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Relating computer systems to sequence diagrams

with underspecification, inherent nondeterminism

and probabilistic choice

Part 1: underspecification and inherent nondeterminism

Ragnhild Kobro Runde1, Atle Refsdal1,2, and Ketil Stølen1,2

1Department of Informatics, University of Oslo
2SINTEF ICT

Abstract. Having a sequence diagram specification and a computer sys-
tem, we need to answer the question: Is the system compliant with the
sequence diagram specification in the desired way? We present a proced-
ure for answering this question for three variations of sequence diagrams.
The procedure is independent of the choice of programming language
used for the system. The semantics of sequence diagrams is denotational
and based on traces. In order to answer the initial question, the proced-
ure starts by obtaining the trace-set of the system by e.g. testing, and
then transforming this into the same semantic model as that used for the
sequence diagram. In addition to extending our earlier work on refine-
ment relations for sequence diagrams, we define conformance relations
relating systems to sequence diagrams.

The work is split in two parts. This paper presents part 1, in which
we introduce the necessary definitions for using the compliance checking
procedure on sequence diagrams with underspecification and sequence
diagrams with inherent nondeterminism. In part 2 [RRS07], we present
the definitions for using the procedure on sequence diagrams with prob-
abilistic choice.

1 Introduction

Having a sequence diagram specification and a computer system, we need to
answer the question: Is the system compliant with the specification in the desired
way?

Sequence diagrams are widely used for specifying computer systems within a
broad range of application domains. They are used for different methodological
purposes including requirements capture, illustrating example runs, test scen-
ario specification and risk scenario documentation. Although sequence diagrams
are widely used in practice, their relationship to real computer systems is nev-
ertheless surprisingly unclear. This is partly caused by the fact that sequence
diagrams are used for different purposes, but even more so because in contrast to
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most other techniques for specifying dynamic behaviour they give only a partial
view.

Answering the initial question above requires an understanding of what is
meant by a computer system and to what extent such a system is different from
a sequence diagram. Obviously, we need a formal model for computer systems.
Also, the answer clearly depends on the expressiveness of the sequence diagram
dialect we are using. In this paper we study the problem with respect to two
different variations of sequence diagrams, as formally defined in the denotational
trace semantics of STAIRS [HHRS05]. The two variations are sequence diagrams
with underspecification and sequence diagrams with inherent nondeterminism.

The notion of compliance is closely related to that of refinement. Refinement
is a way of relating different specifications of the same system, where the idea
is that a refinement should be a more detailed description containing all the
constraints given by the original specification, in addition to some new ones.1

Different development stages may require different notions of refinement. The
final specification used when implementing the system, is the result of several
successive refinement steps. The system should be compliant not only with the
final specification, but also with all specifications in the chain of refinements.
Consequently, we may need several notions of compliance corresponding to the
various notions of refinement.

In this paper we only consider compliance for sequence diagrams without
external input and output. For such sequence diagrams, we propose the following
compliance checking procedure:

1. Given a computer system I and a sequence diagram d, use e.g. testing on I

to obtain the trace-set describing its behaviour.

2. Transform this trace-set into the same semantic model as that used for d.

3. Depending on the kind of compliance desired, select the appropriate compli-
ance relation.

4. I is compliant with d if this compliance relation holds between the semantics
of d and the representation of I obtained in step 2.

This paper is organized as follows: In Section 2 we state the requirements
that a step-wise procedure for checking computer systems against sequence dia-
grams needs to fulfil. Section 3 gives a general introduction to sequence diagrams
and their denotational trace semantics. Sections 4 and 5 introduce sequence dia-
grams with underspecification and inherent nondeterminism, respectively, and
define what it means for a system to be compliant with such sequence diagrams.
In Section 6 we present theoretical results related to the definitions of refinement
and compliance. We discuss related work in Section 7, before concluding in Sec-
tion 8. Appendices A and B give a detailed overview of the theoretical results,
together with the necessary proofs.

1 Note that we use the term “constraint” rather loosely. For instance, the addition of
a new constraint may result in the specification requiring more behaviours of the
system.
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2 Requirements

In order to motivate the following discussion and formal definitions, we formulate
a number of requirements that our procedure has been designed to fulfil. That
these requirements are met, are demonstrated throughout the discussion and
summed up in Section 8.

1. The procedure should be independent of the choice of programming lan-
guage in which the system is implemented. A sequence diagram does not
prescribe any particular programming language, and the procedure should
be sufficiently general to capture all possible choices. In general, we cannot
assume that we have access to the source code of the system. This means
that the only knowledge about the system that may be used by the proced-
ure, is what can be obtained by testing. Although not feasible in practice,
we assume that we are able to observe infinite runs. Otherwise, we would
have to restrict ourselves to safety properties.

2. The notion of compliance should be a special case of refinement. Given a
sequence diagram and its refinement, the procedure should give that a system
is compliant with the refinement only if the system is also compliant with
the original sequence diagram.

3. There should be a natural correspondence between the compliance relations
for the two variations of sequence diagrams. The language of sequence dia-
grams without inherent nondeterminism is a subclass of the language that
also allows inherent nondeterminism. This means that the general compli-
ance relation for sequence diagrams with inherent nondeterminism should
at least capture everything allowed by the general compliance relation for
sequence diagrams containing only underspecification.

4. The procedure should be faithful to the underlying ideas and principles of
UML 2.1 [OMG06] sequence diagrams. UML is the leading specification lan-
guage within the software industry of today, and our goal is that our ap-
proach should be of help for UML practitioners.

3 Sequence diagrams and trace semantics

This section gives necessary background for the following sections. It provides
a general introduction to sequence diagrams and their denotational trace se-
mantics. In this section we consider only three operators on sequence diagrams,
namely the operators for refusal, sequential and parallel composition. The fol-
lowing two sections extend this basic set of operators with operators for un-
derspecification and inherent nondeterminism, in each case focusing on how to
determine whether a given system is in compliance with such a sequence diagram.

We use the simple sequence diagram in Figure 1 to introduce some termino-
logy. S is the name of the sequence diagram, A and B are lifelines (corresponding
to e.g. components or objects), while m is a message from A to B. We say that the
diagram includes two events, the sending of m (denoted !m) and the reception
of m (denoted ?m).
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sd S

A B

m

Fig. 1. Simple sequence diagram

To assign precise meaning to a sequence diagram, we use denotational trace
semantics as defined in STAIRS [HHRS05]. This formal semantics is compliant
with the semi-formal descriptions given in the UML 2.1 standard [OMG06].
A trace is a sequence of events representing a system run. An event is a pair
(k, m) consisting of a kind k (either ! or ?) and a message m. A message is a
triple (s, tr, re) consisting of a signal s, a transmitter lifeline tr and a receiver
lifeline re.

For a trace to be well-formed, we require that for all messages:

– if both the sender and receiver lifeline are present in the diagram, then both
the send and the receive event are present in the trace;

– the send event is ordered before the corresponding receive event if both
events are present in the trace.

The semantics of a sequence diagram d is denoted [[ d ]]. In the basic case, the
semantics of a sequence diagram is an interaction obligation (p, n) where p is a
set of positive (i.e. valid) traces and n is a set of negative (i.e. invalid) traces.
Traces not in the diagram are called inconclusive, and may be introduced as
positive or negative by later refinement steps. Letting H denote the universe of
all well-formed traces, the traces H \ (p ∪ n) are inconclusive in the interaction
obligation (p, n).

Parallel composition (‖) of two trace sets corresponds to point-wise inter-
leaving of their individual traces. The ordering of events within each trace is
maintained in the result. For sequential composition (%) we require in addition
that for events on the same lifeline, all events from the first trace is ordered
before the events from the second trace. Formally:

s1 ‖ s2
def
= {h ∈ H | ∃p ∈ {1, 2}∞ :

π2(({1} × E) T© (p, h)) ∈ s1 ∧ (1)

π2(({2} × E) T© (p, h)) ∈ s2}

s1 % s2
def
= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L : (2)

e.l S©h = e.l S©h1 ⌢ e.l S©h2}

where E and L are the sets of all events and lifelines, respectively; e.l is the set of
events that may take place on the lifeline l; π2 is a projection operator returning
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the second element of a pair; and ⌢ is the concatenation operator for sequences.
S© and T© are filtering operators for traces and pairs of traces, respectively. E S©h

is the trace obtained from the trace h by removing from h all events that is not
in the set of events E. For instance, we have that

{e1, e3} S© 〈e1, e1, e2, e1, e3, e2〉 = 〈e1, e1, e1, e3〉

The operator T© is a generalization of S© filtering pairs of traces with respect to
pairs of elements such that for instance

{(1, e1), (1, e2)} S© (〈1, 1, 2, 1, 2〉, 〈e1, e1, e1, e2, e2〉)
= (〈1, 1, 1〉, 〈e1, e1, e2〉)

For formal definitions of S© and T© , see [BS01].
For interaction obligations, parallel composition (‖), sequential composition

(%) and refusal (†) are defined by:

(p1, n1) ‖ (p2, n2)
def
= (p1 ‖ p2, (n1 ‖ p2) ∪ (n1 ‖ n2) ∪ (p1 ‖ n2)) (3)

(p1, n1) % (p2, n2)
def
= (p1 % p2, (n1 % p2) ∪ (n1 % n2) ∪ (p1 % n2)) (4)

†(p1, n1)
def
= (∅, p1 ∪ n1) (5)

Notice that composing a positive and a negative trace always yields a negative
trace, while the result of composing an inconclusive trace with a positive or
negative trace is always inconclusive.

Finally, the sequence diagram operators for parallel composition (par), se-
quential composition (seq) and negative behaviour (refuse) are defined by:

[[ d1 par d2 ]]
def
= [[ d1 ]] ‖ [[ d2 ]] (6)

[[ d1 seq d2 ]]
def
= [[ d1 ]] % [[ d2 ]] (7)

[[ refuse d1 ]]
def
= †[[ d1 ]] (8)

4 Relating computer systems to sequence diagrams with

underspecification

When writing specifications, it is often useful to leave certain aspects of the
system behaviour open. This is known as underspecification. Typically, under-
specification is a consequence of abstraction and a desire to focus on the essential
behaviour of the system. In sequence diagrams, underspecification may be the
result of weak sequencing or specified using the operator alt, describing alternat-
ive behaviours that the system may exhibit. Underspecification may be removed
either by later development steps (refinements) or during the implementation
process.

Underspecification in the sense of alt corresponds to taking the pair-wise
union of the positive and negative trace-sets of the operands. Formally:

[[ d1 alt d2 ]]
def
= [[ d1 ]] ⊎ [[ d2 ]] (9)
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where inner union (⊎) on interaction obligations is defined by:

(p1, n1) ⊎ (p2, n2)
def
= (p1 ∪ p2, n1 ∪ n2) (10)

4.1 Refinement

Refinement means to add more information to the specification in order to bring
it closer to a real system. An important requirement is that any valid system
that is compliant with the refinement should also be compliant with the original
specification. In addition to the basic refinement relation defined in [HHRS05],
we define another relation called restricted refinement. The idea is that the two
refinement relations will be used in different phases of the development process.

Refinement As sequence diagrams are incomplete specifications describing only
parts of the system behaviour, a refinement step may add more positive
and/or negative behaviours to the specification, hence reducing the set of
inconclusive traces. Also, a refinement step may reduce underspecification,
i.e. redefine positive traces as negative. Negative traces always remain neg-
ative. Formally, refinement of interaction obligations is defined by:

(p, n) r (p′, n′)
def
= n ⊆ n′ ∧ p ⊆ p′ ∪ n′ (11)

As can be seen from the definition, a refinement may legally redefine all
of the original positive traces as negative. Having this possibility may be
important in an early development phase focusing on exploring the desired
system requirements.

Restricted refinement At some stage during the development process it may
be natural to fix the set of positive traces, with the intention that at least
one of these should be present in any system compliant with this sequence
diagram. After that, valid refinement steps may only redefine positive and
inconclusive traces as negative, in order to remove underspecification and
decide on the exact set of traces that may be produced by the final system.
Extending the set of positive traces is no longer allowed:

(p, n) rr (p′, n′)
def
= (p, n) r (p′, n′) ∧ p′ ⊆ p (12)

4.2 Compliance

As explained in Section 2, we assume that all we know about a computer sys-
tem is its set of traces. The traces are assumed to be well-formed in the sense
explained in Section 3. This allows us to reason independently of any particular
programming language, and also to handle applications where different compon-
ents may be written in different languages.

