
Columbia University Department of Computer Science Tech Report CUCS-015-05

 1

Multi-Language Edit-and-Continue
for the Masses

Marc Eaddy Steven Feiner
Department of Computer Science

Columbia University
New York, NY 10027

+1-212-939-7000

{eaddy,feiner}@cs.columbia.edu

April 4, 2005

ABSTRACT
We present an Edit-and-Continue implementation that allows regular source files to be
treated like interactively updatable, compiled scripts, coupling the speed of compiled na-
tive machine code, with the ability to make changes without restarting. Our implementa-
tion is based on the Microsoft .NET Framework and allows applications written in any
.NET language to be dynamically updatable. Our solution works with the standard ver-
sion of the Microsoft Common Language Runtime, and does not require a custom com-
piler or runtime. Because no application changes are needed, it is transparent to the appli-
cation developer. The runtime overhead of our implementation is low enough to support
updating real-time applications (e.g., interactive 3D graphics applications).

Categories and Subject Descriptors
D.3.3 [Software Engineering]: Programming Environments—Interactive environments;
Testing and Debugging—Debugging aids; D.1 [Software]: Programming Techniques—
Dynamic Software Updating; D.3.3 [Programming Languages]: Processors—
Incremental compilers, dynamic compilers

General Terms
Experimentation, Languages, Performance

Keywords
dynamic software updating, online reconfiguration, patching, edit-and-continue, hot-
swapping, rapid application development, .NET

1. INTRODUCTION
Edit-and-Continue is a common debugging feature found in many integrated develop-

ment environments (IDEs). It refers to the ability to pause an application, usually via a
breakpoint, make changes to the source code that are recompiled in the background, and
then continue execution with the modified application. These activities must be per-
formed in the IDE because they are usually not supported by the application’s runtime
environment. Because using Edit-and-Continue in the IDE can be cumbersome, it is usu-
ally reserved for debugging activities. We desired a lightweight and efficient Edit-and-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Columbia University Department of Computer Science Tech Report CUCS-015-05

 2

Continue solution for rapid prototyping, extensibility, and dynamic reconfiguration that
did not require the presence of an IDE, and would therefore be available to end-user and
developer alike.

Our requirements for Edit-and-Continue were motivated by our target application class:
real-time 3D graphics applications. Specifically, we are addressing interactive 3D user
interfaces, including virtual reality (VR), augmented reality, and 3D games. These appli-
cations support real-time 3D rendering and require high-performance, highly configurable
software architectures.

1.1 Our Solution

Our Edit-and-Continue allows any .NET language source file to be treated as a high-
performance, dynamic script. It is fast because source code changes are compiled to na-
tive machine code instead of being interpreted. However, the user does not execute an
explicit compilation step because compilation occurs in the background.

We have successfully tested Edit-and-Continue on applications written in C#, VB.NET,
and JScript.NET. Users can even intermingle multiple languages in their application,
although we only support dynamic updates to languages that support the .NET CodeDOM
API (specifically, the ICodeCompiler API).

Unlike approaches that require that code be run within the IDE, our implementation is
library-based and requires only the standard Microsoft Common Language Runtime.
Therefore, it can be used by end-users who do not have an IDE, as well as by developers.

Our Edit-and-Continue implementation allows code changes (currently, only updates to
method bodies) to be applied without having to restart the application. This shortens the
normal edit–compile–restart cycle and enables interactive prototyping and debugging.
However, if the compilation fails due to a syntax error, type violation, misspelling, or
other compilation error, the change will be rejected.

In addition, our Edit-and-Continue solution has the following properties:
Transparent. The application developer does not have to make any code changes to

support Edit-and-Continue. However, they do have to specify a compiler flag and three
environment variables. For some .NET languages, the user must also provide a build de-
scription file, similar to a makefile.

Lightweight. Our solution is based on standard .NET application programming inter-
faces (APIs) and does not require an IDE. Code changes can be made using the user’s
favorite editor (e.g., Notepad, emacs, or vi).

Automatic. Changes are applied as soon as they are saved by the user. No other action
is necessary. To make this possible, we developed a difference algorithm for determining
changes to a method's byte code automatically (see Section 3). Changes can also be made
remotely, which is especially useful for full-screen 3D applications. If multiple instances
of an application are running in a distributed scenario, they will all be updated at
(roughly) the same time.

Low overhead. Our solution is enabled using the low overhead .NET Profiling API.
Asynchronous compilation and code patching are performed in the background. The
overhead is low enough to be feasible for the performance-critical applications that we
are targeting, which include 3D games. We evaluate the performance of our implementa-
tion in Section 4.

Columbia University Department of Computer Science Tech Report CUCS-015-05

 3

Our Edit-and-Continue solution is the first to support multiple languages in a generic

way since it supports any .NET language that implements the standard .NET CodeDOM
API. In contrast, other solutions support only one language or a pre-defined number of
languages. Furthermore, some languages (e.g., JScript.NET, Eiffel, Cobol, Perl, Python,
Lua, Haskell, to name a few) do not currently support Edit-and-Continue. Because our
solution is based on the generic CodeDOM API, we can potentially support any language
that implements the API (specifically, the ICodeCompiler interface). For example, ours
is the only solution that supports Edit-and-Continue for JScript.NET.

Our solution supports certain types of unanticipated changes (see Section 5.2) to .NET
applications that would be difficult or impossible to support using other techniques.
Moreover, changes can be made interactively without requiring a restart of the applica-
tion. We find Edit-and-Continue to be a very useful prototyping technique for our 3D
applications.

2. Related Work
Prior to arriving at our Edit-and-Continue solution, we investigated other popular appli-

cation-level techniques for enabling rapid application development, including dynamic
configuration files and embedded scripting languages, which we describe below. We
then compare our Edit-and-Continue solution with other software updating approaches.

2.1 Dynamic Configuration Files

In the VR Juggler [2] architecture for building VR applications, changing a configura-
tion file causes the application to reinitialize automatically without requiring a restart.
This can result in a substantial time savings for application developers, as the startup time
required for VR applications can be quite long, due to loading large models, initializing
devices, and communicating with servers. Other benefits of this approach are quick pro-
totyping of new features and interactive performance tuning. The limitation is that dy-
namic configuration files are an inflexible application-specific solution because the appli-
cation behaviors that can be configured are typically very limited and must be anticipated
beforehand.

