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Abstract 

 

Similarity, which plays a key role in fields like cognitive science, psycholinguistics and 

natural language processing, is a broad and multifaceted concept. In this work we analyse 

how two approaches that belong to different perspectives, the corpus view and the 

psycholinguistic view, articulate similarity between verb senses in Spanish. Specifically, we 

compare the similarity between verb senses based on their argument structure, which is 

captured through semantic roles, with their similarity defined by word associations. We 

address the question of whether verb argument structure, which reflects the expression of 

the events, and word associations, which are related to the speakers’ organization of the 

mental lexicon, shape similarity between verbs in a congruent manner, a topic which has 

not been explored previously. While we find significant correlations between verb sense 

similarities obtained from these two approaches, our findings also highlight some 

discrepancies between them and the importance of the degree of abstraction of the corpus 

annotation and psycholinguistic representations. 
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1. Introduction 

 

Similarity is a crucial notion that underpins a number of cognitive models and 

psycholinguistic accounts of the lexicon. Furthermore, it is also important for natural 

language processing (NLP) models and a wide range of related NLP tasks. However, 

despite its usefulness, there is a fundamental problem in the definition of similarity. Bybee 

(2010) voiced such a concern in the context of models of novel utterance processing and 

production, but it is applicable to any similarity-based model: “The problem [...], however, 

is in specifying the relevant features upon which similarity is measured. This is a pressing 

empirical problem”. There are many non-trivial aspects that can be taken into account when 

describing and quantifying the similarity between two given concepts, words, sentences, 

etc. (cf. De Deyne et al. 2009 for a discussion in the semantic domain). Moreover, it has 

been argued that these different aspects tap into different elements of linguistic knowledge 

(Maki and Buchanan 2008; Riordan and Jones 2007).  

 

In this work we intend to gain further understanding of the particularities of two different 

approaches that come from the corpus and the psycholinguistic perspectives when defining 

verb sense similarity in Spanish as well as the relationship between them. The first type of 

knowledge can lead to a more advised use of each perspective regarding the linguistic 

features that they emphasize, whereas a better knowledge of their points of convergence 

and divergence can help in the development of a combined model that represents a more 

robust characterization of verb similarity. In particular we examine similarity between verb 
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senses
1
 in Spanish. For our experiments we characterize it in the following way: on the one 

side, we use speakers’ characterizations of verb senses obtained through word associations 

to embody the psycholinguistic perspective; on the other side we select argument structure 

of the sentences, the bearer of event information, to materialize the corpus perspective.  

  

Several comparisons between corpus data and word associations have been carried out 

previously (Mollin 2009; Nordquist 2009), but they have been mostly based on 

collocational information, aiming to test the psycholinguistic reality or relevance of 

collocations extracted from corpora. Indeed, from a usage-based perspective, the hypothesis 

that conventionalized linguistic structures should appear both in corpora and elicited data is 

a compelling one (Nordquist 2009). In addition, several computational models of language 

have aimed to predict word associations by using word co-occurrence information from 

diverse corpora (Church et al. 1989; Wettler and Rapp 1993; Peirsman and Geeraerts 2009; 

Sahlgren 2006; Michelbacher et al. 2007). In relation to this, a number of psycholinguistic 

studies remark that associative strength between a stimulus and a response correlates with 

word co-occurrence probabilities in a corpus (Spence and Owens 1990; McKoon and 

Ratcliff 1992; Plaut 1995), although this correlation is not straightforward, as there are 

some linguistic properties mediating it (De Deyne, Verheyen and Storms 2015).  

 

To the best of our knowledge, the specific comparison between word associations and 

corpus data that we propose here, focused on similarity, has not been performed before. 

Furthermore, we should note that most of the previous comparative studies that deal with 

similarity modelled through different methods, such as De Deyne et al. 2009, have been 

focused on the semantic component. Since our comparison involves argument structure, 

which is assigned typically to the interface between semantics and syntax, we also 

explicitly explore the role of the structural component in shaping similarity. In particular, 

our objective is twofold: firstly, we aim to look into the relationship between the similarity 

of verb senses as defined by corpus data (argument structure) and by psycholinguistic data 

(word associations); secondly, we want to investigate the role that the degree of abstraction 

of the data representation has in shaping this relationship. 

 

The paper is organised as follows. The next section provides background on the notion of 

similarity in the different fields where it has a relevant role: cognitive science, 

psycholinguistics (with emphasis on word associations) and natural language processing. 

Section 3 details the methodology followed to establish the comparison between the corpus 

and psycholinguistic perspectives. The following two sections, 4 and 5, delve into the 

formalization of each of the aforementioned perspectives respectively. The comparisons 

and results are discussed in Section 6. Finally, we summarise the most relevant findings in 

the light of their possible applications. 

 

 

2. Background on similarity 

 

With regard to cognition studies, similarity turns out to be a pervasive topic: many accounts 

of inference generation, problem solving, memory, prediction and categorization rely on it 

as a basic working mechanism. However, there is no unified account of similarity. On the 

                                                
1
 We provide the definitions for sense, lemma and word as used in this article. Sense is defined in line with 

Croft and Cruse (2004): a sense is a unit of meaning of a word, delimited from the rest of the meaning 

potential of this word. This delimitation is operated by conventional, cognitive and contextual constraints. In 

our work the senses are already defined in the corpus: they have a number that identifies them and a definition 

that delimits their boundaries. Lemma is the canonical form used to refer to a set of inflected forms. Word is 

the inflected form of a lexical unit. 
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contrary, there are a number of formal accounts that also define how similarity should be 

empirically measured. Goldstone and Son (2005) summarize them in four types of models: 

geometric, feature set-based, structure mapping-based and transformational. Geometric 

models characterize mental representations as points in the representational space. 

Therefore, the similarity between two concepts can be calculated on the basis of their 

distance: concepts that are close are more similar than those which are apart (Shepard 

1962). Feature-set approaches (Tversky 1977) represent concepts as feature lists. According 

to this approach, similarity between two concepts is measured in virtue of their common 

and distinctive features. Structure-mapping models, also known as alignment-based models, 

(Gentner and Markman, 1997) are also based on the existence of features associated with 

concepts, but they place the emphasis on the role that each feature has in the representations 

regarding the feature-matching process. To the contrary, transformational approaches 

(Garner 1974; Hahn et al. 2003) do not propose to study similarity using proxies such as 

points in space or feature sets. Instead they assume that any mental representation can be 

transformed into another following a series of transformational operations. Based on this 

view, the number and type of transformations needed define the degree of similarity 

between two mental representations. Overall, although every approach has its own 

theoretical and operational definition of similarity, there is a common underlying 

conception of similarity as a linking process carried out on mental objects and based on 

their coincident aspects.  

