
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Rigorous development
process of a safety-critical
system: from ASM models
to Java code

Paolo Arcaini1‹, Angelo Gargantini2, Elvinia
Riccobene3

1 Charles University in Prague, Faculty of Mathematics and
Physics, e-mail: arcaini@d3s.mff.cuni.cz

2 Department of Management, Information and Production
Engineering, University of Bergamo, e-mail: angelo.gar-
gantini@unibg.it

3 Department of Computer Science, Università degli Studi
di Milano, e-mail: elvinia.riccobene@unimi.it

Received: date / Accepted: date

Abstract. The paper presents an approach for rigorous
development of safety-critical systems based on the Ab-
stract State Machine formal method. The development
process starts from a high level formal view of the system
and, through re�nement, derives more detailed models
till the desired level of speci�cation. Along the process,
di�erent validation and veri�cation activities are avail-
able, as simulation, model review, and model checking.
Moreover, each re�nement step can be proved correct
using an SMT-based approach. As last step of the re�ne-
ment process, a Java implementation can be developed
and linked to the formal speci�cation. The correctness
of the implementation w.r.t its formal speci�cation can
be proved by means of model-based testing and runtime
veri�cation. The process is exempli�ed by using a Land-
ing Gear System as case study.

1 Introduction

In safety-critical systems, human safety depends upon
the correct operation of the system. Therefore, they need
development methods and processes that could lead to
provably correct systems. Rigorous development proces-
ses require the use of formal methods which can guar-
antee, thanks to their mathematical foundation, model
preciseness and properties assurance.

However, although there are several cases showing
the advantages of applying formal methods in industrial

‹ The work was partially supported by Charles University re-
search funds PRVOUK.

applications [44], many practitioners are still reluctant
to adopt them. Besides the well-known lack of training,
this skepticism is mainly due to (i) the complex formal
notations, (ii) the lack of easy-to-use tools supporting a
developer during the life cycle activities of system de-
velopment, possibly in a seamless manner, and (iii) the
lack of a development process guidance and a method-
ology, which lead the designer from the requirements to
the �nal implementation.

The Abstract State Machine (ASM) method [18] is
a system engineering method that can guide the de-
velopment of software and embedded hardware-software
systems seamlessly from requirements capture to their
implementation. This is shown by the method's appli-
cation in a series of cases studies in di�erent applica-
tion domains [18]. ASMs are transition systems that ex-
tend the Finite State Machines (FSMs) [17]; the method
has, therefore, a rigorous mathematical foundation, but
a practitioner needs no special training to use the method
since ASMs can be correctly understood as pseudo-code
or virtual machines working over abstract data struc-
tures. The ASM-based modeling process is based on the
concept of a ground model representing a precise but
concise high-level formalization of the system, and on
the re�nement principle that allows to capture all details
of the system design by a sequence of re�ned models till
the desired level of detail.

In the context of safety-critical systems, the Land-
ing Gear System (LGS) was proposed in the ABZ 2014
conference as a real-life case study [14] with the aim of
showing how di�erent formal methods can be used for
the speci�cation, design and development of a complex
system. Many examples of rigorous formalizations have
been presented in [15], covering di�erent aspects of spec-
i�cation, veri�cation, and animation.

In this paper, we take advantage of the LGS case
study to present a rigorous development process for sa-
fety-critical systems based on the use of the ASMs. The
process goes from model to code and it is assisted by a
series of tools that can be employed for di�erent forms
of analysis either at model level w.r.t. the requirements,
and at code level w.r.t. the models.

We do not consider the whole description of the case
study, since the focus is not on the case study itself �
we are not interested in its complete development �, but
rather on showing the e�ectiveness and ease of using the
ASMs and the framework ASMETA [9] (a set of tools for
the ASMs) for designing and implementing systems in a
rigorous and controllable way. We concentrate on those
requirements regarding the safety-critical functionalities
of the system, and we show the advantages o�ered by the
ASM method and its tools either in terms of modeling
techniques, which integrates dynamic (operational) and
static (declarative) descriptions, and in terms of analysis
technique that combines validation (by simulation and
testing) and veri�cation methods at any desired level of
detail, as well as conformance checking between models

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187949947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code

and code (if any). We skip some details concerning the
description of the architecture and the hardware of the
LGS, not because of their unimportance, but because
they would not add any new aspect or potentiality of
our approach, while their modeling is only a question of
reaching the suitable re�nement level.

Among the speci�cation methods reported in [15],
the work in [6] already presents an ASM speci�cation of
the case, and shows how to prove the required proper-
ties by means of integrated formal approaches for veri�-
cation. Furthermore, techniques for runtime veri�cation,
still based on ASM models, are presented in [7] and re-
gard the sub-case study of the voting system of sensors,
for which a Java implementation was developed.

Compared with the results in [6,7], this work (a) des-
cribes the complete process from a very abstract model
to an executable Java implementation, (b) improves the
technique of ASM model re�nement since its correctness
is checked automatically, and (c) applies conformance
checking techniques to the whole system.

After a brief introduction to ASMs in Section 2, Sec-
tion 3 presents the ASM-based development process, and
it overviews the variety of model analysis activities that
can be performed by using the ASMETA framework.
Section 4 presents the ground model of the LGS while
Section 5 reports the chain of re�ned models. We start
from a ground model that is the description of the core
system, namely one landing set whose behavior is cap-
tured in terms of user inputs and doors' and gears' al-
leged state. Then we re�ne the model by adding the actu-
ators' behavior in terms of electro-valves' and cylinders'
operations; subsequently the sensors are added. The sys-
tem with one landing component is then generalized to
a system with three landing sets, and in the last re�ne-
ment the health monitoring is included. Compared with
the results in [6], here we are able to check re�nement
correctness automatically. Section 6 reports the results of
the model validation and veri�cation performed at each
level of re�nement. We present di�erent forms of model
validation (simulation, scenarios construction, model re-
view), and techniques for model checking LTL temporal
properties. Section 7 presents how a formal speci�cation
can be linked with its implementation, and the two con-
formance validation techniques, model-based testing and
runtime veri�cation, that we have applied after having
implemented in Java the last re�ned model of the LGS.
Section 8 discusses the strengths and the weaknesses of
the approach w.r.t. other existing approaches, taking ad-
vantage of the availability of other formalizations of the
LGS case study. Finally, Section 9 concludes the paper.

2 Abstract State Machines (ASMs)

ASMs are an extension of Finite State Machines, ob-
tained by replacing unstructured control states by states
comprising arbitrarily complex data [17].

The states of an ASM are multi-sorted �rst-order
structures, i.e., domains of objects with functions and
predicates de�ned on them. ASM states are modi�ed by
transition relations speci�ed by �rules� describing the
modi�cation of the function interpretations from one
state to the next one. There is a limited but powerful
set of rule constructors that allow to express guarded
actions (if-then), simultaneous parallel actions (par)
or sequential actions (seq). Appropriate rule construc-
tors also allow nondeterminism (existential quanti�ca-
tion choose) and unrestricted synchronous parallelism
(universal quanti�cation forall).

An ASM state s is represented by a set of couples
(location, value). ASM locations, namely pairs (function-
name, list-of-parameter-values), represent the abstract
ASM concept of basic object containers (memory units).
Location updates represent the basic units of state chan-
ge and they are given as assignments, each of the form
loc :“ v, where loc is a location and v its new value.

Functions are classi�ed as derived, i.e., those coming
with a speci�cation or computation mechanism given in
terms of other functions, and basic which can be static
(never change during any run of the machine) or dy-
namic (may change as a consequence of agent actions or
updates). Dynamic functions are distinguished between
monitored (only read by the machine and modi�ed by
the environment), and controlled (read and written by
the machine).

A computation of an ASM is a �nite or in�nite se-
quence s0, s1, . . . , sn, . . . of states of the machine, where
s0 is an initial state and each sn`1 is obtained from
sn by simultaneously �ring all the transition rules which
are enabled in sn. The (unique) main rule is a transition
rule and represents the starting point of the computa-
tion. An ASM can have more than one initial state. It
is possible to specify state invariants. State invariants
can be used for two purposes: either specifying a prop-
erty that must be checked in each state (when formu-
lated over controlled and derived functions), or stating
a constraint over the input values (when speci�ed over
monitored functions).

Concepts brie�y recalled here are related to the def-
inition of basic ASMs. There are several extensions to
model any kind of computational paradigm: from a sin-
gle agent executing simultaneous parallel actions, to dis-
tributed multiple agents interacting in a synchronous or
asynchronous way. A complete presentation of the ASMs
can be found in [18].

2.1 Ground model and model re�nement

For system speci�cation, the ASM method builds upon
two main concepts:

� ground model, an ASM which is a precise but con-
cise high-level description of the system and can be

Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code 3

considered as �authoritative� reference model for the
design;

� model re�nement, which is a general scheme for step-
wise instantiations of model abstractions to concrete
system elements, providing controllable links between
the more and more detailed descriptions at the suc-
cessive stages of system development.

The de�nition of correct re�nement between ASM
models has been given in [16]. According to this de�ni-

tion, to re�ne an ASM M to an ASM ĂM , the following
items must be de�ned:

� a notion of re�ned state;
� a notion of states of interest and of correspondence
between M -states S and ĂM -states rS of interest, i.e.,
the pairs of states in the runs one wants to relate
through the re�nement, usually including the corre-
spondence of initial and (if there are any) of �nal
states;

� a notion of abstract computation segments τ “ τ1,
. . . , τm, where each τi represents a singleM -step, and
of corresponding re�ned computation segments σ “
σ1, . . . , σn, of single ĂM -steps σj , which in given runs
lead from corresponding states of interest to (usually
the next) corresponding states of interest;

� a notion of locations of interest and of corresponding
locations, i.e., pairs of (possibly sets of) locations one
wants to relate in corresponding states;

� a notion of equivalence ” of the data in the locations
of interest; these local data equivalences usually ac-
cumulate to a notion of equivalence of corresponding
states of interest.

According to this scheme, an ASM re�nement allows
one to combine a change of the signature (data re�ne-
ment) with a change of the control (operation re�ne-
ment), while many notions of re�nement in the literature
keep these two features separated.

Once the notions of corresponding states and of their
equivalence have been determined, one can de�ne that
ĂM is a correct re�nement of M as follows:

De�nition 1 (Börger's re�nement). Given a notion

” of equivalence, an ASM ĂM is a correct re�nement of
an ASM M if and only if for each ĂM -run rS0, rS1, . . . ,
there is an M -run S0, S1, . . . and sequences i0 ă i1 ă . . .
and j0 ă j1 ă . . . such that i0 “ j0 “ 0 and Sik ”

rSjk

for each k and either

� both runs terminate and their �nal states are the last
pair of equivalent states; or

� both runs and both sequences i0 ă i1 ă . . . and
j0 ă j1 ă . . . are in�nite.

The states Sik and rSjk are the corresponding states
of interest. They represent the end points of the cor-
responding computation segments for which the equiv-
alence is de�ned in terms of a relation between their

M S0
// S1

// S2
// S3

// S4
// S5

ĂM rS0

”

KS

// rS1

”

KS

// rS2
// rS3

”

[c

// rS4
//

”

KS

rS5
// rS6

”

[c

Fig. 1: Börger's re�nement (i0 “ 0, i1 “ 1, i2 “ 2, i3 “ 4,
, i4 “ 5 and j0 “ 0, j1 “ 1, j2 “ 3, j3 “ 4, , j4 “ 6)

M S0
// S1

// S2
// S3

ĂM rS0

”

KS

// rS1

”

KS

// rS2

”

__

// rS3

”

gg

// rS4

”

KS

// rS5

”

KS

Fig. 2: Stuttering re�nement (j0 “ 0, j1 “ 1, j2 “ 4,
j3 “ 5)

corresponding locations (those of interest). Fig. 1 shows

a run of a re�ned machine ĂM and a corresponding run
of the abstract machine M .

2.1.1 Stuttering re�nement

The de�nition of re�nement given in Def. 1 is very gen-
eral. It is applicable for hand-made mathematical proofs,
but it is di�cult to embed it into a prover for automatic
re�nement correctness proof, and to �nd proof patterns.
For this reason, in the following, we give a restricted no-
tion of correct model re�nement. It does not consider
pieces of corresponding runs, but it considers models'
runs in the whole.