2.2 Embedded Scripting Languages

Another common approach is to embed a script language interpreter or script engine in-
side the application and then graft on a scripting or command language interface. Tcl
[23] is one of the best known examples. Other popular choices are Perl, Python,
JavaScript, and Lua. Script-based interfaces, intended for the developer-as-end-user audi-
ence, are widely recognized for supporting rapid prototyping. However, there are many
disadvantages to scripting, especially for high-performance 3D applications, including the
following:

Slow performance. Script languages are by-and-large interpreted, although what is be-
ing interpreted may be an intermediate representation or byte code. Regardless, inter-
preted code is much slower than compiled machine code [3, 12]. Just-in-time compilers
(e.g., [25]) help alleviate this problem, but do not eliminate it entirely. While the slower
speed may be adequate for some applications, it becomes a bottleneck for high-

Columbia University Department of Computer Science Tech Report CUCS-015-05

 4

performance ones. Therefore, only a portion of application behavior is typically scripted
(i.e., the script interface) and the rest of the application is written in a compiled language
[22].

Object model discontinuity. The objects, variables, and functions of the compiled por-
tion of the application and those of the script form two separate object models, written in
two different languages. The script interface is often implemented using a reflection API
or some other “glue code.” Reflection refers to the ability to programmatically obtain
type information or call methods at run-time. It can be used to provide a bridge that al-
lows communication between two languages or object models.

Providing a one-to-one bridge for every object and function in the object model is infea-
sible since it can require a major development effort and entails a significant runtime per-
formance penalty [24]. This requires the application developer to tailor the script interface
to meet their anticipated application needs, further limiting the power of the scripting so-
lution and making it application-specific.

Unlike a scripting solution, whose expressive power is limited by the script interface,
Edit-and-Continue allows arbitrary, and possibly unanticipated, type-safe changes to
method bodies. Moreover, object-oriented language features such as class and member
access control, reuse, and data hiding can be leveraged for free.

Multi-language issues. Different languages usually have separate and sometimes con-
flicting threading, networking, GUI and memory management models. In addition, few
tools allow simultaneous cross-language debugging [4, 22].

Our approach avoids object model and language discontinuity by leveraging features
common to all .NET languages. Users can intermingle multiple languages in their appli-
cation, although we only support dynamic updates to languages that support the .NET
CodeDOM API (specifically, the ICodeCompiler API).

Need for a restart. Aside from some application-specific solutions, script changes do
not take effect until the application is restarted, preventing interactive prototyping and
debugging. This is particularly painful for applications with long startup times, common
in VR and gaming, or when trying to reproduce a bug.

It should be noted that several scripting languages, including Perl, Python, JavaScript,
and Lua, have been ported to .NET. All .NET languages share a unified type system (the
.NET Common Type System), and use the same class library (the .NET Framework Class
Library). This means that integration of a .NET-based scripting language will not suffer
from object model or language discontinuity and will not incur cross-language communi-
cation overhead. However, none of these languages allow the user to make updates to a
running application. Ideally, these languages would expose a compiler interface via the
CodeDOM API, which would enable us to apply our Edit-and-Continue solution to appli-
cations written in Python.NET, for example.

2.3 Dynamic Software Updating

Dynamic software updating (also known as online reconfiguration, hot-swapping, and
code patching) refers to the ability to update currently executing software, at the machine
code or byte code level. Edit-and-Continue (also known as fix-and-continue, develop-
and-continue, and incremental build, as well as by many other names) is a special form of
dynamic software updating in which updates (1) are specified by directly modifying the

Columbia University Department of Computer Science Tech Report CUCS-015-05

 5

original source files, (2) are compiled in the background, and (3) are applied immedi-
ately.

Our solution is library-based, as opposed to language-, IDE-, runtime-, or proxy-based.
We will explain the tradeoffs of each technique below. As we are focused on general-
purpose Edit-and-Continue solutions, we do not consider the large number of solutions
that are application-specific.

2.3.1 Language-Level Support

Ideally, the language execution environment itself will natively support Edit-and-
Continue, as do Lisp [15], Prolog, Forth1 and Smalltalk [8]. However, we do not consider
these languages viable for the development of 3D applications, for reasons of perform-
ance, lack of support for 3D graphics APIs, and the difficulty of finding developers profi-
cient in these languages.

2.3.2 Integrated Development Environments

Most modern IDEs support Edit-and-Continue, although the details about how they do it
are not in the public domain:

• Microsoft Visual Studio™ (C/C++ [29], VB, and C# [31])
• Sun™ Java Studio2 (Java)
• SGI ProDev™ WorkShop3 (C/C++, Fortran, Ada)
• HP wdb4 (C/C++, Fortran)
• Eclipse5 (Edit-and-Continue is only supported for Java)
• Apple Xcode6 (C/C++, Objective C, Java)
• Functional Developer7 (Dylan)

Most of these IDEs provide more Edit-and-Continue functionality than our solution,
such as the ability to make certain type-safe design changes, such as adding new functions
and fields [29, 31]. The main benefits of our solution are that it supports any .NET lan-
guage, for example, ours is the only solution that supports Edit-and-Continue for
JScript.NET, is completely library-based, and supports remote updates.

A library-based solution is essential in a setting in which the IDE is not installed (e.g., a
customer, demonstration, production, or developer-as-end-user setting), and in the game
mod community [4, 22]. The user can take advantage of Edit-and-Continue without re-
building the executable explicitly. Even when the IDE is available, its Edit-and-Continue
feature may not be convenient because it requires that the IDE be running and “attached”
to the target process, and that changes be made from within the IDE editor. If the IDE is
not running, the user will need to start it and attach to the process, which may take several

1 http://www.forth.org
2 http://developers.sun.com/prodtech/javatools/jsstandard
3 http://www.sgi.com/products/software/irix/tools/prodev.html
4 http://h21007.www2.hp.com/dspp/tech/tech_TechSoftware DetailPage_IDX/1,1703,1662,00.html
5 http://www.eclipse.org
6 http://www.apple.com/macosx/features/xcode
7 http://www.functionaldeveloper.com

Columbia University Department of Computer Science Tech Report CUCS-015-05

 6

seconds. In contrast, our Edit-and-Continue solution is always on. Changes can be made
in any editor and the effects are visible at interactive (sub-second) speeds.

Finally, since our user interface is essentially the file system, our solution allows up-
dates to be applied remotely, which is not possible using an IDE. This is essential for ap-
plications that must use the full screen or that capture all mouse and keyboard input, in-
cluding VR applications and 3D games.