 

These different accounts of similarity in cognition have had a theoretical and practical 

impact on psycholinguistic models of the mental lexicon (see Jones et al. 2015: Ch. 11 for 

an overview). Furthermore, there is a body of research in psycholinguistics that brings to 

light evidence in favour of the role of similarity in constructing the mental lexicon, not only 

from priming experiments related with word recognition at several levels such as phonetic 

(Vitevitch and Luce 1999; Luce et al. 1990; Vitevitch and Luce 2016), semantic (Neely 

1991) and syntactic (Savage et al. 2003), but also from studies that deal with word 

formation (see Bybee 2010: Ch. 4).  

 

Within this field, word associations are also considered a useful tool to reveal information 

about the organization of the lexicon (Mollin 2009, Fitzpatrick et al. 2011) and the lexical 

retrieval process (Nordquist 2009). The term ‘word association’ originated in psychology to 

refer to the word or words that first come to mind in response to a subject being presented 

with a stimulus word. The first collections of word associations can be traced back to the 

beginnings of the 20th century, when Jung established them as a diagnostic tool to 

discriminate normal behaviour from pathological behaviour on the basis of the type of 

responses given by the patients. The introduction and usage of word association in 

psycholinguistics is more recent and happens in close connection with lexicon studies, 

which deal with how words are stored, represented and retrieved in memory. In word 

association experiments, the responses associated to each stimulus word are used to 

characterize it, and their frequency determines the associative strength between the 

response and the stimulus. As for the importance of word associations for the organization 

of the lexicon, some studies claim that word associations are crucial in the early conceptual 

processing that takes place when a word has been perceived (Barsalou et al. 2008: 249). In 

addition to this, word associations have been shown to correlate with semantic similarity 

effects in free recall and cued recall, as well as with human similarity ratings (Steyvers et 

al. 2004). In addition, they are argued to be able to account for semantic clustering effects 

in recall experiments (Manning 2012). 

 

A number of studies have focused on the type of information that motivates associations 

between the stimulus and the response. It is generally acknowledged that these relations 
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have a broad semantic basis (Nelson et al. 2000; Roediger et al. 2001; McRae et al. 2012; 

Brainerd et al. 2008). Evidence suggests that we might find typical relations such as 

hyponymy, synonymy and antonymy (Clark 1970), although other types of relations such as 

cause-effect or part-whole (Hernández et al. 2014) and thematic relationships (Peirsman 

and Geeraerts 2009) are more frequent. Additionally, some studies suggest that the type of 

relation between responses elicited and stimuli can be influenced by the part of speech of 

the stimulus (Deese 1962; Goldfarb and Halpern 1984).  

 

If we move the focus to natural language processing, we find that the notion of similarity is 

crucial for the development of linguistic models and applications. Indeed, measuring the 

similarity between different linguistic units is important for many different tasks (evaluation 

metrics in machine translation, word sense disambiguation, textual entailment analysis, 

paraphrase detection, etc.). Nevertheless, the formalization and measurement of similarity is 

affected by the same problem of broadness that we mentioned in the introduction: there are 

many relationships between linguistic units that we can take into account in order to define 

similarity. These relationships can take place at different levels (Fellbaum, 2015): the 

lexical level (synonymy and antonymy), the conceptual level (hyponymy, meronymy), the 

syntagmatic level, etc. These relations are the building blocks of relational models such as 

WordNet (Fellbaum 1998), which are grounded in psycholinguistic data from child 

language acquisition (Keil, 1989), word association norms (De Deyne and Storms 2015) 

and co-occurrence information (Fellbaum 2015). Consequently, we also find a variety of 

strategies for measuring similarity in the literature, in most cases based on the semantic 

relation of the two linguistic units. Among those that have to do with words and concepts, 

as in our case, we find models that represent linguistic units as nodes in a taxonomy linked 

by a variety of relations, whose similarity is measured on the basis of the path that connects 

them (Resnik 1995; Yang and Powers 2006). Other accounts represent words as points in a 

space configured by their context, in which words that share many contexts are similar 

(Schutze 1992; Landauer and Dumais 1997; Mikolov et al. 2013). Besides, similarity has 

been calculated on the basis of the overlap between word definitions or glosses in 

dictionaries (Kozima and Furugori 1993; Banerjee and Pedersen 2003; Pathwardan et al. 

2003) and taking into account the amount of overlap between feature sets associated with 

the words (Lin 1998). 

 

Finally, it is important to mention that there are several collections of human ratings of 

word similarity, mostly based on semantics. They consist of pairs of words that are rated by 

native speakers on a scale according to the perceived similarity between them. They are 

generally used to evaluate computational models of similarity (Faruqui and Dyer 2014). 

However, since most of these collections are limited to pairs of nouns, with the exception of 

Hill et al. (2015), Yang and Powers (2006) and Baker et al. (2014), the coverage of verbs 

(and other categories) is reduced. For Spanish there is a general scarcity of these resources: 

there are only ratings for nouns, either collected from native speakers (Moldovan 2015), or 

translated from English (Finkelstein et al. 2001; Camacho-Collados et al. 2015). 

 

 

3. Methodology 

 

In this study we focus on verb senses rather than lemmas to obtain more precise models of 

similarity, because different senses of the same lemma are likely to have different syntactic 

and semantic behaviour (Hare et al. 2003). We exemplify this with the lemma valer from 

the Sensem Spanish corpus (Fernández-Montraveta and Vázquez 2014). This lemma has 

several senses listed in the Sensem lexicon: sense 1 of valer means ‘to cost’, its 
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predominant subcategorization frame is NP V NP
2
 and its typical semantic roles are theme 

and measure. However, with sense number 2, valer means for something ‘to be the cause of 

a result’, its predominant subcategorization frame is NP V NP PP and its typical semantic 

roles are cause, theme and goal. In addition to this corpus example, there is experimental 

evidence that suggests that the different senses of a word have an impact on word 

recognition (Rodd and Marslen-Wilson 2002; Rayner and Frazier 1989) and similarity 

perception (Klein and Murphy 2002). Therefore, it is necessary to use specific senses of 

verbs in order to obtain data valid for an issue as sensitive to polysemy as it is similarity. 

