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ABSTRACT 
We present an Edit-and-Continue implementation that allows regular source files to be 
treated like interactively updatable, compiled scripts, coupling the speed of compiled na-
tive machine code, with the ability to make changes without restarting. Our implementa-
tion is based on the Microsoft .NET Framework and allows applications written in any 
.NET language to be dynamically updatable. Our solution works with the standard ver-
sion of the Microsoft Common Language Runtime, and does not require a custom com-
piler or runtime. Because no application changes are needed, it is transparent to the appli-
cation developer. The runtime overhead of our implementation is low enough to support 
updating real-time applications (e.g., interactive 3D graphics applications).  

Categories and Subject Descriptors 
D.3.3 [Software Engineering]: Programming Environments—Interactive environments; 
Testing and Debugging—Debugging aids; D.1 [Software]: Programming Techniques—
Dynamic Software Updating; D.3.3 [Programming Languages]: Processors—
Incremental compilers, dynamic compilers 

General Terms 
Experimentation, Languages, Performance 

Keywords 
dynamic software updating, online reconfiguration, patching, edit-and-continue, hot-
swapping, rapid application development, .NET 

1. INTRODUCTION 
Edit-and-Continue is a common debugging feature found in many integrated develop-

ment environments (IDEs).  It refers to the ability to pause an application, usually via a 
breakpoint, make changes to the source code that are recompiled in the background, and 
then continue execution with the modified application.  These activities must be per-
formed in the IDE because they are usually not supported by the application’s runtime 
environment.  Because using Edit-and-Continue in the IDE can be cumbersome, it is usu-
ally reserved for debugging activities. We desired a lightweight and efficient Edit-and-
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Continue solution for rapid prototyping, extensibility, and dynamic reconfiguration that 
did not require the presence of an IDE, and would therefore be available to end-user and 
developer alike. 

Our requirements for Edit-and-Continue were motivated by our target application class: 
real-time 3D graphics applications.  Specifically, we are addressing interactive 3D user 
interfaces, including virtual reality (VR), augmented reality, and 3D games.  These appli-
cations support real-time 3D rendering and require high-performance, highly configurable 
software architectures. 
 
1.1 Our Solution 

Our Edit-and-Continue allows any .NET language source file to be treated as a high-
performance, dynamic script.  It is fast because source code changes are compiled to na-
tive machine code instead of being interpreted.  However, the user does not execute an 
explicit compilation step because compilation occurs in the background.   

We have successfully tested Edit-and-Continue on applications written in C#, VB.NET, 
and JScript.NET.  Users can even intermingle multiple languages in their application, 
although we only support dynamic updates to languages that support the .NET CodeDOM 
API (specifically, the ICodeCompiler API).   

Unlike approaches that require that code be run within the IDE, our implementation is 
library-based and requires only the standard Microsoft Common Language Runtime.  
Therefore, it can be used by end-users who do not have an IDE, as well as by developers. 

Our Edit-and-Continue implementation allows code changes (currently, only updates to 
method bodies) to be applied without having to restart the application.  This shortens the 
normal edit–compile–restart cycle and enables interactive prototyping and debugging.  
However, if the compilation fails due to a syntax error, type violation, misspelling, or 
other compilation error, the change will be rejected. 

In addition, our Edit-and-Continue solution has the following properties: 
Transparent. The application developer does not have to make any code changes to 

support Edit-and-Continue.  However, they do have to specify a compiler flag and three 
environment variables.  For some .NET languages, the user must also provide a build de-
scription file, similar to a makefile. 

Lightweight. Our solution is based on standard .NET application programming inter-
faces (APIs) and does not require an IDE.  Code changes can be made using the user’s 
favorite editor (e.g., Notepad, emacs, or vi). 

Automatic.  Changes are applied as soon as they are saved by the user.  No other action 
is necessary.  To make this possible, we developed a difference algorithm for determining 
changes to a method's byte code automatically (see Section 3).  Changes can also be made 
remotely, which is especially useful for full-screen 3D applications.  If multiple instances 
of an application are running in a distributed scenario, they will all be updated at 
(roughly) the same time. 

Low overhead. Our solution is enabled using the low overhead .NET Profiling API.  
Asynchronous compilation and code patching are performed in the background.  The 
overhead is low enough to be feasible for the performance-critical applications that we 
are targeting, which include 3D games. We evaluate the performance of our implementa-
tion in Section 4. 
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Our Edit-and-Continue solution is the first to support multiple languages in a generic 

way since it supports any .NET language that implements the standard .NET CodeDOM 
API.  In contrast, other solutions support only one language or a pre-defined number of 
languages.  Furthermore, some languages (e.g., JScript.NET, Eiffel, Cobol, Perl, Python, 
Lua, Haskell, to name a few) do not currently support Edit-and-Continue.  Because our 
solution is based on the generic CodeDOM API, we can potentially support any language 
that implements the API (specifically, the ICodeCompiler interface).  For example, ours 
is the only solution that supports Edit-and-Continue for JScript.NET. 

