8,478 research outputs found

    Human-Level Performance on Word Analogy Questions by Latent Relational Analysis

    Get PDF
    This paper introduces Latent Relational Analysis (LRA), a method for measuring relational similarity. LRA has potential applications in many areas, including information extraction, word sense disambiguation, machine translation, and information retrieval. Relational similarity is correspondence between relations, in contrast with attributional similarity, which is correspondence between attributes. When two words have a high degree of attributional similarity, we call them synonyms. When two pairs of words have a high degree of relational similarity, we say that their relations are analogous. For example, the word pair mason/stone is analogous to the pair carpenter/wood; the relations between mason and stone are highly similar to the relations between carpenter and wood. Past work on semantic similarity measures has mainly been concerned with attributional similarity. For instance, Latent Semantic Analysis (LSA) can measure the degree of similarity between two words, but not between two relations. Recently the Vector Space Model (VSM) of information retrieval has been adapted to the task of measuring relational similarity, achieving a score of 47% on a collection of 374 college-level multiple-choice word analogy questions. In the VSM approach, the relation between a pair of words is characterized by a vector of frequencies of predefined patterns in a large corpus. LRA extends the VSM approach in three ways: (1) the patterns are derived automatically from the corpus (they are not predefined), (2) the Singular Value Decomposition (SVD) is used to smooth the frequency data (it is also used this way in LSA), and (3) automatically generated synonyms are used to explore reformulations of the word pairs. LRA achieves 56% on the 374 analogy questions, statistically equivalent to the average human score of 57%. On the related problem of classifying noun-modifier relations, LRA achieves similar gains over the VSM, while using a smaller corpus

    Similarity of Semantic Relations

    Get PDF
    There are at least two kinds of similarity. Relational similarity is correspondence between relations, in contrast with attributional similarity, which is correspondence between attributes. When two words have a high degree of attributional similarity, we call them synonyms. When two pairs of words have a high degree of relational similarity, we say that their relations are analogous. For example, the word pair mason:stone is analogous to the pair carpenter:wood. This paper introduces Latent Relational Analysis (LRA), a method for measuring relational similarity. LRA has potential applications in many areas, including information extraction, word sense disambiguation, and information retrieval. Recently the Vector Space Model (VSM) of information retrieval has been adapted to measuring relational similarity, achieving a score of 47% on a collection of 374 college-level multiple-choice word analogy questions. In the VSM approach, the relation between a pair of words is characterized by a vector of frequencies of predefined patterns in a large corpus. LRA extends the VSM approach in three ways: (1) the patterns are derived automatically from the corpus, (2) the Singular Value Decomposition (SVD) is used to smooth the frequency data, and (3) automatically generated synonyms are used to explore variations of the word pairs. LRA achieves 56% on the 374 analogy questions, statistically equivalent to the average human score of 57%. On the related problem of classifying semantic relations, LRA achieves similar gains over the VSM

    From Frequency to Meaning: Vector Space Models of Semantics

    Full text link
    Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field

    Learning Word Representations from Relational Graphs

    Get PDF
    Attributes of words and relations between two words are central to numerous tasks in Artificial Intelligence such as knowledge representation, similarity measurement, and analogy detection. Often when two words share one or more attributes in common, they are connected by some semantic relations. On the other hand, if there are numerous semantic relations between two words, we can expect some of the attributes of one of the words to be inherited by the other. Motivated by this close connection between attributes and relations, given a relational graph in which words are inter- connected via numerous semantic relations, we propose a method to learn a latent representation for the individual words. The proposed method considers not only the co-occurrences of words as done by existing approaches for word representation learning, but also the semantic relations in which two words co-occur. To evaluate the accuracy of the word representations learnt using the proposed method, we use the learnt word representations to solve semantic word analogy problems. Our experimental results show that it is possible to learn better word representations by using semantic semantics between words.Comment: AAAI 201

