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A Matlab class for multicomplex numbers was developed with particular attention paid to the robust and accurate handling of small
imaginary components. This is primarily to allow the class to be used to obtain n-order derivative information using the multicomplex
step method for, amongst other applications, gradient-based optimization and optimum control problems. The algebra of multicomplex
numbers is described as is its accurate computational implementation, considering small term approximations and the identification of
principle values. The implementation of the method in Matlab is studied, and a class definition is constructed. This new class definition
enables Matlab to handle n-order multicomplex numbers, and perform arithmetic functions. It was found that with this method, the
step size could be arbitrarily decreased toward machine precision. Use of the method to obtain up to the 7th derivative of functions is
presented, as is timing data to demonstrate the efficiency of the class implementation.
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1 INTRODUCTION

This paper describes the development of a matlab class for multicomplex numbers, including the derivation of a method
to deal with the instabilities of the inverse trigonometric, fractional power and logarithm functions. The construction
of the multicomplex class and associated arithmetic functions allows the development of different applications of
multicomplex numbers, with this paper focusing on the use of multicomplex numbers to obtain derivatives for gradient
based optimisation problems. Sensitivities are key requirements of gradient based optimizers and typically comprise first
and often second derivative information. There are a number of ways to obtain sensitivities for optimisation, including
the finite difference method, adjoint’s or automatic differentiation and the complex step method. The calculation of
higher order derivatives has proven to be a difficult task for current methods, especially when high accuracy and low
computation cost is required along with easy implementation. The complex step method, which consists of adding
a small imaginary component to the system input and taking the imaginary component of the output is one means
of obtaining first derivative information. However, higher order derivatives can not be easily calculated as a complex
number only has a real part and one imaginary component. The adaptation of this method for higher order derivatives
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2 Jose Maria Varas Casado and Rob Hewson

was explored before in several papers, such as in [19], but they came across limitations in the accuracy of the approach
due to subtraction cancellation errors (round off errors), which could potentially negate the advantages of using the
complex step method.

The application of multicomplex numbers allows the complex step method to be extended, and for n-order partial
derivatives to be determined by adding multiple imaginary components in the Cn complex space to the system inputs.
In this work a new Matlab class allowing multicomplex numbers to be used is introduced, with particular attention
paid to its application for the multicomplex step method, when small imaginary terms are present. The method will be
applied to obtain sensitivities when accurate derivatives of a scalar valued functions f : Rn → R, with respect to many
inputs are required. There are other potential areas of application of multicomplex numbers which will be facilitated by
the development of the class described here such as in quantum mechanics [31].

1.1 Finite Difference Schemes

Finite difference schemes are one of the most common discretization methods for numerically calculating gradients by
approximating them with difference equations. The derivation is a truncation of the Taylor expansion series about a
point. However, the accurate approximation of derivatives using the finite difference approximation is a compromise
between the truncation error arising from the Taylor series expansion and the round-off error due to the floating point
approximation of the functions.

As described in [26], an approximation of the optimum value for the step size h is the one that balances the two
sources of error, i.e., when the truncation and round off error are equal. This value of h∗ can be approximated by;

h∗ ≈ 2
√
ϵ∗ | f (x0)|√
| f ′′(x0)|

(1)

where ϵ∗ is an estimate of the maximum relative error that occurs when real numbers are represented by floating-
point numbers. The function being evaluated needs to be known as well as an appropriate value of ϵ∗, which changes
with the function being evaluated but also with x0. A similar derivation is available in [26] where another approximation
is provided for the cases for which the function is not known;

h∗ ≈
√
ϵf xc , xc =

√
f (x0)

f ′′(x0)
≈ x0 (2)

Where xc denotes the ’curvature scale’ and ϵf is the fractional accuracy with which f is computed. Again, the
exact value of ϵf is estimated as machine accuracy, but varies with the function being evaluated and also with x0. For
calculations with additional sources of inaccuracy it may be larger, and the exact values to choose are difficult to obtain.

When applying the finite difference schemes it is of vital importance to find an optimum step size, which is function
dependent and therefore not trivial to determine. Even though approximations have been developed their range of
validity is limited and are generally only applicable for simple functions. When many derivative evaluations are needed
this task could be tedious and add another layer of complexity and computational cost. This issue is of special concern
when partial derivatives of multi-variable functions are needed, as the susceptibility to round off error for each input
variable might vary considerably.
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1.2 Higher Order Derivatives

One method to calculate n-order derivatives is derived in [23]. An extension of Cauchy’s integral formula is used which
states that; ∮

C

f (z)

z − z0
dz = 2πi f (z0) (3)

This integral representation will now be used of f (z0) to find f ′(z0);

f ′(z0) =
d

dz
f (z0) =

d

dz
[
1
2πi

∮
C

f (z)

z − z0
dz] =

1
2πi

∮
C

d

dz
[
f (z)

z − z0
]dz =

1
2πi

∮
C

f (z)

(z − z0)2
dz (4)

if this process is repeated it can be shown that the formula for any higher derivative is given by,

f (n)(z0) =
n!
2πi

∮
C

f (z)

(z − z0)n+1
dz (5)

This contour integral can be approximated using the trapezoidal rule. The detailed derivation is provided in [23]
which ultimately arrives at;

f (n) ≈
n!
mε

m−1∑
j=0

f (z0 + εei
2π j
m

)

ei
2π jn
m

(6)

Where the parameter ε is associated with the step size, andm is the number of function evaluations to approximate
the contour integral. This method provides a way of calculating n-order derivatives of smooth functions, without the
increase in complexity associated with finite difference. This method also suffers from round-off error, arising from
the summation term in Eq (6). But unlike the finite difference method, a simple method to estimate and control the
roundoff error is available, again, derived in the original paper by [23]. However [20] states that this method is method
is ’of little practical use’. This is attributed to the high number of function evaluations required to achieve an acceptable
accuracy, which could outweigh the potential benefits of this method.