 

Regarding the selection of the verb senses used for the present study, 20 senses were chosen 

from among those of the Sensem corpus. The selected senses met several requirements: 1) 

having a frequency of more than 10 sentences in the corpus; 2) belonging to a variety of 

semantic fields, as defined by WordNet supersenses
3
 (‘lexicographer file’ labels, Fellbaum 

1998) and by Adesse corpus macro-classes (Albertuz 2007); and 3) showing a variety of 

subcategorization frames and semantic roles associated with them
4
. These criteria were 

designed and applied in an effort to maximize the representation of diverse linguistic 

features in the selected sample, which constitutes a controlled set of data suitable to be 

explored in detail. In Appendix 1 there is a list of the verb senses chosen, along with their 

definitions and their frequency in the corpus; in Appendix 2 their semantic fields are 

specified. Furthermore, since none of the selected senses are related to coincident lemmas, 

sense identifiers have been omitted in the remainder of this article to improve legibility. 

 

In order to be able to compute pairwise similarity between all the senses, we obtained all 

possible sense pairings. For that, we avoided combinations of repeated elements (such as 

abrir-abrir ‘open-open’) and we did not take into account the order of the elements (e.g. 

cerrar-abrir ‘close-open’ was considered to be the same pair as abrir-cerrar ‘open-close’). 

As a result, we obtained 190 verb sense pairs. Therefore, by calculating the similarity 

between the senses in each pair, we were able to measure the similarity among all the verb 

senses in our sample.  

 

In the following two sections (4 and 5) we detail the formalization of the corpus data and 

the psycholinguistic data respectively, specifying the features that we used in each 

perspective. The results of the comparison of both types of data are shown in Section 6. 

 

 

4. Corpus perspective: argument structure and event representation 

 

In this section we explain how we approach similarity from the corpus data perspective. 

Our corpus of reference is the Sensem corpus, which consists of 999,712 tokens and 

contains 30,365 sentences associated to 250 different verb lemmas. The lemmas are 

manually disambiguated, making a total of 980 different verb senses. The sentences are 

annotated at the syntactic and semantic levels (semantic roles and verb synsets). We use the 

data provided by this corpus to capture and formalize the argument structure of the verbs.   

 

We consider that argument structure is relevant for verb similarity for two reasons. On the 

one hand, linguistic accounts look at argument structure as a key element associated with 

verbs (and also other units such as deverbal nouns or prepositions) that lives at the syntax-

                                                
2
 NP stands for ‘noun phrase’, V stands for ‘verb’ and PP stands for ‘prepositional phrase’. 

3
 The correspondence with WordNet supersenses is done through the synsets associated with the Sensem verb 

senses using the Multilingual Central Repository (Gonzalez-Agirre and Rigau 2013). 
4
 Their subcategorization frames and their semantic roles can be found in the Sensem lexicon 

(http://grial.uab.es/sensem/lexico?idioma=en). 
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semantics interface of the linguistic system. The linguistic notion of argument structure 

refers to how many and what type of arguments are related to a predicate. There are diverse 

(and sometimes opposing) views of the nature of argument structure. To comment briefly 

on two influential examples, we can mention the Levin (1993) and Goldberg (1995) 

approaches. Levin’s work is based on the hypothesis that “the behavior of a verb, 

particularly with respect to the expression and interpretation of its arguments, is to a large 

extend determined by its meaning”. She used information about the common diathesis 

(shared argument alternations in the expressions of the arguments of a verb) in which verbs 

participate to model verb behaviour and classify around 3,000 English verbs. A quite 

different view is that of Goldberg. This author considers that argument structure is a type of 

construction and remarks that, as with every construction, it has independent meaning. 

Whether the relation between the argument structure and the verb is driven by the lexical 

meaning of verbs or by the interplay of lexical meaning and constructional meaning, it is 

assumed that such a relation exists: argument structure and verbs do not combine at 

random, but in a specific way. On the other hand, argument structure represents the 

linguistic codification of the events expressed in the sentence. From the point of view of the 

organization of the lexicon, information related to events has been gaining importance in its 

role in grounding linguistic knowledge and mental representations (Jones 2015; McRae et 

al. 2005; Ferretti et al. 2001; Chwilla and Kolk 2005). 

 

A related work to the one presented in this article is the one by Merlo and Stevenson 

(2001), who showed that argument structure can be used to classify verbs using information 

from corpora. They classified 59 verbs into three classes according to their argument 

structure (unergative, unaccusative and object-drop). They hypothesized that the verb’s 

argument structure could be determined on the basis of the distribution of key 

characteristics in corpus. These characteristics were modelled through a set of lexical 

features (transitivity, causativity, animacy, verb voice, and use of past participle or simple 

past). They used a decision tree algorithm, reaching almost 70 % of accuracy in the 

classification. 

 

With regard to how to capture argument structure in an empirical manner, we use the 

semantic role annotations in the Sensem corpus. Semantic roles were first introduced in 

modern linguistics by the works of Gruber (1965), Fillmore (1968) and Jackendoff (1972), 

who proposed them as mediators between syntax and semantics in the expression of the 

arguments. This turned out to be a very influential idea, and semantic roles were adopted in 

generative grammar to interpret the relation that holds between each argument and the 

predicate, and to account for the similarities between arguments with different syntactic 

realizations. However, the use of semantic roles is not limited to formal accounts: they have 

been widely used for semantic annotation in corpora and for NLP tasks such as question 

answering (Shen and Lapata 2007), information extraction (Christensen 2010) or machine 

translation (Liu et al. 2010). 

 

Semantic roles have proven to be a useful level of representation when characterizing 

languages from a syntactic-semantic perspective. However, a crucial matter for corpus 

annotation at this level is the disagreement on the inventory of roles that should be used. 

There is a variety of roleset proposals that differ in the number of roles and their degree of 

detail when identifying participants in the event (e.g. agent vs. writer, cook, painter, etc.). 

The pioneering work carried out by Fillmore (1968) introduced a set of semantic roles 

based on interpretative categories: agent, patient, theme, beneficiary, etc., which has been 

the approach of lexical resources such as VerbNet (Schuler 2005). In the same spirit but 

aiming for more neutrality, we find the approach of PropBank (Palmer et al. 2005), which 

identifies arguments using numbered labels (ARG0, ARG1, etc.). The numbering criterion 
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remains constant for a specific verb, but changes across different verbs. A more fine-

grained account of semantic roles can be found in Frame Semantics theory and FrameNet 

(Fillmore et al. 2003), in which semantic roles are determined by the specific event: roles 

such as cook, food or recipient are used to address the participants in a cooking event 

(frame, in their terminology). A different approach is the one found in  Dowty (1991), 

which regards semantic roles not as clear-cut categories, but rather as sets of properties or 

entailments that are associated to two proto-roles (Proto-Agent and Proto-Patient). Finally, 

we find the framework proposed by LIRICS (Bonial et al. 2011), whose aim is to develop a 

standard roleset suitable for the different needs of various natural language processing 

tasks. They propose a hierarchical organization of roles based on different levels of 

granularity (coarse-grained roles, e.g. actor, subsume related fine-grained roles: cause, 

agent, etc.).  

