4,738 research outputs found

    Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults

    Get PDF
    Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks

    The use of predictive fall models for older adults receiving aged care, using routinely collected electronic health record data : a systematic review

    Get PDF
    Background: Falls in older adults remain a pressing health concern. With advancements in data analytics and increasing uptake of electronic health records, developing comprehensive predictive models for fall risk is now possible. We aimed to systematically identify studies involving the development and implementation of predictive falls models which used routinely collected electronic health record data in home-based, community and residential aged care settings. Methods: A systematic search of entries in Cochrane Library, CINAHL, MEDLINE, Scopus, and Web of Science was conducted in July 2020 using search terms relevant to aged care, prediction, and falls. Selection criteria included English-language studies, published in peer-reviewed journals, had an outcome of falls, and involved fall risk modelling using routinely collected electronic health record data. Screening, data extraction and quality appraisal using the Critical Appraisal Skills Program for Clinical Prediction Rule Studies were conducted. Study content was synthesised and reported narratively. Results: From 7,329 unique entries, four relevant studies were identified. All predictive models were built using different statistical techniques. Predictors across seven categories were used: demographics, assessments of care, fall history, medication use, health conditions, physical abilities, and environmental factors. Only one of the four studies had been validated externally. Three studies reported on the performance of the models. Conclusions: Adopting predictive modelling in aged care services for adverse events, such as falls, is in its infancy. The increased availability of electronic health record data and the potential of predictive modelling to document fall risk and inform appropriate interventions is making use of such models achievable. Having a dynamic prediction model that reflects the changing status of an aged care client is key to this moving forward for fall prevention interventions

    Application of machine learning approaches in predicting clinical outcomes in older adults – a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Machine learning-based prediction models have the potential to have a considerable positive impact on geriatric care.DESIGN: Systematic review and meta-analyses.PARTICIPANTS: Older adults (≥ 65 years) in any setting.INTERVENTION: Machine learning models for predicting clinical outcomes in older adults were evaluated. A random-effects meta-analysis was conducted in two grouped cohorts, where the predictive models were compared based on their performance in predicting mortality i) under and including 6 months ii) over 6 months.OUTCOME MEASURES: Studies were grouped into two groups by the clinical outcome, and the models were compared based on the area under the receiver operating characteristic curve metric.RESULTS: Thirty-seven studies that satisfied the systematic review criteria were appraised, and eight studies predicting a mortality outcome were included in the meta-analyses. We could only pool studies by mortality as there were inconsistent definitions and sparse data to pool studies for other clinical outcomes. The area under the receiver operating characteristic curve from the meta-analysis yielded a summary estimate of 0.80 (95% CI: 0.76 - 0.84) for mortality within 6 months and 0.81 (95% CI: 0.76 - 0.86) for mortality over 6 months, signifying good discriminatory power.CONCLUSION: The meta-analysis indicates that machine learning models display good discriminatory power in predicting mortality. However, more large-scale validation studies are necessary. As electronic healthcare databases grow larger and more comprehensive, the available computational power increases and machine learning models become more sophisticated; there should be an effort to integrate these models into a larger research setting to predict various clinical outcomes.</p

    Application of machine learning approaches in predicting clinical outcomes in older adults – a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Machine learning-based prediction models have the potential to have a considerable positive impact on geriatric care.DESIGN: Systematic review and meta-analyses.PARTICIPANTS: Older adults (≥ 65 years) in any setting.INTERVENTION: Machine learning models for predicting clinical outcomes in older adults were evaluated. A random-effects meta-analysis was conducted in two grouped cohorts, where the predictive models were compared based on their performance in predicting mortality i) under and including 6 months ii) over 6 months.OUTCOME MEASURES: Studies were grouped into two groups by the clinical outcome, and the models were compared based on the area under the receiver operating characteristic curve metric.RESULTS: Thirty-seven studies that satisfied the systematic review criteria were appraised, and eight studies predicting a mortality outcome were included in the meta-analyses. We could only pool studies by mortality as there were inconsistent definitions and sparse data to pool studies for other clinical outcomes. The area under the receiver operating characteristic curve from the meta-analysis yielded a summary estimate of 0.80 (95% CI: 0.76 - 0.84) for mortality within 6 months and 0.81 (95% CI: 0.76 - 0.86) for mortality over 6 months, signifying good discriminatory power.CONCLUSION: The meta-analysis indicates that machine learning models display good discriminatory power in predicting mortality. However, more large-scale validation studies are necessary. As electronic healthcare databases grow larger and more comprehensive, the available computational power increases and machine learning models become more sophisticated; there should be an effort to integrate these models into a larger research setting to predict various clinical outcomes.</p

    Classifying Unstable and Stable Walking Patterns Using Electroencephalography Signals and Machine Learning Algorithms

    Get PDF
    Analyzing unstable gait patterns from Electroencephalography (EEG) signals is vital to develop real-time brain-computer interface (BCI) systems to prevent falls and associated injuries. This study investigates the feasibility of classification algorithms to detect walking instability utilizing EEG signals. A 64-channel Brain Vision EEG system was used to acquire EEG signals from 13 healthy adults. Participants performed walking trials for four different stable and unstable conditions: (i) normal walking, (ii) normal walking with medial-lateral perturbation (MLP), (iii) normal walking with dual-tasking (Stroop), (iv) normal walking with center of mass visual feedback. Digital biomarkers were extracted using wavelet energy and entropies from the EEG signals. Algorithms like the ChronoNet, SVM, Random Forest, gradient boosting and recurrent neural networks (LSTM) could classify with 67 to 82% accuracy. The classification results show that it is possible to accurately classify different gait patterns (from stable to unstable) using EEG-based digital biomarkers. This study develops various machine-learning-based classification models using EEG datasets with potential applications in detecting unsteady gait neural signals and intervening by preventing falls and injuries