2.3.3 Runtime-based Approaches

Dynamic software updating systems usually have loftier goals than supporting the sim-
ple updates required for Edit-and-Continue. These systems are designed to update entire
classes or modules. Supporting this scale of updating usually places constraints on the
design that render the system unsuitable for Edit-and-Continue. For example, many sys-
tems require a custom class loader [1, 28], compiler [10], operating system [27], or run-
time [17], and thus are non-portable. Other systems support only research languages [10],
suffer from performance problems [1, 11, 16], or are not transparent [7, 11, 26].

Although it appears that many dynamic software updating systems could meet the inter-
activity requirements of Edit-and-Continue, we found no mention of this in the literature.
We also found no system that supports updating applications written in multiple lan-
guages.

2.3.4 Proxy-based Approaches

We initially considered (and ultimately rejected) implementing Edit-and-Continue using
.NET Remoting Proxies [16]. A major disadvantage to a proxy- or wrapper-based ap-
proach is the need for class renaming. This necessitates changing the client code to use a
special class factory [26, 28] or derive from a special interface [11, 16], or requires a way
to convert client code to use the proxy [17]. Consequently, the identity of the classes is
not preserved, which introduces subtle bugs in client code that uses reflection, serializa-
tion, casting, or run-time type identification.

Another issue is that state transfer must be used when replacing object instances to
guarantee consistency across updates [27]. This is difficult to do in the general case,
given that OS-level data structures (e.g., file handles and sockets) usually cannot be trans-
ferred between processes [10]. This also requires the proxy to manage its own object in-
stances to update them, requiring extra data and code [11, 17].

Furthermore, proxy-based approaches require at least one, and sometimes several, extra
indirections per function call, a prohibitive cost for performance-critical applications [11,
17]. In addition, many solutions require the class being updated to enter a state of quies-
cence, in which none of its methods are currently active [27]. This can prevent some up-
dates from being applied [17], or require that all threads be suspended or all method calls
into the class be blocked during the update [10]. This is not a desirable solution for us,
since pauses can adversely affect the execution of a VR application; for example, disori-
enting the user or causing the application to miss network or device updates.

Columbia University Department of Computer Science Tech Report CUCS-015-05

 7

2.3.5 Library-based Approaches
Our Edit-and-Continue solution makes extensive use of the .NET Profiler API, which

provides traditional profiling services as well as the ability to replace method bodies [18,
20]. CLAW [14] and AOP-Engine [6] take advantage of this feature to implement as-
pect-oriented programming. However, ours is the first system to use the method re-
placement facilities of the Profiler API to implement Edit-and-Continue.

The architecture of the AOP-Engine [6] most closely resembles our system. Frei and
colleagues mention how method replacement could be used to apply bug-fix patches to
running applications; however, their solution is currently not interactive, which prevents
it from being used in an Edit-and-Continue fashion.

The Java HotSwap API provides a method replacement facility similar to that of the
.NET Profiler API. However, HotSwap is designed for replacing entire classes, which
requires more work and resources than replacing just a single method. There are plans to
resolve this issue in a later version of the API [5]. The HotSwap Client Tool8 demon-
strates how Java classes can be replaced at runtime. However, it does not meet our defi-
nition of Edit-and-Continue, as it does not perform background compilation and auto-
matic method replacement.

3. Implementation
The key enabling technologies needed for our Edit-and-Continue system are the .NET

CodeDOM and Profiler APIs and the build description file. The CodeDOM API provides
an interface for compiling source code. The Profiler API allows a developer to “hook”
specific application events (e.g., module loading/unloading, memory alloca-
tion/deallocation, function entry/exit, and just-in-time (JIT) compilation events). These
events are of obvious interest to a CPU or memory profiler. The build description file
lists all source files and compiler options used when compiling the original application,
allowing us to use the CodeDOM API to reproduce the compilation exactly.

3.1 Overview

Our system is composed of two subsystems. The Patcher subsystem is a dynamic link
library (DLL) written in standard C++. When the application is started, Patcher deter-
mines where to find its source files and how to build them. When a module is updated,
Patcher determines which methods have changed and updates them.

The Watcher subsystem is a separate executable (EXE) written in C#. It is responsible
for detecting changes to the source files and recompiling them on-the-fly.

3.2 Background: CLR Technology

To explain our implementation, it is important to first review some fundamentals of the
Common Language Runtime.

A NET application consists of modules built by a .NET compiler that compiles source
files into Microsoft Intermediate Language (MSIL) byte code. This is termed source
compilation. To avoid the cost of interpreting byte code, right before a function is exe-

8 http://developers.sun.com/dev/coolstuff/hotswap/more.html

Columbia University Department of Computer Science Tech Report CUCS-015-05

 8

Figure 1. Edit-and-Continue walkthrough for an application written in C#.

App.exe

Patcher
(Patcher.dll)

Common Language Runtime

Watcher
(Watcher.exe)

Common
Language Runtime

Source
Files

Incremental
Build File

Post-Edit
Module

reads
watch

es

reads

builds

edits

process
boundary

Legend

File I/O
API Call
socket

communication

Metadata
(Current)

C# Application
Current Assembly

reads &
appends

replaces

Profiler & Metadata
APIs1

socket
communication

starts
Old code of
foo()

foo()

IL_0000:72
IL_0005:72

New code of
foo()

foo()

IL_0000:72
IL_0005:72

2

3

4

5

6

7

8

9

10

11

12

13 14

15
16 Metadata

(Post-Edit)

App-01.exe

App.
exe.incr

foo.cs

cuted it is compiled to native machine code via a process called just-in-time (JIT) compi-
lation.

Languages that compile to byte code are called managed languages because the execu-
tion environment and memory management is handled by the Common Language Run-
time. All other languages are considered unmanaged.

A module is a binary file, usually a DLL or EXE, which contains the byte code for the
methods and the metadata for the data types implemented by the module. Modules are
analogous to Java class files.

Metadata is binary data that describes an application and is stored either in an executa-
ble file or in memory. Metadata describes every data type used by the application, as well
as other characteristics of the application. Metadata is stored in metadata tables, which
are global structures shared by all methods. A change to a method body that affects a
metadata table will likely affect other methods as well. Applications can use the Meta-
data API [19] to query the metadata.

A token is a handle to a metadata data table entry or memory “blob” that can refer to a
string constant, data type, method, or some other metadata. Tokens are used in .NET in-
stead of pointers so that the byte code is memory-model independent and to simplify gar-
bage collection.