 

We considered that this last approach was suitable for our experiments and research goals 

because of its flexibility, which allowed us to experiment with the different degrees of 

granularity of semantic roles. Therefore, we manually created a three-level hierarchical 

roleset. This was done mapping  the roles annotated in the corpus with the LIRICS roles in 

a bottom up fashion: firstly, the Sensem semantic roles (38 in total) were used directly for 

the fine-grained level; secondly, these roles were mapped to the medium grained roles from 

the LIRICS proposal comparing the definitions of both role sets; next, according to this 

mapping, we used the LIRICS roles that had links with the Sensem roles for the medium-

grained level (14 roles); finally, the coarse-grained roles are the abstract LIRICS roles that 

have links with our medium-grained roles (4 roles). We show the generated role hierarchy 

in Figure 1: the first level corresponds to coarse-grained roles, the second to medium-

grained roles and the third to the fine-grained semantic roles. As a result, we obtained three 

levels of semantic role granularity that allowed us to formalize argument structure in a 

flexible way. 

 

        
 

Figure 1: Hierarchy of semantic roles 

 

The specific features from the corpus that we used to characterize the verb senses were: 1) 

each of the three levels of semantic roles and 2) these semantic roles combined with the 

corresponding syntactic function of the argument, forming a unit. We selected these two 

formalizations because they best captured the argument structure of the sentences and 

enabled us to explore the effects of adding extra syntactic information in the calculation of 

the similarity. 

In addition, the information extracted from Sensem about semantic roles and semantic roles 

plus syntax was considered in two formats: constituents, which are single arguments (e.g. 

agent, patient; agent-subject, patient-object) and patterns, which are the combination of the 

arguments of a sentence (e.g. agent+patient; agent-subject+patient-object). We illustrate 
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this feature extraction and representation process with an example in Table 1 based on the 

annotated sentence Remedios abrió su bolso (‘Remedios opened her handbag’) in Figure 2. 

Figure 2: Annotation from Sensem 

 

Table 1: Example of features obtained from the sentence 

 

 Constituents Patterns 

Semantic roles Roles  roles + syntax Roles roles + syntax 

Fine-grained level Agent;  

Affected theme 

Agent-Subject; 

Affected theme-

DirectObject 

Agent+Affected 

theme 

 

Agent-

Subject+Affected 

theme-DirectObject 

Medium-grained level Agent;  

Theme 

 

Agent-Subject; 

Theme-

DirectObject 

 

Agent+Theme 

 

Agent-

Subject+Theme-

DirectObject 

Coarse-grained level Actor; 

Undergoer 

 

Actor-Subject; 

Undergoer-

DirectObject 

Actor+Undergoer 

 

Actor-

Subject+Undergoer-

DirectObject 

 

Thus, for each sentence we obtained 12 different formalizations of its argument structure, 

according to the mentioned factors: the usage of either roles or roles combined with syntax 

to characterize the arguments of the verbs, the formalization in patterns or constituents and 

the different levels of granularity of semantic roles. Correspondingly, we generated 12 

vector representations for every verb sense. The vectors contained the probability of co-

occurrence of a verb sense with the features associated with the different formalizations, 

according to the data in the corpus. Therefore, for each sense we obtained a probability 

distribution over the designed features. We calculated pairwise similarity between all the 

verb senses according to each of the formalizations. The similarity values were obtained 

calculating the cosine distance of the vector representations of the senses. This distance was 

suitable for our purposes because it has the advantage of being independent of the 

magnitude and therefore the similarity value was not affected by the frequency of the sense. 

Summarizing, this setting allowed us to obtain pairwise similarity measures between all 

verb senses according to the 12 different ways of capturing argument structure.  

 

As a result, we generated 12 similarity rankings from corpus data. In these rankings, sense 

pairs were ordered from most to least similar according to the values obtained in the 

previous step. These rankings were then compared to rankings obtained from 

psycholinguistic data. The results of this comparison are presented in Section 6.  

 

5. Psycholinguistic perspective 

 

In this section we present a psycholinguistic experiment carried out with the objective of 

capturing the way in which native speakers characterize verb senses. Similarity between 

verb senses is calculated on the basis of these characterizations. We avoid asking 

participants to rate the perceived similarity between two senses directly, since this method 
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is more suitable for lemmas and has been used primarily to rate similarity between concrete 

nouns. Instead, we calculate the similarity between verb senses using word associations.  

 

As for existing resources of word associations, there are several collections for English 

which contain a high number of stimuli and responses, such as Kiss et al. (1973) (8,400 

stimuli) and Nelson et al. (1998) (5,019 stimuli). Regarding word association resources for 

Spanish, there are several small collections,
5
 all below 700 stimuli. However, very few 

include word associations for verbs (Coll-Florit and Gennari 2011) and none of them has 

been applied in researching verb similarity. 

 

An in-depth examination of word associations for verbs was carried by Schulte im Walde 

(2008). This author explored the applications of the information obtained from word 

associations in German for automatic verb classification. The aim was to test whether word 

associations could provide useful insights into key linguistic features for this task. The 

author collected word associations for 330 German verbs and performed an analysis of the 

collected words at three levels: their part of speech (PoS), the syntactic function of the 

nouns with respect to the verb and their co-occurrence in corpus with the stimulus verb. As 

for the PoS analysis, it was found that, on average, nouns accounted for 62% of word 

associations, followed by verbs (19.86%), although this percentage varied across the 

semantic verb classes. Regarding the syntactic function of the associated nouns with respect 

to the verbs, only 28% of the nouns filled a position in the syntactic frames obtained using 

previously developed grammar. Of particular note, it was discovered that 50% of the 

association nouns were present in the grammar model but did not fill syntactic frame slots. 

Taking this fact together with the results of an analysis that showed that 77% of the nouns 

co-occurred at least once with the stimuli verb in a window of 20 words, it was concluded 

that the nouns that people associated with verbs were not restricted to subcategorization 

positions or selection preferences. In a related work, Schulte im Walde et al. (2008) 

analysed the semantic relation between the stimulus verb and the verbs obtained in the 

experiment as associated responses: they found that 47% of the responses had a relation in 

GermaNet (the German equivalent of WordNet). Other types of relations existed in the 

associations, but were not represented in GermaNet (cause, consequence, result, etc.).  