De�nition 2 (Stuttering re�nement). An ASM ĂM
is a correct stuttering re�nement of an ASM M if and
only if for each ĂM -run rS0, rS1, . . . , there is an M -run
S0, S1, . . . and sequence j0 ă j1 ă . . . such that j0 “ 0
and, for each k “ 0, 1, . . ., it yields

Źjk`1´1
r“jk

Sk ” rSr and
either

� both runs terminate and their �nal states are the last
pair of equivalent states; or

� both runs and sequence j0 ă j1 ă . . . are in�nite.

This notion of re�nement is a particular case of the
de�nition of re�nement given in Def. 1. It requires that
any re�ned state rSj is equivalent with an abstract state

Si, and its successor state rSj`1 is equivalent with ei-
ther Si or with Si`1. Therefore, each state is a state of
interest, and indexes jk indicate those positions where
the equivalence relation must be checked against a new
abstract state.

Fig. 2 shows the equivalence relation between states
of a run of the re�ned machine and a run of the abstract
machine. Re�ned states rS0, rS1, rS4, and rS5 are linked
with abstract states S0, S1, S2, and S3. Re�ned states
rS2 and rS3, that are not linked with the next abstract
state, are conformant with the previous linked state S1.

4 Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code

Modeling by refinement

ASM n

ASM 1

ASM 0

Validation and verification

Simulation
AsmetaS, AsmetaV

Model Checking
AsmetaSMV

Java Code

Static Analysis
AsmetaMA

Model-based testing
ATGT

Runtime verification
CoMA

Conformance Checking
Annotation

implementation

R
ef

in
em

en
t

A
s
m
R
e
f
P
r
o
v
e
r

IDE
AsmEE

Fig. 3: ASM-based development process

This notion of re�nement provides us with two main
advantages: it trivially preserves invariant properties and
it allows us to automatically prove correctness of model
re�nement (see Section 3). Indeed, in order to prove that
ĂM re�nes M , it su�ces to prove that, for every couple
of states S of machine M and rS of machine ĂM together
with their next states S1 and rS1, the following property
holds:

rS ” S Ñ prS1 ” S _ DS1 : rS1 ” S1q (1)

We have developed an automatic technique able to
prove re�nement correctness1.

3 Development process and supporting tools

The concepts of ground model and model re�nement
bring to the de�nition of a rigorous process for ASM-
based system development. The process is depicted in
Fig. 3: the modeling activity is complemented with a
number of other activities on models and on model/code
that help to develop a correct system in a correct way.
A set of tools exists to support the developer in the var-
ious activities and to make the ASM method useful in
practice. Tools are part of the ASMETA (ASM mETA-
modeling) framework2 [9], and are strongly integrated in
order to permit reusing information about models during
di�erent development phases.

We here explain the fundamental activities (and the
related tools) of the process, while in the following sec-
tions we show their application to the LGS case study.

The process of requirements capture usually starts
from the textual description of the informal requirements,
and an ASM model is developed simply translating the
text in terms of transition rules capturing the behavior
of the system at a very high-level of abstraction. This

1 http://asmeta.sourceforge.net/download/asmrefprover.

html
2 http://asmeta.sourceforge.net/

sketchy �rst model is usually neither �correct� nor �com-
plete�. Rather, it tries on purpose to expose errors, ambi-
guities, or incompletenesses in the original text. Correct-
ness can be achieved through an iterative process rea-
soning on requirements till producing a high-level ground
model which is speci�ed using domain-speci�c terms and
can be understood by all stakeholders. This ground model
is abstract, i.e., it avoids irrelevant details necessary later
for the implementation, but correct, i.e., it re�ects the
intended initial requirements, and consistent, i.e., it re-
moves ambiguities and incompleteness of the initial re-
quirements. The ground model may not need to be com-
plete, i.e., it may leave some given requirements unspec-
i�ed. These requirements may be captured later.

The IDE AsmEE is available to assist the user when
editing an ASM model by using the concrete syntax
AsmetaL (see Section 4).

From the ground model, by step-wise re�ned mod-
els, further details are added to capture the major de-
sign decisions and provide descriptions of the complete
software architecture and component design of the sys-
tem. In this way, the complexity of the system can be
always taken under control, and it is possible to bridge,
in a seamless manner, the gap between speci�cation and
code. Oftentimes � as it was for the LGS case study �,
the requirements are presented in an incremental way,
and the chain of re�ned models re�ects this increase of
details. Each time a model is speci�ed as re�nement of an
abstract one, re�nement correctness should be checked.
This can be done by hand, but we provide an automatic
way to achieve this assurance in case of stuttering re�ne-
ment (see Def. 2). The tool ASMRefProver automatically
checks stuttering re�nement between two ASM models
(see Section 2.1.1 for more details).

Modeling activity is supported, at each level of re-
�nement, by model validation and veri�cation (V&V).
Model validation should be applied, already at ground
model level, in order to ensure that the speci�cation re-
ally re�ects the user needs and statements about the sys-
tem, and to detect faults in the speci�cation as early as
possible with limited e�ort. ASM model validation (see
Section 6.1) is possible by means of the model simula-
tor AsmetaS [30] and by the validator AsmetaV [19] that
allows to build and execute scenarios of expected sys-
tem behaviors. A further validation technique is model
review (a form of static analysis) to determine if a model
has su�cient quality attributes (as minimality, complete-
ness, consistency). Automatic ASM model review is pos-
sible by means of the AsmetaMA tool [3] (see Section 6.2).

Validation usually precedes the application of more
expensive and accurate methods, like formal require-
ments analysis and veri�cation of properties, that should
be applied only when a designer has enough con�dence
that the speci�cation captures all informal requirements.
Formal veri�cation of ASMs is possible by means of the
model checker AsmetaSMV [2] (see Section 6.3). Computa-

http://asmeta.sourceforge.net/download/asmrefprover.html
http://asmeta.sourceforge.net/download/asmrefprover.html
http://asmeta.sourceforge.net/

Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code 5

tion Tree Logic (CTL) and Linear Temporal Logic (LTL)
formulas can be proved on models.

When the system is implemented in an actual code,
either derived from the model as last low-level re�nement
step, or externally provided, also conformance checking
(see Section 7) is possible. Both model-based testing and
runtime veri�cation can be applied to check if the imple-
mentation conforms to its speci�cation. We support con-
formance checking w.r.t. Java code. The tool ATGT [29]
can be used to automatically generate tests from ASM
models3 and, therefore, to check the conformance o�ine;
CoMA [4], instead, can be used to perform runtime veri�-
cation, i.e., to check the conformance online.

In the following sections, we present the application
of the proposed process to the Landing Gear System case
study, whose description can be found in [14] and in the
same volume of this paper. We present in sequence all the
proposed activities, together with supporting techniques
and tools, although they should be used iteratively.

4 Ground model

The �rst activity of the process consists in writing a
simple abstract state machine representing the ground
model of our modeling e�ort. Note that among the pos-
sible views proposed in the informal requirements � func-
tional, architectural, real time, reliability, etc. � we make
some simpli�cations, in order to keep the presentation
concise. From the functional view, we abstract from the
analogical switch and the pressure sensor, while, from
the architecture view, we simplify the digital architec-
ture by only considering one computing module. We also
abstract from the sensor voting mechanism that, how-
ever, has been separately analyzed in [7].

The ASMETA framework provides the user with a
language, AsmetaL, its syntax checker, and AsmEE, an
IDE (Integrated Development Environment) embedded
within eclipse as plug-in. Using AsmEE, the user can edit
ASM models and access all the tools presented in the
following sections. AsmEE features include syntax high-
lighting and new model wizard; a screenshot is shown in
Fig. 4.

An ASM model is structured into three sections, as
shown in Code 1: a header in which external models
can be imported and the signature is declared, a body in
which functions, domains, and rules are de�ned, and an
init which initializes the machine.

The ground model of the LGS, shown in Code 2 and
developed according to the template in Code 1, models
the doors and the gears, and how their statuses change.
The model does not contain a representation for valves,
cylinders, sensors, and the health monitoring. Function
doors represents the status of the doors that can be

3 Note that sequences generated by ATGT could be used to test
programs written in any programming language.

Fig. 4: AsmEE, the ASMETA Eclipse Environment

asm model
// header
import StandardLibrary
signature:

dynamic monitored value: Integer
...

// body
de�nitions:

function ...

rule r_open = ...

main rule r_main = ...

// initial state
default init s0:

...

Code 1: A template for an ASM

OPEN, CLOSED, OPENING or CLOSING. Function gears rep-
resents the status of the gears that can be EXTENDED,
RETRACTED, RETRACTING or EXTENDING.

The state transitions are driven by the value of the
monitored function handle. As long as the handle is UP,
the retraction sequence [14] is executed, and, instead, as
long as the handle is DOWN, the outgoing sequence [14]
is executed. Let us see, as an example, how the retrac-
tion sequence works: so we assume that, in each state,
the handle is UP. In the initial state, the doors are
CLOSED and the gears are EXTENDED; then the doors

start OPENING. When the doors become OPEN, the gears
start RETRACTING. When the gears become RETRACTED,
the doors start CLOSING. The retraction sequence termi-
nates with the doors CLOSED and the gears RETRACTED.
The outgoing sequence behaves similarly. Note that a
retraction (resp. an outgoing) sequence can be always
interrupted by switching the value of the handle; in this
case, an outgoing (resp. a retraction) sequence begins,
starting from the status of the doors and the gears

reached in the previous sequence.

6 Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code

asm LGS_GM

signature:
enum domain HandleStatus = {UP | DOWN}
enum domain DoorStatus = {CLOSED | OPENING | OPEN | CLOSING}
enum domain GearStatus = {RETRACTED | EXTENDING | EXTENDED |

RETRACTING}
dynamic monitored handle: HandleStatus
dynamic controlled doors: DoorStatus
dynamic controlled gears: GearStatus

de�nitions:
rule r_closeDoor =

switch doors
case OPEN: doors := CLOSING
case CLOSING: doors := CLOSED
case OPENING: doors := CLOSING

endswitch

rule r_retractionSequence =
if gears != RETRACTED then

switch doors
case CLOSED: doors := OPENING
case CLOSING: doors := OPENING
case OPENING: doors := OPEN
case OPEN:

switch gears
case EXTENDED: gears := RETRACTING
case RETRACTING: gears := RETRACTED
case EXTENDING: gears := RETRACTING

endswitch
endswitch

else
r_closeDoor[]

endif

rule r_outgoingSequence =
if gears != EXTENDED then

switch doors
case CLOSED: doors := OPENING
case OPENING: doors := OPEN
case OPEN:

switch gears
case RETRACTED: gears := EXTENDING
case EXTENDING: gears := EXTENDED
case RETRACTING: gears := EXTENDING

endswitch
endswitch

else
r_closeDoor[]

endif

invariant over gears, doors:
(gears = EXTENDING or gears = RETRACTING) implies

doors = OPEN

invariant over gears, doors:
doors = CLOSED implies

(gears = EXTENDED or gears = RETRACTED)

main rule r_Main =
if handle = UP then

r_retractionSequence[]
else

r_outgoingSequence[]
endif

default init s0:
function doors = CLOSED
function gears = EXTENDED

'

Code 2: Ground model

Fig. 5: Models chain

In the model, an invariant checks that, if the gears

are moving (i.e., they are EXTENDING or RETRACTING),
the doors must be OPEN; another invariant checks that,
if the doors are CLOSED, then the gearsmust be stopped
(i.e., they are EXTENDED or RETRACTED).

5 Modeling by re�nement

In this section we present the four steps of the re�ne-
ment process for modeling the case study4. Fig. 5 de-
picts the relationship existing between the models and,
for each model, the system elements introduced with re-
spect to the previous model. The re�nement process has
been guided by the LGS requirements, that in [14] are
presented with an increasing level of detail.

4 All the models are available online at http://fmse.di.unimi.
it/sw/LGS_STTT.zip

We start from the high-level description (the ground
model described in Section 4) of the system core, i.e., one
landing set whose behavior is captured in terms of user
inputs and doors' and gears' alleged state. Then, we re-
�ne the model by adding the behavior of the actuators:
electro-valves and cylinders. In the second re�nement,
the sensors are added. The third re�nement generalizes
the system, moving from one landing component to a
system with three equal landing sets. In the last re�ne-
ment, the health monitoring is included.

For each step, we automatically prove the re�nement
correctness using the AsmRefProver. It exploits an SMT
solver and the symbolic representation of ASM states
and the relation (transition rules) between two consec-
utive states presented in [8]. By instantiating an SMT

theory with both S and rS together with their generic
successor states S1 and rS1, AsmRefProver can prove (or
disprove) the validity of property 1.