3.3 Edit-and-Continue Walkthrough

Figure 1 shows a walkthrough of our Edit-and-Continue scenario, with numbers indicat-
ing the interaction sequence, which we reference here. We assume that the user, prior to
starting the application, has already installed our Edit-and-Continue files, built their ap-
plication (they must also specify the /bugreport compile option), and set the profiler-
related environment variables. Although the walkthrough is shown for an application
written in C#, the walkthrough is exactly the same for all .NET languages.

Columbia University Department of Computer Science Tech Report CUCS-015-05

 9

When the application is started, the CLR loads Patcher.dll and calls ModuleLoadFin-
ished for each module (1). Patcher spawns the Watcher (2), and then reads the build de-
scription file associated with each module to obtain the source files, referenced assem-
blies, and compiler options (3). Patcher sends the module compilation information to
Watcher (4), which then starts watching the module’s source files (5).

At some point in the future, the user edits the foo.cs file, changing the foo method, and
saves their changes (6). Watcher receives a file change event for foo.cs and uses the
module compilation information to perform a source compilation (source code to byte
code) using the CodeDOM API. This creates the App-01.exe post-edit module (7). (The
number is appended to the module name to ensure that it is unique.) If the compilation
succeeds, Watcher sends a message to Patcher telling it the post-edit module path (8).
Watcher then goes back to watching the source files for more changes.

Using the Metadata API, Patcher reads the pre-edit (current) metadata and method ad-
dresses associated with the running application (9). It also reads the post-edit metadata
and method addresses from the post-edit module (10). It uses the module diff algorithm
(described later) to compare the two modules (11). If one or more methods have
changed, Patcher emits new metadata as necessary (12) and calls SetFunctionReJIT (13).

Sometime afterward, foo is called, and Patcher receives the JITCompilationStarted
event from the CLR (14). Patcher then calls the SetILMethodBody Profiler function to
replace the old byte code for foo with the new byte code (15). The CLR JIT compiles the
new byte code to native machine code and executes foo (16).

3.4 Patcher

Using the Profiler API to hook an application is tricky. The Patcher DLL must be writ-
ten in raw (unmanaged) C++, must not block inside an event handler, and is not allowed
to make calls into managed code. The reason for the last restriction is given in the docu-
mentation [18] and widely echoed by other users: If the DLL is handling an event, and
then subsequently calls into managed code, which in turn generates the same event, the
CLR can deadlock because it is not designed to be reentrant. Note that these are only the
restrictions placed on the Patcher DLL; the actual .NET application being hooked has no
restrictions.

Because our Edit-and-Continue solution uses the managed CodeDOM API, we need a
separate managed process to safely call the API. This is the motivation behind the
Watcher process, which we describe later. (In the future, we would like to explore calling
managed code from a separate thread, which may circumvent the deadlock issue.)

3.4.1 Startup
When the target application starts, the CLR immediately loads the Patcher DLL into the

process and starts sending it application events. Patcher monitors the ModuleLoadFin-
ished events to determine the file paths of the modules that compose the running applica-
tion.

Patcher must determine all the information that Watcher needs to recompile the module,
essentially recreating the command-line used to compile the original module. This in-
cludes the source files, the referenced assemblies, as well as other compilation options
(e.g., /debug and /unsafe). See Table 1 for an example.

Columbia University Department of Computer Science Tech Report CUCS-015-05

 10

Table 1. Compilation information example.

Module Name MyApp.exe
Source Files MyApp.cs, MyHelper.cs
Referenced Assemblies System.dll, mscorlib.dll
Icon MyApp.ico
Resource MyApp.res
Defines MyLogging=1
Main Class MyNamespace.MyClass
Compile Options /optimized, /checked

The Microsoft Visual C++ implemen-
tation of Edit-and-Continue stores this
compilation information directly inside
the C++ object files [29]. In contrast,
Microsoft Visual C# and VB.NET
stores the information in a separate file
called the build description file.
Patcher parses this file and sends the
compilation information to Watcher.

Later, the user modifies a source file.
This causes Watcher to build the new
module and to send the file path to Patcher. To avoid requesting that every method in the
module be re-JITed, Patcher determines which methods have changed by using a two-
pass module diff algorithm.

3.4.2 Module Diff
We implemented a “smart” module diff algorithm that determines when two methods

are “equivalent.” Method equivalence confounds a simple binary comparison because of
the presence of tokens in the byte code. For example, if the user only changes a string
literal from “foo” to “bar”, the string token in the new module will be the same as the to-
ken in the old module, resulting in method bodies that are equivalent under binary com-
parison. Similarly, two bitwise identical tokens may refer to different string values.

Figure 2 illustrates this by showing an example of the metadata embedded in the
hello.exe application before and after an update. Figure 2(a) shows the original hello.cs
source file. Note that the string literals, “Hello” and “, world!”, are stored in the User

Figure 2. Hello.exe and metadata example. (a) The original hello.cs file. (b) The new hello.cs file after updating
Foo by adding a local variable i and changing a string literal from “Hello” to “Hi”. The arrows indicate the changes
to the source code and the string and local variable metadata tables.

namespace HelloNS {
class Hello {

static void Main() {
Hello h = new Hello();

h.Foo();
h.Bar();

}
void Foo() {

System.Console.Write("Hello");
}
void Bar() {

System.Console.WriteLine(", world!");
}

}
}

[70000001] "Hello"

[7000000D] ", world!"

a) hello.cs (original version)

User String Table

[11000001] Class HelloNS.Hello

Local Variable Signature Table

namespace HelloNS {
class Hello {

static void Main() {
Hello h = new Hello();

h.Foo();
h.Bar();

}
void Foo() {

int i;
System.Console.Write("Hi");

}
void Bar() {

System.Console.WriteLine(", world!");
}

}
}

[70000001] "Hi"

[70000007] ", world!"

b) hello.cs (new version)

User String Table

[11000001] Class HelloNS.Hello

[11000002] int

Local Variable Signature Table

Columbia University Department of Computer Science Tech Report CUCS-015-05

 11

String metadata table. This is similar to how Java stores constants in a constant pool.
The local variable h in the Main method has an associated type signature (Class Hel-
loNS.Hello), which is stored in the Local Variable metadata table.

In Figure 2(b), the user has modified the method Foo by adding a local variable i
(which is never used) and changing the string “Hello” to “Hi”. What is interesting about
this example is that the underlying byte code instructions for Foo are exactly the same.
Only the metadata has changed. Detecting that the local variable signatures are different
requires us to dereference the local variable signature token associated with the old and
new method and perform a binary comparison for each signature.