 

For our experiment we also focused on the verb category to design the materials. However, 

unlike in Schulte im Walde (2008), the stimuli used for this experiment were the already 

presented 20 verb senses, which were embedded in a phrase that provides context. The aim 

of this type of contextualized presentation was to ensure that the collected associate 

responses were related to the specific senses that are the object of this study. Therefore, for 

each of the selected senses, we created a contextualized phrase stimulus that aimed to 

achieve a balance between neutrality (keeping the responses from being biased due to the 

words in the phrase) and disambiguation (containing enough context to disambiguate the 

sense). To ensure the first requisite, we collected frequent selectional preferences for each 

of the senses, afterwards looking for a generic alternative for the words in the set of 

selectional preferences (e.g. person vs. thief for chase; means of transportation vs. train for 

travel). To accomplish the second objective (disambiguation), we checked that none of the 

other senses with the same lemma in the corpus fitted in the sentence stimulus. The 

stimulus phrases contained the verb in infinitive, which was presented in the first position, 

in boldface and in capital letters. The other words in the phrase, no more than four, were 

presented in normal font. The list of stimuli can be found in Appendix 3. 

 

                                                
5
  See http://campus.usal.es/~gimc/normas/nipejcyl.htm for a compilation. 

http://campus.usal.es/~gimc/normas/nipejcyl.htm
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The experiment was carried out using LimeSurvey, an open source software tool that allows 

the researcher to administer it over the Internet and to save the data gradually as the 

experiment progresses. In addition, it supports the timing of the duration of the presentation 

of stimulus to the participants. In the first part of the experiment, we gathered information 

about the formal knowledge of the participants in linguistics or related areas (e.g. 

translation) and the languages that the participants spoke as natives, besides Spanish. 

Moreover, participants were also asked to list the variety of Spanish that they spoke and 

their linguistic training, if any. In the second part, the participants were presented with the 

instructions. Firstly, how the stimuli were going to be presented and the expected format of 

the answer (a single word) was explained. Participants were also encouraged to rely on their 

intuition. Secondly, the participants were informed that they would be shown a sentence. 

The instructions specifically asked the participants to write down the words that came to 

their minds in relation to the word that was presented in capital letters in the sentence.  Each 

sentence stimulus was presented to the participants during 45 seconds, during which time 

they were asked to write up to 15 words that came to their mind. When the allotted time for 

each stimulus had passed, the program advanced automatically to the next stimulus. Each of 

these possible responses had a space allocated, as shown in Figure 3. We chose to collect 

several responses to characterize each stimulus, as not limiting the responses to the first that 

came to mind has shown higher correlation with human similarity ratings (Steyvers et al. 

2004) and it has proven to perform better in lexical access tasks (Chumbley and Balota 

1984). Besides, Nelson et al. (2000) and De Deyne et al. (2013) suggest that these non-

primary responses contain useful information. In addition to these advantages, from the 

point of view of similarity calculation between verb senses, having more than one response 

per stimulus and participant helps in reducing data sparsity (De Deyne et al. 2013). 

 

  
    

   Figure 3: Word association task screen 

 

A total of 102 participants collaborated in the experiment. Regarding the geographical 

variety, 17 participants listed themselves as speakers of Spanish varieties spoken outside of 

Spain (4 participants were from Chile, 4 from Argentina, 4 from Colombia, 2 from 

Venezuela, and a total of 3 from Peru, Uruguay and Ecuador, respectively). As for their 

linguistic training, out of the total amount of participants, 8 acknowledged a high level of 

formal linguistic training and 6 a high level of professional linguistic training (translators or 

teachers in secondary education). 
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The total amount of responses collected was 11,617. On average, the participants responded 

with 5.7 words for each stimulus, this is, 113.9 words in total for the 20 stimuli, with 24 

being the minimum number of words (a bit more than one word per stimulus) and 263 the 

maximum (around 13 words per stimulus). Tallying up all participants, senses received 

between 454 and 730 responses. 

 

The responses given by the participants were looked up in the dictionary provided by 

Freeling (Padró and Stanilovsky 2012). Those which were not present in the dictionary 

were disregarded in our experiments. This was done in an effort to minimise the noise 

produced by incorrectly written or partial words. From the total amount of 11,617 words 

collected, 11,504 were found in the Freeling dictionary. We also used Freeling to lemmatize 

the obtained responses and to tag them automatically with their morphosyntactic category. 

In cases of morphosyntactic ambiguity, the Freeling tagger assigned the most frequent part 

of speech to the lemma. Figure 4 presents the distribution of these categories per verb sense. 

               

 
            Figure 4: Frequency of the morphosyntactic category of the responses per verb 

 

We see that most of the associated responses were nouns, closely followed by verbs. 

However, the difference between the two was not as large as it is in other word association 

studies for verbs, such as in Schulte im Walde (2008).  

 

The frequency of the lemmatized responses obtained in the experiment was registered. In 

Table 2 we show a small example of the dataset, with target verb senses placed in rows and 

the responses in columns. As a first step, we obtained a frequency distribution over all these 

responses for each verb sense. The second step, as in the corpus perspective, was to obtain 

the similarity value of the verb senses in each pair, calculating the cosine distance of their 

corresponding probability distributions. Therefore, a large amount of highly probable 

shared responses for two verb senses yielded a large similarity value, and vice versa. 

 

Table 2: Word association dataset example 
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Verb sense Entrar (enter) Niño (boy) Frío (cold) Noche (night) 

Abrir (open) 24 0 15  0 

Cerrar (close) 1 0 0 5 

Crecer (grow) 0 17 0 0 

 

As we can see in the small sample presented in Table 2, the frequency matrix obtained is 

quite sparse: there are many responses and only a few of them co-occur with each stimulus. 

This fact affects the overlap measure by skewing it towards dissimilarity. In order to reduce 

this effect and to experiment with different degrees of granularity and scope in the 

representation of the responses, we associated each response with categories from several 

ontologies. To do this, we first annotated each lemmatized response with its corresponding 

WordNet synset (the identifier of a set of synonyms that correspond to a concept in 

WordNet) using Freeling, which assigned the most frequent synset to each word form. In 

turn, the synset was used as a proxy to obtain the corresponding category in a collection of 

ontologies. This was done through the MCR (Gonzalez-Agirre et al. 2012), which provides 

mappings between synsets and such ontologies. Therefore, besides having the equivalent 

lemma of each response, we were able to use categories from the following ontologies: 

hypernyms from WordNet, SUMO (Suggested Upper Merged Ontology) (Niles and Pease 

2001), TCO (Top Concept Ontology) (Alvez et al. 2008) and supersenses from WordNet.  