In all the re�nement steps, the equivalence between
an abstract and a re�ned state is de�ned in terms of all
the controlled locations which are declared at both levels
of re�nement. They act as locations of interest.

http://fmse.di.unimi.it/sw/LGS_STTT.zip
http://fmse.di.unimi.it/sw/LGS_STTT.zip

Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code 7

asm LGS_EV

signature:
...
enum domain CylinderStatus =
{CYL_EXTENDING | CYL_RETRACTING |
CYL_RETRACTED | CYL_EXTENDED}
derived cylDoors: CylinderStatus
derived cylGears: CylinderStatus
dynamic controlled generalEV: Boolean
dynamic controlled openDoorsEV: Boolean
dynamic controlled closeDoorsEV: Boolean
dynamic controlled retractGearsEV: Boolean
dynamic controlled extendGearsEV: Boolean

'

de�nitions:
function cylDoors =

switch doors
case OPEN: CYL_EXTENDED
case OPENING: CYL_EXTENDING
case CLOSING: CYL_RETRACTING
case CLOSED: CYL_RETRACTED

endswitch

function cylGears =
switch gears

case RETRACTED: CYL_RETRACTED
case EXTENDING: CYL_EXTENDING
case EXTENDED: CYL_EXTENDED
case RETRACTING: CYL_RETRACTING

endswitch

'

rule r_closeDoor =
switch doors

case OPEN:
par

closeDoorsEV := true
doors := CLOSING

endpar
...

rule r_retractionSequence =
if gears != RETRACTED then

switch doors
case CLOSED:

par
generalEV := true
openDoorsEV := true
doors := OPENING

endpar
...

Code 3: First re�nement: cylinders and electro-valves

M
LGS_GM

doors = CLOSED

gears = EXTENDED

// doors = OPENING

gears = EXTENDED

// doors = OPEN

gears = EXTENDED

ĂM
LGS_EV

doors = CLOSED

gears = EXTENDED

cylDoors = CYL_RETRACTED

cylGears = CYL_EXTENDED

”

KS

// doors = OPENING

gears = EXTENDED

cylDoors = CYL_EXTENDING

cylGears = CYL_EXTENDED

”

KS

// doors = OPEN

gears = EXTENDED

cylDoors = CYL_EXTENDED

cylGears = CYL_EXTENDED

”

KS

Fig. 6: First re�nement � Example of re�ned run

5.1 First re�nement: adding the electro-valves and the
cylinders

In this model, LGS_EV, we have re�ned the ground
model by adding the representation of the electro-valves
and of the cylinders. Code 3 shows the new elements
introduced in the model. We have added the functions
for the general electro-valve (generalEV), and for the
electro-valves related to the opening/closing of the doors
(openDoorsEV and closeDoorsEV) and the retracting/ex-
tending of the gears (retractGearsEV and extendGears-
EV), that represent the actuators of the system. These
functions have been declared controlled.

Functions cylDoors and cylGears represent the sta-
tus of cylinders that move the doors and the gears. The
functions have been declared as derived, since they can
be de�ned in terms of the values of functions doors and
gears. For example, the cylinders of the doors are ex-
tended/retracted when the doors are open/closed, and
extending/retracting when the doors are opening/clos-
ing. A similar relation exists between the gears and their
cylinders.

Correctness of the model re�nement The model LGS_EV
is a correct stuttering re�nement of LGS_GM. If a state
rS of LGS_EV is conformant with a state S of LGS_GM,

a step in the re�ned model leads to a state rS1 that is

conformant with S1, the next state of S in the abstract
model. Indeed, the re�ned machine only extends the sig-
nature of the abstract model, but does not modify the
transition relation. Fig. 6 shows an example of re�ned
run.

5.2 Second re�nement: adding the sensors

The model LGS_SE presented in this section extends
the model described in Section 5.1 by adding the mod-
eling of the sensors. Code 4 shows the new elements
introduced in the model. Four boolean monitored func-
tions are used to indicate whether the gears are extended
(gearsExtended) or retracted (gearsRetracted), and
whether the doors are closed (doorsClosed) or open
(doorsOpen). In ASMs, monitored functions represent
quantities that are not determined by the system, but
that come from the environment ; usually, they are used
in transitions rules (e.g., in the guard of a conditional
rule or in the right part of an update rule) to modify the
state of the system. For this reason, we chose to model
the sensors as monitored functions, because in the LGS
the sensors can be seen as inputs that determine the
status of the system: for example, whenever the sensor
gearsExtended is seen turned on, the gears are consid-
ered extended by the system.

8 Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code

asm LGS_SE

signature:
...
dynamic monitored doorsOpen: Boolean
dynamic monitored doorsClosed: Boolean
dynamic monitored gearsExtended: Boolean
dynamic monitored gearsRetracted: Boolean

de�nitions:

rule r_closeDoor =
switch doors

case CLOSING:
if doorsClosed then

par
generalEV := false
closeDoorsEV := false
doors := CLOSED

endpar
endif

...

rule r_retractionSequence =
if gears != RETRACTED then

switch doors
case CLOSED:

par
generalEV := true
openDoorsEV := true
doors := OPENING

endpar
case OPENING:

if doorsOpen then
par

openDoorsEV := false
doors := OPEN

endpar
endif

...

invariant over doorsClosed, doorsOpen: not(doorsClosed and doorsOpen)
invariant over gearsExtended, gearsRetracted: not(gearsExtended and gearsRetracted)

'

Code 4: Second re�nement: sensors

M
LGS_EV

. . . // doors = OPENING

gears = EXTENDED

// doors = OPEN

gears = EXTENDED

// . . .

ĂM
LGS_SE

. . . // doors = OPENING

gears = EXTENDED

doorsOpen = false

...

”

KS

// doors = OPENING

gears = EXTENDED

doorsOpen = true

...

”

hh

// doors = OPEN

gears = EXTENDED

doorsOpen = true

...

”

KS

// . . .

Fig. 7: Second re�nement � Example of re�ned run

In this model, we have re�ned some rules by adding
the reading of sensors. Some update rules have been
guarded by conditional rules checking the value of the
monitored functions; for example, we can see in Code 4
that, if the doors are CLOSING, they become CLOSED only
if the sensor doorsClosed is turned on (i.e., the guard
of conditional rule is true).

Sensor values are computed through a voting mecha-
nism that has been modeled and analyzed in [7]. In this
paper, we abstract from the voting mechanism and we
assume to observe the values computed by the mech-
anism. Moreover, we assume that impossible combina-
tions of sensor values (e.g., both sensors doorsClosed

and doorsOpen turned on) cannot appear. In order to
check that only admissible combinations of sensor val-
ues are provided by the environment, we add to the
model two invariants specifying that doorsClosed and
doorsOpen cannot be turned on together, and that ge-
arsExtended and gearsRetracted cannot be turned on
together (see Code 4). An alternative solution could be
to make the model more robust, by accepting any com-
bination of sensor values, but modifying the ASM state
only upon the observation of correct combinations: this
would require to make the guards of the transition rules
more complex.

Correctness of the model re�nement The model LGS_SE
is a correct stuttering re�nement of LGS_EV. In each
state, the re�ned machine can move to a state in which
the doors status or the gears status are either changed
(if the sensors detect the changing) or unchanged (if the

sensors do not detect any change). Therefore, if a state rS
of the re�ned model LGS_SE is conformant with a state
S of the abstract model LGS_EV, a step in the re�ned

model can lead to a state rS1 that is either conformant
with S (if the sensors do not detect any change) or with
the next state S1 of the abstract model (if the sensors
detect the changing). Fig. 7 shows an example of re�ned
run.

5.3 Third re�nement: adding the three landing sets

The model LGS_3L presented in this section extends the
model described in Section 5.2 by adding the modeling
of the three landing sets. Code 5 shows the new elements
introduced in the model and how some functions have
been modi�ed.

The enumerative domain LS represents the three land-
ing sets (FRONT, LEFT, and RIGHT). The sensors have been
re�ned by explicitly modeling, for each sensor type, the
sensor on each landing set; four new unary monitored

Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code 9

asm LGS_3L

signature:
...
enum domain LS = {FRONT | LEFT | RIGHT}
dynamic monitored gearsExtended: LS ´> Boolean
dynamic monitored gearsRetracted: LS ´> Boolean
dynamic monitored doorsClosed: LS ´> Boolean
dynamic monitored doorsOpen: LS ´> Boolean
derived gearsExtended: Boolean
derived gearsRetracted: Boolean
derived doorsClosed: Boolean
derived doorsOpen: Boolean

de�nitions:
function gearsExtended =

(forall $s in LS with gearsExtended($s))

function gearsRetracted =
(forall $s in LS with gearsRetracted($s))

function doorsClosed =
(forall $s in LS with doorsClosed($s))

function doorsOpen =
(forall $s in LS with doorsOpen($s))

...

Code 5: Third re�nement: three landing sets

M
LGS_SE

. . . // doors = OPENING

gears = EXTENDED

doorsOpen = true

// doors = OPEN

gears = EXTENDED

doorsOpen = true

// . . .

ĂM
LGS_3L

. . . // doors = OPENING

gears = EXTENDED

doorsOpen = false

doorsOpen(FRONT) = false

doorsOpen(LEFT) = false

doorsOpen(RIGHT) = true

...

”

KS

// doors = OPENING

gears = EXTENDED

doorsOpen = true

doorsOpen(FRONT) = true

doorsOpen(LEFT) = true

doorsOpen(RIGHT) = true

...

”

gg

// doors = OPEN

gears = EXTENDED

doorsOpen = true

doorsOpen(FRONT) = true

doorsOpen(LEFT) = true

doorsOpen(RIGHT) = true

...

”

KS

// . . .

Fig. 8: Third re�nement � Example of re�ned run

functions with domain LS have been added to the model.
For example, the unary monitored function gearsEx-

tended represents the three sensors associated with the
three landing sets, that detect the extension of the gears:
speci�cally, each location of the function (gearsExten-
ded(FRONT), gearsExtended(LEFT), and gearsExten-

ded(RIGHT)) is a sensor of a landing set.

The 0-ary functions that in LGS_SE are declared as
monitored, in this model are declared as derived, because
now their value depends on the value of the correspond-
ing unary functions having the same name. Indeed, each
derived function describes if all the corresponding sen-
sors on the three landing sets are turned on, or if at least
one is turned o�.

Note that AsmetaL permits function overloading, i.e.,
having di�erent functions with the same name, but a dif-
ferent arity and/or a di�erent domain.

Correctness of the model re�nement The model LGS_3L
is a correct stuttering re�nement of LGS_SE. In the pre-
vious re�nement step, we have already proved that the
introduction of the sensors produces a correct stutter-
ing re�nement. In this step, we have only modi�ed the
policy to read the sensors: a sensor type is considered
activated if all the sensors on the three landing sets are
activated. Fig. 8 shows an example of re�ned run.

5.4 Fourth re�nement: adding the health monitoring
system

The model LGS_HM presented in this section extends
the model LGS_3L described in Section 5.3, by adding
the modeling of the health monitoring system (Section
4.3 of the case study in [14]). We only consider the doors
motion monitoring and the gears motion monitoring. A
possible way to model the monitoring of the sensors is
described in [7]. Since the analogical switch and the pres-
sure sensor are not considered in this work, we do not
model their monitoring.

Code 6 shows the new elements introduced in the
model. The health monitoring is executed by rule r_he-
althMonitoring that, whenever a timeout has occurred,
checks that the values of the sensors are as expected.
The detection of an anomaly in the system is modeled
by the update to true of the boolean function anomaly;
in the main rule, the system is executed only if there is
no anomaly (i.e., anomaly is false). The timeout is mod-
eled through the boolean monitored function timeout.
Note that, at this level of abstraction, we do not need
to explicitly handle the time, neither to distinguish be-
tween di�erent time intervals: it is su�cient to know
if, in a given system con�guration, the maximum al-
lowed time interval, after which the system con�guration
should be observed changed, has elapsed. For example, if

10 Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code

asm LGS_HM

signature:
...
derived aGearExtended: Boolean
derived aGearRetracted: Boolean
derived aDoorClosed: Boolean
derived aDoorOpen: Boolean
derived greenLight: Boolean
derived orangeLight: Boolean
derived redLight: Boolean
dynamic monitored timeout: Boolean
dynamic controlled anomaly: Boolean

de�nitions:
function aGearExtended = (exist $s in LS with gearsExtended($s))
function aGearRetracted = (exist $s in LS with gearsRetracted($s))
function aDoorClosed = (exist $s in LS with doorsClosed($s))
function aDoorOpen = (exist $s in LS with doorsOpen($s))

function greenLight = (gears = EXTENDED)
function orangeLight = (gears = EXTENDING or gears = RETRACTING)
function redLight = anomaly
...

rule r_healthMonitoring =
if timeout then

if (openDoorsEV and not(doorsOpen)) or
(closeDoorsEV and aDoorOpen) or
(retractGearsEV and aGearExtended) or ...

anomaly := true
endif

endif

main rule r_Main =
if not(anomaly) then

par
if handle = UP then

r_retractionSequence[]
else

r_outgoingSequence[]
endif
r_healthMonitoring[]

endpar
endif

default init s0:
function anomaly = false
...