Unlike local variables, detecting that a string token in the byte code refers to a different
value is more involved. To detect this, we must iterate over the old and new method bod-
ies, decoding and comparing each byte code instruction. This constitutes the first pass of
our two-pass algorithm, and is quite tedious, as there are more than 250 different instruc-
tion codes to consider [20]. We perform a simple binary comparison until we encounter
an instruction with a token argument. For example, the LDSTR instruction loads a string
token onto the stack. We must dereference the old and new tokens to compare the meta-
data values to which they refer. Dmitriev [5] describes a similar approach in Java Hot-
Swap.

Before replacing the method body of Foo, we must emit the new string and local vari-
able signature metadata using the Metadata API [19]. Otherwise, we will get an invalid
metadata exception that halts the application or the application will behave incorrectly
(e.g., the wrong string value will be used). Figure 3 shows how the emitted metadata is
appended to the existing metadata to form the merged metadata. This actually causes a
one-time memory leak, since after the update, the application no longer refers to the
original “Hello” string, yet it remains in the metadata. We consider this inconsequential
because the leak is very small and it happens only once for each metadata value (i.e., it is
not a persistent leak).

A further complication is that the string token for “Hi” in the final metadata shown in
Figure 3 (“70000020”) is different from the token in the post-edit metadata shown in
Figure 2(b) (“70000001”). This occurs because the newly emitted metadata will have dif-

ferent tokens than the ones used in the
new Foo method byte code. This re-
quires Patcher to “fix-up” tokens in the
new byte code to match the new tokens.
To do this, Patcher performs a second
pass over the method body, using the
same technique described earlier, this
time to correct the tokens.

Slightly more subtle is the fact that
method Bar will not need to be up-
dated. The user string table in Figure

2(b) shows that the token value for “, world!” was changed from “7000000D” in the
original module to “70000007” in the new module. The reason has to do with how string
tokens are generated, but for our purposes, the only thing that matters is that a binary
comparison of the old and new method bodies will indicate that the methods are different.

Figure 3. Merged metadata for the final hello.exe module.

[70000001] "Hello"

[7000000D] ", world!"

[70000020] "Hi"

User String Table

[11000001] Class HelloNS.Hello

[11000002] int

Local Variable Signature Table

Columbia University Department of Computer Science Tech Report CUCS-015-05

 12

We solve this problem in the same way we did for Foo, by dereferencing the string tokens
to compare the old and new string values. In this case the string values are the same (i.e.,
“, world!”), so we do not need to update Bar.

Ours module diff algorithm uses a physical comparison as opposed to a logical
comparison, which presumably would perform some type of static and/or dynamic
analysis of the methods to determine equivalence. It is possible that our physical com-
parison will result in a false positive, where the byte codes are different but the methods
perform exactly the same computation. However, no comparison technique can
guarantee that two functions perform the same computation, as this is undecideable in the
general case [9]. Since the cost of patching a function due to a false positive is low, as
our performance metrics show, we argue that a more sophisticated comparison technique
could actually degrade performance.

3.4.3 Method Replacing
After Patcher detects that a method has changed, emits the required metadata, and fixes

up the byte code, it uses SetFunctionReJIT to schedule the function to be re-JITed. The
next time the target method is called, Patcher’s JITCompilationStarted event handler is
called. Then, Patcher can replace the current method body’s byte code with the new one.

3.5 Watcher

The Watcher process watches for changes to source files and recompiles them on-the-
fly. We employ the .NET FileSystemWatcher and CodeDOM APIs for this purpose. Af-
ter receiving the list of modules to watch, along with their corresponding compilation in-
formation, such as the list of source files, list of assembly references, and compile op-
tions, Watcher monitors the source files for changes (i.e., a changed modification time),
using the event-based FileSystemWatcher API. Watcher maintains an MD5 hash of each
source file and ignores situations when the user saves a file that has not changed. Mala-
barba and colleagues [17] provide a more reliable solution by computing a hash of each
method’s byte code which allows them to ignore situations when the source code has
changed but the byte code remains the same.9

When a source file is changed, the associated module is recompiled using the Code-
DOM API. As described earlier, Watcher then sends the new module path to the Patcher
via a socket and Patcher updates the changed methods accordingly.

4. Evaluation
We have evaluated the performance of our Edit-and-Continue solution by quantifying

the overhead and update latency using three benchmarks.

4.1 Experimental Setup

9 Similar to Malabarba and colleagues[17], we consider the remote possibility that the hash will cause a false positive

acceptable.

Columbia University Department of Computer Science Tech Report CUCS-015-05

 13

The experiment was run on a Dell
Dimension 8100 Workstation with a
single Pentium IV 1.3 GHz proces-
sor, a 400 MHz front-side bus, and
256MB of RAM. The platform was
Windows XP with .NET Framework
version 1.1.4322.

We used three separate C# bench-
marks: SciMark,10 CLI-Grande, and
Text3D.

SciMark (1,605 lines of code) is a
benchmark for numerical and scien-
tific computing. It includes Fast
Fourier Transform, Jacobi Successive Over-Relaxation, Monte Carlo Integration, Sparse
Matrix Multiply, and Dense LU Matrix Factorization.

CLI-Grande (4,834 lines of code) is a C# port of the Java-Grande benchmark. It exer-
cises low-level functionality such as arithmetic, assignment, casting, arrays, object crea-
tion, loops, method calls, and serialization [30]. We modified the code slightly by reduc-
ing the number of iterations to shorten the trial time to around 12 minutes. This is not
problematic, since we are comparing relative values, not absolute performance.

Text3D (14,731 lines of code) is not a benchmark per se. It is a simple Direct3D demo
included with the Microsoft Managed DirectX 9 SDK. We included it to quantify the
performance impact of Edit-and-Continue on 3D rendering speed. This benchmark holds
special significance for us, since it represents the 3D application class we are actively tar-
geting for Edit-and-Continue.

4.2 Runtime Overhead

Our system uses the Profiler API to selectively intercept module loading and JIT compi-
lation application events. Our event handlers merely add work items to thread queues, so
they are very fast and never block. All the real work is done in separate threads. How-
ever, simply enabling profiling implies an overhead. The overhead cost is mostly paid
during startup, which is when the majority of module and JIT compilation events occur.
The steady-state overhead is attributed to new execution paths that cause new methods to
be JIT compiled.

