a time series by interpolating consecutive intervals at 32 Hz.

8.2.4.2. Physiological synchrony
We computed inter-subject correlations in the time-domain as a measure of 
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physiological synchrony. Rather than treating EEG signals separately, the in-
ter-subject correlations were evaluated in the correlated components of the 
EEG (Dmochowski et al., 2012, 2014). The goal of the correlated component anal-
ysis is to find underlying neural sources that are maximally correlated between 
participants, using linear combinations of electrodes. The technique is similar 
to the more familiar principal component analysis, differing in that projections 
capture maximal correlation between sets of data instead of maximal variance 
within a set of data. After computing the correlated components based on data 
from all 26 participants, EEG data of each participant were projected on the 
component vectors. Inter-subject correlations between a participant with all 
other participants were then computed as the sum of correlations in the first 
three component projections, as correlations in higher order projections are of-
ten close to chance level (Ki et al., 2016). The result is a N × N matrix inter-sub-
ject correlations of all possible pairs of participants. The correlation values were 
normalized by dividing all correlation values by the diagonal value - in this case 
three, as we computed physiological synchrony as the sum of correlations in 
the first three correlated components.

For EDA and heart rate, we also computed inter-subject correlations in the 
time-domain as a measure of physiological synchrony. Pearson correlations 
were calculated over successive, running 15 s windows at 1 s increments. The 
overall correlation between two participants was computed as the natural log-
arithm of the sum of all positive correlations divided by the sum of the absolute 
values of all negative correlations. Again the correlation matrices were normal-
ized. Originally, the diagonal here contained infinite values (as there are no neg-
ative correlations, the denominator in the ratio is zero). We therefore chose to 
replace these cells with finite values in such a way that the ratio between the 
diagonal value and the mean of the matrix was the same for the matrices of 
EDA and heart rate as for EEG. Then again, all correlations were divided by the 
diagonal value.

Clustering algorithms usually require distance matrices. Thus, correlation ma-
trices were transformed into distance matrices before applying clustering al-
gorithms. Several transformations exist (Groenen and van de Velden, 2005). We 
followed the suggestion of Gower and Legendre (1986) and computed the val-
ues in the distance matrix as the square root of one minus the values in the 
correlation matrix.

As the off-diagonal correlation values were close to zero, and thus the off-diag-
onal distance values close to one, we applied a linear transformation of each 
off-diagonal coefficient like in interval multidimensional scaling (Borg and 
Groenen, 2005) to evenly distribute the values between zero and one.
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8.2.4.3. Mapping
Various ordination methods, or “mappings,” have been proposed to create dis-
tance matrices. Mapping is complementary to data clustering in such way that 
objects are ordered so that similar objects are close to each other and dissimilar 
objects are far away from each other. Mappings toward a different (lower-di-
mensional) space can be of value for visualization of clusters, and they can im-
prove clustering performance (Kent et al., 1979). The dimension of the mapped 
space can be chosen arbitrarily. We chose the output mapping to be in two-di-
mensional space, which is most common in literature and easy to interpret. We 
applied different, commonly known mappings, of which an overview can be 
found in Table 8-1.

8.2.4.4. Clustering
After mapping, or skipping the mapping, we applied a range of classical clus-
tering algorithms (Table 8-2). Not all combinations of mapping and clustering 
yielded valid results. Some methods, for example, are not deterministic, but 
provide different outcome maps for different initializations. We therefore used 
multiple random initializations and averaged over the clustering results for each 
initialization. However, this approach did not converge when using k-means on 
the raw distance matrices.

8.2.4.5. Evaluation: clustering quality assessment
To assess the clustering quality we compared found clusters to attentional con-
dition labels (AA or short SA), so that the clustering performance can easily be 
assessed. To investigate whether clustering performance is above chance level, 
we conducted a permutation analysis with shuffled group-labels, so that we 
can compare the clustering accuracy to accuracies obtained for 100 trials with 
randomized group-labels. We determined the significance level using a one-
tailed non-parametric Mann Whitney U-Test. Chance level distributions were 
determined for all algorithm combinations. The threshold for significantly high-
er clustering accuracies compared to chance were found to be either 65% (17 
out of 26 participants correctly clustered) or 70% (18 out of 26 participants cor-
rectly clustered). We selected the strictest significance level (i.e., 70%) to com-
pare all classification results to.

In real-world conditions, ground-truth information on the attentional state is 
often not a-priori available, which makes it hard to tell how well-unsupervised 
clustering of attentional states works in a particular condition. Therefore, we ex-
plored an alternative measure of evaluating clustering performance, known as 
the silhouette coefficient (Rousseeuw, 1987). This index measures the compact-
ness and separation of clusters and may be informative as a confidence metric 
of the clustering outcome. A confident clustering outcome would be associated 
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Table 8-1. Overview of the used ordination techniques.

Method Description Reference

Principle Coordinate 
Analysis (PCoA)

Also referred to as classical multidimensional 
scaling, PCoA intends to preserve the distances 
in the distance matrix in the output mapping. To 
do so, for each participant the objective is to find 
coordinates in a lower dimensional space that 
minimize the strain with the original values.

(Groenen and Borg, 
2014)

Metric Multidi-
mensional Scaling 
(mMDS)

mMDS is a superset of the PCoA that generaliz-
es the optimization procedure, where instead of 
strain often the stress is minimized. The minimi-
zation problem is solved iteratively as there exists 
no exact solution.

(Borg and Groenen, 
2005)

Non-metric Multidi-
mensional Scaling 
(nMDS)

Unlike PCoA, nMDS distorts the distances in 
the ordination solution. However, it preserves 
the rank of dissimilarities by minimizing the 
non-metric stress in an iterative approach.

(Kruskal, 1964)

Uniform Manifold 
Approximation and 
Projection (UMAP)

UMAP is a non-linear manifold learning tech-
nique originally developed as dimensionality re-
duction. It emphasizes local distances over global 
distances.

As the UMAP algorithm is also able to deal with 
ground-truth information known about some of 
the data points, it can either be used as all other 
methods or with self-supervised learning (SSL). 
With SSL, at the algorithm initialization, no labels 
are known. When the first mapping and cluster-
ing are done, a known label is assigned to the 
participant which is the closest to one of the clus-
ter center. This procedure is then repeated, each 
time adding the participant closest to one of the 
cluster centers that has not been labeled yet.

(McInnes et al., 2018)

Multiview Multidi-
mensional Scaling 
(MVMDS)

Multi view dimensionality reduction solutions 
have emerged to solve problems where various 
samples of the same observation are collected, as 
is the case here with synchrony in EEG, EDA and 
heart rate. MVMDS is a multimodal extension of 
PCoA – with only one matrix as input, results are 
identical – that intends to find the common ei-
genvectors across the different distance matrices

(Trendafilov, 2010)

Multiview Spectral 
Clustering (mvSC).

Like MVMDS, this technique is a multimodal ex-
tension of the spectral clustering ordination. It 
computes the common eigenvectors of the La-
placian of the dissimilarity matrices.

(Kanaan-Izquierdo et 
al., 2018)
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with tight and well-separated clusters, depicted by a silhouette coefficient near 
one, whereas an unconfident clustering outcome would be associated with 
broadly spread and overlapping clusters, depicted by a silhouette coefficient 
near zero. The silhouette coefficient cannot be determined for all combinations 
of mapping and clustering methods, for example when using random initializa-
tions before mapping over which has to be averaged, as can be de the case with 
nMDS, mMDS, or UMAP.

8.3. Results

8.3.1. Clustering performance using physiological synchrony in ei-
ther EEG, EDA, or heart rate
A complete overview of clustering performance for all used combinations of 
mapping algorithms and clustering algorithms based on physiological syn-
chrony in either EEG, EDA, or heart rate is presented in Supplementary Table 
A1. It shows the clustering accuracy, the misclassified participant IDs and sil-
houette coefficient, wherever available. Figure 8-2 visualizes the clustering ac-
curacies across the eight mapping methods and the three clustering methods 
that could all be combined with each other, as well as results when using no 
mapping, for which we could determine results for two out of the three clus-
tering methods. Classification accuracies above the black line are significantly 

Table 8-2. Overview of used clustering algorithms.

Method Description Reference

k-means

Probably the best known clustering algorithm, k-means aims 
to partition all  observations into  clusters (here k = 2), in which 
each observation belongs to the cluster with the nearest 
mean. Solutions are found iteratively.

