557 research outputs found

    Using Modularity Metrics to assist Move Method Refactoring of Large System

    Full text link
    For large software systems, refactoring activities can be a challenging task, since for keeping component complexity under control the overall architecture as well as many details of each component have to be considered. Product metrics are therefore often used to quantify several parameters related to the modularity of a software system. This paper devises an approach for automatically suggesting refactoring opportunities on large software systems. We show that by assessing metrics for all components, move methods refactoring an be suggested in such a way to improve modularity of several components at once, without hindering any other. However, computing metrics for large software systems, comprising thousands of classes or more, can be a time consuming task when performed on a single CPU. For this, we propose a solution that computes metrics by resorting to GPU, hence greatly shortening computation time. Thanks to our approach precise knowledge on several properties of the system can be continuously gathered while the system evolves, hence assisting developers to quickly assess several solutions for reducing modularity issues

    Cohesion Metrics for Improving Software Quality

    Get PDF
    Abstract Software product metrics aim at measuring the quality of software. Modu- larity is an essential factor in software quality. In this work, metrics related to modularity and especially cohesion of the modules, are considered. The existing metrics are evaluated, and several new alternatives are proposed. The idea of cohesion of modules is that a module or a class should consist of related parts. The closely related principle of coupling says that the relationships between modules should be minimized. First, internal cohesion metrics are considered. The relations that are internal to classes are shown to be useless for quality measurement. Second, we consider external relationships for cohesion. A detailed analysis using design patterns and refactorings confirms that external cohesion is a better quality indicator than internal. Third, motivated by the successes (and problems) of external cohesion metrics, another kind of metric is proposed that represents the quality of modularity of software. This metric can be applied to refactorings related to classes, resulting in a refactoring suggestion system. To describe the metrics formally, a notation for programs is developed. Because of the recursive nature of programming languages, the properties of programs are most compactly represented using grammars and formal lan- guages. Also the tools that were used for metrics calculation are described.Siirretty Doriast

    Aspect-oriented refactoring of Java programs

    Get PDF

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Toward automated refactoring of crosscutting concerns into aspects

    Get PDF
    Aspect-oriented programing (AOP) improves the separation of concerns by encapsulating crosscutting concerns into aspects. Thus, aspect-oriented programing aims to better support the evolution of systems. Along this line, we have defined a process that assists the developer to refactor an object-oriented system into an aspect-oriented one. In this paper we propose the use of association rules and Markov models to improve the assistance in accomplishing some of the tasks of this process. Specifically, we use these techniques to help the developer in the task of encapsulating a fragment of aspectizable code into an aspect. This includes the choice of a fragment of aspectizable code to be encapsulated, the selection of a suitable aspect refactoring, and the analysis and application of additional restructurings when necessary. Our case study of the refactoring of a J2EE system shows that the use of the process reduces the intervention of the developer during the refactoring.Fil: Vidal, Santiago Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Marcos, Claudia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentin

    Software restructuring: understanding longitudinal architectural changes and refactoring

    Get PDF
    The complexity of software systems increases as the systems evolve. As the degradation of the system's structure accumulates, maintenance effort and defect-proneness tend to increase. In addition, developers often opt to employ sub-optimal solutions in order to achieve short-time goals, in a phenomenon that has been recently called technical debt. In this context, software restructuring serves as a way to alleviate and/or prevent structural degradation. Restructuring of software is usually performed in either higher or lower levels of granularity, where the first indicates broader changes in the system's structural architecture and the latter indicates refactorings performed to fewer and localised code elements. Although tools to assist architectural changes and refactoring are available, there is still no evidence these approaches are widely adopted by practitioners. Hence, an understanding of how developers perform architectural changes and refactoring in their daily basis and in the context of the software development processes they adopt is necessary. Current software development is iterative and incremental with short cycles of development and release. Thus, tools and processes that enable this development model, such as continuous integration and code review, are widespread among software engineering practitioners. Hence, this thesis investigates how developers perform longitudinal and incremental architectural changes and refactoring during code review through a wide range of empirical studies that consider different moments of the development lifecycle, different approaches, different automated tools and different analysis mechanisms. Finally, the observations and conclusions drawn from these empirical investigations extend the existing knowledge on how developers restructure software systems, in a way that future studies can leverage this knowledge to propose new tools and approaches that better fit developers' working routines and development processes