Our solution supports certain types of unanticipated changes (see Section 5.2) to .NET 
applications that would be difficult or impossible to support using other techniques.  
Moreover, changes can be made interactively without requiring a restart of the applica-
tion.  We find Edit-and-Continue to be a very useful prototyping technique for our 3D 
applications. 

2. Related Work 
Prior to arriving at our Edit-and-Continue solution, we investigated other popular appli-

cation-level techniques for enabling rapid application development, including dynamic 
configuration files and embedded scripting languages, which we describe below.  We 
then compare our Edit-and-Continue solution with other software updating approaches. 
 
2.1 Dynamic Configuration Files 

In the VR Juggler [2] architecture for building VR applications, changing a configura-
tion file causes the application to reinitialize automatically without requiring a restart. 
This can result in a substantial time savings for application developers, as the startup time 
required for VR applications can be quite long, due to loading large models, initializing 
devices, and communicating with servers.  Other benefits of this approach are quick pro-
totyping of new features and interactive performance tuning.  The limitation is that dy-
namic configuration files are an inflexible application-specific solution because the appli-
cation behaviors that can be configured are typically very limited and must be anticipated 
beforehand. 
 
2.2 Embedded Scripting Languages 

Another common approach is to embed a script language interpreter or script engine in-
side the application and then graft on a scripting or command language interface.  Tcl 
[23] is one of the best known examples.  Other popular choices are Perl, Python, 
JavaScript, and Lua. Script-based interfaces, intended for the developer-as-end-user audi-
ence, are widely recognized for supporting rapid prototyping.  However, there are many 
disadvantages to scripting, especially for high-performance 3D applications, including the 
following: 

Slow performance.  Script languages are by-and-large interpreted, although what is be-
ing interpreted may be an intermediate representation or byte code.  Regardless, inter-
preted code is much slower than compiled machine code [3, 12].  Just-in-time compilers 
(e.g., [25]) help alleviate this problem, but do not eliminate it entirely. While the slower 
speed may be adequate for some applications, it becomes a bottleneck for high-
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performance ones.  Therefore, only a portion of application behavior is typically scripted 
(i.e., the script interface) and the rest of the application is written in a compiled language 
[22]. 

Object model discontinuity.  The objects, variables, and functions of the compiled por-
tion of the application and those of the script form two separate object models, written in 
two different languages.  The script interface is often implemented using a reflection API 
or some other “glue code.”  Reflection refers to the ability to programmatically obtain 
type information or call methods at run-time.  It can be used to provide a bridge that al-
lows communication between two languages or object models. 

Providing a one-to-one bridge for every object and function in the object model is infea-
sible since it can require a major development effort and entails a significant runtime per-
formance penalty [24]. This requires the application developer to tailor the script interface 
to meet their anticipated application needs, further limiting the power of the scripting so-
lution and making it application-specific. 

Unlike a scripting solution, whose expressive power is limited by the script interface, 
Edit-and-Continue allows arbitrary, and possibly unanticipated, type-safe changes to 
method bodies.  Moreover, object-oriented language features such as class and member 
access control, reuse, and data hiding can be leveraged for free. 

Multi-language issues. Different languages usually have separate and sometimes con-
flicting threading, networking, GUI and memory management models.  In addition, few 
tools allow simultaneous cross-language debugging [4, 22]. 

Our approach avoids object model and language discontinuity by leveraging features 
common to all .NET languages.  Users can intermingle multiple languages in their appli-
cation, although we only support dynamic updates to languages that support the .NET 
CodeDOM API (specifically, the ICodeCompiler API). 

Need for a restart. Aside from some application-specific solutions, script changes do 
not take effect until the application is restarted, preventing interactive prototyping and 
debugging.  This is particularly painful for applications with long startup times, common 
in VR and gaming, or when trying to reproduce a bug. 

It should be noted that several scripting languages, including Perl, Python, JavaScript, 
and Lua, have been ported to .NET.  All .NET languages share a unified type system (the 
.NET Common Type System), and use the same class library (the .NET Framework Class 
Library). This means that integration of a .NET-based scripting language will not suffer 
from object model or language discontinuity and will not incur cross-language communi-
cation overhead.  However, none of these languages allow the user to make updates to a 
running application.  Ideally, these languages would expose a compiler interface via the 
CodeDOM API, which would enable us to apply our Edit-and-Continue solution to appli-
cations written in Python.NET, for example. 