Code 6: Fourth re�nement: failure mode

the timeout has elapsed and the electro-valve responsi-
ble for the doors opening is turned on and the doors are
not open (openDoorsEV and not(doorsOpen)), then an
anomaly has been detected5.

In the monitoring rules, sometimes we need to know
if, given a sensor type, at least one single sensor is turned
on. For example, one monitoring rule states that if the
control software does not see the value door_openrxs “
false for all x “ tfront, left, rightu . . . ; in order to
implement this rule, we must check if at least one door
is open, but this can not be inferred through function
doorsOpen. In order to model this kind of rules, we have
introduced in this model the derived functions aDoor-

Open, aDoorClosed, aGearExtended, and aGearRetrac-
ted that signal if at least one of the corresponding sen-
sors is turned on.

Correctness of the model re�nement The model LGS_HM
is a correct stuttering re�nement of LGS_3L. LGS_HM
implements two modes: normal mode and failure mode
(when an anomaly is detected). In normal mode, the re-
�ned model behaves as LGS_3L: in this case the re�ne-
ment proof is straightforward. When the model enters
failure mode, it does not modify the status of the doors
and of the gears anymore: therefore, we need to prove
that such behaviors (i.e., runs) are also allowed by the
abstract model. The re�ned model can enter in failure
mode only when the doors or the gears are moving. In
the abstract model, when the doors or the gears are mov-
ing, they change their status only if the corresponding
sensors are turned on (e.g., if the doors are OPENING,

5 In the case study [14], this behavior is described as follows: if
the control software does not see the value door_closedrxs “ false
for all x P tfront, left, rightu 7 seconds after stimulation of the
opening electro-valve, then the doors are considered as blocked and
an anomaly is detected.

they become OPEN only when the sensor doorsOpen is
seen turned on). Therefore, whenever the re�ned model

LGS_HM is in a state rS conformant with a state S of the
abstract model LGS_3L in which the sensors are turned

o� and it moves to a state rS1 in failure mode, then rS1 is
conformant with S1, the next state of S. Fig. 9 shows an
example of re�ned run in which the re�ned model enters
failure mode.

6 Validation and veri�cation

We here describe all the validation and veri�cation activ-
ities we have performed on the developed speci�cations.
Each activity has been performed on all the models (all
the re�nements), unless stated otherwise.

6.1 Simulation

AsmetaS permits to perform either interactive simula-
tion, where required inputs are provided interactively
by the user during simulation, and random simulation,
where inputs values are chosen randomly by the simula-
tor itself. The simulator, at each step, performs consis-
tent updates checking to check that all the updates are
consistent: in an ASM, two updates are inconsistent if
they update the same location to two di�erent values at
the same time [18]. Moreover, at each step the simulator
also checks that all the invariants hold. If an invariant
speci�ed over the controlled part of the model does not
hold, the simulation is interrupted because a state vio-
lating the desired property has been reached: this is a
signal of a fault in the model (or in the invariant). In-
stead, if during an interactive simulation an invariant
speci�ed over the monitored part of the model (i.e., the

Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code 11

M
LGS_3L

. . . //

doors = OPENING

gears = EXTENDED

openDoorsEV = true

doorsOpen = false

//

doors = OPENING

gears = EXTENDED

openDoorsEV = true

doorsOpen = false

//

doors = OPENING

gears = EXTENDED

openDoorsEV = true

doorsOpen = false

//

doors = OPENING

gears = EXTENDED

openDoorsEV = true

doorsOpen = false

// . . .

ĂM
LGS_HM

. . . //

doors = OPENING

gears = EXTENDED

openDoorsEV = true

doorsOpen = false

timeout = false

anomaly = false

...

”

KS

//

doors = OPENING

gears = EXTENDED

openDoorsEV = true

doorsOpen = false

timeout = true

anomaly = false

...

”

KS

//

doors = OPENING

gears = EXTENDED

openDoorsEV = true

doorsOpen = false

timeout = true

anomaly = true

...

”

KS

//

doors = OPENING

gears = EXTENDED

openDoorsEV = true

doorsOpen = false

timeout = true

anomaly = true

...

”

KS

// . . .

Fig. 9: Fourth re�nement � Example of re�ned run

rule r_retractionSequence =
if gears != RETRACTED then

switch doors
...
case OPEN:

switch gears
//ERROR: It should be "gears := RETRACTED"
case RETRACTING: gears := EXTENDED
...

Code 7: Wrong ground model � Error in r_retraction-

Sequence

environment) is violated, the simulator asks for another
(valid) set of monitored values: in this case, the user has
provided a set of inputs that cannot be observed in the
environment (e.g., sensors doorsClosed and doorsOpen

both turned on at the same time).

Interactive In an interactive simulation, at each step the
user is asked for the values of the monitored functions.

By interactive simulation we were able to identify
an error in a preliminary version of the ground model
LGS_GM (see Code 2). Fig. 10 shows the simulation
trace of the wrong model (shown in Code 7). The error
was due to the fact that, during a retraction sequence,
the gears became EXTENDED instead of RETRACTED. Fig. 11
shows the simulation, over the correct ground model, of
the complete retraction sequence.

Random In random simulation, the simulator itself ran-
domly chooses the values for monitored functions. Such
kind of simulation is particularly useful because it does
not require the user intervention and possibly permits
to �nd consistency violations (i.e., inconsistent updates)
and/or invariant violations with ease.

Scenario-based validation In scenario-based validation
the designer provides a set of scenarios specifying the
expected behavior of the models (using the textual no-
tation Avalla). These scenarios are used for validation

scenario lgsGround1
load LGS_GM.asm

set handle := UP;
step
check doors = OPENING and gears = EXTENDED;

set handle := UP;
step
check doors = OPEN and gears = EXTENDED;

set handle := UP;
step
check doors = OPEN and gears = RETRACTING;

set handle := UP;
step
check doors = OPEN and gears = RETRACTED;

Code 8: Scenario reproducing the simulation that leads
to the error

by instrumenting the simulator AsmetaS. During simula-
tion, AsmetaV captures any check violation and, if none
occurs, it �nishes with a PASS verdict. Avalla provides
constructs to express execution scenarios in an algorith-
mic way as interaction sequences consisting of actions
committed by the user to set the environment (i.e., the
values of monitored/shared functions), to check the ma-
chine state, to ask for the execution of certain transition
rules, and to enforce the machine itself to make one step
(or a sequence of steps by command step until) as re-
action of the actor actions.

We have built several scenarios describing di�erent
con�gurations of the LGS. For example, Code 8 shows
the scenario for the ground model in which, before each
step, the value of the monitored function handle is set
to UP, and, after the simulation step, the values of func-
tions doors and gears are checked. Such scenario re-
produces the situation that brings to the error described
previously. The scenario execution consists in a simula-
tion, similar to that seen in Fig. 10. However, the sim-
ulation is not interactive, since the values of the moni-
tored functions are set according to the values speci�ed

12 Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code

Insert a symbol of HandleStatus
in [UP, DOWN] for handle:
UP
<State 0 (monitored)>
handle = UP
</State 0 (monitored)>
<State 1 (controlled)>
doors = OPENING
gears = EXTENDED
</State 1 (controlled)>

Insert a symbol of HandleStatus
in [UP, DOWN] for handle:
UP
<State 1 (monitored)>
handle = UP
</State 1 (monitored)>
<State 2 (controlled)>
doors = OPEN
gears = EXTENDED
</State 2 (controlled)>

Insert a symbol of HandleStatus
in [UP, DOWN] for handle:
UP
<State 2 (monitored)>
handle = UP
</State 2 (monitored)>
<State 3 (controlled)>
doors = OPEN
gears = RETRACTING
</State 3 (controlled)>

Insert a symbol of HandleStatus
in [UP, DOWN] for handle:
UP
<State 3 (monitored)>
handle = UP
</State 3 (monitored)>
<State 4 (controlled)>
doors = OPEN
gears = EXTENDED
</State 4 (controlled)>

Fig. 10: Simulation of the wrong ground model

Insert a symbol of HandleStatus
in [UP, DOWN] for handle:
UP
<State 0 (monitored)>
handle = UP
</State 0 (monitored)>
<State 1 (controlled)>
doors = OPENING
gears = EXTENDED
</State 1 (controlled)>
Insert a symbol of HandleStatus
in [UP, DOWN] for handle:
UP
<State 1 (monitored)>
handle = UP
</State 1 (monitored)>
<State 2 (controlled)>
doors = OPEN
gears = EXTENDED
</State 2 (controlled)>

Insert a symbol of HandleStatus
in [UP, DOWN] for handle:
UP
<State 2 (monitored)>
handle = UP
</State 2 (monitored)>
<State 3 (controlled)>
doors = OPEN
gears = RETRACTING
</State 3 (controlled)>
Insert a symbol of HandleStatus
in [UP, DOWN] for handle:
UP
<State 3 (monitored)>
handle = UP
</State 3 (monitored)>
<State 4 (controlled)>
doors = OPEN
gears = RETRACTED
</State 4 (controlled)>

Insert a symbol of HandleStatus
in [UP, DOWN] for handle:
UP
<State 4 (monitored)>
handle = UP
</State 4 (monitored)>
<State 5 (controlled)>
doors = CLOSING
gears = RETRACTED
</State 5 (controlled)>
Insert a symbol of HandleStatus
in [UP, DOWN] for handle:
UP
<State 5 (monitored)>
handle = UP
</State 5 (monitored)>
<State 6 (controlled)>
doors = CLOSED
gears = RETRACTED
</State 6 (controlled)>

Fig. 11: Simulation of the correct ground model � Complete retraction sequence

<State 1 (controlled)>
doors = OPENING
gears = EXTENDED
handle = UP
</State 1 (controlled)>
"check succeeded: doors = OPENING and gears = EXTENDED"
<State 2 (controlled)>
doors = OPEN
gears = EXTENDED
handle = UP
</State 2 (controlled)>
"check succeeded: doors = OPEN and gears = EXTENDED"
<State 3 (controlled)>
doors = OPEN
gears = RETRACTING
handle = UP
</State 3 (controlled)>
"check succeeded: doors = OPEN and gears = RETRACTING"
<State 4 (controlled)>
doors = OPEN
gears = EXTENDED
handle = UP
</State 4 (controlled)>
"CHECK FAILED: doors = OPEN and gears = RETRACTED at step 4"

Fig. 12: Execution of the scenario shown in Code 8 over
the wrong ground model

in the scenario. Moreover, the scenario execution also
checks the speci�ed assertions. Fig. 12 shows the output
of the scenario execution over the faulty ground model;
we can notice that, in the fourth step, the speci�ed asser-
tion has been violated. We have later executed the sce-
nario over the correct model and all the assertion checks
have been successful. Scenarios may be thought as use

cases that drive the development of the model in a sort
of Behaviour-Driven Development: a model is enhanced
and/or �xed until all the scenarios execute without fail-
ures.

6.2 Static analysis

The aim of model review is to determine if a model
is of su�cient quality to be easy to develop, maintain,
and enhance. This technique allows to identify defects
early in the system development, reducing the cost of
�xing them, so it should be applied also on models just
sketched. The AsmetaMA tool [3] (based on AsmetaSMV)
allows automatic review of ASMs. Typical vulnerabilities
and defects that can be introduced during the modeling
activity using ASMs are checked as violations of suitable
meta-properties (MPs, de�ned in [3] as CTL formulae).
The violation of a meta-property means that a quality
attribute (minimality, completeness, consistency) is not
guaranteed, and it may indicate the presence of an ac-
tual fault (i.e., the ASM is indeed faulty), or only of a
stylistic defect (i.e., the ASM could be written in a bet-
ter way). An inconsistent update (meta-property MP1),
for example, is a signal of a real fault in the model; the
presence of functions that are never read nor updated
(meta-property MP7), instead, may simply indicate that
the model is not minimal, but not that it is faulty.

Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code 13

During the development process, we have detected
several de�ciencies of our models. Most of them regarded
minimality violations and indicated some stylistic viola-
tions, but not real faults. For example, in the �rst re�ne-
ment LGS_EV (see Code 3), the model advisor signals
that functions cylDoors and cylGears are never read
(violation of meta-property MP7), and, therefore, are
useless. Indeed, in that re�nement step we have added
the cylinders only for documentation purposes, but they
could be omitted from the model, since their status is
given by a straightforward relation with the status of
the doors/gears.

However, we have also found some faults in our mod-
els. For example, a preliminary version of the ground
model LGS_GM contained an error, as shown in Code 7
(the same error we found by simulation in Section 6.1).
Indeed, during a retraction sequence, the gears became
EXTENDED instead of RETRACTED. The model advisor has
discovered two meta-property violations for the same
model:

� MP5 requires that, for every domain element e, there
exists a location which has value e. In the faulty
model, MP5 is violated since element RETRACTED of
domain GearStatus is never used.

� MP6 requires that every controlled location can take
any value in its codomain. In the faulty model, MP6

is violated since function gears does not take the
value RETRACTED of its codomain.

Obviously, both meta-property violations are caused by
the same error in the model. Note that behavioral faults
often reveal themselves as stylistic defects and, therefore,
they can be captured by the model advisor.

6.3 Property veri�cation

As further analysis activity, we have veri�ed the speci�-
cations through model checking. AsmetaSMV [2] is a tool
that translates ASM speci�cations into models of the
NuSMV model checker, and thus it allows the veri�ca-
tion of Computation Tree Logic (CTL) and Linear Tem-
poral Logic (LTL) formulae. Invariants speci�ed over the
controlled part of the model are translated as invariant
speci�cations that specify properties that must always
hold in the NuSMV model; invariants speci�ed over the
monitored part of the model, instead, are translated as
invariant constraints that constraint the set of reachable
states in the NuSMV model.

We have veri�ed the requirements reported in [14].
Each requirement has been speci�ed as an LTL property
and proved as soon as possible in the chain of re�ne-
ments, i.e., in the �rst model describing all the elements
involved in the requirement.

Ground model In the ground model LGS_GM (see Code 2)
we have been able to verify four normal mode require-
ments among those reported in the case study: R11bis,
R12bis, R21, and R22.

´´ speci�cation G (G handle = UP ´>
F (doors = CLOSED & gears = RETRACTED)) is false
´´ as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
´> State: 3.1 <´
doors = CLOSED
gears = EXTENDED
handle = DOWN
´> State: 3.2 <´
handle = UP
´> State: 3.3 <´
doors = OPENING
´´ Loop starts here
´> State: 3.4 <´
doors = OPEN
´> State: 3.5 <´
gears = RETRACTING
´> State: 3.6 <´
gears = EXTENDED

Fig. 13: Counterexample showing the falsi�cation of
property R12bis over the faulty ground model

g(g(handle = DOWN) implies
f(gears = EXTENDED and doors = CLOSED)) //R11bis

g(g(handle = UP) implies
f(gears = RETRACTED and doors = CLOSED)) //R12bis

g(g(handle = DOWN) implies x(g(gears != RETRACTING))) //R21

g(g(handle = UP) implies x(g(gears != EXTENDING))) //R22

For example, requirement R12bis requires that when the
command line is working (normal mode), if the land-
ing gear command handle has been pushed UP and stays
UP, then eventually the gears will be locked retracted and
the doors will be seen closed. In the preliminary faulty
ground model (see Code 7), such property is falsi�ed
since the gears never become RETRACTED. As counterex-
ample, the model checker returns the trace shown in
Fig. 13. Note that this fault has also been discovered
with simulation and model review. However, more com-
plicated faults may be di�cult to �nd with those valida-
tion techniques and only veri�cation could reveal them.

LGS_EV In the �rst re�nement LGS_EV (see Code 3),
we have been able to verify �ve more normal mode re-
quirements: R31, R32, R41, R42, and R51.

g((extendGearsEV or retractGearsEV) implies doors = OPEN) //R31

g((openDoorsEV or closeDoorsEV) implies
(gears = RETRACTED or gears = EXTENDED)) //R32

g(not(openDoorsEV and closeDoorsEV)) //R41

g(not(extendGearsEV and retractGearsEV)) //R42

g((openDoorsEV or closeDoorsEV or
extendGearsEV or retractGearsEV) implies generalEV) //R51

For example, requirement R31 requires that, when the
command line is working (normal mode), the stimulation
of the gears outgoing or the retraction electro-valves can
only happen when the three doors are locked open.

LGS_SE The introduction of the sensors in the second
re�nement LGS_SE (see Code 4) did not allow us to

14 Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code

prove any further requirement, but required us to add
some constraints to the model. The sensors are used
to check that the doors have become open/closed and
that the gears have become extended/retracted. Tempo-
ral properties for R11bis and R12bis are falsi�ed in the
�rst re�nement because there are some execution runs
in which the sensors are never turned on. Therefore, we
need to add to the model �ve justice constraints (also
called fairness constraints), specifying that the sensors
must be true in�nitely often.

JUSTICE gearsExtended
JUSTICE gearsRetracted
JUSTICE doorsClosed
JUSTICE doorsOpen
JUSTICE gearsShockAbsorber

Note that the need to modify some temporal properties
or to add some fairness constraints has also been dis-
cussed in [32], where the ProB model checker is used to
prove properties over Event-B speci�cations of the LGS.

LGS_HM In the fourth re�nement LGS_HM, we have
modi�ed the justice constraints because we want to model
sensor misbehaviors when they keep their values un-
changed. However, we cannot simply remove the jus-
tice constraints. We must still assure that each sensor
is repeatedly turned on unless the timeout occurs (and
therefore the anomaly is detected). An exception is the
gearsShockAbsorber which is not subject to timeout.
The modi�ed constraints follow.

JUSTICE gearsExtended or timeout
JUSTICE gearsRetracted or timeout
JUSTICE doorsClosed or timeout
JUSTICE doorsOpen or timeout
JUSTICE gearsShockAbsorber

For this re�nement, we have been able to verify the fail-
ure mode requirements R61, R62, R63, R64, R71, R72,
R73, and R74.

g((openDoorsEV and aDoorClosed and timeout) implies
x(g(anomaly))) //R61

g((closeDoorsEV and aDoorOpen and timeout) implies
x(g(anomaly))) //R62

g((retractGearsEV and aGearExtended and timeout) implies
x(g(anomaly))) //R63

g((extendGearsEV and aGearRetracted and timeout) implies
x(g(anomaly))) //R64

g((openDoorsEV and not(doorsOpen) and timeout) implies
x(g(anomaly))) //R71

g((closeDoorsEV and not(doorsClosed) and timeout) implies
x(g(anomaly))) //R72

g((retractGearsEV and not(gearsRetracted) and timeout) implies
x(g(anomaly))) //R73

g((extendGearsEV and not(gearsExtended) and timeout) implies
x(g(anomaly))) //R74

For example, requirement R61 requires that, if one of
the three doors is still seen locked in the closed posi-
tion more than 7 seconds after stimulating the opening
electro-valve, then the boolean output normal mode is set
to false.

The introduction of the health monitoring system has
falsi�ed the properties speci�ed for requirements R11bis,

R12bis, R21, and R22, requiring that, if the handle re-
mains UP (or DOWN), the doors and the gears will reach
a given con�guration and never assume other con�gura-
tions. Those properties were speci�ed for a model with-
out the health monitoring system, so assuming that the
system always evolves; in the current re�nement, since
the occurrence of an anomaly blocks the evolution of the
system, those properties do not hold anymore. Therefore,
in this model we need to specify that those requirements
hold only in normal mode, as follows:

g(g(handle = DOWN and not(anomaly)) implies
f(gears = EXTENDED and doors = CLOSED)) //R11bis

g(g(handle = UP and not(anomaly)) implies
f(gears = RETRACTED and doors = CLOSED)) //R12bis

g(g(handle = DOWN and not(anomaly)) implies
x(g(gears != RETRACTING))) //R21

g(g(handle = UP and not(anomaly)) implies
x(g(gears != EXTENDING))) //R22

7 Conformance checking

In this section we show the last step of the development
process, i.e., the development of an implementation for
the LGS, and the checking of the conformance of the
implementation w.r.t. the speci�cation. We propose two
approaches for checking the conformance: an o�ine ap-
proach based on testing, and an online approach based
on runtime veri�cation.

Code 9 shows the Java implementation that has been
developed as last step of low-level re�nement starting
from LGS_HM. The program is implemented as a Ti-

merTask, i.e., a task that can be scheduled to be repeat-
edly executed with a given frequency. In our case, we ex-
ecute the program (i.e., the runmethod) every half a sec-
ond. The program retrieves the values from the sensors
(by the method getSensorValues) and, if no anomaly
has been previously found, executes a check of the sys-
tem and updates its internal state according to the po-
sition of the handle (by the method checkAndUpdate).

7.1 Linking Java code and ASM speci�cations

Linking a Java code with its ASM formal speci�cation
permits to establish a conformance relation between the
implementation the its model. In the following, we pro-
vide an informal description of a technique we have pro-
posed in [4] to link ASM to Java code.

We use Java annotations to establish this link; Java
annotations are meta-data tags that can be used to add
some information to code elements as class declarations,
�eld declarations, etc. In addition to the standard ones,
annotations can be de�ned by the user similarly as clas-
ses. For our purposes, we have de�ned a set of anno-
tations [4]. The retention policy (i.e., the way to signal
how and when the annotation can be accessed) of all our
annotations is runtime: annotations can be read by the

Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code 15

import org.asmeta.monitoring.∗;

@Asm(asmFile = "models/LGS_HM.asm")
public class LandingGearSystem extends TimerTask {

private GearStatus gearsStatus;
private DoorStatus doorsStatus;
@Monitored(func = "doorsOpen", args = {"FRONT"})
boolean doorsOpenFront;
@Monitored(func = "doorsOpen", args = {"LEFT"})
boolean doorsOpenLeft;
@Monitored(func = "doorsOpen", args = {"RIGHT"})
boolean doorsOpenRight;
...
@Monitored(func = "sensorTimeout")
boolean sensorTimeout;
private boolean anomaly;
private boolean generalEV;
...

public LandingGearSystem() { ... }

@Override
public void run() {

getSensorValues();
checkAndUpdate();

}

private void getSensorValues() { //sensor values retrieval
}

@RunStep
public void checkAndUpdate() {

if (!anomaly) {
healthMonitoring();
if(handle == HandleStatus.UP)

moveHandleUp();
else

moveHandleDown();
}

}

private void moveHandleUp() { ... }
private void moveHandleDown() { ... }
private void healthMonitoring() { ... }

@MethodToFunction(func = "doors")
public DoorStatus getDoorsStatus() {

return doorsStatus;
}

@MethodToFunction(func = "gears")
public GearStatus getGearsStatus() {

return gearsStatus;
}

public static void main(String[] args) {
LandingGearSystem lgs = new LandingGearSystem();
new Timer().scheduleAtFixedRate(lgs, 500, 500);

}
}

Code 9: Java implementation of the Landing Gear Sys-
tem

compiler and by any program through re�ection. In the
tools developed for supporting our model-based testing
and runtime veri�cation approaches, we read the annota-
tions in order to discover the relation between the ASM
and the Java code.

In order to link a Java class with its corresponding
ASM speci�cation, �rst the class must be annotated with
the annotation @Asm, having the path of the ASM model
as string attribute (asmFile). The Java class Landing-
GearSystem (Code 9) is linked to the ASM speci�cation
LGS_HM (Code 6).

