314 research outputs found

    A general framework for positioning, evaluating and selecting the new generation of development tools.

    Get PDF
    This paper focuses on the evaluation and positioning of a new generation of development tools containing subtools (report generators, browsers, debuggers, GUI-builders, ...) and programming languages that are designed to work together and have a common graphical user interface and are therefore called environments. Several trends in IT have led to a pluriform range of developments tools that can be classified in numerous categories. Examples are: object-oriented tools, GUI-tools, upper- and lower CASE-tools, client/server tools and 4GL environments. This classification does not sufficiently cover the tools subject in this paper for the simple reason that only one criterion is used to distinguish them. Modern visual development environments often fit in several categories because to a certain extent, several criteria can be applied to evaluate them. In this study, we will offer a broad classification scheme with which tools can be positioned and which can be refined through further research.

    Next generation satellite orbital control system

    Get PDF
    Selection of the correct software architecture is vital for building successful software-intensive systems. Its realization requires important decisions about the organization of the system and by and large permits or prevents a system\u27s acceptance and quality attributes such as performance and reliability. The correct architecture is essential for program success while the wrong one is a formula for disaster. In this investigation, potential software architectures for the Next Generation Satellite Orbital Control System (NG-SOCS) are developed from compiled system specifications and a review of existing technologies. From the developed architectures, the recommended architecture is selected based on real-world considerations that face corporations today, including maximizing code reuse, mitigation of project risks and the alignment of the solution with business objectives

    Safe programming Languages for ABB Automation System 800xA

    Get PDF
    More than 90 % of all computers are embedded in different types of systems, for example mobile phones and industrial robots. Some of these systems are real-time systems; they have to produce their output within certain time constraints. They can also be safety critical; if something goes wrong, there is a risk that a great deal of damage is caused. Industrial Extended Automation System 800xA, developed by ABB, is a realtime control system intended for industrial use within a wide variety of applications where a certain focus on safety is required, for example power plants and oil platforms. The software is currently written in C and C++, languages that are not optimal from a safety point of view. In this master's thesis, it is investigated whether there are any plausible alternatives to using C/C++ for safety critical real-time systems. A number of requirements that programming languages used in this area have to fulfill are stated and it is evaluated if some candidate languages fulfill these requirements. The candidate languages, Java and Ada, are compared to C and C++. It is determined that the Java-to-C compiler LJRT (Lund Java-based Real Time) is a suitable alternative. The practical part of this thesis is concerned with the introduction of Java in 800xA. A module of the system is ported to Java and executed together with the original C/C++ solution. The functionality of the system is tested using a formal test suite and the performance and memory footprint of our solution is measured. The results show that it is possible to gradually introduce Java in 800xA using LJRT, which is the main contribution of this thesis

    Java for Cost Effective Embedded Real-Time Software

    Get PDF

    OpenJML: Software verification for Java 7 using JML, OpenJDK, and Eclipse

    Full text link
    OpenJML is a tool for checking code and specifications of Java programs. We describe our experience building the tool on the foundation of JML, OpenJDK and Eclipse, as well as on many advances in specification-based software verification. The implementation demonstrates the value of integrating specification tools directly in the software development IDE and in automating as many tasks as possible. The tool, though still in progress, has now been used for several college-level courses on software specification and verification and for small-scale studies on existing Java programs.Comment: In Proceedings F-IDE 2014, arXiv:1404.578
    • …
    corecore