1.3 Automatic Differentiation

A further method of calculating derivatives commonly used is the Automatic Differentiation (AD) or Adjoint methods.
AD is based on the chain rule and exploits the fact that all functions or processes, no matter how complicated, are
composed of a combination of basic mathematical operators and functions with known derivatives. The method applies
the chain rule repeatedly to these basic mathematical functions until the actual function to be evaluated is "built up". This
approach has the advantage of calculating the exact derivatives of the functions (ie, it is not a numerical approximation
to the function like finite differences), and hence has no truncation error. In addition, there is no round off error as
there is no subtraction of almost equally valued terms, like in finite differences. It also poses an advantage over the
Cauchy-trapezoidal method described above as it does not need a large number of function evaluations to achieve
acceptable accuracy. Machine precision can be achieved and the computational time can potentially be reduced by
several orders of magnitude compared to finite differencing [18]. Tools to implement this method usually consist of
either source code transformation or operation overloading [24]. Source code transformation changes the source code
of a function in the programming language by another source code to add the new instructions that compute these
derivatives. This effectively extends all numbers by adding a second component (much like the imaginary part of a
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complex numbers). This second component carries the value of the derivative of the function at that point. Some AD
tools that have done this are ADIFOR [7], TAPENADE [17], SIMDIFF and NAGWare. The drawback of this method is
that most of these tools are restricted to first and second order derivatives [18], [24]. The toolboxes employing AD
that have been developed for Matlab include ADiGator [25], ADiMat [6], ADMAT [34], ADMIT-1 [10], CasADi [3, 4]
and MAD [14]. These toolboxes allow for the fast computation of gradients, efficient Jacobian determination (in the
case the function we are optimizing is f : Rn → Rm ), and 2nd derivative calculation of Hessian matrices [5]. The
use of multicomplex numbers provides a means of obtaining sensitivities of all terms which are dependent on the
multicomplex input, this is especially useful, for example, when a very large number of constraints are present, as might
be the case for open-loop trajectory optimisation, where the path of an object is defined by a number of constraints.
The application of multicomplex numbers for such a case is simple, as all sensitivities of numerous constraints to the
input are automatically determined.

1.4 Complex Step

A procedure for calculating the derivative of a holomorphic function [16] was derived by Squire and Trapps [30], which
extends the finite difference method into the complex space in order to remove the round-off error and hence the
necessity to choose an appropriate step size. Starting from the Taylor expansion of an infinitely differentiable function,
but evaluating the function at x = x0 + ih;

f (x0 + ih) = f (x0) + ih f
′(x0) −

h2

2!
f ′′(x0) −

ih3

3!
f ′′′(x0) +

h4

4!
f ′′′′(x0) + ... (7)

Taking imaginary parts of both sides of the equation the following is obtained,

ℑ(f (x0 + ih)) = hf
′(x0) −

h3

3!
f ′′′(x0) + ... = hf

′(x0) + R1(h) (8)

where the imaginary part of the Taylor series is truncated after the first term, and R1(h) = O(h3). If this is then
solved for f ′(x0) the following is obtained

f ′(x0) =
ℑ(f (x0 + ih))

h
+O(h2) (9)

This method gives a way of calculating the first derivative of a function without the risk of roundoff error, as there
is no subtraction term. Therefore, the step size can be made arbitrarily small to achieve machine precision and avoid
the errors associated with truncating the Taylor series. In programming languages that accept complex numbers as
function inputs such as Matlab the implementation of this method is straightforward.

1.5 Complex Step Higher Derivatives and the Motivation for the Multicomplex Step Method

A similar derivation for the calculation of second derivatives is provided in [19]. Here the real component of the Taylor
series is taken;

ℜ(f (x0 + ih)) = f (x0) −
h2

2!
f ′′(x0) +

h4

4!
f ′′′′(x0) + ... = f (x0) −

h2

2!
f ′′(x0) + R1(h) (10)

Following the same approach as before, f ′′(x0) is solved for,

f ′′(x0) =
2(f (x0) − ℜ(f (x0 + ih)))

h2
+O(h2) (11)
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As can be seen, this method has the potential to suffer from round-off errors similar to those encountered when
using the finite different method. In [19], higher accuracy formulas for second derivatives are derived by repetitively
applying Richardson extrapolations. Instead of trying to reduce the step size arbitrarily, the truncation error is reduced
by evaluating the function at different parts of the complex plane (x0 + i0.5h for example). This gives a more stable
method where a larger step size can be used, as the method produces very small truncation errors, several orders smaller
than standard finite difference.

It is perhaps intuitive to ask, could the complex step method be applied recursively to calculate higher order
derivatives? Following the definition for f ′(x0),

f ′′(x0) ≈
ℑ(f ′(x0 + ih))

h
≈

ℑ(
ℑ[f (x0+ih+ih)]

h )

h
=

ℑ[ℑ(f (x0 + 2ih))
h2

(12)

When trying to do this, the motivation for using multicomplex numbers becomes clear. The operation ℑ[ℑ(f (x0 +

2ih))] will always yield 0 as a result, because the two imaginary components that are added to the input variable are
in the same complex space. However, if this method can be extended by adding imaginary components of n-different
complex spaces a method to calculate n-order derivatives is realised. The derivation for such method was first explored
by Lantoine in [20], and will be further described below with particular attention to the derivation of complex number
algebra for the numerical calculation of derivatives, i.e. in formulations which account for small imaginary terms.

In order to implement the multicomplex step method in Matlab, a class definition was required as Matlab only
recognizes complex numbers up to C1. A bicomplex class was been created by Verheyleweghen [33], this class defines
the ’bicomplex object’, which is of the form z = z1 + i2z2 but not for higher numbers of imaginary terms.

2 THE ALGEBRA OF MULTICOMPLEX NUMBERS

In order to introduce the generalization of the theory of multicomplex numbers, the underlying theory described
in [21, 22, 27] is applied and particular attention is paid to small imaginary terms. This will allow the algebra of
multicomplex numbers to be introduced and understand why it is a generalization of the field of complex numbers.

Two real-valued functions u, v from R2 = {(x1, x2) : x1 ∈ R, x2 ∈ R} to R will now be considered. It is known that if
this pair of functions satisfy the Cauchy-Riemann equations, then f(x1 + ix2) := u(x1, x2) + iv(x1, x2) is a holomorphic

function as it admits a complex derivative. Instead of considering (u,v) as a point in R2, a new space C is considered,
where the elements are composed of a real and an imaginary part, i.e. z = u + iv . In other words, the complex function
f : C→ C can be decomposed into u : R2 → R and v : R2 → R.