    A Reference Structure for Modular Model-based Analyses

    Get PDF
    Kontext: In dieser Arbeit haben wir die Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit von modellbasierten Analysen untersucht. Darum untersuchten wir die Wechselbeziehungen zwischen Modellen und Analysen, insbesondere die Struktur und Abhängigkeiten von Artefakten und die Dekomposition und Komposition von modellbasierten Analysen. Herausforderungen: Softwareentwickler verwenden Modelle von Softwaresystemen, um die Evolvierbarkeit und Wiederverwendbarkeit eines Architekturentwurfs zu bestimmen. Diese Modelle ermöglichen die Softwarearchitektur zu analysieren, bevor die erste Zeile Code geschreiben wird. Aufgrund evolutionärer Veränderungen sind modellbasierte Analysen jedoch auch anfällig für eine Verschlechterung der Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit. Diese Probleme lassen sich auf die Ko-Evolution von Modellierungssprache und Analyse zurückführen. Der Zweck einer Analyse ist die systematische Untersuchung bestimmter Eigenschaften eines zu untersuchenden Systems. Nehmen wir zum Beispiel an, dass Softwareentwickler neue Eigenschaften eines Softwaresystems analysieren wollen. In diesem Fall müssen sie Merkmale der Modellierungssprache und die entsprechenden modellbasierten Analysen anpassen, bevor sie neue Eigenschaften analysieren können. Merkmale in einer modellbasierten Analyse sind z.\,B. eine Analysetechnik, die eine solche Qualitätseigenschaft analysiert. Solche Änderungen führen zu einer erhöhten Komplexität der modellbasierten Analysen und damit zu schwer zu pflegenden modellbasierten Analysen. Diese steigende Komplexität verringert die Verständlichkeit der modellbasierten Analysen. Infolgedessen verlängern sich die Entwicklungszyklen, und die Softwareentwickler benötigen mehr Zeit, um das Softwaresystem an veränderte Anforderungen anzupassen. Stand der Technik: Derzeitige Ansätze ermöglichen die Kopplung von Analysen auf einem System oder über verteilte Systeme hinweg. Diese Ansätze bieten die technische Struktur für die Kopplung von Simulationen, nicht aber eine Struktur wie Komponenten (de)komponiert werden können. Eine weitere Herausforderung beim Komponieren von Analysen ist der Verhaltensaspekt, der sich darin äußert, wie sich die Analysekomponenten gegenseitig beeinflussen. Durch die Synchronisierung jeder beteiligten Simulation erhöht die Modularisierung von Simulationen den Kommunikationsbedarf. Derzeitige Ansätze erlauben es, den Kommunikationsaufwand zu reduzieren; allerdings werden bei diesen Ansätzen die Dekomposition und Komposition dem Benutzer überlassen. Beiträge: Ziel dieser Arbeit ist es, die Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit von modellbasierten Analysen zu verbessern. Zu diesem Zweck wird die Referenzarchitektur für domänenspezifische Modellierungssprachen als Grundlage genommen und die Übertragbarkeit der Struktur der Referenzarchitektur auf modellbasierte Analysen untersucht. Die geschichtete Referenzarchitektur bildet die Abhängigkeiten der Analysefunktionen und Analysekomponenten ab, indem sie diese bestimmten Schichten zuordnet. Wir haben drei Prozesse für die Anwendung der Referenzarchitektur entwickelt: (i) Refactoring einer bestehenden modellbasierten Analyse, (ii) Entwurf einer neuen modellbasierten Analyse und (iii) Erweiterung einer bestehenden modellbasierten Analyse. Zusätzlich zur Referenzarchitektur für modellbasierte Analysen haben wir wiederkehrende Strukturen identifiziert, die zu Problemen bei der Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit führen; in der Literatur werden diese wiederkehrenden Strukturen auch als Bad Smells bezeichnet. Wir haben etablierte modellbasierte Analysen untersucht und dreizehn Bad Smells identifiziert und