(Lloyd, 1982)

k-medoids

This adaptation of k-means is based on the same principle, 
but rather than minimizing the distance between data points 
and the cluster center, that is not necessarily one of the input 
data points, k-medoids chooses data points as centers and 
minimizes the distance between data points and this me-
doid.

(Bauckhage, 
2015)

Spectral cluster-
ing

This technique makes use of the spectrum – or eigenvalues 
– of the similarity matrix to perform dimensionality reduction 
before clustering using traditional algorithms like k-means. 
Therefore, this algorithm somewhat combines a mapping 
and clustering algorithm in one.

(Von Luxburg, 
2007)

Hierarchical clus-
tering

As the name suggests, this algorithm builds a hierarchy of 
clusters in a bottom-up fashion. Initially, each data point 
thus belongs to its own cluster. The clusters are progressive-
ly merged according to similarity criteria called linkage. We 
here use Ward linkage that finds new clusters by minimizing 
the sum of squared differences within the merged clusters.

(Ward, 1963)



190

Chapter 8

higher than chance level. That is, classification accuracies of 70% or higher are 
significantly higher than the chance level distribution at p < .05. The best per-
formance is obtained using physiological synchrony in EEG [Mdn = 73%, Inter 
Quartile Range (IQR) = 12% across algorithms], with a maximum clustering ac-
curacy of 85% when using spectral clustering on the raw distance matrix or af-
ter applying PCoA ordination. For EDA, a median performance of 58% (IQR = 8%) 
was obtained; best EDA performance was reached using k-means with nMDS 
mapping (65%). For heart rate, median performance was 62% (IQR = 4%); best 
performance was reached using hierarchical clustering with nMDS or mMDS 
mapping (73%).

We determined the silhouette coefficient as a potential alternative measure of 
clustering performance. The results in Supplementary Table A1 do not suggest 
that a high silhouette coefficient corresponds with high clustering accuracy as 
evaluated using knowledge of the attentional instruction groups. This impres-
sion is confirmed by a lack of correlation between clustering accuracy and sil-
houette coefficient (r = 0.06, p = .543). We can note, however, that the silhouette 
coefficient is generally higher after mapping (Mdn = 0.33, IQR = 0.04) than with-
out mapping (Mdn = 0.13, IQR = 0.13).

8.3.2. Clustering performance combining physiological synchrony in 
EEG, EDA, and heart rate
Supplementary Table A2 presents the clustering results when combining phys-
iological synchrony in multiple modalities for all possible mapping-clustering 
combinations. It shows clustering accuracies, misclassified participant IDs and 
silhouette coefficient when combining EEG and EDA, EEG and heart rate, EDA 
and heart rate, and all three modalities. Figure 8-3 presents an overview of the 
accuracies for each mapping-clustering combination. Again, the dashed black 
line at 70% depicts significance level compared to chance. The best clustering 
performance of 92% is reached for EEG combined with heart rate when k-means 
and MVMDS or MVMDS-with-rescaling are used; as well as for the combination 
of EEG, heart rate, and EDA when MVMDS with rescaling is used with spectral 
or hierarchical clustering.

Table 8-3 shows statistical comparisons of classification accuracy between sin-
gle modality (EEG, EDA, or heart rate) to all other multimodal combinations. 
Adding modalities increases performance, except when EDA is complemented 
with heart rate, or heart rate with EDA. Combinations of EDA and heart rate 
results in median clustering accuracy of 58% (IQR = 8%).

While adding other modalities to EEG results in higher clustering performance, 
perhaps more important is that clustering performance seems more robust 
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across algorithms. When combining EEG with EDA (Mdn = 81%) IQR is 4%; when 
combining EEG with heart rate (Mdn = 85%), IQR is 3% whereas IQR is 12% when 
using EEG only. When combining all three metrics, performance is as consis-
tent as when combing EEG with heart rate only (Mdn = 85%, IQR = 3%).

8.3.3. Comparing clustering performance with other measures re-
flective of attentional engagement
Even though we specified the attentional instructions in the current study, we 
should note that we cannot be sure the attentional focus of participants is al-
ways as specified in the instructions. An incorrect classification may therefore 
not necessarily mean that the algorithms provided the wrong output, it may 
also be the case that the incorrectly classified participants did not follow their 
attentional instructions. To explore this possibility, we examined whether par-
ticipants that were incorrectly classified by the majority of the methods for EEG 
performed worse on performance measures reflective of their attentional focus 
(number of correctly answered questions about the content of the narrative, 
number of correctly described emotional sounds, estimated number of aver-
agely presented beeps), than participants that were correctly classified by the 
majority of the methods for EEG.

Seven participants were misclassified for more than 50% of the methods and 
designated as “often misclassified” (ID’s: 2, 3, 8, 10, 16, 18, 25). Table 8-4 provides 
the performance characteristics of often misclassified and often correctly clas-
sified participants and test statistics comparing the two. In the SA group, par-
ticipants that were often misclassified described significantly less emotional 
sounds correctly than participants that were often correctly classified, which 
indeed suggests that misclassified SA instructed participants did not attend to 
the emotional sounds very well. For the other two performance measures no 
significant differences were found.

Table 8-3. Test statistics of comparison between classification results using different 
combinations of physiological measures.

EEG vs. EEG – EDA EEG vs. EEG – HR EEG vs. EDA – HR EEG vs EEG – EDA - HR

t(37) = -2.77, p = .009 t(37) = -5.77, p < .001 t(37) = 4.40, p = <.001 t(37) = -4.78, p = <.001

EDA vs. EEG – EDA EDA vs. EEG – HR EDA vs. EDA – HR EDA vs EEG – EDA - HR

t(38) = -10.92, p = <.001 t(38) = -19.08, p < .001 t(38) = -0.22, p = .825 t(38) = -14.91, p < .001

HR vs. EEG – EDA HR vs. EEG – HR HR vs. EDA – HR HR vs EEG – EDA - HR

t(38) = -7.61, p < .001 t(38) = -12.88, p < .001 t(38) = 1.66, p = .104 t(38) = -10.61, p < .001
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8.4. Discussion
We here showed that by applying unsupervised learning techniques to physio-
logical synchrony, groups of participants sharing selective attentional focus can 
be identified from a set of participants with one of two different selective atten-
tional instructions. This confirms hypothesis 1. Obtained results were found to 
depend on the physiological modality on which clustering was based.

8.4.1. Clustering performance using physiological synchrony in ei-
ther EEG, EDA, or heart rate
We hypothesized that in line with previous research on physiological synchrony, 
from the three physiological measures EEG would perform best (hypothesis 2). 
Indeed, with the use of EEG, best performance was obtained. The maximum 
classification accuracy was 85% which is well above the threshold of 70% above 
which classification is significantly higher than chance level. However, perfor-
mance varied strongly across clustering algorithms, with accuracies as low as 
54% for some of the algorithms used.

Applying the clustering algorithms to physiological synchrony in EDA or heart 

Figure 8-2. Clustering accuracies utilizing physiological synchrony in EEG, EDA, heart 
rate for different combinations of mappings (top-axis) and clustering methods (bot-
tom-axis). Transparent top-to-bottom bars represent missing data. The dashed black 
line depicts significance level compared to chance level classification accuracies.
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rate resulted in lower classification accuracies than in EEG, and generally led to 
performance near theoretical chance level. This is in line with other work, where 
synchronous changes in peripheral modalities have been shown to reflect at-
tentional engagement with narrative stimuli less robustly than EEG (Ki et al., 
2016; Stuldreher et al., 2020b; Pérez et al., 2021; Madsen and Parra, 2022).

8.4.2. Effect of multimodal combination of physiological measures 
on clustering performance
We hypothesized that combining modalities in a multimodal approach would 
enhance clustering performance compared to a unimodal approach, because 
different modalities capture different underlying mental processes (hypothesis 
3). We partly accept this hypothesis. Indeed, when combining heart rate and 
EEG, EDA and EEG, or heart rate, EDA, and EEG, the clustering accuracy for 
combined modalities is higher than when using either of the modalities alone 
(Table 8-3). When combining heart rate and EEG, or heart rate, EDA, and EEG, 
the best obtained clustering accuracy across algorithms was also higher than 
when using either of the measures alone. When combining EDA with heart 
rate, classification accuracies were not higher compared to EDA or heart rate 
alone and thus still did not exceed chance level. Importantly, we found that 
when combining multiple physiological measures, results were not only gen-

Figure 8-3. Clustering accuracies utilizing physiological synchrony in EEG and EDA, 
EEG and HR, EDA and heart rate, and EDA, EDA, and heart rate for different combi-
nations of mappings (top-axis) and clustering algorithms (bottom-axis). The dashed 
black line depicts significance level compared to chance level classification accuracies.
(bottom-axis). The dashed black line depicts significance level compared to chance 
level classification accuracies.
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erally higher but also more consistent across the range of mapping and clus-
tering approaches. This was even the case when combination of modalities did 
not increase maximum classification accuracies, as for the combination of EEG 
and EDA. Thus, a multimodal approach resulted in classification performance 
that is less dependent on the specific algorithm choice. This observation advo-
cates a multimodal approach in everyday settings where for unimodal data, the 
patterns of variation in algorithm performance may be different than the ones 
found here.