 

Hypernyms are the immediate, more abstract node (parent) in the is-a relationship in 

WordNet. SUMO is an ontology linked to WordNet which contains around 25,000 terms 

and 80,000 axioms. TCO is a collection of 64 features organized in three groups according 

to the work done by Lyons (1977). TCO features belong to first-order entities (physical 

things: vehicle, animal, etc.), second-order entities (situations: happen, be, etc.) and third-

order entities (unobservable entities: idea, theory, etc.) and are used in a hierarchical 

combination to describe around 60,000 concepts from WordNet. Supersenses are 45 

abstract concepts used as a first categorization level in WordNet, including labels such as 

body, artefact, location, event, cognition, etc. An example of the result of the process of 

linking our lemmatized responses to ontologies for the response saber (to know) is shown 

in Figure 5. 

 

 
 

Figure 5: Generation of the diverse ontology categories 

 

It is important to note that some of the responses could not be represented in these 

ontologies: there were categories (such as adverbs) that were not covered by the ontologies; 

or words whose synset was not mapped to an ontology. In these cases, the responses that 

were not linked with a category in an ontology were not taken into account for that specific 

ontology.  
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Each of these four types of ontological categorization (hypernyms, SUMO, TCO and 

supersenses) was used to calculate pairwise similarity in the same way as for the lemmas, 

substituting the lemma of the response with its corresponding category. In Table 3, the 

number of different categories used per resource is presented. Each of these different 

categories represents concepts with a different degree of granularity, as can be seen by 

looking at the number of categories.   

 

Table 3: Number of different categories used in the data 

 

lemma 2,691 

hypernym 1,275 

SUMO 595 

TCO 328 

Supersenses 40 

 

As in the corpus perspective, we generated one similarity ranking for each formalization (to 

a total of 5 in this case, one for each type of resource) for all the pairs. In the next section 

we present the results of the comparison of corpus similarity rankings and psycholinguistic 

similarity rankings. 

 

 

6. Comparison of both approaches 

 

In this section we present two types of comparison of the verb sense similarities obtained 

from corpus and psycholinguistic data. Firstly, we present a quantitative analysis of the 

relationship between these two approaches to similarity. Secondly, we carry out a more 

qualitative analysis in which we look closely at the semantic, aspectual and 

subcategorization information that prevails in both types of data and analyse the 

coincidences and differences. 

 

The quantitative study was performed through a Pearson correlation analysis. We studied 

the correspondence between verb sense similarities calculated using all the different 

formalizations for corpus and psycholinguistic data that we have explained in the previous 

sections. Summarizing, for corpus data we had three levels of granularity of semantic roles 

and two different structural combinations: patterns and constituents. In addition, we also 

experimented with the presence/absence of explicit syntactic information. As for 

psycholinguistic data, we had five different formalizations for similarity: lemmas, 

hypernyms, SUMO, TCO and supersenses. Moreover, we experimented with three versions 

of word associations: 1) similarities calculated using only the first response of each 

participant; 2) similarities obtained using the first three responses at most, as in De Deyne 

et al. (2013); and 3) all the responses obtained. We observed that taking into account the 

first three and all responses yielded higher correlations with corpus data than taking only 

the first response, in line with the findings of Nelson et al. (2000) and De Deyne et al. 

(2013). Overall, higher correlations were obtained when taking into account just the first 

three responses. Therefore, these are the results that we present and analyse here. These 

correlations were obtained comparing the similarity scores of every verb sense pair 

according to the corpus formalizations with its corresponding scores obtained using word 

association data. 
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The correlations’ values can be seen in Table 4 (correlations of word associations with 

semantic roles) and Table 5 (correlations of word associations with semantic roles and 

syntax). Overall, the correlation strength ranges from medium to low. However, all of the 

correlations that we present here are significant (p < 0.05). When the correlation is not 

significant we indicate it with a dash. 

 

Table 4: Correlations of semantic roles and word associations 

 
 Psycholinguistic data 

  
  

  
C

o
rp

u
s 

d
at

a 

Type of information Type of 

format 

lemma hypernym SUMO TCO supersense 

Fine-grained roles  

 

patterns 0.34 0.31 0.18 0.30 0.24 

constituents 0.33 0.33 0.22 0.24 0.14 

Medium-grained roles  patterns 0.30 0.28 0.31 0.34 0.30 

constituents 0.30 0.28 0.30 0.33 0.20 

Coarse-grained roles  

 

patterns - - - - - 

constituents - - - - - 

  

Table 5: Correlations of semantic roles + syntax and word associations 
 

 Psycholinguistic data 

  
  

  
C

o
rp

u
s 

d
at

a 

Type of information Type of 

format 

lemma hypernym SUMO TCO supersense 

Fine-grained roles + syntax 

 

patterns 0.32 0.29 0.16 0.24 0.19 

constituents 0.40 0.38 0.25 0.29 0.22 

Medium-grained roles + syntax  patterns 0.29 0.26 0.30 0.31 0.26 

constituents 0.35 0.32 0.38 0.35 0.28 

Coarse-grained roles + syntax 

 

patterns 0.16 - - 0.16 - 

constituents 0.20 - 0.16 - - 

   

 

If we look at the interplay of the presence/absence of syntax and the formalizations in 

constituents/patterns by comparing each row of Table 4 to the corresponding row in Table 

5, we see that patterns that contain only semantic roles, or constituents that contain 

semantic roles with additional syntactic information correlate more with psycholinguistic 

data than the inverse combinations (semantic roles alone in constituents or semantic roles 

plus syntax in patterns). This suggests that information that deals with structure (either by 

expressing it through linear order or with syntactic categories) is relevant in the retrieval 

(and possibly configuration) of similarity relationships in the minds of the speakers. The 

lower correlation values of psycholinguistic data with corpus data formalized in patterns 

which include syntactic information show that the combination of these two types of 

information does not add up from a psycholinguistic viewpoint and in fact hinders the 

correlation. 

 

As for the possible effects of including specific syntactic information, we see that, overall, 

roles plus syntax (Table 5) correlates the most with psycholinguistic data and also achieves 

the highest single correlation (fine-grained roles plus syntax in constituents yields a 

correlation of 0.40 with lemmas).  

 

Regarding the effects of varying the granularity of the elements that are being compared, 

we find that, globally, fine-grained roles and fine-grained roles + syntax correlate more with 

fine-grained levels of word associations (lemmas and hypernyms), and that medium-grained 

roles correlate more with intermediate levels of word association (TCO for roles and TCO 

and SUMO for roles + syntax). However, coarse-grained roles obtain no significant 
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correlation or low correlation with lemmas and SUMO when syntax is present. Thus, the 

degree of specificity of the information related to the event (the argument information 

captured through semantic roles) is coherent with the degree of abstraction when 

representing verb senses through psycholinguistic data obtained from word associations. At 

the most abstract level of semantic roles, significant evidence for or against this connection 

cannot be found. 