 
2.3 Dynamic Software Updating 

Dynamic software updating (also known as online reconfiguration, hot-swapping, and 
code patching) refers to the ability to update currently executing software, at the machine 
code or byte code level.  Edit-and-Continue (also known as fix-and-continue, develop-
and-continue, and incremental build, as well as by many other names) is a special form of 
dynamic software updating in which updates (1) are specified by directly modifying the 
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original source files, (2) are compiled in the background,  and (3) are applied immedi-
ately. 

Our solution is library-based, as opposed to language-, IDE-, runtime-, or proxy-based.  
We will explain the tradeoffs of each technique below. As we are focused on general-
purpose Edit-and-Continue solutions, we do not consider the large number of solutions 
that are application-specific. 

 
2.3.1 Language-Level Support 

Ideally, the language execution environment itself will natively support Edit-and-
Continue, as do Lisp [15], Prolog, Forth1 and Smalltalk [8]. However, we do not consider 
these languages viable for the development of 3D applications, for reasons of perform-
ance, lack of support for 3D graphics APIs, and the difficulty of finding developers profi-
cient in these languages. 

 
2.3.2 Integrated Development Environments 

Most modern IDEs support Edit-and-Continue, although the details about how they do it 
are not in the public domain: 
 
• Microsoft Visual Studio™ (C/C++ [29], VB, and C# [31])  
• Sun™ Java Studio2 (Java) 
• SGI ProDev™ WorkShop3 (C/C++, Fortran, Ada) 
• HP wdb4 (C/C++, Fortran) 
• Eclipse5 (Edit-and-Continue is only supported for Java) 
• Apple Xcode6 (C/C++, Objective C, Java) 
• Functional Developer7 (Dylan) 

Most of these IDEs provide more Edit-and-Continue functionality than our solution, 
such as the ability to make certain type-safe design changes, such as adding new functions 
and fields [29, 31].  The main benefits of our solution are that it supports any .NET lan-
guage, for example, ours is the only solution that supports Edit-and-Continue for 
JScript.NET, is completely library-based, and supports remote updates. 

A library-based solution is essential in a setting in which the IDE is not installed (e.g., a 
customer, demonstration, production, or developer-as-end-user setting), and in the game 
mod community [4, 22].  The user can take advantage of Edit-and-Continue without re-
building the executable explicitly.  Even when the IDE is available, its Edit-and-Continue 
feature may not be convenient because it requires that the IDE be running and “attached” 
to the target process, and that changes be made from within the IDE editor.  If the IDE is 
not running, the user will need to start it and attach to the process, which may take several 

                                                                 
1  http://www.forth.org 
2  http://developers.sun.com/prodtech/javatools/jsstandard 
3  http://www.sgi.com/products/software/irix/tools/prodev.html 
4  http://h21007.www2.hp.com/dspp/tech/tech_TechSoftware DetailPage_IDX/1,1703,1662,00.html 
5  http://www.eclipse.org 
6  http://www.apple.com/macosx/features/xcode 
7  http://www.functionaldeveloper.com 
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seconds.  In contrast, our Edit-and-Continue solution is always on.  Changes can be made 
in any editor and the effects are visible at interactive (sub-second) speeds. 

Finally, since our user interface is essentially the file system, our solution allows up-
dates to be applied remotely, which is not possible using an IDE.  This is essential for ap-
plications that must use the full screen or that capture all mouse and keyboard input, in-
cluding VR applications and 3D games. 
 
2.3.3 Runtime-based Approaches 

Dynamic software updating systems usually have loftier goals than supporting the sim-
ple updates required for Edit-and-Continue.  These systems are designed to update entire 
classes or modules. Supporting this scale of updating usually places constraints on the 
design that render the system unsuitable for Edit-and-Continue.  For example, many sys-
tems require a custom class loader [1, 28], compiler [10], operating system [27], or run-
time [17], and thus are non-portable.  Other systems support only research languages [10], 
suffer from performance problems [1, 11, 16], or are not transparent [7, 11, 26]. 

Although it appears that many dynamic software updating systems could meet the inter-
activity requirements of Edit-and-Continue, we found no mention of this in the literature.  
We also found no system that supports updating applications written in multiple lan-
guages. 