8.4.3. Factors underlying performance differences between modal-
ities
We found that identifying two attentional groups in our study works best when 
physiological synchrony in EEG is used rather than EDA and heart rate. As men-
tioned in the introduction, we previously found that inter-subject correlations 
in EEG were especially sensitive to well-timed events inducing top-down mod-
ulation of attention, more so than to emotional sounds attracting attention bot-
tom-up (Stuldreher et al., 2020a). This and related work showed major pre-fron-
tal and parietal components contributing to inter-subject correlations in EEG 
when attending to narrative stimuli (Dmochowski et al., 2012; Cohen and Parra, 
2016; Ki et al., 2016). Exactly these cortical areas are of major importance in top-
down conscious attention processing (Vuilleumier and Driver, 2007). Inter-sub-
ject correlations in EDA and heart rate were modulated more by emotional 
sounds attracting attention bottom-up than by events that caused top-down 
modulation of attention (Stuldreher et al., 2020a). Other work also suggests that 

Table 8-4. Test statistics comparing performance on questions reflective of attentional 
focus of the often incorrectly classified participants and the often correctly classified 
participants.

Often correct 
participants AA

Often incorrect 
participants AA

Often correct 
participants SA

Often incorrect 
participants SA

Number of correctly an-
swered narrative ques-
tions

Mdn = 5, IQR = 3
Mdn = 6.5, IQR 

= 2.5
x x

W = -57, p = .445

Number of reproduced 
affective sounds

x x
Mdn = 7, IQR 

= 6
Mdn = 4, IQR 

= 2.3

W = 83.5, p = .028

Difference between aver-
age number of estimated 
beeps and true number 
of beeps

x x
Mdn = 2.5, IQR 

= 13
Mdn = 1, IQR = 9

W = -74.5, p = .475
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autonomic synchrony during presentation of narrative stimuli is mostly linked 
with emotional processing of these stimuli (Golland et al., 2014; Steiger et al., 
2019). Electrodermal activity and heart rate are largely innervated by midbrain 
structures, such as the hypothalamus, amygdala and insula (Thayer et al., 2009; 
Boucsein, 2012) that are hard to capture using EEG. Such midbrain structures 
have been related strongly to bottom-up emotional modulation of attention 
(Behrmann et al., 2004; Vuilleumier and Driver, 2007). The fact that in our study, 
the difference between attentional groups was induced by instructions that af-
fected attention in a cognitive, top-down manner, may have led to the finding 
that inter-subject correlations in EEG can here better distinguish between the 
groups with different selective top-down attentional conditions than inter-sub-
ject correlations in EDA and heart rate. Future work should investigate wheth-
er inter-subject correlations in EDA and heart rate are more suitable than EEG 
to distinguish between groups with different attentional conditions driven by 
emotional.

While physiological synchrony in EEG was found to be most informative of at-
tentional group, adding other modalities generally led to higher and more ro-
bust performance. We see two potential explanations for the more robust clus-
tering performance when combining modalities. It may be so that combining 
multiple modalities compensates for potential noisy observations in any of the 
modalities. Recent work of Madsen and Parra (2021) showed that physiological 
synchrony in EEG and heart rate in response to instructional videos are co-mod-
ulated. Thus, one noisy measurement may be compensated for by another 
measurement. Alternatively, more robust performance when combining mo-
dalities is expected when the physiological measures reflect different aspects 
of attentional engagement, so that by combining modalities in a multimodal 
fashion, one captures more aspects of the shared attentional engagement.

8.4.4. Effect of mapping and clustering approach on clustering per-
formance
In our study, best classification results were obtained when using ordination 
techniques, here referred to as mapping methods, before applying clustering 
algorithms compared to directly using clustering algorithms on the distance 
matrices. This observation is supported by the silhouette coefficient, a mea-
sure of compactness and separability of the clusters, indicating less separable 
clusters when directly applying a clustering algorithm on the distance matri-
ces than when using mapping methods. The low separability of clusters in the 
raw distance matrices may also explain why clustering results obtained with 
methods like k-medoids, that has random initializations, are different for differ-
ent runs with different initializations and often did not converge. The only algo-
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rithm that provides good results when directly applied on the distance matrices 
is spectral clustering. This supports the notion that mapping before clustering 
is important, as the spectral clustering algorithm itself already computes a map 
before applying a clustering algorithm.

We cannot pinpoint the best mapping method for a general case. Here, clus-
tering performance generally was best using PCoA or the multimodal equiva-
lent MVMDS before applying clustering algorithms. Future work would have to 
show whether these findings are generalizable across use cases and physiolog-
ical synchrony computation choices.

When using only a single modality, performance is strongly depends on the 
mapping method, and to a lesser degree on the clustering algorithm. With the 
exception of spectral mapping and no mapping conditions, clustering accuracy 
difference between the best and worst performing clustering algorithm with 
the same mapping is only around 15%. We cannot pinpoint a single clustering 
algorithm that performs best for each mapping.

8.4.5. Evaluation of clustering performance
In the current study we could employ the known attentional instructions to 
evaluate clustering performance. However, as noted before, we cannot be sure 
that the attentional focus always corresponded to the instructions. An incorrect 
classification may therefore not necessarily mean that the algorithms provided 
the wrong output, it may also be the case that the incorrectly classified partic-
ipants did not follow their attentional instructions. We examined whether par-
ticipants that were incorrectly classified by the majority of the methods for EEG 
scored worse on performance measures reflective of their instructed attention-
al focus (number of correctly answered questions about the content of the nar-
rative for NA participants, number of correctly described emotional sounds, and 
estimated number of averagely presented beeps for SA participants). Indeed, 
we found that often incorrectly classified SA participants performed worse 
on the retention of the emotional sounds than the other participants, though 
there was no difference for the other two measures.

In real-world applications where unsupervised methods as proposed in the cur-
rent work may be most applicable, the ground truth attentional condition is of-
ten not available. We therefore investigated whether the silhouette coefficient, 
a measure of the separability of the found clusters, may be used as a reliable 
metric of clustering performance. Unfortunately, a higher classification accura-
cy did not correspond to a higher silhouette coefficient and vice-versa. We thus 
reject hypothesis 4.
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Since we have no reliable metric to evaluate clustering reliability when ground-
truth labels are not known in real-world use cases, we suggest the use of a mul-
timodal approach when applying unsupervised clustering algorithms on phys-
iological synchrony data. Our results show that a multimodal approach is less 
prone to incorrect results that can occur for specific algorithm choices.

8.4.6. Future work
In this study, we sought to identify two clusters as participants were instructed 
to either attend to the audiobook or to the interspersed stimuli. However, it may 
be the case that some participants did not attend well to any of the presented 
information, a proposition that is substantiated by the observation that some 
participants showed low synchrony with both the audiobook and stimulus-at-
tending groups and answered questions on the content of both presented 
streams of information well below the average (Stuldreher et al., 2020b). Others 
may have attended to both the audiobook and the interspersed stimuli. These 
two types of participants not necessarily fall into one of the two attentional 
groups considered in the current work, and may have negatively impacted the 
clustering performance, especially in algorithms such as k-means, where clas-
sification is strongly influenced by extreme values (Gupta et al., 2017). For more 
realistic clusters and better applicability in real-world environments, future work 
should evaluate clustering performance in relation to varying the numbers of 
clusters. Possible ways to approach this would be to take into account non-at-
tending participants beforehand, by using outlier detection (He et al., 2003), to 
pre-specify three or four clusters in input of the clustering algorithm (e.g., to 
take into account non-attending participants and all-attending participants be-
forehand), or to use algorithms like mean shift (Comaniciu and Meer, 2002) or 
DBSCAN (Schubert et al., 2017) that automatically determine how many clusters 
appear in the data.

Another issue not addressed in current work is that many algorithms - such as 
k-means - tend to provide equal-sized clusters. This effect was not damaging in 
our study because we expected that the true clusters were about equal size, but 
in cases where this is not the case, results might be influenced by this algorithm 
bias. Future work should investigate how unequally sized clusters influence re-
sults and should explore algorithms that are less prone to such bias.