 

As for the qualitative analysis, we looked into the semantic, aspectual and subcategorization 

features of each of the similarity formalizations presented in the previous part. For any 

given formalization we first created a similarity ranking of verb sense pairs, ordering them 

from most to least similar according to the similarity values obtained. Next, we selected a 

sample of the most similar and dissimilar pairs. To do so, we took the first and last ten pairs 

of each ordered ranking, which amounted to a total of 20 pairs out of 190 (around 10% of 

the ranked data).  In the case of a tie (when several pairs obtained the same similarity score 

as the cut-off pair), we took all the pairs that had the same score. Finally, we went on to 

analyse the semantic, aspectual and subcategorizational coherence of these two groups of 

pairs. Specifically, we took into account how many of these pairs contained verb senses that 

had the same semantic field category according to Adesse macro-class and WordNet 

supersenses, and the same broad aspect category (static or dynamic). Finally, we counted 

how many subcategorization frames were shared between the members of the pairs. This 

analysis allowed us to detect the linguistic features that played a relevant role in 

establishing similarity relations in the different types of data.  

 

To provide an overview of the results obtained in the semantic facet, we show in Figure 6 

the ratio of the sampled similar and dissimilar pairs whose verb senses share the semantic 

field, according to the Adesse (upper plot) and WordNet supersense categories (lower plot). 

On the X axis we enumerate the different formalizations that are being compared in an 

abbreviated manner: FGR stands for ‘fine-grained roles’, MGR stands for ‘medium-grained 

roles’, CGR stands for ‘coarse-grained roles’ and WA stands for ‘word associations’. On 

the Y axis we specify the ratio of pairs whose senses share the semantic feature, ranging 

from 0 to 1. 

 

 
Figure 6: Ratios of pairs with the same semantic category 
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In the case of the semantic field analysis, there are some commonalities in the behaviour of 

the data according to the two types of semantic fields used for the analysis (Adesse and 

supersense categories). In almost every case, the similar pairs defined by the two 

perspectives contain senses that share the semantic field more frequently than dissimilar 

pairs, which is to be expected. However, there are some differences between the 

formalizations. Regarding corpus data, the presence of explicit syntactic information 

decreases the ratio of similar pairs with senses related to the same semantic field. In 

addition, the presence of patterns has an effect: it increases the ratio of dissimilar pairs that 

contain senses with a common semantic field. Focusing on the difference in the ratio of 

shared semantic field between similar and dissimilar pairs, this contrast is more striking for 

corpus data that contain semantic roles in isolation and for psycholinguistic data based on 

lemmas and on supersenses, the more and less specific categorizations, respectively. 

Indeed, in these formalizations, the number of similar pairs with senses that share the same 

semantic field is maximal, whereas the number of dissimilar pairs with senses related to the 

same semantic field is minimal. Therefore, these specific formalizations can be considered 

as more semantically structured than others.  

 

In addition, it is worth mentioning the different results obtained using the Adesse and 

supersense semantic fields: the difference in ratio of shared semantic field between senses 

from similar and dissimilar pairs is more extreme using supersenses, whereas senses in 

dissimilar pairs usually have a higher ratio of shared semantic category according to Adesse 

and, therefore, the contrast between similar and dissimilar pairs is smaller. This can be 

related to the number and type of categories that each resource proposes to capture semantic 

fields. Supersenses have 15 coarse semantic domains for verbs (e.g. verbs of change, 

cognition, communication, etc.). From Adesse, we take the 6 macro-classes, that is, the 

upper level of the hierarchy. These classes are based on large semantic domains (mental, 

relational, material, etc.), with the difference that the classes are hierarchical and associated 

to examples in a corpus (Garcia-Miguel 2009).  

 

As for the aspect facet of verb sense similarity, the results are shown in Figure 7. As in 

Figure 6, on the X axis the different formalizations taken into account are specified, and on 

the Y axis the ratio of pairs that have the same coarse aspect category, static or dynamic, is 

detailed for the given formalizations. Regarding the use of these two categories for aspect, 

it should be mentioned that there is a rich variety of accounts of aspect that differ in the 

number and types of aspectual categories. Therefore, we adapt the aspect assigned to the 

verb senses in the Sensem lexicon to contemplate only two general categories, as in Dowty 

(1979) and Jackendoff (1983): dynamic events and states.  
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Figure 7: Ratio of sense pairs with shared aspect 

 

Regarding the difference in aspectual coherence between the different formalizations, we 

can see in Figure 7 that, in general, similar pairs have a greater ratio of senses with identical 

aspect, except for the corpus formalization that includes coarse-grained roles organized in 

constituents. Moreover, it is important to note that this difference is more systematic in 

corpus data that includes syntax.  

 

Finally, regarding the subcategorization facet of verb sense similarity, we show in Figure 8 

the ratio of subcategorization frames that are shared by the members of the pairs. This 

information is further subdivided into two cases according to the frequency of the 

subcategorization frames. In the upper plot we present the difference between similar and 

dissimilar pairs when taking into account all subcategorization frames, while in the lower 

plot we only take into account the subcategorization frames that are less frequent, this is, 

those that are not NP-V or NP-V-NP. As in Figures 6 and 7, on the X axis there are the 

different formalizations. On the Y axis, the ratio of subcategorization frames shared is 

displayed. This ratio is below 40% in all cases. 

 

 

 
 

Figure 8: Ratios of shared subcategorization frames 

 

If we take into account all the subcategorization frames (upper plot), we can see that there is 

a clear difference between corpus data and psycholinguistic data. While in corpus data, 

senses in similar pairs share more subcategorization frames than senses in dissimilar pairs; 

this situation is reversed for psycholinguistic data. This fact is along the lines of the 

findings of Schulte im Walde (2008), who suggested that word associations go beyond 

subcategorization information. However, if we look at the less frequent subcategorization 

frames (lower plot), the former situation no longer holds: in almost all cases, for corpus and 

psycholinguistic data, senses in similar pairs share more subcategorization frames than 

senses in dissimilar pairs. This suggests that verb sense similarities, as obtained from 

psycholinguistic data, are sensitive only to less frequent subcategorization frames and may 
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indicate that these types of frames, and not the frequent ones, have a role in shaping 

similarities in verbs in the lexicon. In any case, their role is small, given the small ratio of 

subcategorization frames shared in general. This diverges with most of the work done in 

automatic verb classification, which relies on subcategorization frames to create verb 

classifications that contain semantically coherent classes, following Levin’s insight (Schulte 

im Walde 2006; Sun and Korhonen 2009). In contrast to this, we see that the pairs of senses 

that are semantically similar according to the Adesse and WordNet semantic fields share up 

to 36% of the subcategorization frames at most. This fact, together with the small difference 

between similar and dissimilar pairs, suggests that subcategorization frames on their own do 

not have a role as crucial as previously thought in calculating similarity between verbs. 