spezifiziert. Neben der Spezifizierung der Bad Smells bieten wir einen Prozess zur automatischen Identifizierung dieser Bad Smells und Strategien für deren Refactoring, damit Entwickler diese Bad Smells vermeiden oder beheben können. In dieser Arbeit haben wir auch eine Modellierungssprache zur Spezifikation der Struktur und des Verhaltens von Simulationskomponenten entwickelt. Simulationen sind Analysen, um ein System zu untersuchen, wenn das Experimentieren mit dem bestehenden System zu zeitaufwändig, zu teuer, zu gefährlich oder einfach unmöglich ist, weil das System (noch) nicht existiert. Entwickler können die Spezifikation nutzen, um Simulationskomponenten zu vergleichen und so identische Komponenten zu identifizieren. Validierung: Die Referenzarchitektur für modellbasierte Analysen, haben wir evaluiert, indem wir vier modellbasierte Analysen in die Referenzarchitektur überführt haben. Wir haben eine szenariobasierte Evaluierung gewählt, die historische Änderungsszenarien aus den Repositories der modellbasierten Analysen ableitet. In der Auswertung können wir zeigen, dass sich die Evolvierbarkeit und Verständlichkeit durch die Bestimmung der Komplexität, der Kopplung und der Kohäsion verbessert. Die von uns verwendeten Metriken stammen aus der Informationstheorie, wurden aber bereits zur Bewertung der Referenzarchitektur für DSMLs verwendet. Die Bad Smells, die durch die Co-Abhängigkeit von modellbasierten Analysen und ihren entsprechenden DSMLs entstehen, haben wir evaluiert, indem wir vier modellbasierte Analysen nach dem Auftreten unserer schlechten Gerüche durchsucht und dann die gefundenen Bad Smells behoben haben. Wir haben auch eine szenariobasierte Auswertung gewählt, die historische Änderungsszenarien aus den Repositories der modellbasierten Analysen ableitet. Wir können zeigen, dass die Bad Smells die Evolvierbarkeit und Verständlichkeit negativ beeinflussen, indem wir die Komplexität, Kopplung und Kohäsion vor und nach der Refaktorisierung bestimmen. Den Ansatz zum Spezifizieren und Finden von Komponenten modellbasierter Analysen haben wir evaluiert, indem wir Komponenten von zwei modellbasierten Analysen spezifizieren und unseren Suchalgorithmus verwenden, um ähnliche Analysekomponenten zu finden. Die Ergebnisse der Evaluierung zeigen, dass wir in der Lage sind, ähnliche Analysekomponenten zu finden und dass unser Ansatz die Suche nach Analysekomponenten mit ähnlicher Struktur und ähnlichem Verhalten und damit die Wiederverwendung solcher Komponenten ermöglicht. Nutzen: Die Beiträge unserer Arbeit unterstützen Architekten und Entwickler bei ihrer täglichen Arbeit, um wartbare und wiederverwendbare modellbasierte Analysen zu entwickeln. Zu diesem Zweck stellen wir eine Referenzarchitektur bereit, die die modellbasierte Analyse und die domänenspezifische Modellierungssprache aufeinander abstimmt und so die Koevolution erleichtert. Zusätzlich zur Referenzarchitektur bieten wir auch Refaktorisierungsoperationen an, die es Architekten und Entwicklern ermöglichen, eine bestehende modellbasierte Analyse an die Referenzarchitektur anzupassen. Zusätzlich zu diesem technischen Aspekt haben wir drei Prozesse identifiziert, die es Architekten und Entwicklern ermöglichen, eine neue modellbasierte Analyse zu entwickeln, eine bestehende modellbasierte Analyse zu modularisieren und eine bestehende modellbasierte Analyse zu erweitern. Dies geschieht natürlich so, dass die Ergebnisse mit der Referenzarchitektur konform sind. Darüber hinaus ermöglicht unsere Spezifikation den Entwicklern, bestehende Simulationskomponenten zu vergleichen und sie bei Bedarf wiederzuverwenden. Dies erspart den Entwicklern die Neuimplementierung von Komponenten

    Refactoring middleware with aspects

    Full text link
    corecore