6



In order to check a system I represented by its set of traces against a sequence
diagram specification d using the semantic model outlined in Section 3, we first
transform I into an interaction obligation 〈I〉d:

〈I〉d
def
= (traces(I),Hll(d) \ traces(I)) (13)

where Hll(d) is the set of all well-formed traces consisting only of events taking
place on the lifelines in the sequence diagram d, denoted ll(d).

A general refinement principle in STAIRS is that traces described as positive
or negative in the original specification cannot become inconclusive by a refine-
ment step, as this would mean deviation from earlier given constraints. Since
compliance should be a special case of refinement, 〈I〉d must include (as posit-
ive or negative) at least all traces described by d. Definition (13) ensures this
by the use of Hll(d). Employing Hll(d) and not H, guarantees consistency when
performing parallel composition of two systems with disjoint sets of lifelines.

Corresponding to the two refinement relations in Section 4.1, we then define
two different compliance relations.

Compliance relation A system I complies to a sequence diagram d if the
semantics we get by using definition (13) is a refinement of [[ d ]]. Formally:

[[ d ]] 7→r 〈I〉d
def
= [[ d ]] r 〈I〉d (14)

Restricted compliance relation A sequence diagram specification gives a glo-
bal view of the system behaviour, but is often implemented as a number of
components. As each of these components only has a local view of the overall
system behaviour, their independent behaviours may combine in unexpec-
ted ways resulting in so-called implied scenarios [AEY00], i.e. traces that are
inconclusive in the sequence diagram specification.
With restricted compliance, the system should contain at least one of the
positive traces from the sequence diagram. Because of implied scenarios,
we do not require that all possible system traces are explicitly described as
positive in the sequence diagram. For a system I, we instead require that
traces(I) and the positive traces of the sequence diagram have at least one
trace in common. In addition, traces(I) may contain arbitrary many of the
positive and inconclusive traces from the sequence diagram. Formally:

[[ d ]] 7→rr 〈I〉d
def
= [[ d ]] 7→r 〈I〉d ∧ π1([[ d ]]) ∩ π1(〈I〉d) 6= ∅ (15)

where π1 is a projection operator returning the first element of a pair, in this
case the positive traces of d and 〈I〉d (i.e. traces(I)), respectively.

4.3 Example

As a simple example, consider the specification of a gambling machine in Fig-
ure 2. First, the machine receives either a dime or a quarter. As a result, the
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machine either sends the message “You won” together with a dollar, or the mes-
sage “You lost”.2 The veto operator is a high-level operator defined by:

veto d
def
= skip alt refuse d (16)

where skip is the empty diagram defined by:

[[ skip ]]
def
= ({〈〉}, ∅) (17)

sd S1

:I/O unit
:Gambling

Machine

alt dime

quarter

msg(”You won”)

dollar

alt

msg(”You lost”)

veto

dollar

Fig. 2. Sequence diagram with underspecification (alt)

In this example, veto is used to specify that the message “You lost” should
not be followed by a dollar. Shortening each message, the semantics [[ S1 ]] of
this sequence diagram is:

( {〈!di, ?di, !m(yw), ?m(yw), !do, ?do〉, 〈!qu, ?qu, !m(yw), ?m(yw), !do, ?do〉,
〈!di, ?di, !m(yw), !do, ?m(yw), ?do〉, 〈!qu, ?qu, !m(yw), !do, ?m(yw), ?do〉,
〈!di, ?di, !m(yl), ?m(yl)〉, 〈!qu, ?qu, !m(yl), ?m(yl)〉} ,

{〈!di, ?di, !m(yl), ?m(yl), !do, ?do〉, 〈!qu, ?qu, !m(yl), ?m(yl), !do, ?do〉,
〈!di, ?di, !m(yl), !do, ?m(yl), ?do〉, 〈!qu, ?qu, !m(yl), !do, ?m(yl), ?do〉} )

2 As we will come back to in Section 5, alt is not the best operator to use between
these two last alternatives.
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A possible way to implement this sequence diagram would be to build a sys-
tem I1 where the gambling machine receives a dime, after which it responds
with a “You lost” message and then nothing more happens. This may be rep-
resented by the trace-set traces(I1) = {〈!di, ?di, !m(yl), ?m(yl)〉}, which gives
〈I1〉S1

= ({〈!di, ?di, !m(yl), ?m(yl)〉},Hll(S1) \ {〈!di, ?di, !m(yl), ?m(yl)〉}). It is
straightforward to see that I1 is in compliance with the sequence diagram S1

according to both definitions (14) and (15), as the trace 〈!di, ?di, !m(yl), ?m(yl)〉
is positive in [[ S1 ]], and the negative traces of [[ S1 ]] are also negative in 〈I1〉S1

.

5 Relating computer systems to sequence diagrams with

inherent nondeterminism

Using only underspecification, a system may be in compliance with the sequence
diagram even if it contains one only of the positive traces and nothing else.
In many cases this is not sufficient. One example is the gambling machine from
Section 4.3, where the sequence diagram allowed a system where the only possible
outcome was the user losing his money. A more realistic specification would be
to require that both winning and losing should be possible outcomes. Also, the
choice between winning and losing should be performed nondeterministically (or
at least appear so to the user of the gambling machine).

For specifying inherent nondeterminism, or alternatives that must all be re-
flected in the specified system, the operator xalt (first introduced in [HS03]) may
be used. To distinguish between underspecification and inherent nondeterminism
also at the semantic level, the semantics of a sequence diagram d is no longer
a single interaction obligation as in Sections 3 and 4, but instead a set of m

interaction obligations [[ d ]] = {(p1, n1), (p2, n2), . . . , (pm, nm)} for some natural
number m. The idea is that each interaction obligation gives a requirement that
must be fulfilled by any system in compliance with it. Formally, the xalt operator
is defined by:

[[ d1 xalt d2 ]]
def
= [[ d1 ]] ∪ [[ d2 ]] (18)

Hence, the composition of d1 and d2 by xalt requires all the inherent nondetermin-
ism specified by d1 in addition to all the inherent nondeterminism specified by
d2.

With this extended semantic model, we also need definitions for parallel
composition (‖), sequential composition (%), underspecification (⊎) and refusal
(†) on sets of interaction obligations:

O1 op O2
def
= {o1 op o2 | o1 ∈ O1 ∧ o2 ∈ O2} (19)

†O1
def
= {†o1 | o1 ∈ O1} (20)

where op is one of ‖, % or ⊎.
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5.1 Refinement

For a specification with both inherent nondeterminism and underspecification,
we distinguish between four different refinement relations. The most general
notion is general refinement, which is typically used initially, while the most
specific notion is restricted limited refinement, which is more likely to be used
near the end of the development process.

General and restricted general refinement For a specification having sev-
eral interaction obligations as its semantics, we require that each one should
be refined by at least one interaction obligation in any valid refinement.
The only difference between general ( g) and restricted general ( rg) re-
finement, is with respect to the refinement definition used between the two
interaction obligations:

[[ d ]] (r)g [[ d′ ]]
def
= ∀o ∈ [[ d ]] : ∃o′ ∈ [[ d′ ]] : o (r)r o′ (21)

where  r and  rr are refinement of interaction obligations as defined by
definitions (11) and (12), respectively.

Limited and restricted limited refinement Both versions of definition (21)
allow a refinement to introduce new interaction obligations that are not re-
finements of any interaction obligations in the original specification, possibly
increasing the inherent nondeterminism required of the final system. A trace
may be positive in one of these new interaction obligations even if it is negat-
ive in all other interaction obligations. In limited ( l) and restricted limited
( rl) refinement, adding new interaction obligations like this is not allowed:

[[ d ]] (r)l [[ d′ ]]
def
= [[ d ]] (r)g [[ d′ ]] (22)

∧ ∀o′ ∈ [[ d′ ]] : ∃o ∈ [[ d ]] : o (r)r o′

5.2 Compliance

In order to characterize compliance between a system I and a sequence diagram
d with inherent nondeterminism (as well as underspecification), we redefine 〈I〉d
to consist of one interaction obligation for each trace in traces(I):

〈I〉d
def
= {({h},Hll(d) \ {h}) | h ∈ traces(I)} (23)

Corresponding to the four refinement relations in Section 5.1, we then define
four different compliance relations.

General and restricted general compliance Similar to (restricted) general
refinement, a system I is in (restricted) general compliance with a sequence
diagram d if every interaction obligation in [[ d ]] is reflected in at least
one of the interaction obligations we get by using definition (23). The only
difference between general (7→g) and restricted general (7→rg) compliance
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is with respect to the compliance relation used for each single interaction
obligation.

[[ d ]] 7→(r)g 〈I〉d
def
= ∀o ∈ [[ d ]] : ∃o′ ∈ 〈I〉d : o 7→(r)r o′ (24)

Limited and restricted limited compliance Similar to (restricted) limited
refinement, (restricted) limited compliance requires that every interaction
obligation obtained by definition (23) complies with at least one interaction
obligation in [[ d ]]:

[[ d ]] 7→(r)l 〈I〉d
def
= [[ d ]] 7→(r)g 〈I〉d (25)

∧ ∀o′ ∈ 〈I〉d : ∃o ∈ [[ d ]] : o 7→(r)r o′

5.3 Example

Figure 3 is a revised specification of the gambling machine, replacing the second
alt operator with xalt and adding some more negative behaviours. The ref-
construct may be understood as a syntactical shorthand for the contents of
the referenced sequence diagram.

The semantics [[ S2 ]] of this sequence diagram is a set of two interaction
obligations:

{ ( {〈!di, ?di, !m(yw), ?m(yw), !do, ?do〉, 〈!qu, ?qu, !m(yw), ?m(yw), !do, ?do〉,
〈!di, ?di, !m(yw), !do, ?m(yw), ?do〉, 〈!qu, ?qu, !m(yw), !do, ?m(yw), ?do〉} ,

{〈!di, ?di, !m(yl), ?m(yl)〉, 〈!qu, ?qu, !m(yl), ?m(yl)〉,
〈!di, ?di, !m(yl), ?m(yl), !do, ?do〉, 〈!qu, ?qu, !m(yl), ?m(yl), !do, ?do〉,
〈!di, ?di, !m(yl), !do, ?m(yl), ?do〉, 〈!qu, ?qu, !m(yl), !do, ?m(yl), ?do〉} ) ,

( {〈!di, ?di, !m(yl), ?m(yl)〉, 〈!qu, ?qu, !m(yl), ?m(yl)〉} ,

{〈!di, ?di, !m(yw), ?m(yw), !do, ?do〉, 〈!qu, ?qu, !m(yw), ?m(yw), !do, ?do〉,
〈!di, ?di, !m(yw), !do, ?m(yw), ?do〉, 〈!qu, ?qu, !m(yw), !do, ?m(yw), ?do〉,
〈!di, ?di, !m(yl), ?m(yl), !do, ?do〉, 〈!qu, ?qu, !m(yl), ?m(yl), !do, ?do〉,
〈!di, ?di, !m(yl), !do, ?m(yl), ?do〉, 〈!qu, ?qu, !m(yl), !do, ?m(yl), ?do〉} ) }

The system I1 given in section 4.3 is not in compliance with S2, as the
only trace 〈!di, ?di, !m(yl), ?m(yl)〉 in 〈I1〉S2

is negative in the first interaction
obligation in [[ S2 ]], meaning that this interaction obligation is not reflected in
the system as required by both definitions (24) and (25).

However, a system I2 with trace-set as given by traces(I2) = {t1, t2, t3} where
t1 = 〈!di, ?di, !m(yw), ?m(yw), !do, ?do〉, t2 = 〈!di, ?di, !m(yw), !do, ?m(yw), ?do〉
and t3 = 〈!di, ?di, !m(yl), ?m(yl)〉, is in compliance with S2 according to all of the
compliance relations 7→g, 7→rg, 7→l and 7→rl. To realize this notice that the three
traces in traces(I2) will give rise to three different interaction obligations when
using definition (23) of 〈I2〉S2

. The interaction obligation ({t1},Hll(S2) \ {t1}) is
in compliance with the first interaction obligation in [[ S2 ]] according to both 7→r

and 7→rr. The same is the case for the interaction obligation ({t2},Hll(S2)\{t2}).
Similarly, the interaction obligation ({t3},Hll(S2) \ {t3}) is in compliance with
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sd S2

:I/O unit
:Gambling

Machine

alt dime

quarter

xalt

sd win

:I/O unit
:Gambling

Machine

msg(”You won”)

dollar

sd loss

:I/O unit
:Gambling

Machine

msg(”You lost”)

veto

dollar

alt

ref
win

refuse

ref
loss

alt

ref
loss

refuse

ref
win

Fig. 3. Sequence diagram with inherent nondeterminism (xalt)
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the second interaction obligation in [[ S2 ]] according to both 7→r and 7→rr. Hence,
both interaction obligations in [[ S2 ]] are reflected in an interaction obligation
in 〈I2〉S2

, and each of the three interaction obligations in 〈I2〉S2
is in compliance

with an interaction obligation in [[ S2 ]].