Future work should also explore other metrics for the assessment of clustering 
quality. In the current work the silhouette coefficient did not correspond well 
to ground truth performance. Potential metrics are distance to the cluster cen-
troid or focus on clusters borders.

Finally, from a mathematical point of view, using other ways of computing the 
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synchrony between the physiological signals could help improving clustering 
performance. In the current work, simple Pearson correlations were used to 
compute synchrony between two time-series, but computation of meaning-
ful physiological synchrony, and therewith clustering performance, may be en-
hanced using other methods such as Dynamic time warping (Berndt and Clif-
ford, 1994). Computing the correlation between two high dimensional signals 
can lead to the curse of dimensionality, a phenomenon that occurs in clustering 
with high-dimensional data, where data are more uniformly spread in high di-
mensions compared to lower dimensions when using a classical distance mea-
sure such as Euclidean distance (Bellman, 1967). Dynamic time warping was 
constructed with the aim of avoiding the curse of dimensionality, which could 
potentially lead to better clustering results.

8.5. Conclusion
We here combined physiological synchrony and unsupervised learning tech-
niques with the aim to identify groups of individuals sharing the same selective 
attentional focus. Clustering performance well above chance level was reached 
when using EEG, but above chance level accuracies were not reached when 
using EDA or heart rate alone. Obtained results differed depending on the used 
mapping and clustering algorithm, but applying mapping before clustering 
generally led to better results. Combining information from multiple modalities 
resulted in a higher classification performance in cases where EEG was com-
bined with heart rate and/or EDA, and resulted in more robust performance 
across different types of mapping and clustering algorithms, making cluster-
ing results less dependent on the specific algorithm choice. These results may 
enable researchers to study attentional engagement in everyday settings. We 
suggest researchers to use a multimodal approach due to its robustness to spe-
cific algorithm choice, enabling more consistent and generally better cluster-
ing results.
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9.1. Background
Physiological synchrony (PS) refers to the degree to which physiological mea-
sures of multiple individuals uniformly change (Palumbo et al., 2017). In a con-
trolled laboratory study, we found that physiological synchrony reflects selec-
tive attention: The electroencephalogram (EEG), heart rate and electrodermal 
activity (EDA) of participants showed similar changes when they paid attention 
to similar aspects of an auditory stimulus (Stuldreher et al., 2020b). PS may also 
be informative of attentional engagement in educational settings. Dikker et al. 
(2017) found that students’ EEG was more synchronized with each other when 
they were more, rather than less engaged during a semi-regular biology class. 
However, lessons were adapted specifically to the study and EEG sensors are 
still considered to be rather obtrusive. In the current work, we use data of two 
earlier conducted studies to assess PS in EDA and heart rate among students 
during regular classes. As a first step in probing whether PS in peripheral mea-
sures might be used for monitoring attention in secondary school education, 
we compared PS between students in the same versus different classrooms, 
and aimed to distinguish students attending the same class from students at-
tending different classes.

9.2. Methods
Study 1 (Thammasan et al., 2020) was conducted at two schools in the Nether-
lands. The study was approved by the institutional ethics research board of Til-
burg University. Data of 86 adolescents (14.9 ± 0.5 years) coming from 17 differ-
ent classes were collected during a regular school day. EDA (palm-based) and 
heart rate were monitored using the Movisens EdaMove 4 (Movisens GmbH, 
Karlsruhe, Germany) and Wahoo Tickr (Wahoo Fitness, Atlanta, GA, USA), re-
spectively.

Study 2 was conducted at one secondary school in the Netherlands. The study 
was approved by the Scientific and Ethical Review Board of the Faculty of Be-
havior & Movement Sciences, VU University Amsterdam. Data of 29 adolescents 
(13.8 ± 0.4 years) coming from 21 different classes were collected for 24 hours, 
including a regular school day. EDA (palm-based) and electrocardiogram (ECG) 
were recorded using the VU University Ambulatory Monitoring System (VU-
AMS). ECG peaks were detected following Pan and Tompkins (1985) and trans-
formed into heart rate time-series. 

Data from both studies were epoched to the on- and offset of lessons. We fur-
ther refer to each epoch as a ‘student’, where one such epoch represents one 
unique combination of one lesson (or classroom) and one student. Statistics of 
the number of students in both studies are in Table 9-1. For each student, we 
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computed PS using inter-subject correlations with all other students from that 
study, following Stuldreher et al. (2020b). For each student, PS toward students 
attending the same lesson was computed by averaging over synchrony scores 
with all other students in the same classroom. PS toward students not attend-
ing the same lesson was computed by averaging over synchrony scores with all 
other students not in the same classroom. Figure 9-1AB depicts this processing 
pipeline. Using paired sample t-tests, we tested for each study and each phys-
iological measure whether physiological synchrony was higher for students 
when paired with others attending the same classroom than when paired with 
others not attending the same classroom. In addition, we examined for each 
student whether classification into ‘same’ or ‘different’ classroom based on PS 
worked out correctly.

9.3. Results 
Figure 9-1CD summarizes the results. 

For study 1, PS for students was significantly higher when paired with students 
attending the same class than when paired with students attending other 
classes, both for heart rate (t(74) = 5.36, p < .001) and EDA (t(58) = 1.89, p = .032). 
Classifying an individual to the group to which they showed a higher PS result-
ed in classification accuracies of 77.3% (heart rate) and 61.0% (EDA). 

For study 2, PS for students was not significantly higher when paired with stu-
dents attending the same class than when paired with students attending oth-
er classes, both for HR (t(10) = 0.48, p = .322) and EDA (t(12) = 0.53, p = .303). Clas-
sification accuracies were 36.4% (heart rate) and 38.5% (EDA). 

The null-finding in study 2 may be explained by the lower amount of data com-
pared to study 1 (both in terms of number of shared lessons and non-shared 
lessons; see Table 9-1). Indeed, when re-examining data from study 1 using the 
same characteristics as for study 2, by randomly sampling 1000 times from the 

Table 9-1. Number of students (included data sets) for the two studies. Note that due 
to (partially) failed recordings, the number of included data sets differ between heart 
rate and EDA.

Study 1 Study 2

Heart rate EDA Heart rate EDA

Total number of students 75 59 11 13

Same lesson (mean  SD per 
lesson)

4.71 ± 1.94 1.78 ± 1.65 1.02 ± 0.55 1.23 ± 0.44

Different lesson (mean  SD 
per lesson)

333.28 ± 1.94 99.09 ± 74.58 115.17 ± 35.35 135.77 ± 0.44
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complete dataset, PS is no longer significantly larger for students attending the 
same class compared to students attending different classes for both heart rate 
(t(10) = 1.64, p = .066) and EDA (t(7) = 0.91, p = .196). Classification accuracies in this 
case are 54.7 ± 12.8% for heart rate and 60.7% ± 17.0% for EDA.

9.4. Discussion 
We here showed that PS in heart rate and EDA can be picked up using wear-
ables in the classroom – students following the same lesson in the same class-
room show stronger PS for both measures compared to students in other class-
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Figure 9-1. Overview of the processing pipeline and results. a. depicts that data were 
collected in two different studies in multiple groups of students per school. In each 
classroom, a varying number of volunteering students was equipped with heart rate 
(HR) and EDA sensors. b. shows how physiological synchrony (PS) was determined. 
For both HR and EDA, PS was computed using inter-subject correlations for all possi-
ble pairs of students from that study, resulting in a N x N matrix, were N refers to the 
number of collected datasets (= number of actual students X number of lessons) in the 
study. For each student, an average synchrony toward students attending the same 
lesson was computed by row-wise averaging over synchrony values with all other stu-
dents in the same classroom (pink cells) and an average synchrony toward students 
not attending the same lesson (blue cells). c. shows the inter-subject correlations to 
students attending the same lesson and attending other lessons for HR and EDA for 
studies 1 and 2. Error bars depict standard error of the mean. d. shows the percentage 
of correctly identified groups, when classifying the student to the group (same class/
other class) that he or she showed highest synchrony with.
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rooms. This reached significance in data from one of the two studies that we 
analyzed, and the same trend is visible in the other study. We suspect that the 
main cause of the null result in one of the studies is the low number of partici-
pants, particularly those in the same classroom (on average only 1.02 classmate 
rather than 4.72 for heart rate and 1.23 rather than 1.78 for EDA) - see spread in 
‘same class’ PS values for study 2 in Figure 9-1C. Heart rate seems to be a more 
robust measure than EDA. This was not specifically expected on the basis of our 
earlier work, using the same wearables as in Study 1 in a controlled, laboratory 
setting (Van Beers et al., 2020) where both measures performed about equally 
well, or EDA somewhat better. EDA might be relatively sensitive to noise in real 
life environments. Note that this study does not yet look into PS yet as a mea-
sure of attention and PS may have (partly) been caused by similar patterns in 
students’ physical activity. The next step in examining and validating PS in heart 
rate and EDA as potential markers of selective attention in the real classroom 
environment, would be to register an independent, alternative measure of se-
lective attention.