    Verb similarity: comparing corpus and psycholinguistic data

    Get PDF
    Similarity, which plays a key role in fields like cognitive science, psycholinguistics and natural language processing, is a broad and multifaceted concept. In this work we analyse how two approaches that belong to different perspectives, the corpus view and the psycholinguistic view, articulate similarity between verb senses in Spanish. Specifically, we compare the similarity between verb senses based on their argument structure, which is captured through semantic roles, with their similarity defined by word associations. We address the question of whether verb argument structure, which reflects the expression of the events, and word associations, which are related to the speakers' organization of the mental lexicon, shape similarity between verbs in a congruent manner, a topic which has not been explored previously. While we find significant correlations between verb sense similarities obtained from these two approaches, our findings also highlight some discrepancies between them and the importance of the degree of abstraction of the corpus annotation and psycholinguistic representations.La similitud, que desempeña un papel clave en campos como la ciencia cognitiva, la psicolingüística y el procesamiento del lenguaje natural, es un concepto amplio y multifacético. En este trabajo analizamos cómo dos enfoques que pertenecen a diferentes perspectivas, la visión del corpus y la visión psicolingüística, articulan la semejanza entre los sentidos verbales en español. Específicamente, comparamos la similitud entre los sentidos verbales basados en su estructura argumental, que se capta a través de roles semánticos, con su similitud definida por las asociaciones de palabras. Abordamos la cuestión de si la estructura del argumento verbal, que refleja la expresión de los acontecimientos, y las asociaciones de palabras, que están relacionadas con la organización de los hablantes del léxico mental, forman similitud entre los verbos de una manera congruente, un tema que no ha sido explorado previamente. Mientras que encontramos correlaciones significativas entre las similitudes de los sentidos verbales obtenidas de estos dos enfoques, nuestros hallazgos también resaltan algunas discrepancias entre ellos y la importancia del grado de abstracción de la anotación del corpus y las representaciones psicolingüísticas.La similitud, que exerceix un paper clau en camps com la ciència cognitiva, la psicolingüística i el processament del llenguatge natural, és un concepte ampli i multifacètic. En aquest treball analitzem com dos enfocaments que pertanyen a diferents perspectives, la visió del corpus i la visió psicolingüística, articulen la semblança entre els sentits verbals en espanyol. Específicament, comparem la similitud entre els sentits verbals basats en la seva estructura argumental, que es capta a través de rols semàntics, amb la seva similitud definida per les associacions de paraules. Abordem la qüestió de si l'estructura de l'argument verbal, que reflecteix l'expressió dels esdeveniments, i les associacions de paraules, que estan relacionades amb l'organització dels parlants del lèxic mental, formen similitud entre els verbs d'una manera congruent, un tema que no ha estat explorat prèviament. Mentre que trobem correlacions significatives entre les similituds dels sentits verbals obtingudes d'aquests dos enfocaments, les nostres troballes també ressalten algunes discrepàncies entre ells i la importància del grau d'abstracció de l'anotació del corpus i les representacions psicolingüístiques

    Measuring Semantic Similarity by Latent Relational Analysis

    Get PDF
    This paper introduces Latent Relational Analysis (LRA), a method for measuring semantic similarity. LRA measures similarity in the semantic relations between two pairs of words. When two pairs have a high degree of relational similarity, they are analogous. For example, the pair cat:meow is analogous to the pair dog:bark. There is evidence from cognitive science that relational similarity is fundamental to many cognitive and linguistic tasks (e.g., analogical reasoning). In the Vector Space Model (VSM) approach to measuring relational similarity, the similarity between two pairs is calculated by the cosine of the angle between the vectors that represent the two pairs. The elements in the vectors are based on the frequencies of manually constructed patterns in a large corpus. LRA extends the VSM approach in three ways: (1) patterns are derived automatically from the corpus, (2) Singular Value Decomposition is used to smooth the frequency data, and (3) synonyms are used to reformulate word pairs. This paper describes the LRA algorithm and experimentally compares LRA to VSM on two tasks, answering college-level multiple-choice word analogy questions and classifying semantic relations in noun-modifier expressions. LRA achieves state-of-the-art results, reaching human-level performance on the analogy questions and significantly exceeding VSM performance on both tasks

    Transfer and Multi-Task Learning for Noun-Noun Compound Interpretation

    Full text link
    In this paper, we empirically evaluate the utility of transfer and multi-task learning on a challenging semantic classification task: semantic interpretation of noun--noun compounds. Through a comprehensive series of experiments and in-depth error analysis, we show that transfer learning via parameter initialization and multi-task learning via parameter sharing can help a neural classification model generalize over a highly skewed distribution of relations. Further, we demonstrate how dual annotation with two distinct sets of relations over the same set of compounds can be exploited to improve the overall accuracy of a neural classifier and its F1 scores on the less frequent, but more difficult relations.Comment: EMNLP 2018: Conference on Empirical Methods in Natural Language Processing (EMNLP

    A Uniform Approach to Analogies, Synonyms, Antonyms, and Associations

    Get PDF
    Recognizing analogies, synonyms, antonyms, and associations appear to be four\ud distinct tasks, requiring distinct NLP algorithms. In the past, the four\ud tasks have been treated independently, using a wide variety of algorithms.\ud These four semantic classes, however, are a tiny sample of the full\ud range of semantic phenomena, and we cannot afford to create ad hoc algorithms\ud for each semantic phenomenon; we need to seek a unified approach.\ud We propose to subsume a broad range of phenomena under analogies.\ud To limit the scope of this paper, we restrict our attention to the subsumption\ud of synonyms, antonyms, and associations. We introduce a supervised corpus-based\ud machine learning algorithm for classifying analogous word pairs, and we\ud show that it can solve multiple-choice SAT analogy questions, TOEFL\ud synonym questions, ESL synonym-antonym questions, and similar-associated-both\ud questions from cognitive psychology
    corecore