 
2.3.4 Proxy-based Approaches 

We initially considered (and ultimately rejected) implementing Edit-and-Continue using 
.NET Remoting Proxies [16]. A major disadvantage to a proxy- or wrapper-based ap-
proach is the need for class renaming. This necessitates changing the client code to use a 
special class factory [26, 28] or derive from a special interface [11, 16], or requires a way 
to convert client code to use the proxy [17]. Consequently, the identity of the classes is 
not preserved, which introduces subtle bugs in client code that uses reflection, serializa-
tion, casting, or run-time type identification.   

Another issue is that state transfer must be used when replacing object instances to 
guarantee consistency across updates [27].  This is difficult to do in the general case, 
given that OS-level data structures (e.g., file handles and sockets) usually cannot be trans-
ferred between processes [10].  This also requires the proxy to manage its own object in-
stances to update them, requiring extra data and code [11, 17]. 

Furthermore, proxy-based approaches require at least one, and sometimes several, extra 
indirections per function call, a prohibitive cost for performance-critical applications [11, 
17].  In addition, many solutions require the class being updated to enter a state of quies-
cence, in which none of its methods are currently active [27].  This can prevent some up-
dates from being applied [17], or require that all threads be suspended or all method calls 
into the class be blocked during the update [10].  This is not a desirable solution for us, 
since pauses can adversely affect the execution of a VR application; for example, disori-
enting the user or causing the application to miss network or device updates. 
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2.3.5 Library-based Approaches 
Our Edit-and-Continue solution makes extensive use of the .NET Profiler API, which 

provides traditional profiling services as well as the ability to replace method bodies [18, 
20].  CLAW [14] and AOP-Engine [6] take advantage of this feature to implement as-
pect-oriented programming.  However, ours is the first system to use the method re-
placement facilities of the Profiler API to implement Edit-and-Continue. 

The architecture of the AOP-Engine [6] most closely resembles our system.  Frei and 
colleagues mention how method replacement could be used to apply bug-fix patches to 
running applications; however, their solution is currently not interactive, which prevents 
it from being used in an Edit-and-Continue fashion. 

The Java HotSwap API provides a method replacement facility similar to that of the 
.NET Profiler API.  However, HotSwap is designed for replacing entire classes, which 
requires more work and resources than replacing just a single method. There are plans to 
resolve this issue in a later version of the API [5].  The HotSwap Client Tool8 demon-
strates how Java classes can be replaced at runtime.  However, it does not meet our defi-
nition of Edit-and-Continue, as it does not perform background compilation and auto-
matic method replacement. 

3. Implementation 
The key enabling technologies needed for our Edit-and-Continue system are the .NET 

CodeDOM and Profiler APIs and the build description file.  The CodeDOM API provides 
an interface for compiling source code.  The Profiler API allows a developer to “hook” 
specific application events (e.g., module loading/unloading, memory alloca-
tion/deallocation, function entry/exit, and just-in-time (JIT) compilation events).  These 
events are of obvious interest to a CPU or memory profiler.  The build description file 
lists all source files and compiler options used when compiling the original application, 
allowing us to use the CodeDOM API to reproduce the compilation exactly. 

 
3.1 Overview 

Our system is composed of two subsystems.  The Patcher subsystem is a dynamic link 
library (DLL) written in standard C++.  When the application is started, Patcher deter-
mines where to find its source files and how to build them.  When a module is updated, 
Patcher determines which methods have changed and updates them. 

The Watcher subsystem is a separate executable (EXE) written in C#.  It is responsible 
for detecting changes to the source files and recompiling them on-the-fly. 

 
3.2 Background: CLR Technology 

To explain our implementation, it is important to first review some fundamentals of the 
Common Language Runtime. 

A NET application consists of modules built by a .NET compiler that compiles source 
files into Microsoft Intermediate Language (MSIL) byte code.  This is termed source 
compilation.  To avoid the cost of interpreting byte code, right before a function is exe-

                                                                 
8 http://developers.sun.com/dev/coolstuff/hotswap/more.html 
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Figure 1. Edit-and-Continue walkthrough for an application written in C#. 
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cuted it is compiled to native machine code via a process called just-in-time (JIT) compi-
lation. 

Languages that compile to byte code are called managed languages because the execu-
tion environment and memory management is handled by the Common Language Run-
time.  All other languages are considered unmanaged. 

A module is a binary file, usually a DLL or EXE, which contains the byte code for the 
methods and the metadata for the data types implemented by the module.  Modules are 
analogous to Java class files. 