Considering two complex functions u, v from C2 = {(z1, z2) : z1 ∈ C, z2 ∈ C} to C. In this case the pair (u,v) can
be interpreted as a map of C2 onto C. The implications for (u,v) satisfying the following set of equations can then be
considered,

∂u

∂z1
=
∂v

∂z2
&

∂u

∂z2
= −
∂v

∂z1
(13)

These could be thought of the analogue of the Cauchy-Riemann equations but for a C2 onto Cmapping, and replacing
differentiability by holomorphicity. Instead of considering (u,v) as a point in C2, a new space with elements of the
form z = u + i2v , where i2 =

√
−1 is another imaginary unit which commutes with the original i is built up. Therefore

g(z1 + i2z2) := u(z1, z2) + i2v(z1, z2), and this new space can be denoted C2. Here, the bicomplex function д : C2 → C2
can be decomposed into u : C2 → C and v : C2 → C.
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6 Jose Maria Varas Casado and Rob Hewson

This process can be repeated to build up multicomplex numbers, which are defined in terms of two variables in the
underlying complex space. The definition for the set of multicomplex numbers of order n is arrived at [27]

Cn = {ζn = ζn−1,1 + inζn−1,2 : ζn−1,1, ζn−1,2 ∈ Cn−1} (14)

Where all imaginary components in commute between each other and have the property in
2 = −1. From this

definition, it is clear that any multicomplex number in Cn can be represented with 2n coefficients in R. An example of
this is given below for a multicomplex number in C2, this is termed a bicomplex number [11, 12, 28, 29]

C2 = {ζ2 = x1,1 + i1x1,2 + i2(x2,1 + i1x2,2) : x1,1, x1,2, x2,1, x2,2 ∈ C0 = R} (15)

It is also important to note that multicomplex numbers can be represented as matrices of real coefficients. The proof
for this was formulated by Price [27]. This result is of importance as it provides an easy way of representing these
numbers and to do arithmetic operations easily, using matrix algebra. It will be demonstrated that this representation is
the most efficient way of computing multiplication and divisions of multicomplex numbers. It is based on the fact that a
complex number can be represented as a 2 × 2 matrix and on the original proposition by Price [27]. The extension for
this, in multicomplex space is therefore:

ζn =

[
ζn−1,1 −ζn−1,2

ζn−1,2 ζn−1,1

]
(16)

It is worth noting that these ζn−1 coefficients can be themselves represented with a 2x2 matrix of coefficients of the
underlying complex space. Hence, the Cn multicomplex number can be represented by a 2n ×2n matrix of R coefficients.

3 DERIVATION OF THE MULTICOMPLEX STEP METHOD

Before presenting the derivation for the multicomplex step method, it is important to consider which functions can
be defined in the multicomplex space, as the method requires functions which can accept multicomplex inputs. The
definitions given below are originally derived by Price in [27]. As we can see from the complexified Cauchy-Riemann
system, the functions (u,v) are required to be holomorphic in order to build up C2. Hence, for the build up of Cn , the
functions are required to be holomorphic in Cn−1. A function f : Cn → Cn is complex differentiable at z0 ∈ Cn if the
limit f ′(z0) exists.

f ′(z0) = lim
z→z0

f (z) − f (z0)

z − z0
(17)

A function f is holomorphic in an open set U ⊂ Cn if f ′(z) exists for all z ⊂ U . According to [20], this definition
is not very restrictive and most functions are holomorphic in Cn . The following derivation of the multicomplex step
method is based on that of [20] and [33]. In the following derivations it is assumed that k and n are positive integers.
Assuming f is a holomorphic function in Cn , we can write the Taylor series of f around the real point x0 as:

f (x0 + i1h + ... + inh) = f (x0) + (i1h + ... + inh)f
′(x0) + ... =

∞∑
k=0

((∑n
l=1 ilh

)k f k

k !

)
(18)

Truncating this Taylor series after k = n + 1 results in,
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∞∑
k=0

((∑n
l=1 ilh

)k f k

k !

)
=

n∑
k=0

((∑n
l=1 ilh

)k f k

k !

)
+ (i1 + ... + in )

n+1hn+1
f n+1(x0)

(n + 1)!
+O(hn+2) (19)

If the multinomial theorem to re-express (
∑n
l=1 ilh)

k is used, it can be proven that the only term in the Taylor
expansion between k = 0 and k = n that contains the product i1i2...in (which corresponds to the ’last’ term of the
multicomplex number in Cn , ie, the coefficient that contains all the imaginary parts), is the term containing f (n), ie,
when k = n. From the multinomial theory,(∑n

l=1 ilh
)k
= hk

∑
k1+...+kn=k

k!
k1!...kn !

ik11 ...i
kn
n (20)

This is because for the term to contain the product i1i2...in , each k1,k2...kn must be equal to any odd integer. For
example, for k = n, {k1 = 1,k2 = 1...kn = 1}. For any k < n, at least one of the k ′s is equal to 0, which is enforced by
the fact that k1 + ... + kn = k . If say, k2 = 0, then ik22 = i02 = 1 and the term will not contain the C2 imaginary unit.
Following the derivation for the k = n case, k1!...kn ! = 1 and hence

(∑n
l=1 ilh

)n
= hnn!

n∏
l=1

il (21)

Considering the case for k = n + 1, it can be shown that for any n, (i1 + ... + in )n+1 will not contain the product
i1i2...in . Again enforced by k1 + ... + kn = k , if k = n + 1 there must be at least one k which equals 2 (assuming k and n
are positive integers). This, as explained before, means that the product i1i2...in will not appear in the n + 1 term of the
Taylor series, as i2 = −1 and one of the imaginary terms vanishes. If this is extended to any k > n + 1, the assumption
of no i1i2...in product breaks down, which is why the Taylor series is truncated before k = n + 2. For example, for
k = n + 2 and n = 1, the only value of k is k1 = 3. Hence i31 = −i1.

If the Taylor expansion is given with only the terms that contain the product i1i2...in the following is obtained

f (x0 + i1h + ... + inh) = ... + f (n)(x0)h
n

n∏
l=1

il + ... +O(h
n+2) (22)

A new operator ℑ1..n can now be defined, which extracts the coefficient of the Cn multicomplex number that
contains all the imaginary parts, which is essentially ℑ1(ℑ2(...ℑn (ζn ))), and apply it to both sides of the equation to
obtain the final definition of the derivative which we will use:

f (n)(x0) =
ℑ1..n [f (x0 + i1h + ... + inh)]

hn
+O(h2) (23)

As can be seen the rest of the terms in the Taylor series vanish when the operator ℑ1..n is applied, as they do
not contain all the Cn imaginary components. This result can also applied to any n-th order partial derivative of a
holomorphic multi-variable function. The procedure is to add a new imaginary component to each variable you want
to calculate the derivative with respect to. An example is given below to give an example of the implementation;

∂3 f (x,y, z)

∂x2∂z
|x0,y0,z0 ≈

ℑ1..3[f (x0 + i1h + i2h,y0, z0 + i3h)]

h3
(24)
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4 MULTICOMPLEX CLASS DEFINITION

The multicomplex object in Matlab was described as an array of real coefficients of the real term and all the imaginary
terms. An example of this is shown below for a C3 number

z3 = a + i1b + i2(c + i1d) + i3(e + i1 f + (i2(д + i1h))) → [a,b, c,d, e, f ,д,h] (25)