6 Results

In this section we present a number of essential properties that has been estab-
lished, such as transitivity, monotonicity and the relationship between refinement
and compliance. For proofs, we refer to the appendices.

Theorem 1. (Transitivity of refinement.) For every refinement relation  :

[[ d ]] [[ d′ ]] ∧ [[ d′ ]] [[ d′′ ]] ⇒ [[ d ]] [[ d′′ ]]

Transitivity is important, as it ensures that the result of successive refine-
ment steps is a valid refinement of the original sequence diagram. As all other
refinement relations are special cases of general refinement, the use of differ-
ent refinement relations in the various steps ensures that the resulting sequence
diagram is at least a general refinement of the original sequence diagram.

Theorem 2. (Monotonicity of refinement.) For every refinement relation :

[[ d1 ]] [[ d′1 ]] ∧ [[ d2 ]] [[ d′2 ]] ⇒

[[ refuse d1 ]] [[ refuse d′1 ]]

∧ [[ d1 seq d2 ]] [[ d′1 seq d′2 ]]

∧ [[ d1 par d2 ]] [[ d′1 par d′2 ]]

∧ [[ d1 alt d2 ]] [[ d′1 alt d′2 ]]

∧ [[ d1 xalt d2 ]] [[ d′1 xalt d′2 ]]

Monotonicity ensures that the different parts of a sequence diagram may be
refined separately. Again, using different refinement relations means that the
resulting sequence diagram will at least be a general refinement of the original
one.

Theorem 3. (Transitivity between refinement and compliance.) For
every refinement relation  and compliance relation 7→ with the same subscript:

[[ d1 ]] [[ d2 ]] ∧ [[ d2 ]] 7→ 〈I〉d2
⇒ [[ d1 ]] 7→ 〈I〉d1

In general, the compliance relation used for relating I to d2 may be more
restrictive (i.e. allowing only a subset of the implementations) than the one that
must be used for relating I to d1. Theorem 3 is important as it tells us that
in this case, the compliance relation to be used for relating I to d1 is the one
corresponding to the refinement relation used when going from d1 to d2.
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A sequence diagram with no xalt operator can be viewed either as a diagram
with underspecification or as a diagram with inherent nondeterminism, since it
contains only operators that are legal in both of these variations. The following
Theorem 4 characterizes the relationships between the different interpretations
with respect to refinement and compliance.

Until now we have overloaded the notation for the semantic representation
of diagrams and computer systems in order to enhance readability. We now need
to introduce the full notation. Let [[ d ]]u and [[ d ]]i denote the semantics of the
sequence diagram d when viewed as a sequence diagram with underspecification
(a single interaction obligation) or inherent nondeterminism (a set of interaction
obligations), respectively. Similarly, for a system I we use 〈I〉ud and 〈I〉id to denote
its semantic representation with respect to d according to definition (13) or
definition (23), respectively.

Theorem 4. (Correspondence.) For a sequence diagram d without inherent
nondeterminism:

[[ d ]]u 7→r 〈I〉ud ⇒ [[ d ]]i 7→g 〈I〉id

[[ d ]]u 7→rr 〈I〉ud ⇒ [[ d ]]i 7→rg 〈I〉id

[[ d ]]u 7→r 〈I〉ud ⇔ [[ d ]]i 7→l 〈I〉
i
d

[[ d ]]u 7→rr 〈I〉ud ⇐ [[ d ]]i 7→rl 〈I〉
i
d

From Theorem 4, we see that (restricted) general compliance 7→(r)g allows
at least all of the implementations allowed by (restricted) compliance 7→(r)r.
We now explain why (restricted) general compliance 7→(r)g may allow other
implementations as well. As an example, assume that d is a sequence diagram
where the trace t is negative in every interaction obligation in [[ d ]]i. According
to (restricted) general refinement  (r)g, a valid refinement of d is the sequence
diagram d′ with semantics [[ d′ ]]i = [[ d ]]i∪{({t}, ∅)}. In other words, (restricted)
general refinement (r)g allows the addition of new interaction obligations where
a trace may be positive even if it is negative in all of the original interaction
obligations. This is also true for (restricted) general compliance 7→(r)g, which
is meant to reflect this refinement relation. However, implementing a negative
trace is not allowed by (restricted) compliance 7→(r)r, where a single interaction
obligation is the semantic model used for representing both the sequence diagram
and the system.

Implementing negative traces is also not allowed by limited compliance 7→l,
and we see from Theorem 4 that for sequence diagrams without inherent non-
determinism, compliance 7→r and limited compliance 7→l are always in accord-
ance with each other.

On the other hand, restricted compliance 7→rr allows implementations not
allowed by restricted limited compliance 7→rl. As an example, assume that d is a
sequence diagram with semantics [[ d ]]u = ({t1}, ∅) (i.e. [[ d ]]i = {({t1}, ∅)}) and
that I is a system such that traces(I) = {t1, t2}. Using definition (13) we get
that the single interaction obligation of 〈I〉ud is ({t1, t2},Hll(d)\{t1, t2}), meaning
that I is in restricted compliance 7→rr to d. However, using definition (23), we
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get 〈I〉id = {({t1},Hll(d) \ {t1}), ({t2},Hll(d) \ {t2})}, which is not in restricted
limited compliance 7→rl with d as d does not contain any interaction obligation
where t2 is positive. In other words, restricted compliance 7→rr allows a system
to perform traces that are inconclusive in the sequence diagram, while this is
not allowed by restricted limited compliance 7→rl.

7 Related work

To the best of our knowledge, there is no other paper treating the relationship
between computer systems and sequence diagrams as thoroughly as we have done
in this paper. The closest is the work by Cengarle and Knapp in [CK04], which
defines an implementation notion which has inspired our notion of restricted
compliance. However, inherent nondeterminism is not treated.

The basis of this paper is sequence diagrams as defined in e.g. UML 2.1
[OMG06]. As the focus of this paper is on compliance relations and not se-
quence diagrams as such, we have covered only the most essential of the UML
2.1 operators. In addition, we have considered an operator for specifying in-
herent nondeterminism This operator is not found in UML 2.1, and neither
in most other variants of sequence diagrams such as Message Sequence Charts
(MSCs) [ITU99].

Live Sequence Charts (LSCs) [DH99,HM03] is an extension of MSCs, where
elements in the diagram may be specified as either universal (mandatory) or
existential (optional). An existential chart specifies a behaviour (one or more
traces) that must be satisfied by at least one system run. A universal chart
specify all allowed traces, but does not require that more than one is imple-
mented. [HM03] defines an operational semantics for LSCs, but as the focus is
on simulating the specifications, neither refinement nor compliance relations are
defined.

Related to implementations, [Krü00] defines four possible interpretations of a
single MSC: negated, exact, existential and universal. The negated interpretation
means that the MSC describes behaviour that should not happen, and corres-
ponds to the UML use of negation operators within a sequence diagram. For the
exact interpretation, all behaviours that are not in the MSC are forbidden. An
existential MSC describes behaviour that cannot be prohibited by the system
in all executions. We obtain the same result by letting an interaction obligation
contain the existential behaviour as the only positive, while all other behaviours
are negative in that interaction obligation. Finally, the universal interpretation
describes behaviour that must occur as part of all executions of the system. We
have no similar notion to this. As for most work on MSCs, [Krü00] does not
include a notion of inherent nondeterminism.

Looking at other specification languages than sequence diagrams, more work
has been done on nondeterminism. As the main focus of this paper is on computer
systems in relation to sequence diagrams, we refer to [RRS06] for a more general
treatment of related work with respect to nondeterminism.
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8 Conclusions

For sequence diagrams with underspecification and inherent nondeterminism,
we have in this paper defined different refinement relations, their corresponding
compliance relations, and investigated the mathematical properties of these rela-
tions. Which of the refinement and compliance relations will turn out to be most
useful in practice, is an open question that should be subject to future research.

Our general compliance checking procedure for relating systems and sequence
diagrams was given in section 1. Together with the defined refinement and com-
pliance relations, the procedure meets the requirements of Section 2 in the fol-
lowing sense:

1. The procedure is independent of any particular programming language or
paradigm. All we require, is that there exists some means to obtain the
traces of the system.

2. The notion of compliance is a special case of refinement. With the excep-
tion of restricted compliance, all compliance relations are special cases of
the corresponding refinement relations. Whatever refinement relation is used
between two sequence diagrams, any system compliant with the refinement
is also compliant with the original diagram.

3. If a system is in compliance with a sequence diagram using the most general
compliance relation for sequence diagrams with underspecification, 7→r, the
most general compliance relation for sequence diagrams with inherent non-
determinism, 7→g, may be used with the same result. This means that 7→g

allows all systems that are allowed by 7→r. For correspondences between the
other compliance relations, we refer to Theorem 4 in Section 6.

4. The approach is faithful to the UML 2.1 standard, both with respect to the
underlying semantic model using sets of positive and negative traces, and
with respect to the semantics given for each concrete operator. In partic-
ular, all of our definitions take into account the partial nature of sequence
diagrams.

In this paper we have only considered sequence diagrams without external
input and output. Our results may be generalized to handle also sequence dia-
grams with such external communication by in each case defining an adversary
representing the environment of the system, and then checking compliance under
the assumption of this adversary.
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A Summary of results

The following tables summarize results with reference to the relevant theorems.

Property  r  rr

Trans. Lemma 26 in [HHRS06] Theorem 5
Trans. ref./impl. Theorem 6 Theorem 7
Mon. w.r.t refuse Lemma 4 in [RHS07] Theorem 8
Mon. w.r.t seq Lemma 30 in [HHRS06] Theorem 9
Mon. w.r.t par Lemma 31 in [HHRS06] Theorem 10
Mon. w.r.t alt Theorem 11 Theorem 12

Property  g  rg

Trans. Theorem 9 in [HHRS06] Theorem 13
Trans. ref./impl. Theorem 15 Theorem 15
Mon. w.r.t refuse Theorem 7 in [RHS07] Theorem 17
Mon. w.r.t seq Theorem 13 in [HHRS06] Theorem 18
Mon. w.r.t par Theorem 14 in [HHRS06] Theorem 19
Mon. w.r.t alt Theorem 11 in [HHRS06] Theorem 20
Mon. w.r.t xalt Theorem 12 in [HHRS06] Theorem 21

Property  l  rl

Trans. Theorem 6 in [RHS07] Theorem 14
Trans. ref./impl. Theorem 16 Theorem 16
Mon. w.r.t refuse Theorem 8 in [RHS07] Theorem 22
Mon. w.r.t seq Theorem 10 in [RHS07] Theorem 23
Mon. w.r.t par Theorem 24 Theorem 24
Mon. w.r.t alt Theorem 11 in [RHS07] Theorem 25
Mon. w.r.t xalt Theorem 12 in [RHS07] Theorem 26

Correspondence properties:

7→g 7→l

7→r ⇒: Theorem 27 ⇒: Theorem 29
⇐: Theorem 30

7→rg 7→rl

7→rr ⇒: Theorem 28 ⇐: Theorem 31
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B Proofs

In this section we state and prove each individual theorem. Theorems that are
proved in other technical reports are not included.

B.1 Specifications with underspecification

Transitivity

Theorem 5. (Transitivity of  rr.) Let d, d′ and d′′ be sequence diagrams
without xalt. Then

[[ d ]]u  rr [[ d′ ]]u ∧ [[ d′ ]]u  rr [[ d′′ ]]u ⇒ [[ d ]]u  rr [[ d′′ ]]u

Proof.

Let: [[ d ]]u = (p, n)
[[ d′ ]]u = (p′, n′)
[[ d′′ ]]u = (p′′, n′′)

〈1〉1. Assume: 1. (p, n) rr (p′, n′)
2. (p′, n′) rr (p′′, n′′)

Prove: (p, n) rr (p′′, n′′)
〈2〉1. Requirement 1: (p, n) r (p′′, n′′)
〈3〉1. (p, n) r (p′, n′)

Proof: 〈1〉1:1 and definition 12 of  rr.
〈3〉2. (p′, n′) r (p′′, n′′)

Proof: 〈1〉1:2 and definition 12 of  rr.
〈3〉3. Q.E.D.