Metadata is binary data that describes an application and is stored either in an executa-
ble file or in memory.  Metadata describes every data type used by the application, as well 
as other characteristics of the application.  Metadata is stored in metadata tables, which 
are global structures shared by all methods.  A change to a method body that affects a 
metadata table will likely affect other methods as well.  Applications can use the Meta-
data API [19] to query the metadata.   

A token is a handle to a metadata data table entry or memory “blob” that can refer to a 
string constant, data type, method, or some other metadata.  Tokens are used in .NET in-
stead of pointers so that the byte code is memory-model independent and to simplify gar-
bage collection. 

 
3.3 Edit-and-Continue Walkthrough 

Figure 1 shows a walkthrough of our Edit-and-Continue scenario, with numbers indicat-
ing the interaction sequence, which we reference here.  We assume that the user, prior to 
starting the application, has already installed our Edit-and-Continue files, built their ap-
plication (they must also specify the /bugreport compile option), and set the profiler-
related environment variables.  Although the walkthrough is shown for an application 
written in C#, the walkthrough is exactly the same for all .NET languages. 
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When the application is started, the CLR loads Patcher.dll and calls ModuleLoadFin-
ished for each module (1).  Patcher spawns the Watcher (2), and then reads the build de-
scription file associated with each module to obtain the source files, referenced assem-
blies, and compiler options (3).  Patcher sends the module compilation information to 
Watcher (4), which then starts watching the module’s source files (5). 

At some point in the future, the user edits the foo.cs file, changing the foo method, and 
saves their changes (6).  Watcher receives a file change event for foo.cs and uses the 
module compilation information to perform a source compilation (source code to byte 
code) using the CodeDOM API.  This creates the App-01.exe post-edit module (7).  (The 
number is appended to the module name to ensure that it is unique.)  If the compilation 
succeeds, Watcher sends a message to Patcher telling it the post-edit module path (8).  
Watcher then goes back to watching the source files for more changes. 

Using the Metadata API, Patcher reads the pre-edit (current) metadata and method ad-
dresses associated with the running application (9).  It also reads the post-edit metadata 
and method addresses from the post-edit module (10).  It uses the module diff algorithm 
(described later) to compare the two modules (11).  If one or more methods have 
changed, Patcher emits new metadata as necessary (12) and calls SetFunctionReJIT (13). 

Sometime afterward, foo is called, and Patcher receives the JITCompilationStarted 
event from the CLR (14).  Patcher then calls the SetILMethodBody Profiler function to 
replace the old byte code for foo with the new byte code (15).  The CLR JIT compiles the 
new byte code to native machine code and executes foo (16). 

 
3.4 Patcher 

Using the Profiler API to hook an application is tricky.  The Patcher DLL must be writ-
ten in raw (unmanaged) C++, must not block inside an event handler, and is not allowed 
to make calls into managed code. The reason for the last restriction is given in the docu-
mentation [18] and widely echoed by other users:  If the DLL is handling an event, and 
then subsequently calls into managed code, which in turn generates the same event, the 
CLR can deadlock because it is not designed to be reentrant.  Note that these are only the 
restrictions placed on the Patcher DLL; the actual .NET application being hooked has no 
restrictions. 

Because our Edit-and-Continue solution uses the managed CodeDOM API, we need a 
separate managed process to safely call the API.  This is the motivation behind the 
Watcher process, which we describe later.  (In the future, we would like to explore calling 
managed code from a separate thread, which may circumvent the deadlock issue.) 

3.4.1 Startup 
When the target application starts, the CLR immediately loads the Patcher DLL into the 

process and starts sending it application events. Patcher monitors the ModuleLoadFin-
ished events to determine the file paths of the modules that compose the running applica-
tion. 

Patcher must determine all the information that Watcher needs to recompile the module, 
essentially recreating the command-line used to compile the original module.  This in-
cludes the source files, the referenced assemblies, as well as other compilation options 
(e.g., /debug and /unsafe).  See  Table 1 for an example.   
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Table 1. Compilation information example. 

Module Name MyApp.exe 
Source Files MyApp.cs, MyHelper.cs 
Referenced Assemblies System.dll, mscorlib.dll 
Icon MyApp.ico 
Resource MyApp.res 
Defines MyLogging=1 
Main Class MyNamespace.MyClass 
Compile Options /optimized, /checked 

The Microsoft Visual C++ implemen-
tation of Edit-and-Continue stores this 
compilation information directly inside 
the C++ object files [29].  In contrast, 
Microsoft Visual C# and VB.NET 
stores the information in a separate file 
called the build description file.  
Patcher parses this file and sends the 
compilation information to Watcher.   