4.1 Utility Functions

Before performing any operation between two multicomplex numbers they are passed through a function consimulti ,
which converts the two numbers into the same format. The need for this will become clear in the next subsections. For
example, in order to multiply a C3 and a C2 multicomplex number, the C2 number must be put into the same 1 × 8
array form as the C3 number. This translates into inputing a 0 coefficient in the i3 terms. This will ensure that you are
multiplying two same-sized square matrices. Below is an example of what the function does.

z1 = [a1,b1, c1,d1, e1, f1,д1,h1], z2 = [a2,b2, c2,d2] (26)

consimulti(z1, z2) → z1 = [a1,b1, c1,d1, e1, f1,д1,h1], z2 = [a2,b2, c2,d2, 0, 0, 0, 0] (27)

consimulti also converts any real number into the multicomplex array form, and is the initial function in the algorithm
for any operators or functions that involve a pair of numbers, such as addition, subtraction, multiplication, division,
and atan2. The function also throws an error for arrays/matrix inputs and non-double/multicomplex inputs.

The matrix representation of multicomplex numbers (as shown in Eq (16)) makes it trivial to extract the multicomplex
array object from the matrix form, as it is just the result of the first column, ie, transpose(M(z2)(:, 1)) using standard
Matlab notation. From this, the ’last’ imaginary part, the one that contains the product i1i2...in is just the last entry in
the input array. The function that exracts this last imaginary term will be called imдn.

The specific entry of the array representation of the multicomplex number that is needed depends on the order of
the derivative calculation, whether it is a partial derivative or not, so the extraction of this coefficient will be left to be
user inputted. However, a function CX2 was added to the class definition in order to aid the user in finding the correct
coefficient of the array to extract when calculating second derivatives of functions with many input variables. This
function inputs a Cn multicomplex number and extracts the imin coefficient.

Another function, inputconverter , was included in order tomake it easier for the user to create amulticomplex number
with the step sizes in the correct coefficients. This function inputs the real part, the step size value, and an array with the
imaginary component number where you want the step sizes to be in. For example, inputconverter (20, [1, 2, 3], 10−10)
creates the multicomplex number 20 + 10−10i1 + 10−10i2 + 10−10i3. This function is especially useful when higher order
derivatives are required. This function is not part of the class definition as it does not have a multicomplex type input
and is therefore a separate function.

A function calledmatrep was developed which inputs the multicomplex number in the array form and converts it
into a 2n × 2n matrix of real coefficients. The function works by recursively inputing the two (n − 1) order constituents
of the n-order multicomplex number in the matrix below;

zn =

[
zn−1,1 −zn−1,2

zn−1,2 zn−1,1

]
(28)
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For example with z2 = [a,b, c,d],matrep undertakes the following

z2 = [a,b, c,d] →

[
a −b
b a

]
,
[
c −d
d c

]
→ matrep(z2) =


a −b −c d
b a −d −c
c −d a −b
d c b a

 (29)

Finally, the complex conjugate function conj was added, which simply performs the following operation:

zn = z1,n−1 + inz2,n−1 → zn = z1,n−1 − inz2,n−1 (30)

4.2 Addition and Subtraction

It is extremely easy to describe the methods for the basic operators of addition and subtraction. The elements-wise
addition and subtraction of the input arrays will suffice. For example,

z2,1 ± z2,2 = [a1,b1, c1,d1] ± [a2,b2, c2,d2] = [a1 ± a2,b1 ± b2, c1 ± c2,d1 ± d2] (31)

4.3 Multiplication

For the multiplication and division of multicomplex numbers, the matrix representation of a multicomplex number
is used. The process consists of first finding the matrix representation, perform the operation on the matrices using
the built-in Matlab matrix operators, and converting back to the multicomplex array object form. This method takes
advantage of Matlab’s efficiency in vectorized operations.

4.4 Division

To perform the operation

zn,1/zn,2 = zn,1 ∗ zn,2
−1, (32)

zn,2 needs to be invertible. Unlike for C1 complex numbers, higher dimensional complex numbers do not always
satisfy this condition. The multicomplex number zn = zn−1,1 + inzn−1,2 is invertible if and only if zn ∗ z†n , 0, where
z† = zn−1,1 − inzn−1,2 is the complex conjugate [2] of zn . This is shown below,

zn ∗ z†n = zn−1,1
2 + zn−1,2

2 (33)

which upon rearranging the following is obtained,

zn
−1 =

zn
†

zn−1,12 + zn−1,22
(34)

Hence, it is not possible to divide by multicomplex numbers zn , for which zn−1,12 + zn−1,22 = 0. These zero divisors
are characterized by the equations,

zn−1,1
2 = −zn−1,2

2 → zn−1,1 = ±im<n zn−1,2 (35)

Noting that 1
in = −in , it is clear that ±zn−1,1im<n = zn−1,2. Substituting this characteristic equation in the definition

of a multicomplex number zn = zn−1,1 + inzn−1,2, the general form of all the n-dimensional zero divisors Z0n is:
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Z0n = λ(1 ± im<n in ), λ ∈ Cn−1 (36)

Where λ is an arbitrary number in the set Cn−1. What im<n represents is any imaginary part with 1 ≤ m < n. If
m = n the trivial result Z0n = λ(0) = 0 is obtained. It is important to note that λ can actually be in any Cm , as long as
Cm is a subset of Cn . The general form of all the C4 zero divisors Z04, are,

Z04 = λ(1 ± i1i4), λ(1 ± i2i4), λ(1 ± i3i4), λ ∈ C0≤m<4 (37)

When the multicomplex number is in the matrix representation, the multicomplex numbers which can not be divided
are those which have a singular matrix representation. A zero divisor checker was implemented in the division algorithm
which outputs multicomplex number in denominator is a zero divisor if the determinant of the matrix representation
of the denominator multicomplex number is 0. A function Z0n is included , which inputs n andm and outputs the
corresponding zero divisor with λ = 1, ie, 1± im<n . As this function does not have a multicomplex input it is a separate
function outside of the class definition.

Fortunately, when employing the multicomplex step method it is extremely unlikely to encounter these zero divisors.
This is because in the multicomplex step method the dimension of the real part (ie where the function is being evaluated)
is usually larger than the dimension of the coefficients of the imaginary components. For the number to be a zero divisor
these dimensions must match (if λ ∈ R, see λ in equation 52). Even when λ ∈ Cm contains different combinations of
very small imaginary terms, it is very difficult for the product λ(1 ± im<n in ) to be of the form of the multicomplex
step method. It is therefore possible in most cases to use the flag in the code to remove the check for zero divisors as
this will only slow down the computational speed.