General discussion
10.
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In this thesis we aimed to uncover whether different types of attention modula-
tion are captured by physiological synchrony and to what extent physiological 
synchrony may be used as a tool to monitor attentional engagement in real-life 
settings. In part I, we studied how different causes of varying attention affect 
physiological synchrony in brains and bodies. In part II we tried to bridge the 
gap from lab to life, by determining minimally necessary conditions that are 
important for successful monitoring of inter-subject correlations in real-life con-
ditions. 

10.1. Part I: attentional modulations and physiological synchro-
ny in brains and bodies
In part I, we addressed the research question: “How do different manipulations 
of attention affect physiological synchrony in brains and bodies?” 

10.1.1. Bottom-up and top-down attentional processing reflected by 
synchronous brains and bodies
In Chapters 2 and 3 we studied the respective influences of sensory bottom-up 
and higher-level top-down attentional processes on inter-subject correlations 
as a measure of physiological synchrony in EEG, EDA and heart rate. Variations 
in attention originating from bottom-up and top-down attentional processes 
were both found to affect inter-subject correlations, though their respective in-
fluence varied between EEG, EDA and heart rate.

Previous findings of synchrony in brains and bodies across individuals present-
ed with the same narrative stimulus could largely be explained by bottom-up 
attentional mechanisms drawing attention. In this thesis we explicitly con-
firmed that moments in a stimulus that attract attention through bottom-up 
mechanisms related to the emotional relevance result in higher levels of phys-
iological synchrony.

However, the current thesis also demonstrated repeatedly that top-down at-
tentional processes modulate the occurrence of such physiological synchrony. 
For instance, a) individuals with the same selective attentional focus have high-
er inter-subject correlations in EEG, EDA and heart rate than individuals with 
different selective attentional focus; b) depending on the instructed focus of 
attention certain auditory events result in increased inter-subject correlations 
or not; and c) inter-subject correlations in EEG, EDA and heart rate predict per-
formance on post-stimulus tests. 

Through our results we thus provide explicit evidence that physiological syn-
chrony upon the presentation of narrative stimuli is not only a result of the 
bottom-up features of the stimulus guiding individuals’ attention. Instead, we 
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confirm the already in previous literature presented hypothesis that top down 
processing guiding attentional engagement also modulates the occurrence of 
physiological synchrony. Our findings are in line with recent findings by others. 
Rosenkranz, Holtze and colleagues showed that the inter-subject correlations 
in EEG of individuals were higher with other individuals focusing on the same 
than with individuals focusing on a different speaker in a cocktail party para-
digm experiment (Rosenkranz et al., 2021; Holtze et al., 2022). Pérez, Madsen 
and colleagues reported that inter-subject correlations in EEG, EDA, heart rate, 
eye movements and pupil size were higher when individuals actively attended 
a stimulus than when focusing attention inward on a mental arithmetic task 
(Pérez et al., 2021; Madsen and Parra, 2022, 2023). The same authors also report-
ed similar relations between inter-subject correlations and post-stimulus test 
performance for EEG, heart rate, eye movement and pupil size. 

In our and the abovementioned studies, it was shown that shared attentional 
processing is sufficient for the occurrence of physiological synchrony. Madsen 
and Parra (2022) come to a similar conclusion in their study, namely that the 
cognitive processing of a shared stimulus is sufficient for the occurrence of in-
ter-subject correlations. We do want to highlight the subtle difference in these 
conclusions. Although cognitive processing of a shared stimulus causes phys-
iological synchrony to occur, attention is essential for the cognitive processing 
of a shared stimulus. Without attention directed to a stimulus, be it consciously 
through top-down mechanisms or involuntarily through sensory mechanisms, 
there will not be cognitive processing of the stimulus. Also important to note 
here is that through using the terminology attention instead of cognitive pro-
cessing we also emphasize that it is not only voluntary cognitive processing 
that drives physiological synchrony, but also attention that is attracted by emo-
tional or arousing events. In our view, a better description for the prerequisites 
of inter-subject correlations therefore is that the occurrence of inter-subject 
correlations is driven by attentional processing of a shared stimulus.

10.1.2. Discrepancies between synchronous brains and bodies in 
their ability to reflect attention
Notable in our findings is that not only brain-to-brain synchrony reflects atten-
tional engagement, but also body-to-body synchrony reflects attentional en-
gagement. In our studies inter-subject correlations in EDA and heart rate were 
higher than expected based on chance during the presentation of a shared 
stimulus, inter-subject correlations in EDA and heart rate distinguished be-
tween individuals with different selective attentional focus, inter-subject cor-
relations in EDA and heart rate predicted the occurrence of attentionally rel-
evant events and inter-subject correlations in EDA and heart rate predicted 
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post-stimulus test performance. Since our findings, others have presented sim-
ilar results. Pérez et al. (2021) presented that upon the presentation of a shared 
stimulus, inter-subject correlations in heart rate were higher than one would 
expect based on chance level, were higher when actively attending the pre-
sented narrative than when focusing attention inward on a mental arithmetic 
task and predicted better recall of the narrative. Madsen and Parra found simi-
lar results for heart rate, EDA, pupil size and gaze direction (Madsen and Parra, 
2022, 2023). 

The observation that also body-to-body synchrony reflects attentional engage-
ment may be surprising to some as the underlying control is different from 
the signals captured by the EEG and quite diverse among physiological mea-
sures. Heart rate is controlled by midbrain structures modulated by input from 
the amygdala, cingulate and insula (Thayer et al., 2009) and pathways of EDA 
originate in the posterior hypothalamus (Collins, 1999). However, these deeper 
brain structures are part of larger networks that are also connected to cortical 
areas, of which activity is captured by EEG. Heart rate, for instance, is connect-
ed through inhibitory pathways from the pre-frontal cortex to the amygdala 
(Thayer and Lane, 2009; Thayer et al., 2009) and EDA is connected to higher 
subcortical and cortical brain areas implicated in attention, such as the ventro-
medial prefrontal cortices and the hippocampus (Critchley, 2002). Madsen and 
Parra (2022) therefore suggest that a robust brain-body connection is a prereq-
uisite for inter-subject correlations in a measure to reflect shared attentional 
engagement. The authors tested this hypothesis and confirmed that measures 
that were coupled to the EEG – heart rate, gaze position, pupil size, saccade 
rate – showed significant inter-subject correlations, but measures that were not 
coupled to the EEG – respiration rate, head velocity – did not show these in-
ter-subject correlations. In their hypothesis the authors thus consider EEG as 
a gold standard when measuring attention, as only metrics related to the EEG 
may be informative of the cognitive processing of a shared stimulus. However, 
in our work we show that synchronous autonomic measures can also contain 
complementary information to synchronous brains. Inter-subject correlations 
in EDA and heart rate were more sensitive to the occurrence of emotionally sa-
lient events than inter-subject correlations in EEG. The specific sensitivity of the 
autonomic nervous system activity to emotion is often noted (Smith et al., 2004) 
and can also be understood from an anatomical perspective. The hypothesis 
that physiological measures need to be closely coupled to the EEG to reflect 
shared attentional engagement implies that information on the attentional 
processing is transmitted over pathways from the cortex to such physiological 
measures. However, deeper brain structures such as the amygdala and insula 
that are closely involved in control of autonomic nervous system activity, play 
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an important role in emotion experience (Lindquist et al., 2012). These deeper 
brain structures are part of larger networks with robust connections to the au-
tonomic nervous system, for instance through the hypothalamus as the area 
for central control of the autonomic nervous system  (Marcus et al., 2015). These 
networks are also connected to cortical areas, of which activity is captured by 
EEG, see for instance (Zotev et al., 2016), but these pathways are more complex 
than the connections with the autonomic nervous system. 