Later, the user modifies a source file.  
This causes Watcher to build the new 
module and to send the file path to Patcher.  To avoid requesting that every method in the 
module be re-JITed, Patcher determines which methods have changed by using a two-
pass module diff algorithm. 

3.4.2 Module Diff 
We implemented a “smart” module diff algorithm that determines when two methods 

are “equivalent.”  Method equivalence confounds a simple binary comparison because of 
the presence of tokens in the byte code.  For example, if the user only changes a string 
literal from “foo” to “bar”, the string token in the new module will be the same as the to-
ken in the old module, resulting in method bodies that are equivalent under binary com-
parison.  Similarly, two bitwise identical tokens may refer to different string values.  

Figure 2 illustrates this by showing an example of the metadata embedded in the 
hello.exe application before and after an update.  Figure 2(a) shows the original hello.cs 
source file.  Note that the string literals, “Hello” and “, world!”, are stored in the User 

Figure 2. Hello.exe and metadata example.  (a) The original hello.cs file. (b) The new hello.cs file after updating 
Foo by adding a local variable i and changing a string literal from “Hello” to “Hi”. The arrows indicate the changes 
to the source code and the string and local variable metadata tables. 

namespace HelloNS {
class Hello {

static void Main() {
Hello h = new Hello();

h.Foo();
h.Bar();

}
void Foo() {

System.Console.Write("Hello");
}
void Bar() {

System.Console.WriteLine(", world!");
}

}
}

[70000001] "Hello"

[7000000D] ", world!"

a) hello.cs (original version)

User String Table

[11000001] Class HelloNS.Hello

Local Variable Signature Table

namespace HelloNS {
class Hello {

static void Main() {
Hello h = new Hello();

h.Foo();
h.Bar();

}
void Foo() {

int i;
System.Console.Write("Hi");

}
void Bar() {

System.Console.WriteLine(", world!");
}

}
}

[70000001] "Hi"

[70000007] ", world!"

b) hello.cs (new version)

User String Table

[11000001] Class HelloNS.Hello

[11000002] int

Local Variable Signature Table
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String metadata table.  This is similar to how Java stores constants in a constant pool.  
The local variable h in the Main method has an associated type signature (Class Hel-
loNS.Hello), which is stored in the Local Variable metadata table. 

In Figure 2(b), the user has modified the method Foo by adding a local variable i 
(which is never used) and changing the string “Hello” to “Hi”.  What is interesting about 
this example is that the underlying byte code instructions for Foo are exactly the same.  
Only the metadata has changed.  Detecting that the local variable signatures are different 
requires us to dereference the local variable signature token associated with the old and 
new method and perform a binary comparison for each signature. 

Unlike local variables, detecting that a string token in the byte code refers to a different 
value is more involved.  To detect this, we must iterate over the old and new method bod-
ies, decoding and comparing each byte code instruction.  This constitutes the first pass of 
our two-pass algorithm, and is quite tedious, as there are more than 250 different instruc-
tion codes to consider [20].  We perform a simple binary comparison until we encounter 
an instruction with a token argument.  For example, the LDSTR instruction loads a string 
token onto the stack.  We must dereference the old and new tokens to compare the meta-
data values to which they refer. Dmitriev [5] describes a similar approach in Java Hot-
Swap. 

Before replacing the method body of Foo, we must emit the new string and local vari-
able signature metadata using the Metadata API [19].  Otherwise, we will get an invalid 
metadata exception that halts the application or the application will behave incorrectly 
(e.g., the wrong string value will be used).  Figure 3 shows how the emitted metadata is 
appended to the existing metadata to form the merged metadata.  This actually causes a 
one-time memory leak, since after the update, the application no longer refers to the 
original “Hello” string, yet it remains in the metadata.  We consider this inconsequential 
because the leak is very small and it happens only once for each metadata value (i.e., it is 
not a persistent leak). 

A further complication is that the string token for “Hi” in the final metadata shown in 
Figure 3 (“70000020”) is different from the token in the post-edit metadata shown in 
Figure 2(b) (“70000001”).  This occurs because the newly emitted metadata will have dif-

ferent tokens than the ones used in the 
new Foo method byte code.  This re-
quires Patcher to “fix-up” tokens in the 
new byte code to match the new tokens.  
To do this, Patcher performs a second 
pass over the method body, using the 
same technique described earlier, this 
time to correct the tokens. 

Slightly more subtle is the fact that 
method Bar will not need to be up-
dated.  The user string table in Figure 

2(b) shows that the token value for “, world!” was changed from “7000000D” in the 
original module to “70000007” in the new module.  The reason has to do with how string 
tokens are generated, but for our purposes, the only thing that matters is that a binary 
comparison of the old and new method bodies will indicate that the methods are different.  