 

 

7. Conclusions 

 

In this work we have compared two different perspectives of verb sense similarity which 

had not been previously related or comparatively studied: similarity as defined by the verb 

argument structure obtained from corpus and similarity as depicted by psycholinguistic data 

obtained through word associations. Unlike other approaches to similarity, the comparison 

has been established using verb senses instead of lemmas, as ambiguity is an obstacle to 

determine similarity at a detailed level. Using a set of 190 pairs created with 20 different 

verb senses, we have examined the relationship between different formalizations of these 

two perspectives, finding a low to moderate correlation in the similarity values that both 

assign to verb senses. We have also found that the correlation values are influenced by the 

degree of granularity of the different formalizations in such a way that finer granularity of 

semantic roles in corpus data correlates more with fine-grained formalizations of word 

associations. Conversely, medium-grained semantic roles correlate more with less specific 

formulations of word associations. Therefore, we can conclude that eventive information 

captured by semantic roles in corpus correlates to how verb senses are represented with 

respect to each other in the psycholinguistic dimension, also across different degrees of 

abstraction of the event information and the psycholinguistic representation. Additionally, 

we have found that certain linguistic aspects are crucial for strengthening the relationship 

between the two types of data: a structural component in corpus (syntactic function or linear 

order) is necessary to achieve higher correlation with psycholinguistic data.  

 

Overall, we can conclude that word associations and argument structure data share common 

ground when it comes to determining similarity between verb senses, but each perspective 

puts the focus on diverse linguistic aspects. Globally, verb sense similarity as defined by 

psycholinguistic data is more sensitive to semantic relations in terms of broad semantic 

fields. More specifically, we find that corpus formalizations based on semantic roles alone 

are more semantically driven than formalizations that include specific syntactic 

information. As for aspectual cohesion, generally, similarity in corpus data is slightly more 

articulated by aspect than in psycholinguistic data. Finally, concerning the 

subcategorization information, differences between similar and dissimilar pairs across 

different formalizations are less relevant. Nevertheless, evidence suggests that similarity 

drawn from psycholinguistic data is not sensitive to subcategorization information; at least 

when taking into account all subcategorization frames and not only the less frequent ones. 

As a side observation, we can add that the lack of discriminating power of 

subcategorization frames in terms of differentiating similar from dissimilar verb senses 

points to the need to enrich this kind of information for NLP tasks that aim to model 

similarity for verbs. 
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It should be noted that, whereas the methodology yields interesting results, an analysis with 

more data could be carried out to further refine them. In future research we plan to take 

advantage of the commonalities as well as the specificities of each perspective to build a 

robust ranking of verb similarity that can be useful for corpus and NLP applications. 
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Appendices 

 

Appendix 1. Verb senses, definitions and frequency (between brackets) 

 

abrir 18: Move the latch, unlock, unclick any piece that closes something. (15) 

cerrar 19: Secure with a lock, a latch or other instrument a door, window, lid, etc. to stop it 

from opening. (14) 

crecer 1: Increase the amount or the importance of something, develop. (116) 

dormir 1: Remain in a state in which there are no voluntary movements, usually in order to 

rest. (18) 

escuchar 1: Listen, pay attention to what is being heard. (107) 

estar 14: To be something or someone in a specific state. (101) 

explicar 1: Explain, give information about a specific issue. (106) 

gestionar 1: Manage, go through a procedure to achieve an objective. (36) 
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gustar 1: Like, find somebody or something appealing. (117) 

montar 2: Get in a vehicle or get on top of an animal. (26) 

morir 1: Die; cease to exist (somebody or something). (115) 

parecer 1: To pretend to be something without necessarily being it. (51) 

pensar 2: Think, reason, examine an idea. (25) 

perseguir 1: Chase somebody or pursue something in order to reach it. (53) 

trabajar 1: Work, do a specific task or job. (80) 

valorar 2: Value, recognize the importance of a fact, thing or action. (70) 

valer 1: For something to have a specific value. (45) 

ver 1: See, perceive through the eyes. (86) 

viajar 1: Travel, go from one place to another distant one, usually in a means of 

transportation. (111) 

volver 1: Return, go back to a place where one has already been. (84) 

 

 

Appendix 2. Semantic fields of the verb senses 

 

Verb sense WordNet supersense Adesse macro-class 

abrir 18 change material 

cerrar 19 change material 

crecer 1 change material 

dormir 1 activity (bodily) material 

escuchar 1 perception mental 

estar 14 state relational 

explicar 1 communication verbal 

gestionar 1 activity (social) material 

gustar 1 cognition mental 

montar 2 movement material 

morir 1 change existential 

parecer 1 state relational 

pensar 2 cognition mental 

perseguir 1 movement material 

trabajar 1 activity material 

valorar 2 communication relational 

valer 1 state relational 

ver 1 perception mental 

viajar 1 movement material 

volver 1 movement material 

 

 

Appendix 3. List of stimuli used in the psycholinguistic experiment 

 

ABRIR una puerta. /  TO OPEN a door. 

CERRAR una ventana. / TO CLOSE a window 

CRECER a cierto ritmo. / TO GROW at a certain rate 

DORMIR durante un rato. / TO SLEEP for a while 

ESCUCHAR atentamente. / TO LISTEN carefully 

ESTAR en una determinada condición. / TO BE in a specific state 

EXPLICAR una cuestión. / TO EXPLAIN an issue 

GESTIONAR un trámite. / TO HANDLE a procedure 

GUSTAR mucho. / TO LIKE a lot 
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MONTAR en un vehículo. / TO GET IN a car 

MORIR alguien. / TO DIE somebody 

PARECER fuerte. / TO SEEM strong 

PENSAR en un asunto. / TO THINK about an issue 

PERSEGUIR a una persona. / TO CHASE a person 

TRABAJAR en algo. / TO WORK in something 

VALORAR la importancia de algo. / TO ASSESS the importance of something 

VALER dinero. / TO COST money 

VER una imagen. / TO SEE an image 

VIAJAR en un medio de transporte. / TO TRAVEL in a means of transportation 

VOLVER a un lugar. / TO GO BACK to a place 

 


