78,716 research outputs found

    Rigorous development process of a safety-critical system: from ASM models to Java code

    Get PDF
    The paper presents an approach for rigorous development of safety-critical systems based on the Abstract State Machine formal method. The development process starts from a high level formal view of the system and, through refinement, derives more detailed models till the desired level of specification. Along the process, different validation and verification activities are available, as simulation, model review, and model checking. Moreover, each refinement step can be proved correct using an SMT-based approach. As last step of the refinement process, a Java implementation can be developed and linked to the formal specification. The correctness of the implementation w.r.t. its formal specification can be proved by means of model-based testing and runtime verification. The process is exemplified by using a Landing Gear System as case study

    Relating computer systems to sequence diagrams with underspecification, inherent nondeterminism and probabilistic choice : Part 1

    Get PDF
    Having a sequence diagram specification and a computer system, we need to answer the question: Is the system compliant with the sequence diagram specification in the desired way? We present a procedure for answering this question for three variations of sequence diagrams.The procedure is independent of the choice of programming language used for the system. The semantics of sequence diagrams is denotational and based on traces. In order to answer the initial question, the procedure starts by obtaining the trace-set of the system by e.g. testing, and then transforming this into the same semantic model as that used for the sequence diagram. In addition to extending our earlier work on refinement relations for sequence diagrams, we define conformance relations relating systems to sequence diagrams. The work is split in two parts. This paper presents part 1, in which we introduce the necessary definitions for using the compliance checking procedure on sequence diagrams with underspecification and sequence diagrams with inherent nondeterminism. In part 2 [RRS07], we present the definitions for using the procedure on sequence diagrams with probabilistic choice

    Chaining Test Cases for Reactive System Testing (extended version)

    Full text link
    Testing of synchronous reactive systems is challenging because long input sequences are often needed to drive them into a state at which a desired feature can be tested. This is particularly problematic in on-target testing, where a system is tested in its real-life application environment and the time required for resetting is high. This paper presents an approach to discovering a test case chain---a single software execution that covers a group of test goals and minimises overall test execution time. Our technique targets the scenario in which test goals for the requirements are given as safety properties. We give conditions for the existence and minimality of a single test case chain and minimise the number of test chains if a single test chain is infeasible. We report experimental results with a prototype tool for C code generated from Simulink models and compare it to state-of-the-art test suite generators.Comment: extended version of paper published at ICTSS'1

    Towards Symbolic Model-Based Mutation Testing: Combining Reachability and Refinement Checking

    Full text link
    Model-based mutation testing uses altered test models to derive test cases that are able to reveal whether a modelled fault has been implemented. This requires conformance checking between the original and the mutated model. This paper presents an approach for symbolic conformance checking of action systems, which are well-suited to specify reactive systems. We also consider nondeterminism in our models. Hence, we do not check for equivalence, but for refinement. We encode the transition relation as well as the conformance relation as a constraint satisfaction problem and use a constraint solver in our reachability and refinement checking algorithms. Explicit conformance checking techniques often face state space explosion. First experimental evaluations show that our approach has potential to outperform explicit conformance checkers.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Predicate Abstraction with Under-approximation Refinement

    Full text link
    We propose an abstraction-based model checking method which relies on refinement of an under-approximation of the feasible behaviors of the system under analysis. The method preserves errors to safety properties, since all analyzed behaviors are feasible by definition. The method does not require an abstract transition relation to be generated, but instead executes the concrete transitions while storing abstract versions of the concrete states, as specified by a set of abstraction predicates. For each explored transition the method checks, with the help of a theorem prover, whether there is any loss of precision introduced by abstraction. The results of these checks are used to decide termination or to refine the abstraction by generating new abstraction predicates. If the (possibly infinite) concrete system under analysis has a finite bisimulation quotient, then the method is guaranteed to eventually explore an equivalent finite bisimilar structure. We illustrate the application of the approach for checking concurrent programs.Comment: 22 pages, 3 figures, accepted for publication in Logical Methods in Computer Science journal (special issue CAV 2005

    Towards an I/O Conformance Testing Theory for Software Product Lines based on Modal Interface Automata

    Full text link
    We present an adaptation of input/output conformance (ioco) testing principles to families of similar implementation variants as appearing in product line engineering. Our proposed product line testing theory relies on Modal Interface Automata (MIA) as behavioral specification formalism. MIA enrich I/O-labeled transition systems with may/must modalities to distinguish mandatory from optional behavior, thus providing a semantic notion of intrinsic behavioral variability. In particular, MIA constitute a restricted, yet fully expressive subclass of I/O-labeled modal transition systems, guaranteeing desirable refinement and compositionality properties. The resulting modal-ioco relation defined on MIA is preserved under MIA refinement, which serves as variant derivation mechanism in our product line testing theory. As a result, modal-ioco is proven correct in the sense that it coincides with traditional ioco to hold for every derivable implementation variant. Based on this result, a family-based product line conformance testing framework can be established.Comment: In Proceedings FMSPLE 2015, arXiv:1504.0301

    A Polynomial Time Algorithm for Deciding Branching Bisimilarity on Totally Normed BPA

    Full text link
    Strong bisimilarity on normed BPA is polynomial-time decidable, while weak bisimilarity on totally normed BPA is NP-hard. It is natural to ask where the computational complexity of branching bisimilarity on totally normed BPA lies. This paper confirms that this problem is polynomial-time decidable. To our knowledge, in the presence of silent transitions, this is the first bisimilarity checking algorithm on infinite state systems which runs in polynomial time. This result spots an instance in which branching bisimilarity and weak bisimilarity are both decidable but lie in different complexity classes (unless NP=P), which is not known before. The algorithm takes the partition refinement approach and the final implementation can be thought of as a generalization of the previous algorithm of Czerwi\'{n}ski and Lasota. However, unexpectedly, the correctness of the algorithm cannot be directly generalized from previous works, and the correctness proof turns out to be subtle. The proof depends on the existence of a carefully defined refinement operation fitted for our algorithm and the proposal of elaborately developed techniques, which are quite different from previous works.Comment: 32 page
    corecore