Figure 3. Merged metadata for the final hello.exe module. 

[70000001] "Hello"

[7000000D] ", world!"

[70000020] "Hi"

User String Table

[11000001] Class HelloNS.Hello

[11000002] int

Local Variable Signature Table
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We solve this problem in the same way we did for Foo, by dereferencing the string tokens 
to compare the old and new string values.  In this case the string values are the same (i.e.,  
“, world!”), so we do not need to update Bar. 

Ours module diff algorithm uses a physical comparison as opposed to a logical 
comparison, which presumably would perform some type of static and/or dynamic 
analysis of the methods to determine equivalence.  It is possible that our physical com-
parison will result in a false positive, where the byte codes are different but the methods 
perform exactly the same computation.  However, no comparison technique can 
guarantee that two functions perform the same computation, as this is undecideable in the 
general case [9].  Since the cost of patching a function due to a false positive is low, as 
our performance metrics show, we argue that a more sophisticated comparison technique 
could actually degrade performance. 

3.4.3 Method Replacing 
After Patcher detects that a method has changed, emits the required metadata, and fixes 

up the byte code, it uses SetFunctionReJIT to schedule the function to be re-JITed.  The 
next time the target method is called, Patcher’s JITCompilationStarted event handler is 
called.  Then, Patcher can replace the current method body’s byte code with the new one. 

 
3.5 Watcher 

The Watcher process watches for changes to source files and recompiles them on-the-
fly.  We employ the .NET FileSystemWatcher and CodeDOM APIs for this purpose.  Af-
ter receiving the list of modules to watch, along with their corresponding compilation in-
formation, such as the list of source files, list of assembly references, and compile op-
tions, Watcher monitors the source files for changes (i.e., a changed modification time), 
using the event-based FileSystemWatcher API.  Watcher maintains an MD5 hash of each 
source file and ignores situations when the user saves a file that has not changed.  Mala-
barba and colleagues [17] provide a more reliable solution by computing a hash of each 
method’s byte code which allows them to ignore situations when the source code has 
changed but the byte code remains the same.9 

When a source file is changed, the associated module is recompiled using the Code-
DOM API.  As described earlier, Watcher then sends the new module path to the Patcher 
via a socket and Patcher updates the changed methods accordingly. 

4. Evaluation 
We have evaluated the performance of our Edit-and-Continue solution by quantifying 

the overhead and update latency using three benchmarks. 
 

4.1 Experimental Setup 

                                                                 
9 Similar to Malabarba and colleagues[17], we consider the remote possibility that the hash will cause a false positive 

acceptable. 
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The experiment was run on a Dell 
Dimension 8100 Workstation with a 
single Pentium IV 1.3 GHz proces-
sor, a 400 MHz front-side bus, and 
256MB of RAM.  The platform was 
Windows XP with .NET Framework 
version 1.1.4322. 

We used three separate C# bench-
marks: SciMark,10 CLI-Grande, and 
Text3D. 

SciMark (1,605 lines of code) is a 
benchmark for numerical and scien-
tific computing.  It includes Fast 
Fourier Transform, Jacobi Successive Over-Relaxation, Monte Carlo Integration, Sparse 
Matrix Multiply, and Dense LU Matrix Factorization. 

CLI-Grande (4,834 lines of code) is a C# port of the Java-Grande benchmark.  It exer-
cises low-level functionality such as arithmetic, assignment, casting, arrays, object crea-
tion, loops, method calls, and serialization [30].  We modified the code slightly by reduc-
ing the number of iterations to shorten the trial time to around 12 minutes.  This is not 
problematic, since we are comparing relative values, not absolute performance. 

Text3D (14,731 lines of code) is not a benchmark per se. It is a simple Direct3D demo 
included with the Microsoft Managed DirectX 9 SDK.  We included it to quantify the 
performance impact of Edit-and-Continue on 3D rendering speed.  This benchmark holds 
special significance for us, since it represents the 3D application class we are actively tar-
geting for Edit-and-Continue. 

 
4.2 Runtime Overhead 

Our system uses the Profiler API to selectively intercept module loading and JIT compi-
lation application events.  Our event handlers merely add work items to thread queues, so 
they are very fast and never block.  All the real work is done in separate threads.  How-
ever, simply enabling profiling implies an overhead.  The overhead cost is mostly paid 
during startup, which is when the majority of module and JIT compilation events occur.  
The steady-state overhead is attributed to new execution paths that cause new methods to 
be JIT compiled. 