Figure 4 shows our measurements of the runtime overhead for the three benchmarks
with and without Edit-and-Continue. We performed five test runs for SciMark and
Text3D, and three for CLI-Grande. SciMark and CLI-Grande ran to completion; how-
ever, Text3D is a windowed application, so we modified it slightly to exit automatically
after three minutes. All executables under test, Patcher, Watcher, and the three bench-
marks, were optimized release (retail) builds (compiled with switches /incremental
/optimize /checked-). For each benchmark, the bar on the left shows the performance,
normalized to one, of the benchmark without Edit-and-Continue enabled. The bar on the

10 http://rotor.cs.cornell.edu/SciMark

1.00 0.990.95

0

0.2

0.4

0.6

0.8

1

1.2

SciMark CLI-Grande Text3D

Pe
rf

or
m

an
ce

(n
or

m
al

iz
ed

 to
 w

/o
 E

di
t-a

nd
-C

on
tin

ue
)

without Edit-and-Continue
with Edit-and-Continue

Figure 4. Performance with and without Edit-and-Continue.

Columbia University Department of Computer Science Tech Report CUCS-015-05

 14

Table 2. Update latency for the FFT.transform_internal
method. The average (arithemetic mean) time of each op-
eration is listed in milliseconds along with its standard
deviation.

Component Milliseconds (StdDev) Contribution
C# Compilation 723.00 (22.80) 95.51%
Patch Creation 32.00 (16.43) 4.23%
JIT Compilation 2.50 (5.00) 0.33%
Total Latency 757.00 (30.05) 100.00%

right shows the performance with
Edit-and-Continue enabled. As this
test was designed to measure run-
time overhead, no code patching was
performed.

Our measurements show that Edit-
and-Continue introduces a 1–5%
runtime overhead, which we con-
sider negligible. We had heard re-

ports from outside sources that profiling incurred an overhead of around 10%, so we were
pleasantly surprised with our results. As a comparison, the runtime overhead introduced
by the dynamic updating system for Java developed by Malabarba and colleagues. [17],
which uses a customized version of the Java Virtual Machine (JVM), is 6–10% slower
than the original JVM.

We also measured the memory overhead to be static at around 4.5 MB.

4.3 Update Latency
We measured update latency using the SciMark benchmark. The update latency is the

time it takes for an update to be applied. We also broke out the update pause portion of
the update latency to distinguish the time during which the application must be paused to
apply the update. This pause time is what is most noticeable to the user, especially when
an update is applied to a continuously rendered 3D application.

4.3.1 Setup
For our test, we opened the FFT.cs file from the SciMark directory in Notepad and

made updates to the transform_internal method. Our preliminary experiments showed
that this function was called frequently during the early part of the SciMark benchmark.
We modified the method after it had been JIT compiled (which happens the first time the
function is called), but before the last time it is called. This ensured that the function
would be called again, forcing another JIT compilation.

Because the SciMark application was built as an optimized release version, we were ini-
tially thwarted by our efforts to modify the method using only trivial changes, such as
adding or updating a variable that is never used, since these were being “optimized away”
by the compiler. We finally settled on the following C# code snippet, which we added to
the method:

if (false) {
 Thread.Sleep(0);
}

Changing the condition from false to true (and vice versa) generates byte code that dif-
fers by one byte, which is enough to trigger Patcher to replace the method.

4.3.2 Update Latency
Table 2 shows that the average update latency is around 757 milliseconds. The table

also shows that the background C# compilation time dominates the latency (95%). Al-

Columbia University Department of Computer Science Tech Report CUCS-015-05

 15

though not shown in the table, C# compilations after the first one were slightly faster by
around 100 ms, probably due to the JIT compilation that occurs for the CodeDOM mod-
ule the first time it is used. We could avoid this first-time penalty by exercising the Cod-
eDOM API beforehand, “priming the pump” as it were.

Patch creation took anywhere from 20–50 ms and JIT compilation took anywhere from
0–10 ms.11 The C# compilation, patch creation, and JIT compilation times will increase
with the number of methods and the size of the method bodies in the updated module.

4.3.3 Update Pause
All the work takes place in a separate process (C# compilation) or a separate thread

(patch creation), except for JIT compilation, which takes place in the application’s thread.
This step forces the application to “pause” for a small amount of time (0–10 ms) while it
waits for the JIT compilation to complete. Note that only the calling thread is affected.
This is in contrast to systems that suspend all application threads when performing an up-
date [17].

We obtained some empirical results by experimenting with making updates to the
Text3D application, to observe the visual effect of the update overhead. After modifying
a rendering method to increase the scale factor of a 3D object, we noticed a fraction of a
second delay before the update took effect visually; however, the update was accom-
plished smoothly, without any appearance of “freezing.”

4.3.4 Effects of Scaling on Update Latency
Only update latency is affected by the module (DLL/EXE) size. As the size of the mod-

ule increases, the update latency will increase, as it is dominated by the module's compila-
tion time. The largest module we tested was Text3D at 14,731 lines of code (includes
blank lines and comments), which is representative of the sizes of the applications we are
writing. As we reported in the previous sections, the update latency was negligible at un-
der one second.

To support larger projects, we will need to look at traditional compilation time optimi-
zation techniques such as splitting the projects into smaller modules or performing in-
cremental compilation, and pre-loading the CodeDOM libraries as mentioned earlier.

5. Limitations of Edit-and-Continue
Our Edit-and-Continue solution has some limitations, some of which are implementa-

tion-related and some which are problems common to the field of dynamic software up-
dating.

5.1 Implementation Issues

Build description file. The build description file allows us to reproduce the compila-
tion information exactly. This eliminates guesswork or the need to create build configu-
ration files manually. We currently support the bug report file format (.bugreport)
produced by the C# and VB.NET compilers when the /bugreport flag is used. Unfortu-
nately, not all compilers produce a build description file. For example, we have to manu-
ally create the build description file for the JScript.NET compiler. This can potentially

11 This range makes it appear that sometimes JIT compilation takes no time. However, our timer resolution is only 10

ms, which means measurements 10ms or less cannot be fully trusted (i.e., they range anywhere from 0 to 10ms).

Columbia University Department of Computer Science Tech Report CUCS-015-05

 16

lead to the build description file being out of sync with the actual build settings. We are
currently looking at supporting the JScript project file format as well as using command-
line utilities for automatically determining build settings.

Method inlining. Method inlining is a common and very effective compiler optimiza-
tion. Unfortunately, the Profiler API does not allow inlined methods to be replaced.
When Edit-and-Continue is enabled, we are forced to disable method inlining for the tar-
get process. This contributes to the performance overhead of our solution. In contrast,
Java HotSwap supports updating inlined methods by first “de-inlining” them, while leav-
ing other inlined methods alone [5].

