125 research outputs found

    Brief Announcement: Model Checking Rendezvous Algorithms for Robots with Lights in Euclidean Space

    Get PDF
    This announces the first successful attempt at using model-checking techniques to verify the correctness of self-stabilizing distributed algorithms for robots evolving in a continuous environment. The study focuses on the problem of rendezvous of two robots with lights and presents a generic verification model for the SPIN model checker. It will be presented in full at an upcoming venue

    Contract-Based Design: Theories and Applications

    Get PDF
    Most things we know only exist in relation to one another. Their states are strongly coupled due to dependencies that arise from such relations. For a system designer, acknowledging the presence of these dependencies is as crucial to guaranteeing performance as studying them. As the roles played by technology in fields such as transportation, healthcare, and finance continue to be more profound and diverse, modern engineering systems have grown to be more reliant on the integration of technologies across multiple disciplines and their requirements. The need to ensure proper division of labor, integration of system modules, and attribution of legal responsibility calls for a more methodological look into co-design considerations. Originally conceived in computer programming, contract-based reasoning is a design approach whose promise of a formal compositional paradigm is receiving attention from a broader engineering community. Our work is dedicated to narrowing the gap between the theory and application of this yet nascent framework. In the first half of this dissertation, we introduce a model interface contract theory for input/output automata with guards and a formalization of the directive-response architecture using assume-guarantee contracts and show how these may be used to guide the formal design of a traffic intersection and an automated valet parking system respectively. Next, we address a major drawback of assume-guarantee contracts, i.e., the problem of a void contract due to antecedent failure. Our proposed solution is a reactive version of assume-guarantee contracts that enables direct specification at the assumption and guarantee level along with a novel synthesis algorithm that exposes the effects of failures on the contract structure. This is then used to help optimize, adapt, and robustify our design against an uncertain environment. In light of ongoing development of autonomous driving technologies and its potential impact on the safety of future transportation, the second half of this work is dedicated to the application of the design-by-contract framework to the distributed control of autonomous vehicles. We start by defining and proving properties of "assume-guarantee profiles," our proposed approach to transparent distributed multi-agent decision making and behavior prediction. Next, we provide a local conflict resolution algorithm in the context of a quasi-simultaneous game which guarantees safety and liveness to the composition of autonomous vehicle systems in this game. Finally, to facilitate the extension of these frameworks to real-life urban driving settings, we also supply an effective method to predict agent behavior that utilizes recent advances in machine learning research.</p

    Sycamore - 2D/3D Mobile Robots simulation environment

    Get PDF
    The distributed coordination and control of a team of autonomous mobile robots is a problem widely studied in a variety of fields, such as engineering, artificial intelligence, artificial life, robotics. Generally, in these areas, the problem is studied mostly from a practical point of view. Recently, the study of what can be computed by such team of robots has become increasingly popular in theoretical computer science and especially in distributed computing, where it is now an integral part of the investigations on computability by mobile entities. The autonomous mobile robots model imagines the involved entities being capable of moving, observing the environment and computing. This kind of paradigm often produces complex configurations, for which the mathematical proof of correctness can be found more easily with the help of an empirical approach. This thesis will describe my work on a 2D/3D simulation environment for autonomous mobile robots called Sycamore. The work consisted in the implementation of the simulator and a rich set of plugins for it, followed by the implementation and testing of an algorithm that is solving a problem in the mobile robots theory: "NearGathering". The final part of the work made me design, implement and test a solution for a completely new problem: "Following with directional limited visibility"

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Fifth Conference on Artificial Intelligence for Space Applications

    Get PDF
    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration

    Multi-Robot Systems: Challenges, Trends and Applications

    Get PDF
    This book is a printed edition of the Special Issue entitled “Multi-Robot Systems: Challenges, Trends, and Applications” that was published in Applied Sciences. This Special Issue collected seventeen high-quality papers that discuss the main challenges of multi-robot systems, present the trends to address these issues, and report various relevant applications. Some of the topics addressed by these papers are robot swarms, mission planning, robot teaming, machine learning, immersive technologies, search and rescue, and social robotics

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    IEEE/NASA Workshop on Leveraging Applications of Formal Methods, Verification, and Validation

    Get PDF
    This volume contains the Preliminary Proceedings of the 2005 IEEE ISoLA Workshop on Leveraging Applications of Formal Methods, Verification, and Validation, with a special track on the theme of Formal Methods in Human and Robotic Space Exploration. The workshop was held on 23-24 September 2005 at the Loyola College Graduate Center, Columbia, MD, USA. The idea behind the Workshop arose from the experience and feedback of ISoLA 2004, the 1st International Symposium on Leveraging Applications of Formal Methods held in Paphos (Cyprus) last October-November. ISoLA 2004 served the need of providing a forum for developers, users, and researchers to discuss issues related to the adoption and use of rigorous tools and methods for the specification, analysis, verification, certification, construction, test, and maintenance of systems from the point of view of their different application domains

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)

    Get PDF
    Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered
    corecore