A similar approach to the multiplication operator was employed. The multicomplex number was converted into its
matrix representation and then the built in Matlab division of matrices was used. It was also observed that the division
code could be based on the standard division of complex numbers method. The extension developed is:

zn,1
zn,2

=
a + inb

c + ind
=

(a + inb)(c − ind)

(c + ind)(c − ind)
=

ac + bd

c2 + d2
+ in

bc − ad

c2 + d2
, a,b, c,d ∈ Cn−1 (38)

As can be seen a division of a Cn multicomplex number can be expressed in terms of divisions of Cn−1 multicomplex
numbers. This is done iteratively until R is reached. This method was compared to the matrix representation method in
terms of speed of computation.

As it can be seen in Figure 1, the matrix division method was faster for all of the dimensions of complex numbers
tested, hence this is the method that is used. This could be attributed to the fact that for the conjugate multiplication
division method you need to go through n − 1 iterations, and create and store another 2n − 2 multicomplex numbers.
Furthermore, Matlab is optimized for operations involving matrices and vectors, so vectorized code often runs much
faster than the corresponding code containing loops. The significant increase in computation time for the matrix method
is a consequence of the need to calculate the inverse of a 2n × 2n matrix.

4.5 Relational Logic Operators

It must be noted that there is no formal definition of the relational logic operators for Cn>0. However, it is still necessary
to overload these operators, as they are very common inside conditional i f statements which lead to different execution
branches of the code. Clearly the execution branch followed needs to be independent on whether the variable is the
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Fig. 1. Graph comparing computation time for 500 division operations for the method that uses the Matlab built in matrix division
versus the one that uses the denominator conjugate multiplication.

real number, or a multicomplex number. Therefore, the relational operators were defined and use only the real parts of
the multicomplex numbers so that the class definition can be used with codes which contain conditional statements.

4.6 Powers - zp , Arctangent and Logarithm

The first consideration given to the power operator is whether the power term is an integer or a fractional power, if is
the former, a simple application of the multiplication or division operator p times suffices (even if p is negative). If it is
the latter however, the solution is a bit more complicated.

Initially, the built-in Matlab power of a matrix operator (mpower ) on the matrix representation of the multicomplex
number was used to calculate all types of powers. However, when the functions involved a fractional power, the error
behavior was unstable for small imaginary terms. It is believed that the reason for this problem is that the method used
by Matlab to calculate fractional powers of a matrix is not well suited for very small matrix entries. Clearly this is a
problem if the multicomplex number class is to be used to obtain numerical derivatives. It is believed by the authors
that the method that Matlab employs the ’Blocked Schur Algorithms’ [8, 13]. The Schur decomposition of a matrix is
computed by the QR algorithm, which is essentially an eigenvalue algorithm [15]. Small perturbations in the matrix,
such as roundoff errors, can lead to large perturbations in the eigenvalues which could explain the error increase in the
partial derivatives for very values of imaginary terms.

For a C1 complex number, Matlab returns the principal value of the square root, which is equivalent to returning only
the positive root of a real number. Here De Moivre’s theorem is the basis for the fractional power of a multicomplex
algorithm .

zp = rpcos(pθ ) + irpsin(pθ ), r = |z | =
√
x2 + y2, θ = Arд(z) = atan2(y, x) (39)
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z
p
n = r

p
ncos(pθn ) + ir

n
n sin(pθn ), r =

√
zn−1,12 + zn−1,22, θn = Arд(zn ) (40)

As can be seen this function needs to be of a recursive nature as for the calculation of the fractional power of a
Cn multicomplex number, the square root of a Cn−1 multicomplex number is also needed to calculate r . The arctan
function is not an injective function, which means again that it can have several outputs. However, the definition of θ is
the principal value of atan(y/x), which can be calculated using the Matlab function atan2(y, x) for z ∈ C1 [1, 32].

This function restricts the output of atan depending on the signs of the two inputs of the function. For Cn>1
this becomes increasingly difficult, as you have to choose between 2n+1 possible outputs, as there are 2n+1 possible
combinations of the signs of the inputs. It is possible to solve this problem with the tangent half angle formula defined
over the complex plane

Arд(zn ) = atan2(zn−1,2, zn−1,1) =



2atan
(√z2n−1,1+z

2
n−1,2−zn−1,1

zn−1,2

)
i f zn−1,2 , 0

0 i f zn−1,1 > 0 & zn−1,2 = 0

π i f zn−1,1 < 0 & zn−1,2 = 0

unde f ined i f zn−1,1 = 0 & zn−1,2 = 0

(41)

and

atan(zn ) =
in
2
Loд

( in + zn
in − zn

)
(42)

Where ’i f zn−1,2 , 0’ is taken to mean ’if any coefficient of the zn−1,2 array , 0’. We can reduce any multicomplex
number for which zn−1,2 = 0 to simply zn−1,1. We will therefore always end up in the ’i f zn−1,2 , 0’ category, and
there is no need to formally define the inequality operators.

Considering the loд function,

Loд(zn ) = Loд |zn | + inArд(zn ) (43)

|zn | =
√
zn−1,12 + zn−1,22 (44)

It should be noted that in all of the above derivations a function starting with a capital letter denotes the principal
value of that function, which is non-injective. It is also important to note that there is not a formal definition of the
principal value of a function forCn>1 inputs. However, with the recursive approach presented above a formal definition
can be avoided as the principal value of these functions can be expressed in terms of principal values of functions of
underlying complex spaces. For example;

Arд(zn ) = f1(Arд(zn−1)) = f1(f2(Arд(zn−2))) = ... = д(Arд(z1)) (45)

When C1 is reached the formal definition of the principal value can be used [1];

Arд(z1) = {arд(z1) − 2πn | n ∈ Z ∧ −π < Arд(z1) ≤ π } (46)

i.e. the value in the open-closed interval (−π , π ].
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It could also be the case that the power term is also a multicomplex number, so the class definition performs
multicomplex powers of multicomplex numbers, and of real numbers, ie,

xzn & (zn )
zm , x ∈ ℜ, zn ∈ Cn, zm ∈ Cm (47)

For this, logarithms of both side of equation are taken,

(zn )
zm = ym (i f m ≥ n) → zmloд(zn ) = loд(ym ) (48)

and rearrange for y;
ym = ezm loд(zn ) (49)

The algorithm was checked for accuracy by verifying that ((zn )zm )
1
zm = zn .