Enabling Edit-and-Continue requires the user to set some profiler-related environment
variables (Cor_Enable_Profiling=1, COR_PROFILER=CLSID of Patcher, and
WATCHER_PATH=Path to Watcher.exe) and to compile the application with the
/bugreport compiler switch. If the user forgets these steps, Edit-and-Continue will
not be enabled. This is not obvious, since our Edit-and-Continue solution works entirely
in the background. A useful feature would be to provide some type of visual indication of
status, including errors (e.g., with a system tray icon). Hopefully, a future version of the
.NET Common Language Runtime will support a more convenient interface for enabling
profiling; for example, to allow the user to specify which applications to profile in the
Windows Registry, or to attach a profiler to a running application.

5.2 Open Issues

We must address issues that are common to dynamic software updating systems, includ-
ing what types of updates are allowed, when updates are applied, and how active func-
tions are handled.

Types of updates allowed. By definition, the only changes an Edit-and-Continue im-
plementation should support are those that can be automatically and quickly applied
without extra help from the user. These include implementation changes (i.e., changes to
method bodies), and type-safe design changes (e.g., adding fields and methods and re-
moving/renaming private fields and methods). Supporting arbitrary design changes
would complicate the user’s workflow because special instructions, transformation or
conversion rules are needed to ensure the system remains in a consistent state [10]. This
defeats our goal of interactive development. This is the same position taken by other IDE-
based Edit-and-Continue implementations, including gdb and Microsoft Visual C++
[29].

Currently, our solution only supports changes to method bodies (i.e., implementation
changes). If the user wants to make design changes, they have to compile them outside of
Edit-and-Continue. In the future, we would like to support type-safe design changes.

Update timing. We apply changes as soon as a file is updated (i.e., when the user saves
the file). This overloads the save operation and may result in updates being applied unin-
tentionally. In contrast, IDE-based solutions typically provide a separate way to apply
code changes. The benefit is that our solution automatically applies updates, which is use-
ful when applying updates remotely, and does not require a special editor. Another con-
sideration is that the timing of the update may compromise program correctness. This is
an open problem that has been shown to be undecideable [9].

Columbia University Department of Computer Science Tech Report CUCS-015-05

 17

Handling of active functions. An active function is a function that has a stack frame
currently on the call stack. This includes the function that is currently executing on the
top of the stack and those further down the stack. Some IDE-based Edit-and-Continue
implementations, such as Microsoft Visual C++ [29], allow the user to modify the code
of the currently executing function. For example, this is very helpful if the user needs to
update the main function. This requires a more sophisticated method patch procedure, as
well as adjusting the current instruction pointer. Similar to the Java HotSwap solution
[5], our Edit-and-Continue solution cannot support updating the currently executing func-
tion because this is not supported by the Profiler API.

In our solution, the user is allowed to modify a function that is already on the stack, but
the update is not actually applied until the function is called again (i.e., the existing stack
frames are not updated). This is a consequence of the SetFunctionReJIT function. This
can result in instances of both the old and new function existing on the stack at the same
time. The Java HotSwap API provides a mechanism for updating stack frames; however,
as mentioned earlier, we are not aware of an Edit-and-Continue implementation that uses
it.

6. Conclusions and Future Work
Our Edit-and-Continue system allows the user to edit the source files of their running

application and see the updates applied immediately. The system incurs a modest 1–5%
runtime overhead and the update latency is less than one second. Moreover, the system
runs on any Windows platform with the standard implementation of the Microsoft Com-
mon Language Runtime and does not require an IDE, thus making the solution more gen-
erally applicable.

Our system allows the user to treat source files as high-performance, dynamic scripts.
This makes it particularly well-suited for dynamic reconfiguration, performance tuning,
interactive development, and online debugging of high-performance and real-time appli-
cations.

Our initial experiences with using Edit-and-Continue on a large 3D application written
in C# indicate that our solution is quite useful. For example, we used Edit-and-Continue
to continually refine the field-of-view for a head-worn display and to tweak the matrix
transformations for our head-tracking device. This would have been impossible using an
IDE, because our application used the full screen and captured all mouse and keyboard
input. We were able to tweak the settings by modifying the source files remotely using a
separate machine.

By creating a library-based implementation of Edit-and-Continue, we have elevated it
from a development-time only feature to a general application feature. Whereas in the
past the application designer was limited to configuration files or scripting interfaces,
now they can select situations in which Edit-and-Continue will provide a superior solu-
tion. It is especially useful for real-time applications, such as VR applications, and 3D
games, that need powerful yet high-performance reconfiguration capabilities. However,
Edit-and-Continue is a general application feature that can be transparently applied to any
.NET application.

There are a number of areas that we are interested in addressing in future work, which
we review here.

Columbia University Department of Computer Science Tech Report CUCS-015-05

 18

Source-level debugging. This will not work after a method update, because the debug
information will be out of sync. As we believe source-level debugging is critical, we
would like to find a way to support it.

Improved security. Dynamic software updating techniques can be used to circumvent
security [21]. It would be very difficult (“security through obscurity”), but not impossi-
ble, to use our Edit-and-Continue system for this malicious purpose. We would like to
study the security implications of our solution to determine what security improvements
can be made (e.g., encrypting source files, namespace partitioning [17], or using the .NET
Code Access Security API).

Aspect-Oriented Programming. We would like to leverage our ability to dynamically
replace method bodies, even those that have already been JITed, to implement low-
overhead dynamic aspect-oriented programming [6, 13, 14]. This would allow us to add
monitoring and profiling support dynamically to a running application. We can support
the ability to modify a function at runtime, while still ensuring that the function stays
weaved properly (i.e., by reweaving whenever a method is replaced).

Arbitrary patching. We require an incremental build file and source files for Edit-and-
Continue to work. Removing these restrictions, at the cost of a greatly increased security
risk, would allow us to perform arbitrary patches of running methods, including system
methods, to support applying security, performance, and bug fix patches [6, 28] and adap-
tive optimizations [27].

7. ACKNOWLEDGMENTS
We would like to thank Rean Griffith and Hrvoje Benko for reviewing this paper, Mark

Lewin from Microsoft Research for his initial help, and John Lefor from Microsoft Re-
search for his help on bug report files. This research is funded in part by a grant from
Microsoft Research.