Our finding that synchrony in brain and body reflect complementary informa-
tion are at odds with the hypothesis of Madsen and Parra. For physiological sig-
nals to be informative of attentional processing, they do not necessarily need to 
be closely related to EEG. Clearly, cortical areas, such as prefrontal and parietal 
regions, are essential in establishing attentional engagement. EEG, mainly cap-
turing cortical activity, can thus certainly inform us on the attentional engage-
ment of monitored individuals. However, attention is not only established by 
cortical areas, but rather is the result of complex networks in the entire nervous 
system, among which cortical areas and deeper brain areas are involved. Phys-
iological measures that are innervated through different pathways connecting 
to deeper brain areas inform us on other aspects of attentional processing that 
are not captured by the EEG. It is the discrepancy between EDA or heart rate 
and EEG that contains additional information on attentional processing, not the 
similarity between these measures. Our alternative hypothesis is that inter-sub-
ject correlations in brain and body measures can reflect shared attentional en-
gagement, where measures that are innervated through different pathways 
reflect different aspects of attentional engagement. 

Besides the clear differences in respective contribution of attentional process-
es captured in either brains or bodies we also found discrepancies in results 
using EDA or heart rate. Compared to inter-subject correlations in heart rate, 
inter-subject correlations in EDA were more associated with shorter moments 
of attentiveness due to discrete, arousing sensory events and less so to longer 
periods of attentional engagement driven by higher-order cognitive process-
es. Inter-subject correlations in EDA were for instance more responsive to the 
occurrence of emotional sounds than inter-subject correlations in heart rate, 
but were not as strongly related to stimulus retention as inter-subject correla-
tions in heart rate. We do not know what underlies this observation and we 
are not aware of other researchers noting this difference. It may be so that the 
different autonomic innervations underly these differences. Whereas the heart 
is innervated by both the sympathetic and parasympathetic branches of the 
autonomic nervous system, the sweat gland activity captured by EDA is purely 
innervated by the sympathetic branch (Cacioppo et al., 2000; Boucsein, 2012). 
Parasympathetic activation has been associated with performance on several 
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cognitive tasks involving attention and working memory (Hansen et al., 2003; 
Thayer et al., 2009; Smith et al., 2017) and decreased parasympathetic activity 
has been related to focused attention (Cacioppo et al., 1978; Suess et al., 1994). 
The higher-order cognitive functioning captured by inter-subject correlations 
in heart rate may thus be associated with parasympathetic activation that is 
not reflected by EDA.

10.1.3. Multimodal brain-body measures of physiological synchrony
If our hypothesis that was introduced in the previous section is true, the atten-
tional processes that are captured by inter-subject correlations differ between 
brain and body and within different bodily measures. The inter-subject cor-
relations in these modalities should then contain complementary information, 
such that a multimodal metric combining information from brain and body 
should better reflect attentional engagement. Indeed, when combining brain-
to-brain and body-to-body inter-subject correlations in a multimodal approach 
we could better distinguish between individuals with different selective atten-
tional focus and better detect the occurrence of attentionally relevant events 
than when using only one of the two. We therefore argue for a multimodal 
approach of physiological synchrony, in which signals measured from brains 
and bodies are combined into a single metric of physiological synchrony. Such 
multimodal metrics seem particularly valuable when contextual information, 
for instance about the type of stimulus that is presented, is not available.

10.1.4. Capturing momentary attentional state or trait
In most of our experiments, attentional instructions were varied across individ-
uals to generate differences in attentional focus. In real-life settings, attention 
also varies across and within individuals in less obvious ways. We investigated 
how physiological synchrony reflects interpersonal and intrapersonal variations 
in attentional processing and how estimated levels of attention correspond to 
a momentary attentional state or to a more long-term pattern of attentional 
processing corresponding to personal trait. Through these studies we did not 
aim to show that physiological synchrony reflects either momentary attention-
al state or relates to personal trait, but that the relation between physiological 
synchrony and attentional engagement is a widely supported phenomenon.

Regarding momentary attentional state, in Chapter 5 we found that inter-sub-
ject correlations could predict changes in general attention in time. Inter-sub-
ject correlations in EDA obtained during the viewing of short movie clips over 
the course of a night of total sleep deprivation predicted performance on con-
secutive vigilant attention tasks. This suggests that the momentary attentional 
processing capabilities captured by inter-subject correlations in EDA during the 
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presented movie clips are associated with longer lasting variations in the gen-
eral attentional capability of individuals that also affects other types of tasks. 

In Chapter 4 we found that interpersonal variations in attention as captured by 
physiological synchrony can also originate from the personal trait of monitored 
individuals. We found positive significant correlations between the level of food 
neophobia – the hesitance to try and buy new foods – and the inter-subject cor-
relations in EEG during the presentation of a movie about a foreign food. 

Together, these results show that the relation between physiological synchrony 
and attentional engagement is a widely supported phenomenon. It is not only 
attentional processes driven by the presentation of a shared stimulus, or top-
down attentional processes directly related to processing the presented stim-
ulus that affect physiological synchrony. Instead, one’s priors and momentary 
state can modulate attentional processing and therewith they also modulate 
the level of physiological synchrony. Thereby, physiological synchrony may also 
be a marker of such priors or momentary attentional state. 

Our results add on prior research as, to the best of our knowledge, for the first 
time we show that physiological synchrony is predictive of one’s momentary 
attentional state. Furthermore, unlike previous research in populations with 
autism, depression or psychosis (Hasson et al., 2009; Salmi et al., 2013; Guo et 
al., 2015; Mäntylä et al., 2018), where inter-subject correlations are diminished 
across the measured populations, in our results inter-subject correlations vary 
with the intensity of a certain trait, in our case food neophobia. This result is 
arguably more subtle and better reflects how traits may affect physiological 
synchrony in the general population. The results also suggest that one’s traits 
do not necessarily affect the occurrence of physiological synchrony in general. 
Instead, traits can alter the relative importance of presented information, such 
that populations with specific traits show altered inter-subject correlations for 
specific, but not all stimuli. Together, results are demonstrative for the complex 
factors affecting attentional processing that all modulate the level of physiolog-
ical synchrony.  

10.1.5. Factors underlying the occurrence of physiological synchrony
Taken together, in part I of this thesis we showed that the relationship between 
physiological synchrony and attentional engagement is a broadly carried phe-
nomenon. Attentional engagement is a composite of sensory processes draw-
ing attention in a bottom-up manner and top-down processes modulating at-
tention, which can vary momentarily in time, but are also affected by priors. We 
showed that physiological synchrony can capture these influences on atten-
tional processes.
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Our results, that have been confirmed by others, nuance the large number of 
studies (see e.g., Palumbo et al., 2017) stating that physiological synchrony is a 
marker or even driver of social interaction. We show that social interaction is not 
a prerequisite for the occurrence of physiological synchrony, but that shared 
attentional processing of the same information is sufficient physiological syn-
chrony to occur. It may  simply be shared attentional processing that, at least 
partly, underlies the positive findings of physiological synchrony in contexts of 
social interaction. 	

Our findings do not rule out numerous additional factors that contribute to 
the occurrence of physiological synchrony in general. We discuss the two most 
important factors. First, synchronized movement can cause increased levels 
of physiological synchrony by matched metabolic demands. Synchronous re-
sponses in brains or bodies across individuals have occurred in various synchro-
nous and coordinated movements (Funane et al., 2011; Holper et al., 2012; Yun 
et al., 2012; Müller et al., 2013; Ikeda et al., 2017; Gordon et al., 2020). Second, the 
mere co-presence of other people sharing a common experience was found to 
produce higher inter-subject correlations in autonomic measures (Golland et 
al., 2015; Ardizzi et al., 2020). Golland and colleagues for instance found higher 
inter-subject correlations between pairs that watched a movie together than 
between pairs that watched the same movie, but separately (Golland et al., 
2015). The authors suggest that this is a result of recursive interpersonal influ-
ences during which individual differences of the emotional experience propa-
gated across the co-present viewers, leading to a shared emotional experience. 
Perhaps additional synchronization among co-present individuals involves the 
mirror-neuron system. In humans, the perception of a specific emotion also 
triggers the neural systems responsible for generation of that emotion in the 
observer. This has for instance been found for fear (De Gelder et al., 2004), dis-
gust (Wicker et al., 2003), anxiety (Prehn-Kristensen et al., 2009) and reward 
(Mobbs et al., 2009). It is unclear which sensory channels are responsible for the 
transmission of this emotional information. It may be that emotional cues such 
as posture or facial expressions are detected in peripheral vision and thereby 
influence one’s own emotional state, as demonstrated in (Bayle et al., 2011; Calvo 
et al., 2014a, 2014b). Another explanation is that emotional states are mediated 
by chemosignals, therewith circumventing the conscious allocation of atten-
tion (de Groot et al., 2012, 2015). 