Proof: 〈2〉1, 〈3〉2 and lemma 26 in [HHRS06] (transitivity of  r).
〈2〉2. Requirement 2: p′′ ⊆ p

〈3〉1. p′ ⊆ p

Proof: 〈1〉1:1 and definition 12 of  rr.
〈3〉2. p′′ ⊆ p′

Proof: 〈1〉1:2 and definition 12 of  rr.
〈3〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and transitivity of ⊆.
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and definition 12 of  rr.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�

Transitivity between refinement and implementation

Theorem 6. (Transitivity between refinement and implementation for
 r.) Let d1 and d2 be sequence diagrams without xalt. Then

[[ d1 ]]u  r [[ d2 ]]u ∧ [[ d2 ]]u 7→r 〈I〉ud2
⇒ [[ d1 ]]u 7→r 〈I〉ud1
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Proof.

Let: [[ d1 ]]u = (p1, n1)
[[ d2 ]]u = (p2, n2)

〈1〉1. 〈I〉ud1
= (traces(I),Hll(d1) \ traces(I))

Proof: Definition 13 of 〈I〉ud .
〈1〉2. 〈I〉ud2

= (traces(I),Hll(d2) \ traces(I))
Proof: Definition 13 of 〈I〉ud .

〈1〉3. Assume: 1. (p1, n1) r (p2, n2)
2. (p2, n2) 7→r (traces(I),Hll(d2) \ traces(I))

i.e. (p2, n2) r (traces(I),Hll(d2) \ traces(I)) by definition 14
of 7→r.

Prove: (p1, n1) 7→r (traces(I),Hll(d1) \ traces(I))
〈2〉1. Requirement 1: n1 ⊆ Hll(d1) \ traces(I)
〈3〉1. n1 ⊆ Hll(d2) \ traces(I)

Proof: 〈1〉3:1, 〈1〉3:2, lemma 26 in [HHRS06] (transitivity of  r) and
definition 11 of  r.

〈3〉2. n1 ⊆ Hll(d1)

Proof: [[ d1 ]]u = (p1, n1), definition of ll(d) and definition of HL.
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and A ⊆ B ∧ A ⊆ C \ X ⇒ A ⊆ B \ X for arbitrary
sets A, B, C and X .

〈2〉2. Requirement 2: p1 ⊆ traces(I) ∪ (Hll(d1) \ traces(I)),
i.e. p1 ⊆ traces(I) ∪Hll(d1)

Proof: p1 ⊆ Hll(d) by [[ d1 ]]u = (p1, n1), definition of ll(d) and definition
of HL.

〈2〉3. (p1, n1) r (traces(I),Hll(d1) \ traces(I))
Proof: 〈2〉1, 〈2〉2 and definition 11 of  r.

〈2〉4. Q.E.D.
Proof: 〈2〉3 and definition 14 of 7→r.

〈1〉4. Q.E.D.
Proof: 〈1〉3 and ⇒-rule.

�

Theorem 7. (Transitivity between refinement and implementation for
 rr.) Let d1 and d2 be sequence diagrams without xalt. Then

[[ d1 ]]u  rr [[ d2 ]]u ∧ [[ d2 ]]u 7→rr 〈I〉ud2
⇒ [[ d1 ]]u 7→rr 〈I〉ud1

Proof.

Let: [[ d1 ]]u = (p1, n1)
[[ d2 ]]u = (p2, n2)

〈1〉1. Assume: 1. [[ d1 ]]u  rr [[ d2 ]]u

2. [[ d2 ]]u 7→rr 〈I〉ud2

Prove: [[ d1 ]]u 7→rr 〈I〉ud1

〈2〉1. Requirement 1: [[ d1 ]]u 7→r 〈I〉ud1

〈3〉1. [[ d1 ]]u  r [[ d2 ]]u
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Proof: 〈1〉1:1 and definition 12 of  rr.
〈3〉2. [[ d2 ]]u 7→r 〈I〉ud2

Proof: 〈1〉1:2 and definition 15 of 7→rr.
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and theorem 6 (transitivity between refinement and
implementation for  r).

〈2〉2. Requirement 2: π1([[ d1 ]]u) ∩ π1(〈I〉ud1
) 6= ∅

〈3〉1. π1([[ d1 ]]u) = p1

Proof: [[ d1 ]]u = (p1, n1) and definition of π1.
〈3〉2. π1(〈I〉ud1

) = traces(I)
Proof: Definition 13 of 〈I〉d and definition of π1.

〈3〉3. p2 ⊆ p1

Proof: 〈1〉1:1 and definition 12 of  rr.
〈3〉4. p2 ∩ traces(I) 6= ∅

Proof: 〈1〉1:2 and definition 15 of 7→rr.
〈3〉5. p1 ∩ traces(I) 6= ∅

Proof: 〈3〉3, 〈3〉4 and A ⊆ B ∧ A ∩ X 6= ∅ ⇒ B ∩ X 6= ∅ for arbitrary
sets A, B and X .

〈3〉6. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and 〈3〉5.

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and definition 15 of 7→rr.

〈1〉2. Q.E.D.
Proof: ⇒-rule.

�
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Monotonicity

Lemma 1. (To be used when proving monotonicity with respect to seq.)

Assume: 1. s1 ⊆ s′1
2. s2 ⊆ s′2

Prove: s1 % s2 ⊆ s′1 % s′2

Proof.

This is lemma 27 in [HHRS06]. �

Lemma 2. (To be used when proving monotonicity with respect to par.)

Assume: 1. s1 ⊆ s′1
2. s2 ⊆ s′2

Prove: s1 ‖ s2 ⊆ s′1 ‖ s′2

Proof.

This is lemma 28 in [HHRS06]. �

Theorem 8. (Monotonicity of  rr w.r.t refuse.) Let d be a sequence dia-
gram without xalt. Then

[[ d ]]u  rr [[ d′ ]]u ⇒ [[ refuse d ]]u  rr [[ refuse d′ ]]u

Proof.

Let: [[ d ]]u = (p, n)
[[ d′ ]]u = (p′, n′)

〈1〉1. Assume: [[ d ]]u  rr [[ d′ ]]u,
i.e. (p, n) rr (p′, n′)

Prove: [[ refuse d ]]u  rr [[ refuse d′ ]]u,
i.e. (∅, p ∪ n) rr (∅, p′ ∪ n′) by definition 8 of refuse.

〈2〉1. Requirement 1: (∅, p ∪ n) r (∅, p′ ∪ n′)
〈3〉1. (p, n) r (p′, n′)

Proof: 〈1〉1 and definition 12 of  rr.
〈3〉2. Q.E.D.

Proof: 〈3〉1 and lemma 4 in [RHS07] (monotonicity of  r w.r.t refuse).
〈2〉2. Requirement 2: ∅ ⊆ ∅

Proof: Trivial.
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and definition 12 of  rr.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�
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Theorem 9. (Monotonicity of  rr w.r.t seq.) Let d1, d2, d′1 and d′2 be
sequence diagrams without xalt. Then

[[ d1 ]]u  rr [[ d′1 ]]u ∧ [[ d2 ]]u  rr [[ d′2 ]]u ⇒ [[ d1 seq d2 ]]u  rr [[ d′1 seq d′2 ]]u

Proof.

Let: [[ d1 ]]u = (p1, n1)
[[ d′1 ]]u = (p′1, n

′
1)

[[ d2 ]]u = (p2, n2)
[[ d′2 ]]u = (p′2, n

′
2)

〈1〉1. Assume: 1. [[ d1 ]]u  rr [[ d′1 ]]u,
i.e. (p1, n1) rr (p′1, n

′
1)

2. [[ d2 ]]u  rr [[ d′2 ]]u,
i.e. (p2, n2) rr (p′2, n

′
2)

Prove: [[ d1 seq d2 ]]u  rr [[ d′1 seq d′2 ]]u,
i.e. (p1, n1) % (p2, n2) rr (p′1, n

′
1) % (p′2, n

′
2) by definition 7

i.e. (p1 % p2, n1 % p2 ∪ n1 % n2 ∪ p1 % n2)
 rr (p′1 % p′2, n

′
1 % p′2 ∪ n′

1 % n′
2 ∪ p′1 % n′

2) by definition 4.
〈2〉1. Requirement 1: (p1, n1) % (p2, n2) r (p′1, n

′
1) % (p′2, n

′
2)

〈3〉1. (p1, n1) r (p′1, n
′
1)

Proof: 〈1〉1:1 and definition 12 of  rr.
〈3〉2. (p2, n2) r (p′2, n

′
2)

Proof: 〈1〉1:2 and definition 12 of  rr.
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and lemma 30 in [HHRS06] (monotonicity of  r w.r.t
seq).

〈2〉2. Requirement 2: (p′1 % p′2) ⊆ (p1 % p2)
〈3〉1. p′1 ⊆ p1

Proof: 〈1〉1:1 and definition 12 of  rr.
〈3〉2. p′2 ⊆ p2

Proof: 〈1〉1:2 and definition 12 of  rr.
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and lemma 1.
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and definition 12 of  rr.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�
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Theorem 10. (Monotonicity of  rr w.r.t par.) Let d1, d2, d′1 and d′2 be
sequence diagrams without xalt. Then

[[ d1 ]]u  rr [[ d′1 ]]u ∧ [[ d2 ]]u  rr [[ d′2 ]]u ⇒ [[ d1 par d2 ]]u  rr [[ d′1 par d′2 ]]u

Proof.

Let: [[ d1 ]]u = (p1, n1)
[[ d′1 ]]u = (p′1, n

′
1)

[[ d2 ]]u = (p2, n2)
[[ d′2 ]]u = (p′2, n

′
2)

〈1〉1. Assume: 1. [[ d1 ]]u  rr [[ d′1 ]]u,
i.e. (p1, n1) rr (p′1, n

′
1)

2. [[ d2 ]]u  rr [[ d′2 ]]u,
i.e. (p2, n2)

u  rr (p′2, n
′
2)

Prove: [[ d1 par d2 ]]u  rr [[ d′1 par d′2 ]]u,
i.e. (p1, n1) ‖ (p2, n2) rr (p′1, n

′
1) ‖ (p′2, n

′
2) by definition 6,

i.e. (p1 ‖ p2, n1 ‖ p2 ∪ n1 ‖ n2 ∪ p1 ‖ n2)
 rr (p′1 ‖ p′2, n

′
1 ‖ p′2 ∪ n′

1 ‖ n′
2 ∪ p′1 ‖ n′

2) by definition 3.
〈2〉1. Requirement 1: (p1, n1) ‖ (p2, n2) r (p′1, n

′
1) ‖ (p′2, n

′
2)

〈3〉1. (p1, n1) r (p′1, n
′
1)

Proof: 〈1〉1:1 and definition 12 of  rr.
〈3〉2. (p2, n2) r (p′2, n

′
2)

Proof: 〈1〉1:2 and definition 12 of  rr.
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and lemma 31 in [HHRS06] (monotonicity of  r w.r.t
par).

〈2〉2. Requirement 2: (p′1 ‖ p′2) ⊆ (p1 ‖ p2)
〈3〉1. p′1 ⊆ p1

Proof: 〈1〉1:1 and definition 12 of  rr.
〈3〉2. p′2 ⊆ p2

Proof: 〈1〉1:2 and definition 12 of  rr.
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and lemma 2.
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and definition 12 of  rr.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�
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Theorem 11. (Monotonicity of  r w.r.t alt.) Let d1, d2, d′1 and d′2 be
sequence diagrams without xalt. Then

[[ d1 ]]u  r [[ d′1 ]]u ∧ [[ d2 ]]u  r [[ d′2 ]]u ⇒ [[ d1 alt d2 ]]u  r [[ d′1 alt d′2 ]]u

Proof.

Let: [[ d1 ]]u = (p1, n1)
[[ d′1 ]]u = (p′1, n

′
1)

[[ d2 ]]u = (p2, n2)
[[ d′2 ]]u = (p′2, n

′
2)

〈1〉1. Assume: 1. [[ d1 ]]u  r [[ d′1 ]]u,
i.e. (p1, n1) r (p′1, n

′
1)

2. [[ d2 ]]u  r [[ d′2 ]]u,
i.e. (p2, n2)

u  r (p′2, n
′
2)

Prove: [[ d1 alt d2 ]]u  r [[ d′1 alt d′2 ]]u,
i.e. (p1, n1) ⊎ (p2, n2) r (p′1, n

′
1) ⊎ (p′2, n

′
2) by definition 9,

i.e. (p1 ∪ p2, n1 ∪ n2) r (p′1 ∪ p′2, n
′
1 ∪ n′

2) by definition 10.
〈2〉1. Requirement 1: (n1 ∪ n2) ⊆ (n′

1 ∪ n′
2)

〈3〉1. n1 ⊆ n′
1

Proof: 〈1〉1:1 and definition 11 of  r.
〈3〉2. n2 ⊆ n′

2

Proof: 〈1〉1:2 and definition 11 of  r.
〈3〉3. Q.E.D.