8. REFERENCES
[1] Ben-Shaul, I., Holder, O., and Lavva, B. Dynamic Adaptation and Deployment of

Distributed Components in Hadas. IEEE Trans. on Softw. Eng., 27(9): 769–787, Sept
2001.

[2] Bierbaum, A. and Cruz-Neira, C. Run-Time Reconfiguration in VR Juggler. Proc.
4th Immersive Projection Tech. Workshop (IPT ‘00) (Ames, Iowa, June), 2000.

[3] Cowell-Shah, C. W. Nine Language Performance Round-up: Benchmarking Math &
File I/O. OSNews Web Site. 2004. http://www.osnews.com/story.php?news_id=5602.

[4] Dawson, B. Game Scripting with Python. Proc. Game Dev. Conf. (GDC ’02) (San
Jose, CA, March 21–23), 2002.

[5] Dmitriev, M. Application of the HotSwap Technology to Advanced Profiling. Proc.
1st Int. Wkshp. on Unanticipated Softw. Evol. (USE ’02) (Malaga, Spain, June 10–
14), 2002.

[6] Frei, A., Grawehr, P., and Alonso G. A Dynamic AOP-Engine for .NET. Tech. Rep.
445, Dept. of Comp. Sci., ETH Zürich, 2003.

Columbia University Department of Computer Science Tech Report CUCS-015-05

 19

[7] Gilmore, S., Kirli, D., and Walton, C. Dynamic ML without Dynamic Types. Tech.
Rep. ECS-LFCS-97-378, Lab. for the Foundations of Comp. Sci., U. Edinburgh, De-
cember 1997.

[8] Goldberg, A. and Robson, D. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

[9] Gupta, D., Jalote, P., and Barua, G. A formal framework for on-line software version
change. IEEE Trans. on Softw. Eng., 22(2): 120–131, February 1996.

[10] Hicks, M. Dynamic Software Updating. PhD Thesis. Dept. of CIS, U. Pennsyl-
vania, Philadelphia, PA, 2001.

[11] Hj´almt´ysson, G. and Gray, R. Dynamic C++ classes. In Proc. of the USENIX
1998 Annual Technical Conference (Berkeley, CA, USA, June 15–19 1998), pp. 65–
76, 1998.

[12] Kernighan, B. W. and Van Wyk, C. J. Timing Trials, or, the Trials of Timing: Ex-
periments with Scripting and User-Interface Languages. Software—Practice & Exp.
28(8): 819–843, July 1998.

[13] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., and
Irwin, J. Aspect Oriented Programming. Proc. European Conf. on Object-Oriented
Prog. (ECOOP ’97) (Jyväskylä, Finland, June 9–13), LNCS 1241, pp. 240–243,
Springer-Verlag, 1997.

[14] Lam, J. CLAW: Cross-Language Load-Time Aspect Weaving on Microsoft’s Com-
mon Language Runtime, Demonstration at Aspect Oriented Softw. Dev. (AOSD ‘02)
(Enschede, The Netherlands, April 22–26), 2002.
http://www.iunknown.com/000092.html.

[15] Layer, D. K. and Richardson, C. Lisp systems in the 1990s. Comm. of the ACM,
34(9): 48–57, 1991.

[16] Lowy, J. Contexts in .NET: Decouple Components by Injecting Custom Services
into Your Object’s Interception Chain. MSDN Magazine, March 2003.

[17] Malabarba, S., Pandey, R., Gragg, J., Barr, E., and Barnes, J. F. Runtime support
for type-safe dynamic Java classes. Proc. Europ. Conf. on Object-Oriented Prog.
(ECOOP ’00) (Cannes, France, June 12–16), 2000.

[18] Microsoft. The Profiler API of the Microsoft CLR. 2002.
[19] Microsoft. The Metadata Unmanaged API. 2002.
[20] Mikunov, A. Rewrite MSIL Code on the Fly with the .NET Framework Profiling

API. MSDN Magazine, Sept 2003.
[21] Miller, B. P., Christodorescu, M., Iverson, R., Kosar, T. Mirgorodskii, A., and Pop-

ovici, F. Playing Inside the Black Box: Using Dynamic Instrumentation to Create Se-
curity Holes. Parallel Proc. Letters, 11(2&3):267–280, 2001.

[22] Phelps, A. M. and Parks, D. M. Fun and Games with Multi-Language Develop-
ment. ACM Queue, 1(10):46, 2004.

[23] Ousterhout, J. K. Tcl: An embeddable command language. Proc. USENIX Winter
Tech. Conf. (Berkeley, CA, January 22–26), pp. 133–146, 1990.

Columbia University Department of Computer Science Tech Report CUCS-015-05

 20

[24] Ramsey, N. Embedding an Interpreted Language Using Higher-Order Functions
and Types. Proc. Workshop on Interpreters, Virtual Machines, and Emulators (IVME
’03) (San Diego, CA, June 12), 2003.

[25] Rigo, A. Representation-based Just-in-time Specialization and the Psyco prototype
for Python. Proc. Symp. on Partial Eval. and Prog. Manip. (PEPM '04) (Verona, It-
aly, August 24–25), 2004.

[26] Schult, W. and Polze, A. Dynamic Aspect-Weaving with .NET. Proc. Int. Symp. on
Object-Oriented Real-Time Distrib. Comp. (ISORC ’02) (Crystal City, VA, April 29–
May 1), 2002.

[27] Soules, C. A. N., Appavoo, J., Hui, K., Da Silva, D., Ganger, G. R., Krieger, O.,
Stumm, M., Wisniewski, R. W., Auslander, M., Ostrowski, M., Rosenburg, B., and
Xenidis, J. System Support for Online Reconfiguration. Proc. Usenix Tech. Conf.
(San Antonio, TX, June 9–14), 2003.

[28] Sridhar, N., Pike, S. M. and Weide, B. W. Dynamic Module Replacement in Dis-
tributed Protocols. Proc. 23rd Int. Conf. on Distrib. Comp. Sys. (ICDCS 2003)
(Providence, RI, May 19–22), 2003.

[29] Staheli, D. G. Enhanced Debugging with Edit and Continue in Microsoft Visual
C++ 6.0. MSDN Library, 1998.

[30] Vogels, W. Benchmarking the CLI for high performance computing. IEE Proc.—
Softw., 150(5): 266–274, October, 2003. http://cli-grande.sscli.net.

[31] 3 Leaf Solutions. Using the Edit and Continue Feature in C# 2.0. MSDN Library,
2004. http://msdn.microsoft.com/ library/en-us/dnvs05/html/edit_continue.asp.