4.7 Arg and Log Loss of Accuracy - Extending to n-order Derivatives

For n-order derivatives greater than 3, calculated using the multicomplex step, it was found that errors increased
significantly as the imaginary terms decreased below a certain value for the Arд, Loд, and consequently the power
functions. The problem with the Arд function is the various addition and subtraction terms, which introduce round-
off error. For example, when expressing atan in terms of Loд, the operations in + zn and in − zn would introduce
round-off error when the imaginary component of zn , zn−1,2 is very small. In cases where this imaginary component
zn−1,2 < ϵ ≈ 1.11 × 10−16, this would lead to the incorrect result in ± inzn−1,2 = in (1 ± zn−1,2) = in , due to the
machine precision limit. This led to a loss in the accuracy of the multicomplex step method, as the calculation of the
derivatives depends directly on the values of the decimals stored, and hence the error was observed to increase as step
size decreased.

This only occurred for C2 and higher order multicomplex numbers. The multicomplex class definition only employed
the recursive approach described in Section 4.6 for C2 and higher order numbers, and used the built in Matlab function
Arд for C1 numbers. For these C1 numbers there was no loss in accuracy, and the multicomplex step method had the
expected error behavior. It was assumed that the built in Matlab algorithm for Arд has some type of correction for very
small values of the imaginary component (much like a small angle approximation). A small angle approximation was
therefore implemented for the complex Arд.

The derivation for this was derived from the Taylor expansion of the complex atan;

atan(z) = z −
1
3
z3 +

1
5
z5 + ... (50)

and if z = a + inb is substituted (a and b are used here for simplicity), and real and imaginary terms are collected, the
expansion becomes

atan(z) = a −
1
3
a3 + ab2 +

1
5
a5 − 2a3b2 + ab4 + ... + i(b − a2b +

1
3
b3 + a4b − 2a2b3 +

1
5
b5 + ...) (51)

which upon removing the very small terms (ie, the powers of b, which would vanish as b → 0), becomes

atan(z) ≈ a −
1
3
a3 +

1
5
a5 − ... + ib(1 − a2 + a4 − ...) (52)

As we can see, the left hand side of the summation is exactly the same as the Taylor expansion for atan(a), so further
simplifying;
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atan(z) ≈ atan(a) + ib
∞∑
n=0

(−1)na2n (53)

The power series
∑∞
n=0(−1)

na2n corresponds to the Taylor expansion for the function 1
1+a2 and a itself could be

a multicomplex number. In complex analysis, the radius of convergence of a power series f =
∑∞
n=0 Dn (z − c)n

centered around c is equal to the distance from c to the nearest point where f cannot be defined in a way that makes
it holomorphic, [9]. The set of all points whose distance to c (where distance is defined by the modulus |z − c |) is
strictly less than the radius of convergence is called the ’disc of convergence’. For 1

1+z2 (c = 0), the nearest point to 0
where a singularity occurs, and hence holomorphicity is lost, is at ±i . Hence, the radius of convergence is 1 and the
disc of convergence if the circle of radius 1 centered around 0 in the C1 complex plane, |z1 | ≤ 1, and z1 , ±i1. The
operation |zn | is not equal to a real number, in fact, |zn | ∈ Cn−1. There are several points in which the singularity
occurs, zn = in, in−1, in−2... Therefore, it is difficult to define an equivalent check for convergence to the C1 example.
However, a pragmatic approach was taken and it was found that if the two conditions shown next were met, it was
most likely that the power series would converge,

| |zn |...n | < 1 & |zn |n > |(zn )
2 |n (54)

Where two new functions have been required to be defined which are two forms of calculating the modulus of a
multicomplex number. The function | |zn |...n | follows a recursive approach, calculating the Cn−1 modulus of the Cn
number with the two components, and then calculates the modulus of the result of that to get a Cn−2 number and so
on. For example,

| |z2 |...2 | = | |(a + i1b) + i2(c + i1i2d)| | =
�� √(a + i1b)2 + (c + i1d)2 �� (55)

The |zn |n function for a C2 number would look like;

|z2 |2 = |a + i1b + i2c + i1i2d | =
√
a2 + b2 + c2 + d2 (56)

These two functions were added to the class definition in the ’utility functions’ section. | |zn |...n | is called ’modc’ and
|zn |n is called ’modc2’. Then, the function ’modcheck’, calles these two forms of the modulus and performs the check
(53), and outputs either ’converge’ or ’diverge’. In the case that the number a satisfies the convergence criteria, the final
formula is

atan(z) = atan(a + ib) ≈ atan(a) + i
b

1 + a2
(57)

It should be noted than when employing the class definition for the multicomplex step method the condition for
convergence will almost always be satisfied, as the input entering atan2 will be of the form y/x , and y carries all the
small step size components and x carries the real part, so y/x has very small coefficients. A flag was added to the atan
function to enable/disable the check for convergence.

This final expression was validated with the built in Matlab Arд for several values of z1 with very small imaginary
components, and it turns out the results obtained exactly match the ones obtained from the built in function. This
means essentially that this approximation is likely the one that the Matlab algorithm uses. This approximation was
coded into the class definition and extended to higher order multicomplex numbers (a = zn−1,1, b = zn−1,2) using the
same approach as with the rest of the functions.
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Clearly a problem arises when choosing the range of values of b = zn−1,2 to use the approximation for, as zn−1,2
is not a real number but rather a multicomplex number with many coefficients. Originally this method was used to
reduce the roundoff error in the addition and subtractions in + zn and in − zn in the logarithm expressions, so it was
decided to use the coefficient multiplying only the in term to choose when to use the approximation. After several
trials for choosing the range, it was seen that a significant loss in accuracy in the derivative calculation was observed
for the case when this coefficient was less than 10−7 for atan and 10−4 for Arд (note that this is the case for the double
machine precision used). Clearly this is because the Arд function has the tangent half angle formula which introduces
another source of round off, see equation (41). The final algorithm for atan was coded with this structure;

i f |extract_in (zn )| ≥ 10−7 → atan(zn ) =
in
2
Loд(

in + zn
in − zn

) (58)

elsei f |extract_in (zn )| < 10−7 → atan(zn ) ≈ atan(zn−1,1) + in
zn−1,2

1 + (zn−1,1)2
(59)

where extract_in (zn ) outputs the coefficient of the in term, which is essentially what the ℑp operator does. The
same was done with Arд, but with the cutoff being set to 10−4.

The problem with the loд function was in the loд |zn | = 0.5loд(zn−1,12 + zn−1,22) part. When performing this
calculation, the results would yield inaccurate results when zn−1,12 = a2 → 1 and zn−1,22 = b2 → 0. This is due to
the roundoff error introduced in the addition a2 + b2. For the correction, the built in loд1p(x) Matlab function was
employed to bypass the roundoff error associated with loд1p(x + O1) for small x . The range of values of b2 = x to use
the approximation was chosen when |1 − a2 | < 10−7.