Proof: 〈3〉1 and 〈3〉2.
〈2〉2. Requirement 2: (p1 ∪ p2) ⊆ ((p′1 ∪ p′2) ∪ (n′

1 ∪ n′
2))

〈3〉1. p1 ⊆ p′1 ∪ n′
1

Proof: 〈1〉1:1 and definition 11 of  r.
〈3〉2. p2 ⊆ p′2 ∪ n′

2

Proof: 〈1〉1:2 and definition 11 of  r.
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and associativity and commutativity of ∪.
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and definition 11 of  r.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�
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Theorem 12. (Monotonicity of  rr w.r.t alt.) Let d1, d2, d′1 and d′2 be
sequence diagrams without xalt. Then

[[ d1 ]]u  rr [[ d′1 ]]u ∧ [[ d2 ]]u  rr [[ d′2 ]]u ⇒ [[ d1 alt d2 ]]u  rr [[ d′1 alt d′2 ]]u

Proof.

Let: [[ d1 ]]u = (p1, n1)
[[ d′1 ]]u = (p′1, n

′
1)

[[ d2 ]]u = (p2, n2)
[[ d′2 ]]u = (p′2, n

′
2)

〈1〉1. Assume: 1. [[ d1 ]]u  rr [[ d′1 ]]u,
i.e. (p1, n1) rr (p′1, n

′
1)

2. [[ d2 ]]u  rr [[ d′2 ]]u,
i.e. (p2, n2)

u  rr (p′2, n
′
2)

Prove: [[ d1 alt d2 ]]u  rr [[ d′1 alt d′2 ]]u,
i.e. (p1, n1) ⊎ (p2, n2) rr (p′1, n

′
1) ⊎ (p′2, n

′
2) by definition 9,

i.e. (p1 ∪ p2, n1 ∪ n2) r (p′1 ∪ p′2, n
′
1 ∪ n′

2) by definition 10.
〈2〉1. Requirement 1: (p1, n1) ⊎ (p2, n2) r (p′1, n

′
1) ⊎ (p′2, n

′
2)

〈3〉1. (p1, n1) r (p′1, n
′
1)

Proof: 〈1〉1:1 and definition 12 of  rr.
〈3〉2. (p2, n2) r (p′2, n

′
2)

Proof: 〈1〉1:2 and definition 12 of  rr.
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and theorem 11 (monotonicity of  r w.r.t alt).
〈2〉2. Requirement 2: (p′1 ∪ p′2) ⊆ (p1 ∪ p2)
〈3〉1. p′1 ⊆ p1

Proof: 〈1〉1:1 and definition 12 of  rr.
〈3〉2. p′2 ⊆ p2

Proof: 〈1〉1:2 and definition 12 of  rr.
〈3〉3. Q.E.D.

Proof: 〈3〉1 and 〈3〉2.
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and definition 12 of  rr.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�
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B.2 Specifications with inherent nondeterminism

Transitivity

Theorem 13. (Transitivity of  rg.) Let d, d′ and d′′ be sequence diagrams
that may contain xalt. Then

[[ d ]]i  rg [[ d′ ]]i ∧ [[ d′ ]]i  rg [[ d′′ ]]i ⇒ [[ d ]]i  rg [[ d′′ ]]i

Proof.

〈1〉1. Assume: 1. [[ d ]]i  rg [[ d′ ]]i

2. [[ d′ ]]i  rg [[ d′′ ]]i

Prove: [[ d ]]i  rg [[ d′′ ]]i

〈2〉1. Choose arbitrary o ∈ [[ d ]]i

Proof: [[ d ]]i is non-empty for all interactions d.
〈2〉2. Choose o′ ∈ [[ d′ ]]i such that o rr o′

Proof: 〈2〉1, 〈1〉1:1 and definition 21 of  rg.
〈2〉3. Choose o′′ ∈ [[ d′′ ]]i such that o′  rr o′′

Proof: 〈2〉2, 〈1〉1:2 and definition 21 of  rg.
〈2〉4. o rr o′′

Proof: 〈2〉2, 〈2〉3 and theorem 5 (transitivity of  rr).
〈2〉5. ∀o ∈ [[ d ]]i : ∃o′′ ∈ [[ d′′ ]]i : o rr o′′

Proof: 〈2〉1, 〈2〉3, 〈2〉4 and ∀-rule.
〈2〉6. Q.E.D.

Proof: 〈2〉5 and definition 21 of  rg.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�

Theorem 14. (Transitivity of  rl.) Let d, d′ and d′′ be sequence diagrams
tha may contain xalt. Then

[[ d ]]i  rl [[ d′ ]]i ∧ [[ d′ ]]i  rl [[ d′′ ]]i ⇒ [[ d ]]i  rl [[ d′′ ]]i

Proof.

〈1〉1. Assume: 1. [[ d ]]i  rl [[ d′ ]]i

2. [[ d′ ]]i  rl [[ d′′ ]]i

Prove: [[ d ]]i  rl [[ d′′ ]]i

〈2〉1. [[ d ]]i  rg [[ d′′ ]]i

〈3〉1. [[ d ]]i  rg [[ d′ ]]i

Proof: 〈1〉1:1 and definition 22 of  rl.
〈3〉2. [[ d′ ]]i  rg [[ d′′ ]]i

Proof: 〈1〉1:2 and definition 22 of  rl.
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and theorem 13 (transitivity of  rg).
〈2〉2. ∀o′′ ∈ [[ d′′ ]]i : ∃o ∈ [[ d ]]i : o rr o′
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〈3〉1. Choose arbitrary o′′ ∈ [[ d′′ ]]i

Proof: [[ d ]]i is non-empty for all interactions d.
〈3〉2. Choose o′ ∈ [[ d′ ]]i such that o′  rr o′′

Proof: 〈3〉1, 〈1〉1:1 and definition 22 of  rl.
〈3〉3. Choose o ∈ [[ d ]]i such that o rr o′

Proof: 〈3〉2, 〈1〉1:2 and definition 22 of  rl.
〈3〉4. o rr o′′

Proof: 〈3〉2, 〈3〉3 and theorem 5 (transitivity of  rr).
〈3〉5. Q.E.D.

Proof: 〈3〉1, 〈3〉3, 〈3〉4 and ∀-rule.
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and definition 22 of  rl.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�

Transitivity between refinement and implementation

Lemma 3. Let d1 and d2 be sequence diagrams that may contain xalt, and h a
well-formed trace.

Assume: 1. (p, n) ∈ [[ d1 ]]i

2. (p′, n′) ∈ [[ d2 ]]i

3. (p, n) r (p′, n′)
4. (p′, n′) 7→r ({h},Hll(d2) \ {h})

Prove: (p, n) 7→r ({h},Hll(d1) \ {h})

〈1〉1. (p, n) r ({h},Hll(d1) \ {h})
〈2〉1. Requirement 1: n ⊆ Hll(d1) \ {h}
〈3〉1. n ⊆ Hll(d2) \ {h}
〈4〉1. n ⊆ n′

Proof: Assumption 3 and definition 11 of  r.
〈4〉2. n′ ⊆ Hll(d2) \ {h}

Proof: Assumption 4 and definitions 11 and 14 of 7→r.
〈4〉3. Q.E.D.

Proof: 〈4〉1, 〈4〉2 and transitivity of ⊆.
〈3〉2. n ⊆ Hll(d1)

Proof: Assumption 1, definition of ll(d) and definition of HL.
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and A ⊆ B ∧ A ⊆ C \ X ⇒ A ⊆ B \ X for arbitrary
sets A, B, C and X .

〈2〉2. Requirement 2: p ⊆ {h} ∪ (Hll(d1) \ {h}), i.e. p ⊆ {h} ∪ Hll(d1)

Proof: p ⊆ Hll(d1) by assumption 1, definition of ll(d) and definition of
HL.

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and definition 11 of  r.
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〈1〉2. Q.E.D.
Proof: Definition 14 of 7→r.

�

Lemma 4. Let d1 and d2 be sequence diagrams that may contain xalt, and h a
well-formed trace.

Assume: 1. (p, n) ∈ [[ d1 ]]i

2. (p′, n′) ∈ [[ d2 ]]i

3. (p, n) rr (p′, n′)
4. (p′, n′) 7→rr ({h},Hll(d2) \ {h})

Prove: (p, n) 7→rr ({h},Hll(d1) \ {h})

〈1〉1. (p, n) r ({h},Hll(d1) \ {h})
Proof: Assumptions 1–4 and lemma 3.

〈1〉2. p ∩ {h} 6= ∅
〈2〉1. p′ ⊆ p

Proof: Assumption 3 and definition 12 of  rr.
〈2〉2. p′ ∩ {h} 6= ∅

Proof: Assumption 4 and definition 15 of 7→rr.
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and A ⊆ B ∧ A ∩ X 6= ∅ ⇒ B ∩ X 6= ∅ for arbitrary sets
A, B and X .

〈1〉3. Q.E.D.
Proof: 〈1〉1, 〈1〉2 and definitions 14 and 15 of 7→rr.

�

Theorem 15. (Transitivity between refinement and implementation
for  (r)g.) Let d1 and d2 be sequence diagrams that may contain xalt. Then

[[ d1 ]]i  (r)g [[ d2 ]]i ∧ [[ d2 ]]i 7→(r)g 〈I〉id2
⇒ [[ d1 ]]i 7→(r)g 〈I〉id1

Proof.

〈1〉1. 〈I〉id1
= {({h},Hll(d1) \ {h}) | h ∈ traces(I)}

Proof: Definition 23 of 〈I〉id.
〈1〉2. 〈I〉id2

= {({h},Hll(d2) \ {h}) | h ∈ traces(I)}

Proof: Definition 23 of 〈I〉id.
〈1〉3. Assume: 1. [[ d1 ]]i  (r)g [[ d2 ]]i

2. [[ d2 ]]i 7→(r)g 〈I〉id2
,

i.e. ∀o ∈ [[ d2 ]]i : ∃o′ ∈ 〈I〉id2
: o 7→(r)r o′ by definition 24.

Prove: [[ d1 ]]i 7→(r)g 〈I〉id1
,

i.e. ∀o ∈ [[ d1 ]]i : ∃o′ ∈ 〈I〉id1
: o 7→(r)r o′ by definition 24.

〈2〉1. Choose arbitrary (p, n) ∈ [[ d1 ]]i

Proof: [[ d ]]i is non-empty for all interactions d.
〈2〉2. Choose (p′, n′) ∈ [[ d2 ]]i such that (p, n) (r)r (p′, n′)

Proof: 〈2〉1, 〈1〉3:1 and definition 21 of  (r)g.
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〈2〉3. Choose h ∈ traces(I) such that (p′, n′) 7→(r)r ({h},Hll(d2) \ {h})
Proof: 〈2〉2, 〈1〉3:2 and 〈1〉2.

〈2〉4. (p, n) 7→(r)r ({h},Hll(d1) \ {h})
Proof: 〈2〉1, 〈2〉2, 〈2〉3 and lemma 3 (4).

〈2〉5. ({h},Hll(d1) \ {h}) ∈ 〈I〉id1

Proof: 〈1〉1 and 〈2〉3.
〈2〉6. Q.E.D.

Proof: 〈2〉1, 〈2〉4, 〈2〉5 and ∀-rule.
〈1〉4. Q.E.D.

Proof: 〈1〉3 and ⇒-rule.

�

Theorem 16. (Transitivity between refinement and implementation
for  (r)l.) Let d1 and d2 be sequence diagrams that may contain xalt. Then

[[ d1 ]]i  (r)l [[ d2 ]]i ∧ [[ d2 ]]i 7→(r)l 〈I〉
i
d2

⇒ [[ d1 ]]i 7→(r)l 〈I〉
i
d1

Proof.

