1,048 research outputs found

    Using Project Based Learning to Engage Third -Fifth Grade Students in Robotics Education

    Get PDF
    Includes bibliographical references (pages 36-40)The purpose of this graduate project was to examine the engagement of third through fifth grade students using Lego?? robotics as the catalyst in project based learning. Robotics educations has been on the rise in the last 10 years, but in the elementary schools it has been the driving force for many teachers on how to engage students in todays??? technological advances. Using project based learning and Lego?? robotics creates an engaging environment for students and teachers to cover Common Core States Standards along with the Next Generation Science Standards. This project was created to help guide teachers, administrators and after school counselors with the materials and resources needed in order to start a robotics program at their own location

    Improving student attitudes towards STEM education by building self-efficacy through robotics education

    Get PDF
    The United States must grow its science, technology, engineering, and mathematics (STEM) trained workforce in order to fill the jobs projected to be in demand. One of the ways in which this can be done is to tap into the vast population of minorities and women who are underrepresented in the STEM fields. The United States has been looking for ways to improve STEM participation in these groups for many years now, through outreach, legislation and innovative academic programs. The purpose of this research was to examine the impact that a robotics education enrichment program had on elementary, predominantly Latinx students in an inner-city public school in Orange County, California. The study was framed using self-efficacy theory to build approach behaviors towards STEM fields within these students. Student attitudes were measured using the S-STEM survey. In addition, field notes about the students, as well as notes from community of practice meetings amongst the co-sponsors were analyzed to see the impact of the enrichment program on students. The S-STEM survey had no statistical change between pre- and post-treatment survey results. In addition, the subgroups of GATE students, EL students and female students were too small to analyze individually. However, the qualitative data showed some positive outcomes for most students

    Elementary Educators\u27 Attitudes about the Utility of Educational Robotics and Their Ability and Intent to Use It with Students

    Get PDF
    Educational robotics (ER) combines accessible and age-appropriate building materials, programmable interfaces, and computer coding to teach science and mathematics using the engineering design process. ER has been shown to increase K-12 students\u27 understanding of STEM concepts, and can develop students\u27 self-confidence and interest in STEM. As educators struggle to adapt their current science teaching practices to meet the new interdisciplinary nature of the Next Generation Science Standards, ER has the potential to simultaneously integrate STEM disciplines, engage and inspire students in mathematics and science, and build connections to STEM careers. One challenge is a lack of documented models for preparing educators, particularly at the elementary level, to effectively use robotics in their classrooms. The lack of scholarship on appropriate robotics platforms for elementary learners, reliable techniques of delivering professional development in ER, or standardized instruments that can reliably measure elementary educators\u27 self-efficacy with robotics suggests there is a need for such research. The primary purpose of this study was to investigate the impact of a four-hour, hands-on, ER professional development workshop on K-5th grade educators\u27 attitudes about their ability to teach ER, the value (utility) of the technology, and their desire to use it (intent). An 18-question survey was administered before (pre-) and after (post-) the workshop, as well as a third time after educators had an opportunity to use robotics with students (post-post). In order to extend and explain the quantitative data, 60% of the educators who completed all three surveys were also interviewed. This study sought to determine if any of the trained educators also participated in after-school robotics competitions, and if so what impact that had on their attitudes of using ER. Results comparing the pre to post workshop means determined that there were statistically significant differences with large effect sizes in educators\u27 attitudes across all three subscales. The interviews supported the conclusion that the workshop and classroom kits are important for successful implementation of ER in classrooms. Post use surveys did not result in statistically significant differences in educators\u27 attitudes, demonstrating persistence of attitudes consistent with the interview results that revealed educators value the hands-on nature of ER which they believe increases student engagement in STEM and cross-curricular learning. A case-study of one educator suggests that participation in FIRSTRTM LEGORTM League Jr. increased the skills, confidence, and engagement of both the teacher and students which led to the integration of engineering practices, and school-wide interest in ER. This study demonstrates the importance of high-quality professional development in increasing educators\u27 self-efficacy with using ER with elementary students, and suggests that new tablet-based, wireless robotics platforms, such as the LEGORTM WeDo 2.0 enable younger learners to engaged with this technology. Additional research is necessary to better understand the impact of ER on students, and to identify and study schools where ER helped lead a transformation of the teaching toward constructionism. It is vital for the success of our children and our nation that we engage and inspire students in STEM subjects and career pathways at an early age if we are to meet the needs of the 21st century job market, reduce disparities in STEM fields, and maintain our place in the global economy

    After-school Science and Engineering Clubs Evaluation

    Get PDF

    Conducting K-12 Outreach to Evoke Early Interest in IT, Science, and Advanced Technology

    Get PDF
    This is a preprint of a paper presented at XSEDE '12: The 1st Conference of the Extreme Science and Engineering Discovery Environment, Chicago, Illinois.The Indiana University Pervasive Technology Institute has engaged for several years in K-12 Education, Outreach and Training (EOT) events related to technology in general and computing in particular. In each event we strive to positively influence children’s perception of science and technology. We view K-12 EOT as a channel for technical professionals to engage young people in the pursuit of scientific and technical understanding. Our goal is for students to see these subjects as interesting, exciting, and worth further pursuit. By providing opportunities for pre-college students to engage in science, technology, engineering and mathematics (STEM) activities first hand, we hope to influence their choices of careers and field-of-study later in life. In this paper we give an account of our experiences with providing EOT: we describe several of our workshops and events; we provide details regarding techniques that we found to be successful in working with both students and instructors; we discuss program costs and logistics; and we describe our plans for the future.This material is based upon work supported by the National Science Foundation under Grant No. OCI-0503697. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation

    The Use of Robotics, GPS and GIS Technologies to Encourage STEM-Oriented Learning in Youth

    Get PDF
    In our technology rich world, the educational areas of science, technology, engineering, and mathematics (STEM) play an increasingly essential role in developing well-prepared specialists for the 21st century workplace. Unfortunately, interest in theses areas has been declining for a few decades. Various innovative educational initiatives in formal and informal learning environments have been undertaken nationally to attempt to encourage STEM-oriented learning. Funded by the National Science Foundation, the particular program described in this paper focuses on middle school youth in non-formal learning environments. The program integrates educational robotics, Global Positioning System (GPS) and geographic information system (GIS) technologies to provide educational experiences through summer camps, 4-H clubs and afterschool programs. The project’s impact was assessed in terms of: a) youth learning of computer programming, mathematics, geospatial concepts, and engineering/robotics concepts and b) youth attitudes and motivation towards STEM-related disciplines. An increase in robotics/GPS/GIS learning questionnaire scores and a stronger self-efficacy in relevant STEM areas have been found through a set of project-related assessment instruments

    What do Undergraduate Engineering Students and Preservice Teachers Learn by Collaborating and Teaching Engineering and Coding through Robotics?

    Get PDF
    This research paper presents preliminary results of an NSF-supported interdisciplinary collaboration between undergraduate engineering students and preservice teachers. The fields of engineering and elementary education share similar challenges when it comes to preparing undergraduate students for the new demands they will encounter in their profession. Engineering students need interprofessional skills that will help them value and negotiate the contributions of various disciplines while working on problems that require a multidisciplinary approach. Increasingly, the solutions to today\u27s complex problems must integrate knowledge and practices from multiple disciplines and engineers must be able to recognize when expertise from outside their field can enhance their perspective and ability to develop innovative solutions. However, research suggests that it is challenging even for professional engineers to understand the roles, responsibilities, and integration of various disciplines, and engineering curricula have traditionally left little room for development of non-technical skills such as effective communication with a range of audiences and an ability to collaborate in multidisciplinary teams. Meanwhile, preservice teachers need new technical knowledge and skills that go beyond traditional core content knowledge, as they are now expected to embed engineering into science and coding concepts into traditional subject areas. There are nationwide calls to integrate engineering and coding into PreK-6 education as part of a larger campaign to attract more students to STEM disciplines and to increase exposure for girls and minority students who remain significantly underrepresented in engineering and computer science. Accordingly, schools need teachers who have not only the knowledge and skills to integrate these topics into mainstream subjects, but also the intention to do so. However, research suggests that preservice teachers do not feel academically prepared and confident enough to teach engineering-related topics. This interdisciplinary project provided engineering students with an opportunity to develop interprofessional skills as well as to reinforce their technical knowledge, while preservice teachers had the opportunity to be exposed to engineering content, more specifically coding, and develop competence for their future teaching careers. Undergraduate engineering students enrolled in a computational methods course and preservice teachers enrolled in an educational technology course partnered to plan and deliver robotics lessons to fifth and sixth graders. This paper reports on the effects of this collaboration on twenty engineering students and eight preservice teachers. T-tests were used to compare participants’ pre-/post- scores on a coding quiz. A post-lesson written reflection asked the undergraduate students to describe their robotics lessons and what they learned from interacting with their cross disciplinary peers and the fifth/sixth graders. Content analysis was used to identify emergent themes. Engineering students’ perceptions were generally positive, recounting enjoyment interacting with elementary students and gaining communication skills from collaborating with non-technical partners. Preservice teachers demonstrated gains in their technical knowledge as measured by the coding quiz, but reported lacking the confidence to teach coding and robotics independently of their partner engineering students. Both groups reported gaining new perspectives from working in interdisciplinary teams and seeing benefits for the fifth and sixth grade participants, including exposing girls and students of color to engineering and computin

    Developing Computational Thinking with Educational Technologies for Young Learners

    Get PDF
    This article aims to provide an overview of the opportunities for developing computational thinking in young learners. It includes a review of empirical studies on the educational technologies used to develop computational thinking in young learners, and analyses and descriptions of a selection of commercially available technologies for developing computational thinking in young learners. The challenges and implications of using these technologies are also discussed

    Beyond Blackboards: Engaging Underserved Middle School Students in Engineering

    Get PDF
    Beyond Blackboards is an inquiry-centered, after-school program designed to enhance middle school students’ engagement with engineering through design-based experiences focused on the 21st Century Engineering Challenges. Set within a predominantly lowincome, majority-minority community, our study aims to investigate the impact of Beyond Blackboards on students’ interest in and understanding of engineering, as well as their ability to align their educational and career plans. We compare participants’ and nonparticipants’ questionnaire responses before the implementation and at the end of the program’s first academic year. Statistically significant findings indicate a school-wide increase in students’ interest in engineering careers, supporting a shift in school culture. However, only program participants showed increased enjoyment of design-based strategies, understanding of what engineers do, and awareness of the steps for preparing for an engineering career. These quantitative findings are supported by qualitative evidence from participant focus groups highlighting the importance of mentors in shaping students’ awareness of opportunities within engineering

    STEM Conference 2018

    Get PDF
    Conference Progra
    • …
    corecore