A comparison of the error behavior of the third derivatives calculated with the multicomplex class definition before
and after the corrections is given in Figures 2 and 3.

4.8 Trigonometric and Hyperbolic Functions

The same approach of using the definition of these trigonometric functions for complex numbers and extending the
theory to multicomplex numbers was employed. These were the functions defined;

sin(zn ) = sin(zn−1,1)cosh(zn−1,2) + incos(zn−1,1)sinh(zn−1,2) (60)

cos(zn ) = cos(zn−1,1)cosh(zn−1,2) − insin(zn−1,1)sinh(zn−1,2) (61)

sinh(zn ) = sinh(zn−1,1)cos(zn−1,2) + incosh(zn−1,1)sin(zn−1,2) (62)

cosh(zn ) = cosh(zn−1,1)cos(zn−1,2) + insinh(zn−1,1)sin(zn−1,2) (63)

Note that for all of the trigonometric identities above, there is no need to construct an approximation for very small
imaginary components as all of the operations in the process are multiplications so there is no introduction of roundoff
error.

The tan function is defined as,
tan(zn ) = sin(zn )/cos(zn ) (64)
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Fig. 2. Third derivative calculation for f =
√
e2x + x + ex used as the optimizing function.

Fig. 3. Third derivative calculation for f =
√
sin(x ) + x 2/cos(x ) used as the optimizing function.

However, the following two functions, asin and acos , (which were defined for C1 in [1], and here are extended to a
multicomplex domain), do contain addition and subtraction terms, as we can be seen below.
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Asin(zn ) = −inLoд(inzn +
√
|1 − zn2 |e

in
2 Arд(1−z2)) (65)

Acos(zn ) = −inLoд(zn + in
√
|1 − zn2 |e

in
2 Arд(1−z2)) (66)

After employing the class definition to calculate the derivative values it was seen that like with atan, when a
sufficiently small imaginary term was employed the round off error started increasing as the small imaginary terms
decreased further. A similar derivation to that used for atan for very small imaginary components was derived therefore
for asin and acos .

The derivation for this was derived from the Taylor expansion of the complex asin;

asin(z) = z +
1
2
z3

3
+
1
2
3
4
z5

5
+
1
2
3
4
5
6
z7

7
+ ... (67)

with the substitution z = a + inb and collecting real and imaginary terms, the expansion becomes

asin(z) = a +
1
2
{
1
3
a3 − ab2} +

1
2
3
4
{
1
5
a5 − 2a3b2 + ab4} + i[b +

1
2
{
1
3
b3 − ba2} +

1
2
3
4
{
1
5
b5 − 2b3a2 + ba4}] (68)

which upon removing the very small terms (ie, the powers of b, which would vanish as b → 0), becomes

asin(z) ≈ a +
1
2
a3

3
+
1
2
3
4
a5

5
+ ib[1 +

1
2
a2 +

1
2
3
4
a4] (69)

As can be seen, the left hand side of the summation is exactly the same as the Taylor expansion for asin(a), so further
simplifying;

asin(z) ≈ asin(a) + ib
∞∑
n=0

(2n)!
22n (n!)2

a2n (70)

The power series corresponds to the function 1√
1−a2

. The procedure as was used for the atan function was followed.
The resulting disc of convergence is the same as for the atan power series, |z1 | ≤ 1 for C1. Therefore, for extending to
the multicomplex domain, the same two convergence criteria as before, | |zn |...n | < 1 & |zn |n < |(zn )

2 |n .
The cases for which we need to use the small imaginary component approximation is not as clear for asin as it was

for atan. It is essentially when the values of either inzn or
√
|1 − zn2 |e

in
2 Arд(1−z2) become small enough that they start

introducing a significant round-off error. However, having to calculate those two values just to check whether we need
to use the approximation was deemed too computationally expensive. Therefore, several tests were carried out to see
for which range of values of the imaginary components introduced a significant round-off error. It was found that
|extract_in (zn )| < 10−7, following the value chosen for atan is a good approximation to use. The final expression is
therefore;

i f |extract_in (zn )| < 10−7 → Asin(zn ) ≈ Asin(zn−1,1) + in
zn−1,2√

1 − zn−1,12
(71)

For the definition of the small imaginary component arccos , the following was used (from [1]),

Acos(zn ) =
π

2
−Asin(zn ) (72)
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These approximations solved the issue of the error shooting rapidly increasing, and this can be seen in the derivative
calculations in the performance section.

As with atan, asin and acos are non-injective so the principal value is selected by defining them in terms of the
principal value of the logarithm, as well as the principal value of the multicomplex square root and argument, [1]. Due
to this, care should be taken when implementing these inverse functions, as well as the loд or sqrt as they might lead
to unexpected results. For example, sin(arcsin(zn )) will always equal zn , but in some cases arcsin(sin(zn )) , zn . This
non-injective nature can be visualized in Figure 4.

Fig. 4. One value of zn will only produce one output sin(zn ), but one value of sin(zn ) could have been produced by an infinite number
of z′ns .

4.9 Exponential Function

Defining an exponential function for a multicomplex number is simple due to the relationship between the trig functions
and complex exponentials. As with the rest of the functions in the class definition, a recursive approach is employed in
which the Cn multicomplex number is broken down into its two Cn−1 components recursively.

ez = ezn−1,1+inzn−1,2 = ezn−1,1cos(zn−1,2) + ine
zn−1,1sin(zn−1,2) (73)

4.10 Verification of functions with nth order derivatives using the multicomplex step method

It should be noted that the class definition functionswere verifiedwith each other, for example, the operation exp(loд(zn ))
has to equal zn , as well as tan(atan(zn )) = zn,

√
zn

2 = zn , for any zn . Any function with a multicomplex input will
use many other functions to calculate the output. For example, the simple function√zn will need the atan2, sin and cos
functions. The sin and cos will themselves need sinh, cosh, and the atan2 will need the loд function, which also needs
atan2 as well as the square root function, etc...

Another method of ensuring the function outputs were correct was implemented to test the new class definition.
Here the multicomplex step method is used to test the accuracy of n-order derivatives.

The derivative values calculated with the class definition were compared to the ones calculated by using the exact
derivative. The derivatives up to 7th order were calculated, ensuring the class definition was calculating the accurate
results for the functions up to at least C7. A range of values of h, the size of the small imaginary terms, was used
to compare the derivatives, because the algorithms for some of the functions changed depending on the sizes of the
imaginary coefficients. This can be clearly visualized in the exp(asin(zn )) example, where a noticeable jump in % error
occurred between h = 10−7 and h = 10−8, this is where the switch between the standard arcsin to the small imaginary
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component arcsin algorithm occurred. The four test cases shown in Figures 5, 6, 7 and 8 were specifically chosen as
together they test all of the underlying functions defined in the multicomplex class.