〈1〉1. 〈I〉id1
= {({h},Hll(d1) \ {h}) | h ∈ traces(I)}

Proof: Definition 23 of 〈I〉id.
〈1〉2. 〈I〉id2

= {({h},Hll(d2) \ {h}) | h ∈ traces(I)}

Proof: Definition 23 of 〈I〉id.
〈1〉3. Assume: 1. [[ d1 ]]i  (r)l [[ d2 ]]i

2. [[ d2 ]]i 7→(r)l 〈I〉
i
d2

,

i.e. [[ d2 ]]i 7→(r)g 〈I〉id2
∧ ∀o′ ∈ 〈I〉id2

: ∃o ∈ [[ d2 ]]i : o 7→(r)r o′

by definition 25.
Prove: [[ d1 ]]i 7→(r)l 〈I〉

i
d1

〈2〉1. [[ d1 ]]i 7→(r)g 〈I〉id1

〈3〉1. [[ d1 ]]i  (r)g [[ d2 ]]i

Proof: 〈1〉3:1 and definition 22 of  (r)l.
〈3〉2. [[ d2 ]]i 7→(r)g 〈I〉id2

Proof: 〈1〉3:2.
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and theorem 15 (transitivity between refinement and
implementation for  (r)g).

〈2〉2. ∀o′ ∈ 〈I〉id1
: ∃o ∈ [[ d1 ]]i : o 7→(r)r o′

〈3〉1. Choose arbitrary o′ ∈ 〈I〉id1

Proof: 〈I〉id1
is non-empty for all real systems I.

〈3〉2. Choose h ∈ traces(I) such that o′ = ({h},Hll(d1) \ {h})
Proof: 〈3〉1 and 〈1〉1.

〈3〉3. ({h},Hll(d2) \ {h}) ∈ 〈I〉id2

Proof: 〈3〉2 and 〈1〉2.
〈3〉4. Choose (p′, n′) ∈ [[ d2 ]]i such that (p′, n′) 7→(r)r ({h},Hll(d2) \ {h})

Proof: 〈3〉3 and 〈1〉3:2.
〈3〉5. Choose (p, n) ∈ [[ d1 ]]i such that (p, n) (r)r (p′, n′)
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Proof: 〈3〉4, 〈1〉3:1 and definition 22 of  (r)l.

〈3〉6. (p, n) 7→(r)r ({h},Hll(d1) \ {h})
Proof: 〈3〉5, 〈3〉4 and lemma 3 (4).

〈3〉7. Q.E.D.
Proof: 〈3〉2, 〈3〉5, 〈3〉6 and ∀-rule.

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and definition 25 of 7→(r)l.

〈1〉4. Q.E.D.
Proof: 〈1〉3 and ⇒-rule.

�
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Monotonicity

Theorem 17. (Monotonicity of  rg w.r.t refuse.) Let d be a sequence dia-
gram that may contain xalt. Then

[[ d ]]i  rg [[ d′ ]]i ⇒ [[ refuse d ]]i  rg [[ refuse d′ ]]i

Proof.

〈1〉1. Assume: [[ d ]]i  rg [[ d′ ]]i

Prove: [[ refuse d ]]i  rg [[ refuse d′ ]]i

〈2〉1. Choose arbitrary o = (p, n) ∈ [[ refuse d ]]i

Proof: [[ d ]]i is non-empty for all interactions d.
〈2〉2. Choose (p1, n1) ∈ [[ d ]] such that p = ∅ and n = p1 ∪ n1

Proof: 〈2〉1 and definitions 5 and 8 of refuse.
〈2〉3. Choose (p′1, n

′
1) ∈ [[ d′ ]] such that (p1, n1) rr (p′1, n

′
1)

Proof: 〈2〉2, 〈1〉1 and definition 21 of  rg.
〈2〉4. o′ = (p′, n′) = (∅, p′1 ∪ n′

1) ∈ [[ refuse d′ ]]
Proof: 〈2〉3 and definitions 5 and 8 of refuse.

〈2〉5. (p, n) rr (p′, n′)
Proof: 〈2〉2, 〈2〉3, 〈2〉4 and theorem 8 (monotonicity of  rr w.r.t refuse).

〈2〉6. ∀o ∈ [[ refuse d ]]i : ∃o′ ∈ [[ refuse d′ ]]i : o rr o′

Proof: 〈2〉1, 〈2〉4, 〈2〉5 and ∀-rule.
〈2〉7. Q.E.D.

Proof: 〈2〉6 and definition 21 of  rg.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�

Theorem 18. (Monotonicity of  rg w.r.t seq.) Let d1, d2, d′1 and d′2 be
sequence diagrams that may contain xalt. Then

[[ d1 ]]i  rg [[ d′1 ]]i ∧ [[ d2 ]]i  rg [[ d′2 ]]i ⇒ [[ d1 seq d2 ]]i  rg [[ d′1 seq d′2 ]]i

Proof.

〈1〉1. Assume: 1. [[ d1 ]]i  rg [[ d′1 ]]i

2. [[ d2 ]]i  rg [[ d′2 ]]i

Prove: [[ d1 seq d2 ]]i  rg [[ d′1 seq d′2 ]]i

〈2〉1. Choose arbitrary o = (p, n) ∈ [[ d1 seq d2 ]]i

Proof: [[ d ]]i is non-empty for all interactions d.
〈2〉2. Choose (p1, n1) ∈ [[ d1 ]]i and (p2, n2) ∈ [[ d2 ]]i such that p = p1 % p2 and

n = n1 % p2 ∪ n1 % n2 ∪ p1 % n2

Proof: 〈2〉1 and definitions 4, 7 and 19 of seq.
〈2〉3. Choose (p′1, n

′
1) ∈ [[ d′1 ]]i such that (p1, n1) rr (p′1, n

′
1)

Proof: 〈2〉2, 〈1〉1:1 and definition 21 of  rg.
〈2〉4. Choose (p′2, n

′
2) ∈ [[ d′2 ]]i such that (p2, n2) rr (p′2, n

′
2)

Proof: 〈2〉2, 〈1〉1:2 and definition 21 of  rg.
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〈2〉5. o′ = (p′, n′) = (p′1 % p′2, n
′
1 % p′2 ∪ n′

1 % n′
2 ∪ p′1 % n′

2) ∈ [[ d′1 seq d′2 ]]i

Proof: 〈2〉3, 〈2〉4 and definitions 4, 7 and 19 of seq.
〈2〉6. (p, n) rr (p′, n′)

Proof: 〈2〉2, 〈2〉3, 〈2〉4, 〈2〉5 and theorem 9 (monotonicity of rr w.r.t. seq).
〈2〉7. ∀o ∈ [[ d1 seq d2 ]]i : ∃o′ ∈ [[ d′1 seq d′2 ]]i : o rr o′

Proof: 〈2〉1, 〈2〉5, 〈2〉6 and ∀-rule.
〈2〉8. Q.E.D.

Proof: 〈2〉7 and definition 21 of  rg.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�

Theorem 19. (Monotonicity of  rg w.r.t par.) Let d1, d2, d′1 and d′2 be
sequence diagrams that may contain xalt. Then

[[ d1 ]]i  rg [[ d′1 ]]i ∧ [[ d2 ]]i  rg [[ d′2 ]]i ⇒ [[ d1 par d2 ]]i  rg [[ d′1 par d′2 ]]i

Proof.

〈1〉1. Assume: 1. [[ d1 ]]i  rg [[ d′1 ]]i

2. [[ d2 ]]i  rg [[ d′2 ]]i

Prove: [[ d1 par d2 ]]i  rg [[ d′1 par d′2 ]]i

〈2〉1. Choose arbitrary o = (p, n) ∈ [[ d1 par d2 ]]i

Proof: [[ d ]]i is non-empty for all interactions d.
〈2〉2. Choose (p1, n1) ∈ [[ d1 ]]i and (p2, n2) ∈ [[ d2 ]]i such that p = p1 ‖ p2 and

n = n1 ‖ p2 ∪ n1 ‖ n2 ∪ p1 ‖ n2

Proof: 〈2〉1 and definitions 3, 6 and 19 of par.
〈2〉3. Choose (p′1, n

′
1) ∈ [[ d′1 ]]i such that (p1, n1) rr (p′1, n

′
1)

Proof: 〈2〉2, 〈1〉1:1 and definition 21 of  rg.
〈2〉4. Choose (p′2, n

′
2) ∈ [[ d′2 ]]i such that (p2, n2) rr (p′2, n

′
2)

Proof: 〈2〉2, 〈1〉1:2 and definition 21 of  rg.
〈2〉5. o′ = (p′, n′) = (p′1 ‖ p′2, n

′
1 ‖ p′2 ∪ n′

1 ‖ n′
2 ∪ p′1 ‖ n′

2) ∈ [[ d′1 par d′2 ]]i

Proof: 〈2〉3, 〈2〉4 and definitions 3, 6 and 19 of par.
〈2〉6. (p, n) rr (p′, n′)

Proof: 〈2〉2, 〈2〉3, 〈2〉4, 〈2〉5 and theorem 10 (monotonicity of rr w.r.t. par).
〈2〉7. ∀o ∈ [[ d1 par d2 ]]i : ∃o′ ∈ [[ d′1 par d′2 ]]i : o rr o′

Proof: 〈2〉1, 〈2〉5, 〈2〉6 and ∀-rule.
〈2〉8. Q.E.D.

Proof: 〈2〉7 and definition 21 of  rg.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�
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Theorem 20. (Monotonicity of  rg w.r.t alt.) Let d1, d2, d′1 and d′2 be
sequence diagrams that may contain xalt. Then

[[ d1 ]]i  rg [[ d′1 ]]i ∧ [[ d2 ]]i  rg [[ d′2 ]]i ⇒ [[ d1 alt d2 ]]i  rg [[ d′1 alt d′2 ]]i

Proof.

〈1〉1. Assume: 1. [[ d1 ]]i  rg [[ d′1 ]]i

2. [[ d2 ]]i  rg [[ d′2 ]]i

Prove: [[ d1 alt d2 ]]i  rg [[ d′1 alt d′2 ]]i

〈2〉1. Choose arbitrary o = (p, n) ∈ [[ d1 alt d2 ]]i

Proof: [[ d ]]i is non-empty for all interactions d.
〈2〉2. Choose (p1, n1) ∈ [[ d1 ]]i and (p2, n2) ∈ [[ d2 ]]i such that p = p1 ∪ p2 and

n = n1 ∪ n2

Proof: 〈2〉1 and definitions 9, 10 and 19 of alt.
〈2〉3. Choose (p′1, n

′
1) ∈ [[ d′1 ]]i such that (p1, n1) rr (p′1, n

′
1)

Proof: 〈2〉2, 〈1〉1:1 and definition 21 of  rg.
〈2〉4. Choose (p′2, n

′
2) ∈ [[ d′2 ]]i such that (p2, n2) rr (p′2, n

′
2)

Proof: 〈2〉2, 〈1〉1:2 and definition 21 of  rg.
〈2〉5. o′ = (p′, n′) = (p′1 ∪ p′2, n

′
1 ∪ n′

2) ∈ [[ d′1 alt d′2 ]]i

Proof: 〈2〉3, 〈2〉4 and definitions 9, 10 and 19 of alt.
〈2〉6. (p, n) rr (p′, n′)

Proof: 〈2〉2, 〈2〉3, 〈2〉4, 〈2〉5 and theorem 12 (monotonicity of rr w.r.t. alt).
〈2〉7. ∀o ∈ [[ d1 alt d2 ]]i : ∃o′ ∈ [[ d′1 alt d′2 ]]i : o rr o′

Proof: 〈2〉1, 〈2〉5, 〈2〉6 and ∀-rule.
〈2〉8. Q.E.D.

Proof: 〈2〉7 and definition 21 of  rg.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�

Theorem 21. (Monotonicity of  rg w.r.t xalt.) Let d1, d2, d′1 and d′2 be
sequence diagrams that may contain xalt. Then

[[ d1 ]]i  rg [[ d′1 ]]i ∧ [[ d2 ]]i  rg [[ d′2 ]]i ⇒ [[ d1 xalt d2 ]]i  rg [[ d′1 xalt d′2 ]]i

Proof.

〈1〉1. Assume: 1. [[ d1 ]]i  rg [[ d′1 ]]i

2. [[ d2 ]]i  rg [[ d′2 ]]i

Prove: [[ d1 xalt d2 ]]i  rg [[ d′1 xalt d′2 ]]i

〈2〉1. Choose arbitrary o ∈ [[ d1 xalt d2 ]]i

Proof: [[ d ]]i is non-empty for all interactions d.
〈2〉2. ∃o′ ∈ [[ d′1 xalt d′2 ]]i : o rr o′

〈3〉1. Case: o ∈ [[ d1 ]]i

〈4〉1. Choose o′ ∈ [[ d′1 ]]i such that o rr o′

Proof: 〈2〉1, 〈1〉1:1 and definition 21 of  rg.
〈4〉2. o′ ∈ [[ d′1 xalt d′2 ]]i
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Proof: 〈4〉1 and definition 18 of xalt.
〈4〉3. Q.E.D.