Then the class data must be connected with the sig-
nature of the ASM. A �eld of the Java class can be con-
nected with a function/location of the ASM, through
the �eld annotation @FieldToFunction; the annotation
has a mandatory attribute func for specifying the func-
tion name, and an optional attribute args, for specify-
ing the arguments' values (if one wants to connect the
�eld to a speci�c location). Moreover, it is also possible
to link a pure method6 with a function/location, using
the method annotation @MethodToFunction, having the
same attributes of @FieldToFunction. In our case, pure
methods getDoorsStatus and getGearsStatus are re-
spectively linked to functions doors and gears. Linked
�elds (those annotated with @FieldToFunction) and
linked methods (those annotated with @MethodToFunc-

tion) constitute the observed Java state. In the case
study, the observed Java state is given by the methods
getDoorsStatus and getGearsStatus.

In a Java class some �elds take their values from
input streams (e.g., �le, socket, etc.). Such �elds can
be linked to monitored functions using the annotation
@Monitored which has the same attributes of @Field-
ToFunction. In this way, the monitored functions mimic
the behavior of the input streams (they act as mock
objects). In our case study, all the �elds representing
the sensor values are connected with the sensor locations;
for example, the �eld doorsOpenFront is linked with the
location doorsOpen(FRONT).

Finally, the execution of the Java code must be linked
with an execution (i.e., a run) of the ASM. The an-
notation @StartMonitoring is used to select one con-
structor7 which builds the desired observed initial state
of the object. The annotation @RunStep, instead, per-
mits to identify a method (called changing method) that
changes the observed state, i.e., the values of the linked
�elds and the return values of the linked pure methods8.
In our case study, method checkAndUpdate is a changing
method.

Both linked constructors and linked changing meth-
ods can have some parameters, that can be linked to
the ASM as well. The annotation @Param can be used to
link parameters to monitored functions/locations of the
ASM; similarly to @FieldToFunction, it has a manda-
tory attribute func and an optional attribute args to
identify an ASM function/location. In our case study,

6 Pure methods are side e�ect free methods with respect to the
object/program state. They return a value but do not assign values
to �elds.
7 We do not consider the default constructor. If the class does

not have any constructor, the user has to specify an empty con-
structor and annotate it with @StartMonitoring.
8 The user can identify several changing methods, but, in this

case, each changing method must be linked with a di�erent moni-
tored value by the two annotation attributes setFunction, specify-
ing the name of a 0-ary monitored function of the ASM model, and
toValue, specifying a value of the function codomain: setFunction
must identify the same function in all the annotations, while
toValue must assume di�erent values.

16 Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code

the constructor and the changing methods do not have
parameters.

7.2 State and step conformance

The linking previously described allows the following no-
tion of conformance between an instance OC of a class
C and the ASM speci�cation ASMC linked to C.

De�nition 3 (State conformance). We say that a
state sJ of OC conforms to a state sA of ASMC , i.e.,
confpsJ , sAq, if all the observed elements of C (�elds
annotated with @FieldToFunction and methods anno-
tated with @MethodToFunction) have values in OC con-
forming to the values of the functions in ASMC linked
to them.

Intuitively, the Java state and the ASM state are con-
formant, if the values of the linked �elds and the values
returned by linked pure methods are equal to the values
of the corresponding ASM functions/locations.

De�nition 4 (Step conformance). Given the execu-
tion of a changing method m (i.e., a method annotated
with @RunStep) and a step of simulation of the ASM, we
say that the Java step (sJ , s

1
J) and the ASM step (sA,

s1A) are conformant if conf psJ , sAq and confps
1
J , s

1
Aq.

ASMC sA
simulation step // s1A

OC sJ

conf

OO

invocation of changing method m // s1J

conf

OO

Intuitively, a Java object is step conformant with the
corresponding ASM speci�cation, if their states are con-
formant before and after the changing method execution
and the ASM simulation step.

7.3 O�ine testing

Model-based conformance testing [33,43] of reactive sys-
tems consists in taking bene�t from the model for mech-
anizing both test data generation and verdicts compu-
tation (i.e., to solve the oracle problem). In o�ine ap-
proaches, test suites are pre-computed from the model
and stored under a format that can be later executed on
the System Under Test (SUT). The model can be used
both to guide the test generation, in order to discover
which aspects of the model must be covered, and to de-
cide when to stop testing, when coverage of the model
has reached a certain level.

A classical technique to generate tests from mod-
els exploits the use of model checkers. In this case, the
model of the system is translated to the language of the
model checker, and a suitable property (called trap prop-
erty) is proved false by the model checker by means of a

counterexample. This counterexample represents a pos-
sible system behavior and it can be translated to a test
through a concretization process.

For ASMs, we have developed a tool, called ATGT [29],
which is capable of generating tests from ASMs following
several testing criteria [28], like rule coverage, update
rule coverage, parallel rule coverage, etc. For example, a
test suite satis�es the rule coverage criterion if, for every
rule ri, there exists at least one state in a test sequence
in which ri �res, and there exists at least one state in a
test sequence (possibly di�erent from the previous one)
in which ri does not �re.

7.3.1 Test generation

We have used ATGT to generate tests from model LGS_HM
(see Code 6), using the basic rule coverage (BRC) and
the update rule coverage (URC). BRC requires that ev-
ery rule is executed at least once, while URC requires
that every update is executed at least once without be-
ing trivial, i.e., by actually changing the value of the
location that it updates. For every coverage goal (e.g., a
rule to execute in BRC), ATGT computes a test predicate
which is a predicate over the state of the machine, repre-
senting the condition that must be reached to cover that
particular goal. For instance, the basic rule coverage of
the update rule doors := OPENING (when the doors are
CLOSING) in rule r_retractionSequence is speci�ed by
the following test predicate:

BR_r_Main_TTBR_r_retractionSequence_T_CLOSING_T1:
not(anomaly) and handle = UP and gears != RETRACTED and
doors = CLOSING

ATGT has derived, for the entire speci�cation, 116
test predicates (62 for the BRC and 54 for the URC).
For every test predicate tp, ATGT has built, if possible,
an abstract test sequence, which is a valid sequence of
states, leading to a state where tp becomes true. ATGT
exploits the SPIN model checker and its capability to
produce counterexamples upon property violations. If a
test predicate cannot be covered, we say that it is unfea-
sible and it means that there is no valid system behavior
that can cover that case. Unfeasible test predicates must
be discarded and no longer considered. For the LGS, we
found no unfeasible test predicates.

In order to reduce the test suite size, ATGT can per-
form a coverage evaluation of the tests, by checking if
a test sequence, generated for a test predicate, uninten-
tionally covers also other test predicates. Without cov-
erage evaluation, ATGT produces 116 test sequences (one
for each test predicate), while, with coverage evaluation,
ATGT produces only 22 test sequences.

7.3.2 Test concretization

We here use a technique, originally introduced in [5], that
derives, from each abstract test sequence ATS, a con-
crete Java test (a JUnit test), consisting of a sequence of

Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code 17

method calls with suitable checks (i.e., asserts). The test
concretization leverages the linking between the Java
class and the ASM (see Section 7.1), and the de�ni-
tions of state conformance (Def. 3) and step conformance
(Def. 4).

The technique �rst identi�es the constructor anno-
tated with @StartMonitoring, builds an instance of the
class, and associates it to the reference variable sut. For
example, given a class C whose constructor without pa-
rameters is annotated with @StartMonitoring, the pro-
duced statement is

C sut = new C();

If the constructor has some parameters, these must be
annotated with @Param. The technique identi�es the ac-
tual parameters to use in the object instantiation by
reading, in the �rst state of the abstract test sequence,
the values of the monitored functions that are linked
with the parameters.

Then, for each state of the ATS, three sets of instruc-
tions are added to the test: the setting of the monitored
�elds, the execution of the changing method, and the
checking of the conformance of the observed state.

Monitored variables setting Before calling the chang-
ing method, the inputs of the program must be set.
Fields annotated with @Monitored are updated with the
value of the function linked in the annotation. For ex-
ample, if a �eld mf is linked to a function whose value is
v in the current state, the following statement is built:

sut.mf = v;

Step execution If there is only one changing method
cm, that method is called as follows:

sut.cm();

Otherwise, if there are several changing methods, the
value v of the monitored function/location linked in the
@RunStep annotations identi�es what method must be
called (the method having value v in the annotation ar-
gument toValue). In our case study, there is only one
changing method (i.e., checkAndUpdate) that, therefore,
is always called. The (possible) actual parameters in the
method invocation are �xed by the values of the moni-
tored functions/locations linked in the @Param annota-
tions of the method formal parameters.

Observed state checking After each method invo-
cation (and after the object instantiation), the oracle is
built, exploiting the annotations @FieldToFunction and
@MethodToFunction:

� given an observed function/location (i.e., linked with
the annotation @FieldToFunction/@MethodToFunc-
tion), we obtain its value v from the ATS ;

� if the annotation annotates a �eld of, we build the
following assertion

Fig. 15: The CoMA runtime monitor for Java

assertEquals(v, sut.of);

which states that the value of sut.of must be equal
to v; if the values are not equal, the test fails and a
conformance violation has been found;

� if the annotation annotates a pure method om, we
build an assertion as follows:

assertEquals(v, sut.om());

which states that the value returned by sut.om()

must be equal to v; as before, if the values are not
equal, the test fails and a conformance violation has
been found.

Fig. 14 shows the translation of the ATS built for cov-
ering the test predicate BR_r_Main_TTBR_r_retraction-
Sequence_T_OPENING_TT1 in a JUnit test case. The
abstract test sequence and the test are splitted in the
three iterative replicated phases. Note that not all con-
trolled functions are linked to the observed Java state;
therefore, some controlled functions of the ASM state
are not considered in the conformance checking phase.

For the LGS case study, we have translated the 22
test sequences in JUnit test cases; the execution of the
test suite covers 96.9% of the program instructions and
72.3% of the branches.

7.4 Runtime veri�cation

Although a model-based testing approach as that de-
scribed in Section 7.3 can give enough con�dence that
the implementation is correct, for safety-critical systems
as the LGS, we may want to continue checking the con-
formance of the implementation with respect to its spec-
i�cation also after the deployment.

In [4], we proposed CoMA, a runtime veri�cation ap-
proach for Java code using ASMs. The schema of the
proposed runtime framework is shown in Fig. 15. The
monitor is composed of: an observer that evaluates when
the Java (observed) state is changed (1), and leads the
abstract ASM to perform a machine step (2), and an an-
alyzer that evaluates the step conformance between the
Java execution and the ASM simulation (3). When the
monitor detects a violation of conformance, it reports the
error. It can also produce a trace in form of counterex-
ample, which may be useful for debugging. Note that the
use of CoMA can be twofold, since also faults in the spec-
i�cation can be discovered by monitoring the software.
For instance, by analysing and re-executing counterex-
amples, faults in the model can be exposed.

18 Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code

Abstract Test Sequence JUnit test case
@Test
public void test03() {
LandingGearSystem sut = new LandingGearSystem();

´´´´ state 0 ´´´´´
´´ controlled ´´
gears = EXTENDED
doors = CLOSED

Observed state checking (init) Ñ
assertEquals(DoorStatus.CLOSED, sut.getDoorsStatus());
assertEquals(GearStatus.EXTENDED, sut.getGearsStatus());

openDoorsEV = false
closeDoorsEV = false
extendGearsEV = false
retractGearsEV = false
generalEV = false
anomaly = false

´´ monitored ´´
doorsOpen(FRONT) = true
doorsOpen(LEFT) = true
doorsOpen(RIGHT) = false
doorsClosed(FRONT) = true
doorsClosed(LEFT) = true
doorsClosed(RIGHT) = true
gearsExtended(FRONT) = false
gearsExtended(LEFT) = true
gearsExtended(RIGHT) = false
gearsRetracted(FRONT) = true
gearsRetracted((LEFT)) = true
gearsRetracted(RIGHT) = false
gearsShockAbsorber(FRONT) = false
gearsShockAbsorber(LEFT) = true
gearsShockAbsorber(RIGHT) = false
sensorTimeout = false
handle = UP

Monitored �elds setting
(�rst step)

Ñ
sut.doorsOpenFront = true;
sut.doorsOpenLeft = true;
sut.doorsOpenRight = false;
sut.doorsClosedFront = true;
sut.doorsClosedLeft = true;
sut.doorsClosedRight = true;
sut.gearsExtendedFront = false;
sut.gearsExtendedLeft = true;
sut.gearsExtendedRight = false;
sut.gearsRetractedFront = true;
sut.gearsRetractedLeft = true;
sut.gearsRetractedRight = false;
sut.gearsShockAbsorberFront = false;
sut.gearsShockAbsorberLeft = true;
sut.gearsShockAbsorberRight = false;
sut.sensorTimeout = false;
sut.handle = HandleStatus.UP;