    Personalized functional health and fall risk prediction using electronic health records and in-home sensor data

    Get PDF
    Research has shown the importance of Electronic Health Records (EHR) and in-home sensor data for continuous health tracking and health risk predictions. With the increased computational capabilities and advances in machine learning techniques, we have new opportunities to use multi-modal health big data to develop accurate health tracking models. This dissertation describes the development, evaluation, and testing of systems for predicting functional health and fall risks in community-dwelling older adults using health data and machine learning techniques. In an initial study, we focused on organizing and de-identifying EHR data for analysis using HIPAA regulations. The dataset contained nine years of structured and unstructured EHR data obtained from TigerPlace, a senior living facility at Columbia, MO. The de-identification of this data was done using custom automated algorithms. The de-identified EHR data was used in several studies described in this dissertation. We then developed personalized functional health tracking models using geriatric assessments in the EHR data. Studies show that higher levels of functional health in older adults lead to a higher quality of life and improves the ability to age-in-place. Even though several geriatric assessments capture several aspects of functional health, there is limited research in longitudinally tracking the personalized functional health of older adults using a combination of these assessments. In this study, data from 150 older adult residents were used to develop a composite functional health prediction model using Activities of Daily Living (ADL), Instrumental Activities of Daily Living (IADL), Mini-Mental State Examination (MMSE), Geriatric Depression Scale (GDS), and Short Form 12 (SF12). Tracking functional health objectively could help clinicians to make decisions for interventions in case of functional health deterioration. We next constructed models for fall risk prediction in older adults using geriatric assessments, demographic data, and GAITRite assessment data. A 6-month fall risk prediction model was developed with data from 93 older adult residents. Explainable AI techniques were used to provide explanations to the model predictions, such as which specific features increased the risk of fall in a particular model prediction. Such explanations to model predictions provide valuable insights for targeted interventions. In another study, we developed deep neural network models to predict fall risk from de-identified nursing notes data from 162 older adult residents from TigerPlace. Clinical nursing notes have been shown to contain valuable information related to fall risk factors. This analysis provides the groundwork for future experiments to predict fall risk in older adults using clinical notes. In addition to using EHR data to predict functional health and fall risk in older adults, two studies were conducted to predict fall and functional health from in-home sensor data. Models for in-home fall prediction using depth sensor imagery have been successfully used at TigerPlace. However, the model is prone to false fall alarms in several scenarios, such as pillows thrown on the floor and pets jumping from couches. A secondary fall analysis was performed by analyzing fall alert videos to further identify and remove false alarms. In the final study, we used in-home sensor data streaming from depth sensors and bed sensors to predict functional health and absolute geriatric assessment values. These prediction models can be used to predict the functional health of residents in absence of sparse and infrequent geriatric assessments. This can also provide continuous tracking of functional health in older adults using the streaming in-home sensor data

    A Study on the Correlation Between Hand Grip and Age Using Statistical and Machine Learning Analysis

    Get PDF
    Handgrip strength (HGS) is an easy-to-use instrument for monitoring people's health status. Numerous researchers in many countries have done a study on handgrip disease or demographic data. This study focused on classifying aged groups referring to handgrip value using machine learning. A total of fifty-four participants had involved in this study, ages ranging from 24 years to 57 years old. Digital Pinch Grip Analyzer had been used to measure the handgrip measurement three times to get more accurate results. The result is then recorded by Clinical Analysis Software (CAS) that is built into the analyzer. An independent t-test is used to investigate the significant factor for age group classification. The data were then classified using machine learning analysis which are Support Vector Machine (SVM), Random Forest (RF), and Naïve Bayes. The overall dataset shows that the Support Vector Machine is the most suitable classification technique with average accuracy between 5 groups of age is 98%, specificity of 0.79, the sensitivity of 0.9814 and 0.0185 of mean absolute error. SVM also give the lowest mean absolute error compared to RF and Naïve Bayes. This study is consistent with the previous work that there is a relationship between handgrip and age

    A Study on the Correlation Between Hand Grip and Age Using Statistical and Machine Learning Analysis

    Get PDF
    Handgrip strength (HGS) is an easy-to-use instrument for monitoring people's health status. Numerous researchers in many countries have done a study on handgrip disease or demographic data. This study focused on classifying aged groups referring to handgrip value using machine learning. A total of fifty-four participants had involved in this study, ages ranging from 24 years to 57 years old. Digital Pinch Grip Analyzer had been used to measure the handgrip measurement three times to get more accurate results. The result is then recorded by Clinical Analysis Software (CAS) that is built into the analyzer. An independent t-test is used to investigate the significant factor for age group classification. The data were then classified using machine learning analysis which are Support Vector Machine (SVM), Random Forest (RF), and Naïve Bayes. The overall dataset shows that the Support Vector Machine is the most suitable classification technique with average accuracy between 5 groups of age is 98%, specificity of 0.79, the sensitivity of 0.9814 and 0.0185 of mean absolute error. SVM also give the lowest mean absolute error compared to RF and Naïve Bayes. This study is consistent with the previous work that there is a relationship between handgrip and age
    • …
    corecore