〈3〉2. Case: o ∈ [[ d2 ]]i

〈4〉1. Choose o′ ∈ [[ d′2 ]]i such that o rr o′

Proof: 〈2〉1, 〈1〉1:2 and definition 21 of  rg.
〈4〉2. o′ ∈ [[ d′1 xalt d′2 ]]i

Proof: 〈4〉1 and definition 18 of xalt.
〈4〉3. Q.E.D.

〈3〉3. Q.E.D.
Proof: The cases are exhaustive by 〈2〉1 and definition 18 of xalt.

〈2〉3. ∀o ∈ [[ d1 xalt d2 ]]i : ∃o′ ∈ [[ d′1 xalt d′2 ]]i : o rr o′

Proof: 〈2〉1, 〈2〉2 and ∀-rule.
〈2〉4. Q.E.D.

Proof: 〈2〉3 and definition 21 of  rg.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�

Theorem 22. (Monotonicity of  rl w.r.t refuse.) Let d be a sequence dia-
gram that may contain xalt. Then

[[ d ]]i  rl [[ d′ ]]i ⇒ [[ refuse d ]]i  rl [[ refuse d′ ]]i

Proof.

〈1〉1. Assume: [[ d ]]i  rl [[ d′ ]]i

Prove: [[ refuse d ]]i  rl [[ refuse d′ ]]i

〈2〉1. [[ refuse d ]]i  rg [[ refuse d′ ]]i

Proof: 〈1〉1, definition 22 of  rl and theorem 17 (monotonicity of  rg

with respect to refuse).
〈2〉2. Choose arbitrary o′ = (p′, n′) ∈ [[ refuse d′ ]]i

Proof: [[ d ]]i is non-empty for all interaction d.
〈2〉3. Choose (p′1, n

′
1) ∈ [[ d′ ]]i such that p′ = ∅ and n′ = p′1 ∪ n′

1

Proof: 〈2〉2 and definitions 8 and 20 of refuse.
〈2〉4. Choose (p1, n1) ∈ [[ d ]]i such that (p1, n1) rr (p′1, n

′
1)

Proof: 〈2〉3, 〈1〉1 and definition 22 of  rl.
〈2〉5. o = (p, n) = (∅, p1 ∪ n1) ∈ [[ refuse d ]]i

Proof: 〈2〉4 and definitions 8 and 20 of refuse.
〈2〉6. (p, n) rr (p′, n′)

Proof: 〈2〉3, 〈2〉4, 〈2〉5 and theorem 8 (monotonicity of  rr w.r.t. refuse).
〈2〉7. ∀o′ ∈ [[ refuse d′ ]]i : ∃o ∈ [[ refuse d ]]i : o rr o′

Proof: 〈2〉2, 〈2〉5, 〈2〉6 and ∀-rule.
〈2〉8. Q.E.D.

Proof: 〈2〉1, 〈2〉7 and definition 22 of  rl.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�

35



Theorem 23. (Monotonicity of  rl w.r.t seq.) Let d1, d2, d′1 and d′2 be
sequence diagrams that may contain xalt. Then

[[ d1 ]]i  rl [[ d′1 ]]i ∧ [[ d2 ]]i  rl [[ d′2 ]]i ⇒ [[ d1 seq d2 ]]i  rl [[ d′1 seq d′2 ]]i

Proof.

〈1〉1. Assume: 1. [[ d1 ]]i  rl [[ d′1 ]]i

2. [[ d2 ]]i  rl [[ d′2 ]]i

Prove: [[ d1 seq d2 ]]i  rl [[ d′1 seq d′2 ]]i

〈2〉1. [[ d1 seq d2 ]]i  rg [[ d′1 seq d′2 ]]i

Proof: 〈1〉1:1, 〈1〉1:2, definition 22 of  rl and theorem 18 (monotonicity
of  rg with respect to seq).

〈2〉2. Choose arbitrary o′ = (p′, n′) ∈ [[ d′1 seq d′2 ]]i

Proof: [[ d ]]i is non-empty for all interactions d.
〈2〉3. Choose (p′1, n

′
1) ∈ [[ d′1 ]]i and (p′2, n

′
2) ∈ [[ d′2 ]]i such that p′ = p′1 % p′2 and

n′ = n′
1 % p′2 ∪ n′

1 % n′
2 ∪ p′1 % n′

2

Proof: 〈2〉2 and definitions 4, 7 and 19 of seq.
〈2〉4. Choose (p1, n1) ∈ [[ d1 ]]i such that (p1, n1) rr (p′1, n

′
1)

Proof: 〈2〉3, 〈1〉1:1 and definition 22 of  rl.
〈2〉5. Choose (p2, n2) ∈ [[ d2 ]]i such that (p2, n2) rr (p′2, n

′
2)

Proof: 〈2〉3, 〈1〉1:2 and definition 22 of  rl.
〈2〉6. o = (p, n) = (p1 % p2, n1 % p2 ∪ n1 % n2 ∪ p1 % n2) ∈ [[ d1 seq d2 ]]i

Proof: 〈2〉4, 〈2〉5 and definitions 4, 7 and 19 of seq.
〈2〉7. (p, n) rr (p′, n′)

Proof: 〈2〉3, 〈2〉4, 〈2〉5, 〈2〉6 and theorem 9 (monotonicity of rr w.r.t. seq).
〈2〉8. ∀o′ ∈ [[ d′1 seq d′2 ]]i : ∃o ∈ [[ d1 seq d2 ]]i : o rr o′

Proof: 〈2〉2, 〈2〉6, 〈2〉7 and ∀-rule.
〈2〉9. Q.E.D.

Proof: 〈2〉1, 〈2〉8 and definition 22 of  rl.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�

Theorem 24. (Monotonicity of  (r)l w.r.t par.) Let d1, d2, d′1 and d′2 be
sequence diagrams that may contain xalt. Then

[[ d1 ]]i  (r)l [[ d′1 ]]i ∧ [[ d2 ]]i  (r)l [[ d′2 ]]i ⇒ [[ d1 par d2 ]]i  (r)l [[ d′1 par d′2 ]]i

Proof.

〈1〉1. Assume: 1. [[ d1 ]]i  (r)l [[ d′1 ]]i

2. [[ d2 ]]i  (r)l [[ d′2 ]]i

Prove: [[ d1 par d2 ]]i  (r)l [[ d′1 par d′2 ]]i

〈2〉1. [[ d1 par d2 ]]i  (r)g [[ d′1 par d′2 ]]i

Proof: 〈1〉1:1, 〈1〉1:2, definition 22 of (r)l and theorem 14 in [HHRS06]/theorem 19
(monotonicity of  (r)g with respect to par).

〈2〉2. Choose arbitrary o′ = (p′, n′) ∈ [[ d′1 par d′2 ]]i
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Proof: [[ d ]]i is non-empty for all interactions d.
〈2〉3. Choose (p′1, n

′
1) ∈ [[ d′1 ]]i and (p′2, n

′
2) ∈ [[ d′2 ]]i such that p′ = p′1 ‖ p′2 and

n′ = n′
1 ‖ p′2 ∪ n′

1 ‖ n′
2 ∪ p′1 ‖ n′

2

Proof: 〈2〉2 and definitions 3, 6 and 19 of par.
〈2〉4. Choose (p1, n1) ∈ [[ d1 ]]i such that (p1, n1) (r)r (p′1, n

′
1)

Proof: 〈2〉3, 〈1〉1:1 and definition 22 of  (r)l.
〈2〉5. Choose (p2, n2) ∈ [[ d2 ]]i such that (p2, n2) (r)r (p′2, n

′
2)

Proof: 〈2〉3, 〈1〉1:2 and definition 22 of  (r)l.
〈2〉6. o = (p, n) = (p1 ‖ p2, n1 ‖ p2 ∪ n1 ‖ n2 ∪ p1 ‖ n2) ∈ [[ d1 par d2 ]]i

Proof: 〈2〉4, 〈2〉5 and definitions 3, 6 and 19 of par.
〈2〉7. (p, n) (r)r (p′, n′)

Proof: 〈2〉3, 〈2〉4, 〈2〉5, 〈2〉6 and lemma 31 in [HHRS06]/theorem 10 (mono-
tonicity of  (r)r w.r.t. par).

〈2〉8. ∀o′ ∈ [[ d′1 par d′2 ]]i : ∃o ∈ [[ d1 par d2 ]]i : o (r)r o′

Proof: 〈2〉2, 〈2〉6, 〈2〉7 and ∀-rule.
〈2〉9. Q.E.D.

Proof: 〈2〉1, 〈2〉8 and definition 22 of  (r)l.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�

Theorem 25. (Monotonicity of  rl w.r.t alt.) Let d1, d2, d′1 and d′2 be
sequence diagrams that may contain xalt. Then

[[ d1 ]]i  rl [[ d′1 ]]i ∧ [[ d2 ]]i  rl [[ d′2 ]]i ⇒ [[ d1 alt d2 ]]i  rl [[ d′1 alt d′2 ]]i

Proof.

〈1〉1. Assume: 1. [[ d1 ]]i  rl [[ d′1 ]]i

2. [[ d2 ]]i  rl [[ d′2 ]]i

Prove: [[ d1 alt d2 ]]i  rl [[ d′1 alt d′2 ]]i

〈2〉1. [[ d1 alt d2 ]]i  rg [[ d′1 alt d′2 ]]i

Proof: 〈1〉1:1, 〈1〉1:2, definition 22 of  rl and theorem 20 (monotonicity
of  rg with respect to alt).

〈2〉2. Choose arbitrary o′ = (p′, n′) ∈ [[ d′1 alt d′2 ]]i

Proof: [[ d ]]i is non-empty for all interactions d.
〈2〉3. Choose (p′1, n

′
1) ∈ [[ d′1 ]]i and (p′2, n

′
2) ∈ [[ d′2 ]]i such that p′ = p′1∪p′2 and

n′ = n′
1 ∪ n′

2

Proof: 〈2〉2 and definitions 9, 10 and 19 of alt.
〈2〉4. Choose (p1, n1) ∈ [[ d1 ]]i such that (p1, n1) rr (p′1, n

′
1)

Proof: 〈2〉3, 〈1〉1:1 and definition 22 of  rl.
〈2〉5. Choose (p2, n2) ∈ [[ d2 ]]i such that (p2, n2) rr (p′2, n

′
2)

Proof: 〈2〉3, 〈1〉1:2 and definition 22 of  rl.
〈2〉6. o = (p, n) = (p1 ∪ p2, n1 ∪ n2) ∈ [[ d1 alt d2 ]]i

Proof: 〈2〉4, 〈2〉5 and definitions 9, 10 and 19 of alt.
〈2〉7. (p, n) rr (p′, n′)

Proof: 〈2〉3, 〈2〉4, 〈2〉5, 〈2〉6 and theorem 12 (monotonicity of rr w.r.t. alt).
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〈2〉8. ∀o′ ∈ [[ d′1 alt d′2 ]]i : ∃o ∈ [[ d1 alt d2 ]]i : o rr o′

Proof: 〈2〉2, 〈2〉6, 〈2〉7 and ∀-rule.
〈2〉9. Q.E.D.

Proof: 〈2〉1, 〈2〉8 and definition 22 of  rl.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�

Theorem 26. (Monotonicity of  rl w.r.t xalt.) Let d1, d2, d′1 and d′2 be
sequence diagrams that may contain xalt. Then

[[ d1 ]]i  rl [[ d′1 ]]i ∧ [[ d2 ]]i  rl [[ d′2 ]]i ⇒ [[ d1 xalt d2 ]]i  rl [[ d′1 xalt d′2 ]]i

Proof.

〈1〉1. Assume: 1. [[ d1 ]]i  rl [[ d′1 ]]i

2. [[ d2 ]]i  rl [[ d′2 ]]i

Prove: [[ d1 xalt d2 ]]i  rl [[ d′1 xalt d′2 ]]i

〈2〉1. [[ d1 xalt d2 ]]i  rg [[ d′1 xalt d′2 ]]i

Proof: 〈1〉1:1, 〈1〉1:2, definition 22 of  rl and theorem 21 (monotonicity
of  rg with respect to xalt).