´´´´ state 1 ´´´´´
Step execution (�rst step) Ñ

sut.checkAndUpdate();

´´ controlled ´´
doors = OPENING

Observed state checking
(�rst step)

Ñ
assertEquals(DoorStatus.OPENING, sut.getDoorsStatus());
assertEquals(GearStatus.EXTENDED, sut.getGearsStatus());

openDoorsEV = true
generalEV = true

´´ monitored ´´
doorsOpen(FRONT) = false
doorsClosed(RIGHT) = false
gearsRetracted(LEFT) = false
gearsRetracted(RIGHT) = true
gearsShockAbsorber(FRONT) = true
handle = DOWN

Monitored �elds setting
(second step)

Ñ
sut.doorsOpenFront = false;
sut.doorsClosedRight = false;
sut.gearsRetractedLeft = false;
sut.gearsRetractedRight = true;
sut.gearsShockAbsorberFront = true;
sut.handle = HandleStatus.DOWN;

´´´´ state 2 ´´´´´
Step execution (second step) Ñ

sut.checkAndUpdate();

´´ controlled ´´
doors = CLOSING

Observed state checking
(second step)

Ñ
assertEquals(DoorStatus.CLOSING, sut.getDoorsStatus());
assertEquals(GearStatus.EXTENDED, sut.getGearsStatus());

openDoorsEV = false
closeDoorsEV = true

´´ monitored ´´
handle = UP

Monitored �elds setting
(third step)

Ñ
sut.handle = HandleStatus.UP;

´´´´ state 3 ´´´´´
Step execution (third step) Ñ

sut.checkAndUpdate();

´´ controlled ´´
doors = OPENING

Observed state checking
(third step)

Ñ
assertEquals(DoorStatus.OPENING, sut.getDoorsStatus());
assertEquals(GearStatus.EXTENDED, sut.getGearsStatus());
}

openDoorsEV = true
closeDoorsEV = false

Fig. 14: Test concretization of the ATS obtained for the test predicate BR_r_Main_TTBR_r_retractionSequence_-
T_CLOSING_T1

Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code 19

Technique Total test length Coverage Fault detection
statement branch F1 F2 F3

O�ine testing 93 steps (22 tests) 96.9% 72.3% NO YES YES

50 55.6% 31.1% 2% 12% 69%
CoMA 500 75.2% 52.4% 2% 81% 100%
with random inputs 5000 83.2% 60.3% 3% 100% 100%

50000 83.4% 60.5% 4% 100% 100%

Table 1: Coverage and fault detection

The technique exploits the linking described in Sec-
tion 7.1 and the de�nitions of state conformance (Def. 3)
and step conformance (Def. 4). In the following, we give
the de�nition of runtime conformance.

De�nition 5 (Runtime conformance). Given a Java
class C, an object of C OC , and and ASM speci�cation
ASMC , we say that C is runtime conforming to ASMC

if the following conditions hold:

1) the initial state s0J of the computation of OC conforms
to one and only one initial state s0A of the computa-
tion of ASMC , i.e., D! s

0
A initial state of ASMC such

that conf ps0J , s
0
Aq;

2) for every Java step psJ , s
1
Jq induced by the execution

of a changing method m, D! psA, s
1
Aq step of ASMC

with sA the current state of ASMC , such that the
two steps are conformant.

The runtime framework has been implemented using
AspectJ [35]. By means of an aspect, AspectJ allows to
specify di�erent pointcuts, i.e., points of the program ex-
ecution one wants to capture. For each pointcut, it is pos-
sible to specify an advice, i.e., the actions that must be
executed when a pointcut is reached (before or after the
execution of the code speci�ed by the pointcut). In our
runtime framework, we have de�ned some pointcuts for
identifying the instantiation of a class under monitoring
(when a constructor annotated with @StartMonitoring

is called) and the execution of a changing method (i.e., a
method annotated with @RunStep). Moreover, for each
pointcut we have de�ned an advice actually implement-
ing the monitoring:

� when a monitored object is instantiated, the corre-
sponding advice creates an instance of the ASM sim-
ulator AsmetaS;

� when a changing method is executed, the correspond-
ing advice forces a step of simulation of the ASM, and
it checks the conformance between the obtained Java
state and the ASM states that can be reached in one
step.

7.5 Experimental results

We have executed some experiments for measuring the
coverage and the fault detection achieved by the model-

based testing approach and the runtime veri�cation ap-
proach. For model-based testing, we have used the test
suite obtained in Section 7.3.2, consisting of 22 tests hav-
ing a total length of 93 steps. For runtime veri�cation,
we have executed the monitored class for an increasing
number of steps (50, 500, 5000, and 50000), randomly
choosing the sensors' values, and allowing the timeout
to occur only in the last ten steps; since sensors' values
are randomly chosen, each experiment of runtime veri-
�cation has been executed for 100 runs and the results
are the average over the runs.

Table 1 reports the results of the experiments. We
have measured the statement and the branch covera-
ge of both techniques over a correct implementation of
the case study. O�ine testing has better statement and
branch coverage than CoMA (with any setting): this out-
come is expected, since in model-based testing the tests
are derived with the aim of maximizing the coverage over
the model and, usually, there is a direct relationship be-
tween the coverage of the model and the coverage of the
implementation.

For measuring the fault detection, we have used three
faulty versions of the implementation that we actually
produced during the development process: version F1

wrongly retrieves the values coming from the sensors re-
lated to door opening, version F2 wrongly updates the
status of the gears, and version F3 does not contain a
break statement in a switch statement. O�ine testing
can detect faults F2 and F3, but not F1. Di�erent runs
of CoMA can either �nd or not �nd a given fault. Fault
F1 is particularly hard to �nd, and CoMA (with the best
setting) detects it only 4% of the times; note that, how-
ever, o�ine testing is not able to discover F1 because the
produced tests do not exercise the code necessary for
discovering the conformance deviation. The other two
faults, instead, can always be discovered by CoMA with
a su�cient number of steps.

8 Related work

Abstract State Machines (ASMs) are a formal method
that has been successfully applied for the high-level de-
sign and analysis in di�erent system areas: de�nition
of industrial standards for programming and modeling

20 Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code

languages [41], design and re-engineering of industrial
control systems, modeling e-commerce and web services,
modeling cloud and adaptive systems, design and anal-
ysis of protocols, architectural design, language design,
veri�cation of compilation schemes and compiler back-
ends, etc. Due to the multiplicity of applications, we pre-
fer to refer to [18] for a complete introduction on the
ASM method and the presentation of the great variety
of its successful applications.

A comparison of the ASM method with other formal
methods is out of the scope of this paper; we refer to [31]
for some comparisons between the ASMs and di�erent
state-based formal methods. However, we take advan-
tage of the landing gear case study to show some analo-
gies/di�erences of our ASM-based development process
w.r.t. other formal methods frameworks and identify pos-
sible future improvements of our process.

The ASMs method provided us a mathematical found-
ed, yet easy to use, notation for reasoning on the require-
ments of the system and developing a correct by con-
struction implementation of the case study. Moreover,
the ASMETA framework allowed us to perform several
validation and veri�cation activities at all re�nement
levels. Another ASM formalization of the LGS has been
proposed in [34]. In that work, ASMs have been used to
carefully analyze the requirements and �nd possible in-
consistencies; however, the lack of tool-support for model
validation and veri�cation only allowed to make hand-
made proofs of the requirements. Tool-support for ASMs
modeling is instead also provided by CoreASM [27], an
extensible plugin-based framework that provides simu-
lation, debugging [23], and aspect orientation [22] facil-
ities.

The use of the re�nement approach helped us to
manage the complexity of the case study. Actually, the
re�nement was guided by the LGS requirements them-
selves, that in [14] are presented with an increasing level
of detail. The particular kind of re�nement we consider
(i.e., stuttering re�nement) allowed us to automatically
prove each re�nement step with the SMT-based tool
AsmRefProver. Formalizations of the LGS based on re-
�nement have been proposed in [32,42,37,38] using the
Event-B method. The main di�erence between the no-
tion of re�nement in ASMs and in Event-B is that re�ne-
ment correctness proof is a central notion of the Event-B
method [1], whereas in ASMs re�nement is a modeling
methodology and its correctness proof is performed after
the modeling phase [39].

In the �rst stages of model development, we found
very useful to simulate our models to understand if we
were developing what we had in mind. Di�erent simu-
lators are available also for other formal notations. The
ProB tool, for example, has been successfully applied to
the simulation (and the model checking) of the LGS case
study in the Event-B method [32]; with respect to our
simulator AsmetaS, ProB has the advantage of also pro-
viding an animator that permits to visually represent the

simulation: this feature is particularly useful since it does
not force the user to read a (possibly long) simulation
trace and can be understood by all the stakeholders.

The model development and the model analysis have
been made possible by the combined use of formal meth-
ods for modeling and for veri�cation. In fact, the behav-
ioral speci�cation is expressed in terms of ASMs, while
the veri�cation of the properties, as well as other forms
of model analysis (e.g., model review), are conducted by
the use of the NuSMV model checker. The advantage,
in our case, is that all methods are integrated in the
same framework, ASMETA, so the user does not need
to worry about translating the ASM speci�cation into
the language of the model checker. The mapping from
an ASM model into a NuSMV model is automatic and
the temporal properties can be directly expressed as part
of the ASM model itself.

Model checking of temporal properties for the LGS
has been also executed in [32,38] over Event-B speci�ca-
tions using the model checker ProB that, as our model
checker AsmetaSMV, supports LTL and CTL properties.

Model checking usually su�ers from the well-known
state explosion problem [21]. Note that our translation
from ASM to NuSMV introduces an overhead that usu-
ally even worsens the state explosion problem; as future
work, in addition to the optimization of the translation
from ASMs to NuSMV, we plan to apply some abstrac-
tions directly at the level of the ASM model, instead
of applying common abstractions (e.g., cone of in�u-
ence [21]) to the obtained NuSMV model. An approach
that tries to mitigate the state explosion problem has
been used in [25], where the requirements of the LGS
case study have been speci�ed with the Context Descrip-
tion Language and veri�ed over Fiacre speci�cations of
the system, using context-aware model checking.

We have not been able to verify real-time properties.
Although reactive timed ASMs [40] have been proposed
for dealing with time in ASMs, they are not supported
by our tools for model analysis. Therefore, for normal
mode requirements R1 (see Section 5.1 in [14]), we veri-
�ed the weaker version. We modeled the time passing by
means of a suitable monitored function timeout which
was enough for achieving the automatic veri�cation of
all the properties regarding failure mode requirements
(see Section 5.2 of [14]). Real-time properties of the LGS
could be instead veri�ed in [13] over Fiacre speci�ca-
tions using the model checker Tina. A formalization of
the LGS case study with an explicitly representation of
time is also provided in [10] using hybrid Event-B ma-
chines.

As novelty aspect, our formal process does not only
focus on the modeling and the veri�cation of the require-
ments, but also comprises the development of the imple-
mentation (seen as last re�nement step): we provide a
technique to link the implementation with the speci�ca-
tion, and we check the conformance using model-based
testing and runtime veri�cation. In most approaches deal-

Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code 21

ing with runtime veri�cation of software, the required
behavior of the system is speci�ed by means of correct-
ness properties [24,26]: temporal logic-based formalisms
are very popular in runtime veri�cation for specifying
these properties [20], especially variants of linear tempo-
ral logic [12]. Instead, the use of operational notations
(as ASMs) for runtime veri�cation has not been inves-
tigated so deeply [11,36]. However, we claim that op-
erational speci�cations o�er some advantages with re-
spect to declarative speci�cations of properties, espe-
cially when designers are more accustomed to them: as
we have shown for the case study, they allow to per-
form validation and veri�cation at the early stages of
system development and permit to trace, by means of
a step-wise model re�nement, the relation between the
speci�cation and the implementation.

9 Conclusions

The paper presents the application of an ASM-based rig-
orous development method to the Landing Gear System
(LGS) case study [14]. A chain of re�ned ASM mod-
els is presented: starting from a high level view of the
system (i.e., the ground model), more detailed models
have been obtained through re�nement. As last step of
the re�nement process, a Java implementation for the
LGS has been developed. Throughout all the develop-
ment process, di�erent validation and veri�cation activ-
ities have been performed, as simulation, model review,
and model checking. Moreover, each re�nement step has
been proved correct using an SMT-based approach. The
correctness of the implementation w.r.t its formal speci-
�cation, instead, has been proved by means of two tech-
niques: model-based testing and runtime veri�cation.