10.2. Part II: physiological synchrony from lab to life
In part II we addressed the research question: “To what extent may physiolog-
ical synchrony be used as a tool to monitor attention in real-life settings?” We 
determined minimally necessary conditions for successful monitoring of in-
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ter-subject correlations and explored whether and to what extent information 
is lost when relying on wearable sensors rather than high-end equipment and 
recording in real life conditions.

10.2.1. Monitoring physiological synchrony with wearables
In Chapter 6 we compared the inter-subject correlation in EDA and heart rate 
measured using high-end lab equipment with those monitored using rela-
tively cheap and accessible wearable devices. Although raw signal quality was 
worse for wearables than for high-end lab equipment, inter-subject correlations 
monitored using wearables could distinguish between individuals with differ-
ent selective attentional focus with similar, if not higher, accuracies than when 
monitored using high-end lab-equipment. Positive results were confirmed in 
following studies, presented in Chapters 5, 7 and 9. The fact that inter-subject 
correlations monitored using wearable equipment are as informative of atten-
tional engagement as when monitored using laboratory-grade equipment is 
not only good news for real-life applications, it also informs us on the signal fea-
tures that are important for monitoring attentional engagement. In our studies, 
algorithms integrated in wearable equipment filter high frequency information 
in hear rate. It thus appears that especially the lower frequencies of the heart 
rate signals carry information on the attentional engagement of monitored in-
dividuals. This was recently confirmed by Madsen and Parra, who found that 
the heart rate of attentive and distracted individuals mainly varied around 0.1 
Hz (Madsen and Parra, 2023).

Important for future studies is to consider the minimum amount of data re-
quired for successful monitoring of inter-subject correlations using wearables. 
In Chapter 7 we explored the minimum amount of data necessary to success-
fully monitor inter-subject correlations in EDA and heart rate using wearable 
equipment. To the best of our knowledge, this was the first time that the effect 
of the amount of data on the resulting inter-subject correlations was system-
atically studied. As a rule of thumb we found that roughly 10 hours of data re-
cording are needed for robust inter-subject correlations in EDA and heart rate. 
Here robust means that approximately 80% of individuals show inter-subject 
correlations that are higher than expected based on chance. We found that it 
did not matter whether this total amount of data was reached by adding more 
individuals or by increasing stimulus duration. Although we cannot say for sure 
that this rule of thumb applies more general than for our specific sample of 
stimuli and participants, an initial comparison with other recent studies (Pérez 
et al., 2021; Madsen and Parra, 2022) suggest that these results may apply be-
yond our set of participants and stimuli. If this general rule of thumb indeed 
applies, there are implications for use of physiological synchrony in real-life set-
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tings. In settings where only a limited number of individuals are monitored for 
a short amount of time, the signal-to-noise ratio may not be large enough to 
provide reliable information on the attentional processing of monitored individ-
uals. Physiological synchrony as a tool to monitor attentional engagement thus 
is most suited in applications where larger groups of individuals are together for 
elongated periods of time. Think for instance of students in a classroom that are 
equipped with wearables to monitor attentional engagement during a lesson 
or a large test-panel testing how engaging a newly-developed advertisement 
is.

10.2.2. Physiological synchrony and unsupervised clustering
In Chapter 8 we explored the combination of inter-subject correlations with 
novel unsupervised clustering techniques. We investigated whether individuals 
with two different selective attentional conditions towards the same stimulus 
could be clustered together while being blind to the attentional condition for all 
participants. We showed that this was indeed possible. This is an important step 
for the use of physiological synchrony as attention monitoring tool in real-life 
settings, as in such settings there is often no contextual information or infor-
mation about the attentional state of any of the monitored individuals available 
a-priori. By combining inter-subject correlations with unsupervised clustering 
algorithms, clusters of shared attending individuals can for instance be detect-
ed. For instance, clusters of individuals that have trouble attending to a specific 
lesson may then be identified and helped. In the current study we did specify 
beforehand that there were two clusters of individuals sharing attentional fo-
cus, whereas in real-life the number of attentional groups may be unclear. We 
would therefore suggest to explore the use of algorithms such as mean shift 
or DBSCAN that automatically determine the appropriate number of clusters 
(Comaniciu and Meer, 2002; Schubert et al., 2017).

10.2.3. Physiological synchrony in the classroom
As a proof of concept of the use of physiological synchrony in real-life settings 
we explored whether inter-subject correlations in EDA and heart rate could be 
monitored in a real-life classroom setting using wearable devices. We found 
that inter-subject correlations in EDA and heart rate could distinguish between 
individuals in the same and different classrooms. This does not necessarily 
mean that this is based on differences in top-down attention, as effects of syn-
chronous body movements or attention drawn by salient sensory events could 
have played an important role. Still, it is a first indication that inter-subject cor-
relations can be captured without controlling for the information that was pre-
sented. There have been some other studies exploring the use of physiological 
synchrony in classroom or lecture settings (Gashi et al., 2018, 2019; Liu et al., 2021; 
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Zhang et al., 2021). Liu and colleagues for instance reported that inter-subject 
correlations in EDA could predict collaboration quality among students in the 
classroom (Liu et al., 2021). Zhang and colleagues reported that inter-subject 
correlations in EDA among students in the classroom predicted self-reported 
attention, self-reported mastery of knowledge, but also the test exam score 
(Zhang et al., 2021). Our work adds to these other studies in that we show that 
inter-subject correlations can be captured without controlling for the informa-
tion that was presented, over the course of multiple lessons during an entire 
school day. 

The development of more accurate wearable EEG headsets and artifact-remov-
al algorithms also allow for monitoring of brain waves in real-life settings. Al-
ready in 2017, Dikker and colleagues reported a study in which brain-to-brain 
synchrony between 12 classroom students was predictive of classroom engage-
ment in a classroom-like setting (Dikker et al., 2017). In the years following, work 
was extended by showing that brain-to-brain synchrony can also predict stu-
dents’ performance in immediate and delayed retention tests (Davidesco et al., 
2019), student-teacher brain-to-brain synchrony predicted social closeness be-
tween student and teacher (Bevilacqua et al., 2019) and brain-to-brain synchro-
ny among students was higher in specific lecture segments associated with 
questions that were answered correctly (Davidesco et al., 2023). 

10.2.4. Recent developments and limitations
Neurophysiological measurement equipment is in continuous development. 
Equipment is shrinking in size while signal quality increases. Especially of value 
for our aim are the developments of in-ear and around-the-ear EEG sensor sys-
tems (Looney et al., 2012; Debener et al., 2015; Goverdovsky et al., 2016), of which 
the cEEGrid is one example. Using this latter around-the-ear sensor system, 
Holtze and colleagues recently found that they could identify to which of two 
audiostreams individuals were listening based on the inter-subject correlations 
among listeners (Holtze et al., 2022). Around-the-ear EEG sensors may thus be 
a suitable wearable sensor for monitoring attentional engagement based on 
physiological synchrony.

Such developments are needed to overcome the current limitations for the use 
of physiological synchrony as a tool to monitor attentional engagement in re-
al-life settings. We previously mentioned that relatively large amounts of data 
are still required to obtain robust inter-subject correlations, at least in EDA and 
heart rate. In addition, though we found clear and consistent relations between 
physiological synchrony and attentional engagement, the variance in attention 
explained by physiological synchrony is limited. In our studies the variance ex-
plained ranged anywhere from five to forty percent. In our studies the strongest 
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associations were found between physiological synchrony and performance on 
a post-stimulus test, in which participants answers questions about the content 
of the presented stimulus. For use in real-life settings this may imply that phys-
iological synchrony can best be used as tool to assess the overall attentional 
engagement towards presented narrative information, such as a lecture. 

10.3. Towards physiological synchrony as a tool to monitor at-
tentional engagement in real-life settings
In the current section we would like to highlight three future directions to move 
towards physiological synchrony as a tool to monitor attentional engagement 
in real-life setting, corresponding to applied-scientific, methodological and eth-
ical questions that are still open.

