29 research outputs found

    Multicomplex number class for Matlab, with a focus on the accurate calculation of small imaginary terms for multicomplex step sensitivity calculations

    Get PDF
    A Matlab class for multicomplex numbers was developed with particular attention paid to the robust and accurate handling of smallimaginary components. This is primarily to allow the class to be used to obtainn-order derivative information using the multicomplexstep method for, amongst other applications, gradient-based optimization and optimum control problems. The algebra of multicomplexnumbers is described as is its accurate computational implementation, considering small term approximations and the identification ofprinciple values. The implementation of the method in Matlab is studied, and a class definition is constructed. This new class definitionenables Matlab to handlen-order multicomplex numbers, and perform arithmetic functions. It was found that with this method, thestep size could be arbitrarily decreased toward machine precision. Use of the method to obtain up to the 7th derivative of functions ispresented, as is timing data to demonstrate the efficiency of the class implementation

    A methodology for robust optimization of low-thrust trajectories in multi-body environments

    Get PDF
    Issued as final reportThales Alenia Spac

    Analytic Gradient Computation for Bounded-Impulse Trajectory Models Using Two-Sided Shooting

    Get PDF
    Many optimization methods require accurate partial derivative information in order to ensure efficient, robust, and accurate convergence. This work outlines analytic methods for computing the problem Jacobian for two different bounded-impulse spacecraft trajectory models solved using two-sided shooting. The specific two-body Keplerian propagation method used by both of these models is described. Methods for incorporating realistic operational constraints and hardware models at the preliminary stage of a trajectory design effort are also demonstrated and the analytic methods derived are tested for accuracy using automatic differentiation. A companion paper will solve several relevant problems that show the utility of employing analytic derivatives, i.e. compared to using derivatives found using finite differences

    Higher order derivatives of matrix functions

    Full text link
    We present theory for general partial derivatives of matrix functions on the form f(A(x))f(A(x)) where A(x)A(x) is a matrix path of several variables (x=(x1,…,xj)x=(x_1,\dots,x_j)). Building on results by Mathias [SIAM J. Matrix Anal. Appl., 17 (1996), pp. 610-620] for the first order derivative, we develop a block upper triangular form for higher order partial derivatives. This block form is used to derive conditions for existence and a generalized Dalecki\u{i}-Kre\u{i}n formula for higher order derivatives. We show that certain specializations of this formula lead to classical formulas of quantum perturbation theory. We show how our results are related to earlier results for higher order Fr\'echet derivatives. Block forms of complex step approximations are introduced and we show how those are related to evaluation of derivatives through the upper triangular form. These relations are illustrated with numerical examples.Comment: 24 pages, 2 figure

    Computation of higher order Lie derivatives on the Infinity Computer

    Get PDF
    In this paper, we deal with the computation of Lie derivatives, which are required, for example, in some numerical methods for the solution of differential equations. One common way for computing them is to use symbolic computation. Computer algebra software, however, might fail if the function is complicated, and cannot be even performed if an explicit formulation of the function is not available, but we have only an algorithm for its computation. An alternative way to address the problem is to use automatic differentiation. In this case, we only need the implementation of the algorithm that evaluates the function in terms of its analytic expression in a programming language, but we cannot use this if we have only a compiled version of the function. In this paper, we present a novel approach for calculating the Lie derivative of a function, even in the case where its analytical expression is not available, that is based on the Infinity Computer arithmetic. A comparison with symbolic and automatic differentiation shows the potentiality of the proposed technique

    Algèbres hypercomplexes pour le Calcul

    Get PDF
    Dans les domaines mathématique ou applicatif, la multiplication de nombres possède un rôle clef pour le Calcul. En Science et en Ingénierie, la nonlinéarité offre de grands défis de modélisation mais aussi de résolution. Notre approche vise, via la multiplication, l'étude de certains phénomènes non linéaires que l'on retrouve fréquemment dans le domaine de la Science et de l'Industrie. Pour cela, nous étudions dans cette thèse la multiplication de nombres multidimensionnels, associée à des structures algébriques en dimension finie appelées algèbres hypercomplexes. Nous utilisons la multiplication comme lien entre les divisions apparentes des différents domaines théorique et pratique que nous abordons par une approche transdisciplinaire. Nous effectuons une analyse comparative entre les algèbres hypercomplexes et les principaux outils de Calcul, approche qui n’est pas développée dans la littérature existante. Nous présentons une synthèse des applications existantes (par ex. robotique, modélisation 3D, électromagnétisme) et des principaux avantages des algèbres hypercomplexes, pour la Science et l’Ingénierie. A partir des conséquences de l’utilisation des structures alternatives (autres que réelles ou complexes), nous proposons une extension nouvelle de la théorie spectrale présentée sous le nom de couplage spectral. Grâce aux algèbres hypercomplexes et à la théorie du couplage spectral, nous présentons des applications inédites à la mécanique et à la chimie ainsi que des perspectives pour le domaine du calcul quantique. Pour les domaines d’applications présentés, existants ou inédits, nous étudions les aspects de modélisation théorique et aussi d’analyse numérique. Nous montrons que suivant les cas d'étude, les aspects numériques avantageux découlent d'un choix judicieux des modèles et des algèbres hypercomplexes associées. Ces avantages sont principalement dus à la manière de définir la multiplication dans les algèbres concernées. Dans les domaines applicatifs abordés, une grande partie des modèles théoriques et numériques repose actuellement sur l’utilisation des nombres réels ou complexes ainsi que sur l’algèbre linéaire. Nous montrons dans cette thèse que les algèbres hypercomplexes sont complémentaires des outils algébriques actuellement utilisés et possèdent un vaste potentiel théorique et pratique, grandement sous-exploité pour le Calcul
    corecore