As future work, we plan to improve the support to
re�nement. In particular, we want to provide the user
with a framework in which the re�nement decisions can
be documented and the re�nement proof obligations can
be easily derived from the models (now the user must
specify the locations over which the re�nement proof
obligations must be built). Moreover, we plan to add
some animation facilities to our simulator and support
in�nite-state model checking.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software
Engineering. Cambridge University Press, New York,
NY, USA, 1st edition, 2010.

2. P. Arcaini, A. Gargantini, and E. Riccobene. As-
metaSMV: a way to link high-level ASM models to low-
level NuSMV speci�cations. In Proceedings of the 2nd In-
ternational Conference on Abstract State Machines, Al-
loy, B and Z (ABZ 2010), volume 5977 of Lecture Notes
in Computer Science, pages 61�74. Springer, 2010.

3. P. Arcaini, A. Gargantini, and E. Riccobene. Automatic
Review of Abstract State Machines by Meta-Property
Veri�cation. In C. Muñoz, editor, Proceedings of the
Second NASA Formal Methods Symposium (NFM 2010),
NASA/CP-2010-216215, pages 4�13. NASA, 2010.

4. P. Arcaini, A. Gargantini, and E. Riccobene. CoMA:
Conformance monitoring of Java programs by Abstract
State Machines. In S. Khurshid and K. Sen, editors,
Runtime Veri�cation, volume 7186 of Lecture Notes in
Computer Science, pages 223�238. Springer, 2012.

5. P. Arcaini, A. Gargantini, and E. Riccobene. Combin-
ing model-based testing and runtime monitoring for pro-
gram testing in the presence of nondeterminism. In 2013
IEEE Sixth International Conference on Software Test-
ing, Veri�cation and Validation, Workshops Proceedings,
Luxembourg, March 18-22, 2013, pages 178�187. IEEE,
2013.

6. P. Arcaini, A. Gargantini, and E. Riccobene. Model-
ing and Analyzing Using ASMs: The Landing Gear Sys-
tem Case Study. In F. Boniol, V. Wiels, Y. Ait Ameur,
and K.-D. Schewe, editors, ABZ 2014: The Landing Gear
Case Study, volume 433 of Communications in Computer
and Information Science, pages 36�51. Springer Interna-
tional Publishing, 2014.

7. P. Arcaini, A. Gargantini, and E. Riccobene. Of-
�ine Model-Based Testing and Runtime Monitoring of
the Sensor Voting Module. In F. Boniol, V. Wiels,
Y. Ait Ameur, and K.-D. Schewe, editors, ABZ 2014:
The Landing Gear Case Study, volume 433 of Commu-
nications in Computer and Information Science, pages
95�109. Springer International Publishing, 2014.

8. P. Arcaini, A. Gargantini, and E. Riccobene. Using SMT
for dealing with nondeterminism in ASM-based runtime
veri�cation. ECEASST, 70, 2014.

9. P. Arcaini, A. Gargantini, E. Riccobene, and P. Scan-
durra. A model-driven process for engineering a toolset
for a formal method. Software: Practice and Experience,
41:155�166, 2011.

10. R. Banach. The Landing Gear Case Study in Hybrid
Event-B. In F. Boniol, V. Wiels, Y. Ait Ameur, and K.-
D. Schewe, editors, ABZ 2014: The Landing Gear Case
Study, volume 433 of Communications in Computer and
Information Science, pages 126�141. Springer Interna-
tional Publishing, 2014.

11. M. Barnett and W. Schulte. Runtime veri�cation of
.NET contracts. Journal of Systems and Software,
65(3):199�208, 2003.

12. A. Bauer, M. Leucker, and C. Schallhart. Runtime veri-
�cation for LTL and TLTL. ACM Transactions on Soft-
ware and Methodology (TOSEM), 20, 2011.

13. B. Berthomieu, S. Dal Zilio, and �. Fronc. Model-
Checking Real-Time Properties of an Aircraft Landing
Gear System Using Fiacre. In F. Boniol, V. Wiels,
Y. Ait Ameur, and K.-D. Schewe, editors, ABZ 2014:
The Landing Gear Case Study, volume 433 of Commu-
nications in Computer and Information Science, pages
110�125. Springer International Publishing, 2014.

14. F. Boniol and V. Wiels. The Landing Gear System Case
Study. In F. Boniol, V. Wiels, Y. Ait Ameur, and K.-
D. Schewe, editors, ABZ 2014: The Landing Gear Case
Study, volume 433 of Communications in Computer and
Information Science, pages 1�18. Springer International
Publishing, 2014.

22 Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code

15. F. Boniol, V. Wiels, Y. A. Ameur, and K.-D. Schewe.
ABZ 2014: The Landing Gear Case Study Case Study
Track, Held at the 4th International Conference on Ab-
stract State Machines, Alloy, B, TLA, VDM, and Z
Toulouse, France, June 2-6, 2014, Proceedings. Springer
International Publishing, 2014.

16. E. Börger. The ASM re�nement method. Formal Aspects
of Computing, 15:237�257, 2003.

17. E. Börger. The ASM method for system design and
analysis. A tutorial introduction. In B. Gramlich, edi-
tor, Proceedings of Frontiers of Combining Systems, 5th
International Workshop, FroCoS 2005, Vienna, Austria,
September 19-21, 2005, volume 3717 of Lecture Notes in
Computer Science, pages 264�283. Springer, 2005.

18. E. Börger and R. Stärk. Abstract State Machines:
A Method for High-Level System Design and Analysis.
Springer Verlag, 2003.

19. A. Carioni, A. Gargantini, E. Riccobene, and P. Scan-
durra. A Scenario-Based Validation Language for ASMs.
In Proceedings of the 1st International Conference on
Abstract State Machines, B and Z (ABZ 2008), volume
5238 of Lecture Notes in Computer Science, pages 71�84.
Springer-Verlag, 2008.

20. F. Chen, M. D'Amorim, and G. Ro³u. A formal
monitoring-based framework for software development
and analysis. In J. Davies, W. Schulte, and M. Bar-
nett, editors, Formal Methods and Software Engineering,
volume 3308 of LNCS, pages 357�372. Springer Berlin /
Heidelberg, 2004.

21. E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, Cambridge, MA, USA, 1999.

22. M. Dausend and A. Raschke. Introducing Aspect-
Oriented Speci�cation for Abstract State Machines. In
Y. Ait Ameur and K.-D. Schewe, editors, Abstract State
Machines, Alloy, B, TLA, VDM, and Z, volume 8477
of Lecture Notes in Computer Science, pages 174�187.
Springer Berlin Heidelberg, 2014.

23. M. Dausend, M. Stegmaier, and A. Raschke. Debugging
Abstract State Machine Speci�cations: An Extension of
CoreASM. In F. Mazzanti and G. Trentanni, editors,
Proceedings of iFM 2012 & ABZ 2012 - Posters & Tool
demos Session, pages 21�25, 2012.

24. N. Delgado, A. Q. Gates, and S. Roach. A taxonomy and
catalog of runtime software-fault monitoring tools. IEEE
Transactions on Software Engineering, 30(12):859�872,
2004.

25. P. Dhaussy and C. Teodorov. Context-Aware Veri�ca-
tion of a Landing Gear System. In F. Boniol, V. Wiels,
Y. Ait Ameur, and K.-D. Schewe, editors, ABZ 2014:
The Landing Gear Case Study, volume 433 of Commu-
nications in Computer and Information Science, pages
52�65. Springer International Publishing, 2014.

26. Y. Falcone, K. Havelund, and G. Reger. A Tutorial on
Runtime Veri�cation. In Engineering Dependable Soft-
ware Systems, volume 34 of NATO Science for Peace
and Security Series - D: Information and Communica-
tion Security, pages 141�175. IOS Press, 2013.

27. R. Farahbod and U. Glässer. The CoreASM modeling
framework. Softw., Pract. Exper., 41(2):167�178, 2011.

28. A. Gargantini and E. Riccobene. ASM-Based Testing:
Coverage Criteria and Automatic Test Sequence Genera-
tion. Journal of Universal Computer Science, 7:262�265,
2001.

29. A. Gargantini, E. Riccobene, and S. Rinzivillo. Using
Spin to Generate Tests from ASM Speci�cations. In
E. Börger, A. Gargantini, and E. Riccobene, editors, Ab-
stract State Machines 2003, volume 2589 of Lecture Notes
in Computer Science, pages 263�277. Springer Berlin
Heidelberg, 2003.

30. A. Gargantini, E. Riccobene, and P. Scandurra. A
Metamodel-based Language and a Simulation Engine for
Abstract State Machines. Journal of Universal Computer
Science, 14(12):1949�1983, 2008.

31. U. Glässer, S. Hallerstede, M. Leuschel, and E. Ric-
cobene. Integration of Tools for Rigorous Software
Construction and Analysis (Dagstuhl Seminar 13372).
Dagstuhl Reports, 3(9):74�105, 2013.

32. D. Hansen, L. Ladenberger, H. Wiegard, J. Bendis-
posto, and M. Leuschel. Validation of the ABZ Land-
ing Gear System Using ProB. In F. Boniol, V. Wiels,
Y. Ait Ameur, and K.-D. Schewe, editors, ABZ 2014:
The Landing Gear Case Study, volume 433 of Commu-
nications in Computer and Information Science, pages
66�79. Springer International Publishing, 2014.

33. R. Hierons and J. Derrick. Editorial: special issue on
speci�cation-based testing. Software Testing, Veri�ca-
tion and Reliability, 10(4):201�202, 2000.

34. F. Kossak. Landing Gear System: An ASM-Based So-
lution for the ABZ Case Study. In F. Boniol, V. Wiels,
Y. Ait Ameur, and K.-D. Schewe, editors, ABZ 2014:
The Landing Gear Case Study, volume 433 of Commu-
nications in Computer and Information Science, pages
142�147. Springer International Publishing, 2014.

35. R. Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications Co., Greenwich,
CT, USA, 2003.

36. H. Liang, J. Dong, J. Sun, and W. Wong. Software mon-
itoring through formal speci�cation animation. Innova-
tions in Systems and Soft. Eng., 5:231�241, 2009.

37. A. Mammar and R. Laleau. Modeling a Landing Gear
System in Event-B. In F. Boniol, V. Wiels, Y. Ait Ameur,
and K.-D. Schewe, editors, ABZ 2014: The Landing Gear
Case Study, volume 433 of Communications in Computer
and Information Science, pages 80�94. Springer Interna-
tional Publishing, 2014.

38. D. Méry and N. K. Singh. Modeling an Aircraft Landing
System in Event-B. In F. Boniol, V. Wiels, Y. Ait Ameur,
and K.-D. Schewe, editors, ABZ 2014: The Landing Gear
Case Study, volume 433 of Communications in Computer
and Information Science, pages 154�159. Springer Inter-
national Publishing, 2014.

39. G. Schellhorn. Veri�cation of ASM re�nements using
generalized forward simulation. Journal of Universal
Computer Science, 7(11):952�979, 2001.

40. A. Slissenko and P. Vasilyev. Simulation of Timed
Abstract State Machines with predicate logic model-
checking. Journal of Universal Computer Science,
14(12):1984�2006, 2008.

41. R. F. Stärk, J. Schmid, and E. Börger. Java and the
Java Virtual Machine: De�nition, Veri�cation, Valida-
tion. Springer, 2001.

42. W. Su and J.-R. Abrial. Aircraft Landing Gear System:
Approaches with Event-B to the Modeling of an Indus-
trial System. In F. Boniol, V. Wiels, Y. Ait Ameur,
and K.-D. Schewe, editors, ABZ 2014: The Landing Gear

Paolo Arcaini et al.: Rigorous development process of a safety-critical system: from ASM models to Java code 23

Case Study, volume 433 of Communications in Computer
and Information Science, pages 19�35. Springer Interna-
tional Publishing, 2014.

43. M. Utting and B. Legeard. Practical Model-Based Test-
ing: A Tools Approach. Morgan-Kaufmann, 2006.

44. J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzger-
ald. Formal methods: Practice and experience. ACM
Comput. Surv., 41(4):19:1�19:36, Oct. 2009.

	Introduction
	Abstract State Machines (ASMs)
	Development process and supporting tools
	Ground model
	Modeling by refinement
	Validation and verification
	Conformance checking
	Related work
	Conclusions
	References