〈2〉2. Choose arbitrary o′ ∈ [[ d′1 xalt d′2 ]]i

Proof: [[ d ]]i is non-empty for all interactions d.
〈2〉3. ∃o ∈ [[ d1 xalt d2 ]]i : o rr o′

〈3〉1. Case: o′ ∈ [[ d′1 ]]i

〈4〉1. Choose o ∈ [[ d1 ]]i such that o rr o′

Proof: 〈2〉2, 〈1〉1:1 and definition 22 of  rl.
〈4〉2. o ∈ [[ d1 xalt d2 ]]i

Proof: 〈4〉1 and definition 18 of xalt.
〈4〉3. Q.E.D.

〈3〉2. Case: o′ ∈ [[ d′2 ]]i

〈4〉1. Choose o ∈ [[ d2 ]]i such that o rr o′

Proof: 〈2〉2, 〈1〉1:2 and definition 22 of  rl.
〈4〉2. o ∈ [[ d1 xalt d2 ]]i

Proof: 〈4〉1 and definition 18 of xalt.
〈4〉3. Q.E.D.

〈3〉3. Q.E.D.
Proof: The cases are exhaustive by 〈2〉2 and definition 18 of xalt.

〈2〉4. ∀o′ ∈ [[ d′1 xalt d′2 ]]i : ∃o ∈ [[ d1 xalt d2 ]]i : o rr o′

Proof: 〈2〉2, 〈2〉3 and ∀-rule.
〈2〉5. Q.E.D.

Proof: 〈2〉1, 〈2〉4 and definition 22 of  rl.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�
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B.3 Correspondence

Lemma 5. Let (p, n) be an interaction obligation for the sequence diagram d, I

be a system and h a well-formed trace.

Assume: 1. (p, n) r (traces(I),Hll(d) \ traces(I))
2. h ∈ traces(I)

Prove: (p, n) 7→r ({h},Hll(d) \ {h}),
i.e. (p, n) r ({h},Hll(d) \ {h}) by definition 14.

Proof.

〈1〉1. Requirement 1: n ⊆ Hll(d) \ {h}
〈2〉1. n ⊆ Hll(d) \ traces(I)

Proof: Assumption 1 and definition 11 of  r.
〈2〉2. h ∈ traces(I)

Proof: Assumption 2.
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and A ⊆ B \ X ∧ x ∈ X ⇒ A ⊆ B \ {x} for arbitrary
sets A, B and X .

〈1〉2. Requirement 2: p ⊆ {h} ∪ (Hll(d) \ {h}), i.e. p ⊆ {h} ∪ Hll(d)

Proof: p ⊆ Hll(d) by definition of Hll(d), as (p, n) is an interaction obligation
for d.

〈1〉3. Q.E.D.
Proof: 〈1〉1, 〈1〉2 and definition 11 of  r.

�

Lemma 6. Let (p, n) be an interaction obligation for the sequence diagram d, I

be a system and h a well-formed trace.

Assume: ∀h ∈ traces(I) : (p, n) r ({h},Hll(d) \ {h})
Prove: (p, n) 7→r (traces(I),Hll(d) \ traces(I)),

i.e. (p, n) r (traces(I),Hll(d) \ traces(I)) by definition 14.
Proof.

〈1〉1. Requirement 1: n ⊆ Hll(d) \ traces(I)
〈2〉1. ∀h ∈ traces(I) : n ⊆ Hll(d) \ {h}

Proof: The assumption and definition 11 of  r.
〈2〉2. ∀h ∈ traces(I) : {h} ∩ n = ∅

Proof: 〈2〉1 and definition of ⊆.
〈2〉3. traces(I) ∩ n = ∅

Proof: 〈2〉2 and X ∩ A = ∅ ∧ Y ∩ A = ∅ ⇒ (X ∪ Y ) ∩ A = ∅ for arbitrary
sets A, X and Y .

〈2〉4. n ⊆ Hll(d)

Proof: Definition of Hll(d), as (p, n) is an interaction obligation for d.
〈2〉5. Q.E.D.

Proof: 〈2〉3, 〈2〉4 and A ⊆ B ∧A ∩ X = ∅ ⇒ A ⊆ B \ X for arbitrary sets
A, B and X .

〈1〉2. Requirement 2: p ⊆ traces(I)∪(Hll(d)\traces(I)), i.e. p ⊆ traces(I)∪Hll(d)
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Proof: p ⊆ Hll(d) by definition of Hll(d), as (p, n) is an interaction obligation
for d.

〈1〉3. Q.E.D.
Proof: 〈1〉1, 〈1〉2 and definition 11 of  r.

�

Theorem 27. (Correspondence.) Let d be a a sequence diagram with no xalt

operator. Then

[[ d ]]u 7→r 〈I〉ud ⇒ [[ d ]]i 7→g 〈I〉id

Proof.

Let: [[ d ]]u = (p, n),
i.e. [[ d ]]i = {(p, n)}

〈1〉1. Assume: [[ d ]]u 7→r 〈I〉ud
Prove: [[ d ]]i 7→g 〈I〉id

〈2〉1. (p, n) 7→r (traces(I),Hll(d) \ traces(I))
Proof: 〈1〉1, [[ d ]]u = (p, n) and definition 13 of 〈I〉ud .

〈2〉2. (p, n) r (traces(I),Hll(d) \ traces(I))
Proof: 〈2〉1 and definition 14 of 7→r

〈2〉3. Choose arbitrary h ∈ traces(I)
Proof: traces(I) is non-empty for all real systems I.

〈2〉4. (p, n) 7→r ({h},Hll(d) \ {h})
Proof: 〈2〉2, 〈2〉3 and lemma 5.

〈2〉5. ({h},Hll(d) \ {h}) ∈ 〈I〉id
Proof: 〈2〉3 and definition 23 of 〈I〉id.

〈2〉6. ∀o ∈ [[ d ]]i : ∃o′ ∈ 〈I〉id : o 7→r o′

Proof: [[ d ]]i = {(p, n)}, 〈2〉4, 〈2〉5 and ∀-rule.
〈2〉7. Q.E.D.

Proof: 〈2〉6 and definition 24 of 7→g.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�

Theorem 28. (Correspondence.) Let d be a a sequence diagram with no xalt

operator. Then

[[ d ]]u 7→rr 〈I〉ud ⇒ [[ d ]]i 7→rg 〈I〉id

Proof.

Let: [[ d ]]u = (p, n),
i.e. [[ d ]]i = {(p, n)}

〈1〉1. Assume: [[ d ]]u 7→rr 〈I〉ud
Prove: [[ d ]]i 7→rg 〈I〉id

〈2〉1. (p, n) 7→rr (traces(I),Hll(d) \ traces(I))
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Proof: 〈1〉1, [[ d ]]u = (p, n) and definition 13 of 〈I〉ud .
〈2〉2. (p, n) r (traces(I),Hll(d) \ traces(I))

Proof: 〈2〉1 and definitions 14 and 15 of 7→rr.
〈2〉3. p ∩ traces(I) 6= ∅

Proof: 〈2〉1 and definition 15 of 7→rr.
〈2〉4. Choose h ∈ traces(I) such that p ∩ {h} 6= ∅

Proof: 〈2〉3.
〈2〉5. (p, n) 7→r ({h},Hll(d) \ {h})

Proof: 〈2〉2, 〈2〉4 and lemma 5.
〈2〉6. ({h},Hll(d) \ {h}) ∈ 〈I〉id

Proof: 〈2〉4 and definition 23 of 〈I〉id.
〈2〉7. ∀o ∈ [[ d ]]i : ∃o′ ∈ 〈I〉id : o 7→rr o′

Proof: [[ d ]]i = {(p, n)}, 〈2〉4, 〈2〉5, 〈2〉6 and ∀-rule.
〈2〉8. Q.E.D.

Proof: 〈2〉7 and definition 24 of 7→rg.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

�

Theorem 29. (Correspondence.) Let d be a a sequence diagram with no xalt

operator. Then
[[ d ]]u 7→r 〈I〉ud ⇒ [[ d ]]i 7→l 〈I〉

i
d

Proof.

Let: [[ d ]]u = (p, n),
i.e. [[ d ]]i = {(p, n)}

〈1〉1. Assume: [[ d ]]u 7→r 〈I〉ud
Prove: [[ d ]]i 7→l 〈I〉id

〈2〉1. [[ d ]]i 7→g 〈I〉id
Proof: 〈1〉1 and theorem 27 (correspondence between 7→r and 7→g).

〈2〉2. (p, n) 7→r (traces(I),Hll(d) \ traces(I))
Proof: 〈1〉1, [[ d ]]u = (p, n) and definition 13 of 〈I〉ud .

〈2〉3. (p, n) r (traces(I),Hll(d) \ traces(I))
Proof: 〈2〉2 and definition 14 of 7→r

〈2〉4. Choose arbitrary o′ ∈ 〈I〉id
Proof: 〈I〉id is non-empty for all real systems I.

〈2〉5. Choose h ∈ traces(I) such that o′ = ({h},Hll(d) \ {h})
Proof: 〈2〉4 and definition 23 of 〈I〉id.

〈2〉6. (p, n) 7→r ({h},Hll(d) \ {h})
Proof: 〈2〉3, 〈2〉5 and lemma 5.

〈2〉7. ∀o′ ∈ 〈I〉id : ∃o ∈ [[ d ]]i : o 7→r o′

Proof: [[ d ]]i = {(p, n)}, 〈2〉4, 〈2〉5, 〈2〉6 and ∀-rule.
〈2〉8. Q.E.D.

Proof: 〈2〉1, 〈2〉7 and definition 25 of 7→l.
〈1〉2. Q.E.D.
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Proof: ⇒-rule.

�

Theorem 30. (Correspondence.) Let d be a a sequence diagram with no xalt

operator. Then
[[ d ]]u 7→r 〈I〉ud ⇐ [[ d ]]i 7→l 〈I〉

i
d

Proof.

Let: [[ d ]]i = {(p, n)},
i.e.[[ d ]]u = (p, n)

〈1〉1. Assume: [[ d ]]i 7→l 〈I〉id
Prove: [[ d ]]u 7→r 〈I〉ud

〈2〉1. {(p, n)} 7→l {({h},Hll(d) \ {h}) | h ∈ traces(I)}
Proof: 〈1〉1, [[ d ]]i = {(p, n)} and definition 23 of 〈I〉id.

〈2〉2. ∀h ∈ traces(I) : (p, n) 7→r ({h},Hll(d) \ {h})
Proof: 〈2〉1 and definition 25 of 7→l.

〈2〉3. ∀h ∈ traces(I) : (p, n) r ({h},Hll(d) \ {h})
Proof: 〈2〉2 and definition 14 of 7→r.

〈2〉4. (p, n) 7→r (traces(I),Hll(d) \ traces(I))
Proof: 〈2〉3 and lemma 6.

〈2〉5. Q.E.D.
Proof: 〈2〉4, [[ d ]]u = (p, n) and definition 13 of 〈I〉ud .

〈1〉2. Q.E.D.
Proof: ⇐-rule.

�

Theorem 31. (Correspondence.) Let d be a a sequence diagram with no xalt

operator. Then
[[ d ]]u 7→rr 〈I〉ud ⇐ [[ d ]]i 7→rl 〈I〉

i
d

Proof.

Let: [[ d ]]i = {(p, n)},
i.e.[[ d ]]u = (p, n)

〈1〉1. Assume: [[ d ]]i 7→rl 〈I〉id
Prove: [[ d ]]u 7→rr 〈I〉ud

〈2〉1. {(p, n)} 7→rl {({h},Hll(d) \ {h}) | h ∈ traces(I)}
Proof: 〈1〉1, [[ d ]]i = {(p, n)} and definition 23 of 〈I〉id.

〈2〉2. ∀h ∈ traces(I) : (p, n) 7→rr ({h},Hll(d) \ {h})
Proof: 〈2〉1 and definition 25 of 7→rl.

〈2〉3. ∀h ∈ traces(I) : (p, n) r ({h},Hll(d) \ {h})
Proof: 〈2〉2 and definitions 14 and 15 of 7→rr.

〈2〉4. (p, n) 7→r (traces(I),Hll(d) \ traces(I))
Proof: 〈2〉3 and lemma 6.

〈2〉5. ∀h ∈ traces(I) : p ∩ {h} 6= ∅
Proof: 〈2〉2 and definition 15 of 7→rr.
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〈2〉6. p ∩ traces(I) 6= ∅
Proof: 〈2〉5

〈2〉7. (p, n) 7→rr (traces(I),Hll(d) \ traces(I))
Proof: 〈2〉4, 〈2〉6 and definition 15 of 7→rr.

〈2〉8. Q.E.D.
Proof: 〈2〉7, [[ d ]]u = (p, n) and definition 13 of 〈I〉ud .

〈1〉2. Q.E.D.
Proof: ⇐-rule.

�
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