The first research direction is tackling the applied-scientific questions that re-
main open. In the current thesis physiological synchrony was shown to reflect 
attentional engagement and as a proof of concept physiological synchrony 
was monitored in a real life setting, namely among students in the classroom. 
However, we did not couple these two. Future work could investigate to what 
extent physiological synchrony in bodily measures such as EDA and heart rate 
predicts the level of attentional engagement among students in the classroom, 
parallel to work on brain-to-brain synchrony in the classroom (Dikker et al., 2017; 
Davidesco et al., 2023). In the current thesis we further showed that attentional 
processing of a shared stimulus is sufficient for the occurrence of physiological 
synchrony. We therefore hypothesized that it is also shared attentional process-
ing that, at least partly, underlies the positive findings of physiological synchro-
ny in contexts of social interaction. Future studies should test this hypothesis 
in settings of social interaction. Such studies could for instance focus on col-
laborative teamwork settings, in which the attentional focus varies dynamically 
across teammates and varies in time. Future studies could for instance investi-
gate whether moments of shared attention are predicted by moments of high 
physiological synchrony or whether physiological synchrony may predict when 
an individual is in shared attentional engagement with the rest of team. If phys-
iological synchrony indeed reflects shared attention also in settings of social 
interaction, it would allow the development of a synchrony-based tool for assist-
ing members in a team to collaborate more effectively when needed.

Another question involves real-time monitoring and use of physiological syn-
chrony. Though physiological synchrony can be determined in near real-time, 
even by use of existing open-source algorithms (e.g., Ayrolles et al., 2021), we are 
not aware of studies that aim to boost performance by adapting a system in 
real-time using information about attention of monitored individuals (Brouwer 
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et al., 2023). We believe such real-time systems are feasible and valuable, for 
instance in classroom settings to inform a student, adapt a virtual classroom 
setting or by providing information to a human teacher. Future work should 
explore the effectiveness of such systems.

A second research direction deals with methodological approaches for the es-
tablishment of physiological synchrony. In the current thesis we used simple in-
ter-subject correlations to quantify physiological synchrony, as we had no spe-
cific hypothesis regarding nonlinear relationships and expected that attending 
to the same input would result in similar neurophysiological activation at that 
point in time. In social settings where the neurophysiological response of one 
individual is expected to precede that of others correlation analyses may be 
performed at different time lags. By doing so Davidesco and colleagues for in-
stance found that brain-to-brain synchrony between teacher and student was 
highest when the teacher’s brain signals preceded those of the students by 
300 ms (Davidesco et al., 2023). More general, there are numerous different an-
alytical approaches that have been explored for the establishment of physio-
logical synchrony, summarized in a number of review studies. Czeszumski and 
colleagues provide a comprehensive overview of methodological approaches 
for the quantification of brain-to-brain synchrony (Czeszumski et al., 2020). Pa-
lumbo and colleagues provide an overview of methodologic approaches for 
the quantification of interpersonal autonomic synchrony (Palumbo et al., 2017). 
Helm and colleagues outline several approaches for measuring physiological 
synchrony in dyads and relate these to different types of synchrony, being trend, 
concurrent or lagged synchrony (Helm et al., 2018). Different types of analysis 
may be most suited for different types of settings. With the move towards more 
dynamic settings than explored in this thesis, analyses that can deal with these 
dynamics may be more appropriate than the currently used correlation anal-
ysis. Here one can for instance think of nonlinear analysis techniques such as 
cross-recurrence analysis, as for instance used in (Konvalinka et al., 2011). Alter-
natively, analysis of synchrony may be geared at longer-lasting brain states than 
the consecutive event-related potentials that are captured by inter-subject cor-
relations. For instance through assessment of coherence, as previously demon-
strated by (Reinero et al., 2021).

We would like to emphasize the importance of developing novel multimodal 
metrics of physiological synchrony. There is a strong difference in response la-
tency and frequency power spectrum between EEG and autonomic measures 
complicating the combination into a single multimodal metric. In a literature 
study conducted in 2019 we did not find any studies combining information of 
brains and bodies into a single multimodal metric of physiological synchrony, 
perhaps due to these challenges (Stuldreher et al., 2019). Although averaging 
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over the z-scored inter-subject correlation values from EEG, EDA and heart rate 
at each point in time allowed for better detection of attentionally engaging 
events than by using one of these measures (Chapter 3), this simple approach 
certainly does not capture the full potential of a multimodal brain-body met-
ric of synchrony. Future researchers should investigate applications where in-
ter-subject correlations in brains and bodies can be combined with decision 
algorithms, to allow multimodal combination of inter-subject correlations from 
brain and body at the decision level. Alternatively, the use of multivariate regres-
sion analysis, which can be used to study the association between multiple in-
dependent variables and the dependent variable of interest (Alexopoulos, 2010), 
may be explored.

A third important consideration of future work is the ethics of the use of phys-
iological synchrony as tool to monitor attentional engagement. Alongside the 
research conducted in this thesis we explored the ethics of using wearable 
technology to monitor attention in the classroom, among others by speaking 
with high-school students on this (Snoek et al., 2022). Ethics are mostly per-
ceived as exploring risks of a technology. However, in a broader sense, it is an 
exploration of the implications of the technology, both negative and positive. 
The use of wearables in the classroom may enhance students’ engagement 
(Borthwick et al., 2015; Bower and Sturman, 2015; Sandall, 2016; Engen et al., 
2017; Attallah and Ilagure, 2018), it may provide educators with valuable infor-
mation on what teaching style is experienced as most engaging (Bower and 
Sturman, 2015; Demir and Demir, 2016; Sandall, 2016; Dikker et al., 2017; Attallah 
and Ilagure, 2018; Janssen et al., 2021) and it may help to differentiate between 
educational needs of students (Borthwick et al., 2015; Dikker et al., 2017; Babik-
er et al., 2019). On the other hand, the use of wearables in the classroom may 
violate well-known ethical principles, such as autonomy, privacy and consent 
(Ienca et al., 2018; Mecacci and Haselager, 2019). In addition, the use of wear-
ables in the classroom has the potential to change our relationship with the 
world, known as Foucauldian ethics. For instance, large-scale use of wearables 
may change what we value in teachers: technical knowledge over pedagogical 
qualities. Studies exploring the use of physiological synchrony as tool to moni-
tor attentional engaging should consider the ethics corresponding to their spe-
cific application. By involving developers of technology, ethicists and end-users 
one may improve the development and design of technologies such that the 
risks and concerns that are identified can be taken away to the satisfaction of 
involved stakeholders.

10.4. Conclusion
In this thesis we aimed to uncover whether different types of attention modula-
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tion are captured by physiological synchrony and to what extent physiological 
synchrony may be used as tool to monitor attention in real-life settings. 

Part I was aimed at answering the research question: “How do different manip-
ulations of attention affect physiological synchrony in brains and bodies?” We 
found that physiological synchrony reflects multiple types of attention modu-
lations, both sensory and top-down mechanisms of attention. We add to pre-
vious work by showing that not only synchronous brain, but also synchronous 
body metrics reflect this attentional processing and even showed that these re-
flect complementary aspects of attention. Physiological synchrony was shown 
to reflect the momentary attentional state of monitored individuals, as well as 
interpersonal variation in attentional processing originating from interpersonal 
variations in personal traits. In our work we bridged the scattered literature, by 
showing that physiological synchrony in brain and body can both reflect shared 
attention. This may explain numerous findings in a unified coherent way. Spe-
cifically, findings of physiological synchrony in social interaction may also be 
explained by shared attention instead of any esoteric phenomenon.

Part II was aimed at answering the research question: “To what extent may phys-
iological synchrony be used as tool to monitor attention in real-life settings?” 
Our results were promising for physiological synchrony to be used in real-life 
settings. Information on attention could be accessed by monitoring brains, but 
also by monitoring body measures that are more easily accessible in real-life 
settings. Such body synchrony can also be reliably monitored using wearable 
equipment, even in real-life settings such as the classroom, as long as sufficient 
amounts of data are used. Physiological synchrony can be combined with nov-
el algorithmic developments, as demonstrated by the successful combination 
with unsupervised learning techniques. That said, limitations of physiological 
synchrony as tool to monitor attentional engagement should be considered. 
Sufficient data is required for robust monitoring and even physiological syn-
chrony can only explain part of the variance in attention. 

To advance physiological synchrony as tool to monitor attention in real-life 
settings, future work should focus on the applied, methodological and ethical 
questions that remain unanswered. Future work on scientific questions should 
investigate how physiological synchrony may reflect attention in more dynamic 
real-life settings and how real-time monitoring of physiological synchrony may 
enhance attentional guidance in groups of individuals. Future work on meth-
odological questions should focus on novel metrics to quantify physiological 
synchrony that may be better suited for dynamic real-life settings. Future work 
on ethical questions should focus on the ethics of the use of wearables and at-
tention monitoring in real-life settings, such as the classroom.
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