Fig. 5. Percentage error in calculating different order derivatives of the function f (x ) =
√
sin(x ) + x 2

cos (x ) at x = 5 using the
multicomplex class definition.

Fig. 6. Percentage error in calculating different order derivatives of the function f (x ) = x 0.3x +loд(x ) at x = 2 using the multicomplex
class definition.
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Fig. 7. Percentage error in calculating different order derivatives of the function f (x ) = exp(sin−1(x )) at x = 0.5 using the
multicomplex class definition.

Fig. 8. Percentage error in calculating different order derivatives of the function f (x ) = exp(cos−1(x )) + x at x = 0.5 using the
multicomplex class definition.
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5 PERFORMANCE STUDY

For the performance study, each individual function of the class definition was run for a different order multicomplex
number. As the run times for the C1 complex number functions are of the order of 10−5s , and the resolution of the
Matlab timing (tic-toc) function is 10−6s , it was decided to run 500 iterations of the functions with the exception of the
addition, subtraction, multiplication and division functions which were run 10, 000 times in order to obtain an average
computation time which is a more accurate value to use for comparisons (all computations were undertaken on a HP
EliteDesk 800 SFF, Intel Core i7 quad processor, 8GB RAM, Windows 7 and Matlab 2015a).

Fig. 9. Computation time for the basic operators of addition/subtraction, multiplication and division for multicomplex numbers of
different order - 10000 iterations.

The computational time of the functions as the order of the multicomplex number is increased is typically exponential
as can be seen in Figures 9, 10, 11 and 12. This is expected, as the way the class definition represents a multicomplex
number of order n is with a 2n array.

For addition and subtraction there was not a significant increase in computational time with order of multicomplex
number, as shown in Figure 9, since what the algorithm does is essentially just an elements-wise addition/subtraction
of the multicomplex arrays. In general, the computational times for the simple operators of multiplication and division
are much smaller than the ones for the more complex functions of fractional powers, or powers of multicomplex
numbers. This is because Matlab is optimized for operations involving matrices and vectors, so vectorized code often
runs much faster than the corresponding code containing loops. This is why the algorithm for powers of multicomplex
numbers was split into the categories of fractional powers and whole number powers. The method for fractional power
calculation involves going through several iterations of atan2, sqrt and loд (as long as the imaginary components are
large enough that small imaginary component approximation is not used), while the whole number powers just uses
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Fig. 10. Computation time for the different versions of powers for multicomplex numbers, for multicomplex numbers of different
order - 500 iterations.

Fig. 11. Computation time for the trigonometric functions for multicomplex numbers of different order - 500 iterations.

a simple matrix multiplication p times, where p is the whole number power. As we can see in Figure 10, even when
p = 20 (ie, 20 matrix multiplications were performed), it was still faster than the code for calculating√zn .
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Fig. 12. Computation time for the different versions of the inverse trigonometric functions for multicomplex numbers of different
order - 500 iterations.

Fig. 13. Computation time for the exponential and logarithm functions for multicomplex numbers of different order - 500 iterations.

For the trigonometric functions sin and cos , the performance is shown in Figures 11. The computational times for
the hyperbolic functions sinh and cosh are very similar to these results. For calculating, for example, sin(zn ), 4n−1
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trigonometric functions of Cm<n are required. That is why Figure 11 shows an exponential behavior with varying n.
The computational time for tan(zn ) is more or less double, because the class definition has to calculate both sin(zn ) and
cos(zn ) and then perform a division between them.

As the algorithm for atan2 changes depending on whether the imaginary component is very small (< 10−7), the
performance measurement of both algorithm is shown. It should be noted that in Figure 12, the multicomplex number
order for atan2 corresponds to the order of the inputs of the function, not the order of the multicomplex number of the
argument. The computational time for asin, acos and atan2 are similar to each other, as their algorithm has essentially
the same structure. For the small imaginary component atan2, it can be observed that there is a significant decrease in
computational time. This is due to the simplicity of the algorithm, as it doesn’t require any fractional powers or a loд
representation. From this it can be seen that the advantage of using a small step size will not only increase the accuracy
of the derivative calculated, but also increase the computational efficiency of the program.

The last functions that were tested were the exponential and logarithm functions as shown in Figure 13. As with the
rest of the functions there was an exponential increase in computational time with increasing n.

The final assessment of the multicomplex class was the efficiency of the class when compared to other means
of obtaining sensitivity data. For this a comparison was made between the multicomplex step, finite difference and
automatic differentiation as implemented in ADigator. This is not meant to be an exhaustive benchmarking exercise
but, rather provide general trends on the performance of the different methods for the test case presented. The test case
presented is the sensitivity of the orbital radius of a spacecraft in low Earth orbit to the perpendicular velocity of the
spacecraft. The governing equation for the two body problem was

r = µ
r
r3

(74)

where r is the spacecraft position relative to the centre of the Earth, r is the distance of the spacecraft from the centre of
the Earth and µ is the gravitational parameter 398600km3/s2. The spacecraft’s initial position and perpendicular velocity
were, 6628km and 7.726km/s respectively. This was undertaken for a range of orbital times with Euler integration and
1s timesteps used. It can be seen from Figures 14 and 15 that the fastest approach is the finite difference one. ADigator
has two performance measures, one being the length of time required to produce the sensitivity code, the other being
how long the code runs. The length of time required to run the ADigator generated code is less than that required for
the multicomplex step approach using the class described here, however, the generation of the code takes significantly
longer than both of these.

6 CONCLUSION

The derivation and implementation of a multicomplex toolkit was developed with particular attention paid to small
imaginary terms to aid in implementing the method in the multicomplex step method. The use of a class definition
means that multicomplex numbers can be passed to existing codes without the need to modify algebraic functions being
called, allowing the fast, accurate and reliable extraction of derivatives from existing codes. The use of the multicomplex
step approach for obtaining derivative data is one of a range of tools available, limited timing information shows that
there are benefits and limitations of the different methods explored, and the authors believe the multicomplex step
method has a place in the researchers’ toolkit.
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Fig. 14. Timing comparison of different methods of obtaining first derivative sensitivities to initial velocity of low Earth orbiting
spacecraft after different orbital durations (timesteps of one second).

Fig. 15. Timing comparison of different methods of obtaining second derivative sensitivities to initial velocity of low Earth orbiting
spacecraft after different orbital durations (timesteps of one second).
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