Figure 4 shows our measurements of the runtime overhead for the three benchmarks 
with and without Edit-and-Continue.  We performed five test runs for SciMark and 
Text3D, and three for CLI-Grande.  SciMark and CLI-Grande ran to completion; how-
ever, Text3D is a windowed application, so we modified it slightly to exit automatically 
after three minutes.  All executables under test, Patcher, Watcher, and the three bench-
marks, were optimized release (retail) builds (compiled with switches /incremental 
/optimize /checked-).  For each benchmark, the bar on the left shows the performance, 
normalized to one, of the benchmark without Edit-and-Continue enabled.  The bar on the 

                                                                 
10 http://rotor.cs.cornell.edu/SciMark 
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Table 2. Update latency for the FFT.transform_internal 
method.  The average (arithemetic mean) time of each op-
eration is listed in milliseconds along with its standard 
deviation.

Component Milliseconds (StdDev) Contribution
C# Compilation 723.00 (22.80) 95.51%
Patch Creation 32.00 (16.43) 4.23%
JIT Compilation 2.50 (5.00)  0.33%
Total Latency 757.00 (30.05) 100.00%

right shows the performance with 
Edit-and-Continue enabled.  As this 
test was designed to measure run-
time overhead, no code patching was 
performed.  

Our measurements show that Edit-
and-Continue introduces a 1–5% 
runtime overhead, which we con-
sider negligible.  We had heard re-

ports from outside sources that profiling incurred an overhead of around 10%, so we were 
pleasantly surprised with our results.  As a comparison, the runtime overhead introduced 
by the dynamic updating system for Java developed by Malabarba and colleagues. [17], 
which uses a customized version of the Java Virtual Machine (JVM), is 6–10% slower 
than the original JVM. 

We also measured the memory overhead to be static at around 4.5 MB. 
 

4.3 Update Latency 
We measured update latency using the SciMark benchmark.  The update latency is the 

time it takes for an update to be applied.  We also broke out the update pause portion of 
the update latency to distinguish the time during which the application must be paused to 
apply the update.  This pause time is what is most noticeable to the user, especially when 
an update is applied to a continuously rendered 3D application. 

4.3.1 Setup 
For our test, we opened the FFT.cs file from the SciMark directory in Notepad and 

made updates to the transform_internal method.  Our preliminary experiments showed 
that this function was called frequently during the early part of the SciMark benchmark.  
We modified the method after it had been JIT compiled (which happens the first time the 
function is called), but before the last time it is called.  This ensured that the function 
would be called again, forcing another JIT compilation.  

Because the SciMark application was built as an optimized release version, we were ini-
tially thwarted by our efforts to modify the method using only trivial changes, such as 
adding or updating a variable that is never used, since these were being “optimized away” 
by the compiler.  We finally settled on the following C# code snippet, which we added to 
the method: 

 
if (false) { 
 Thread.Sleep(0); 
} 
 

Changing the condition from false to true (and vice versa) generates byte code that dif-
fers by one byte, which is enough to trigger Patcher to replace the method. 

4.3.2 Update Latency 
Table 2 shows that the average update latency is around 757 milliseconds.  The table 

also shows that the background C# compilation time dominates the latency (95%).  Al-
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though not shown in the table, C# compilations after the first one were slightly faster by 
around 100 ms, probably due to the JIT compilation that occurs for the CodeDOM mod-
ule the first time it is used.  We could avoid this first-time penalty by exercising the Cod-
eDOM API beforehand, “priming the pump” as it were. 

Patch creation took anywhere from 20–50 ms and JIT compilation took anywhere from 
0–10 ms.11 The C# compilation, patch creation, and JIT compilation times will increase 
with the number of methods and the size of the method bodies in the updated module.  

4.3.3 Update Pause 
All the work takes place in a separate process (C# compilation) or a separate thread 

(patch creation), except for JIT compilation, which takes place in the application’s thread.  
This step forces the application to “pause” for a small amount of time (0–10 ms) while it 
waits for the JIT compilation to complete.  Note that only the calling thread is affected.  
This is in contrast to systems that suspend all application threads when performing an up-
date [17]. 

We obtained some empirical results by experimenting with making updates to the 
Text3D application, to observe the visual effect of the update overhead.  After modifying 
a rendering method to increase the scale factor of a 3D object, we noticed a fraction of a 
second delay before the update took effect visually; however, the update was accom-
plished smoothly, without any appearance of “freezing.” 

4.3.4 Effects of Scaling on Update Latency 
Only update latency is affected by the module (DLL/EXE) size.  As the size of the mod-

ule increases, the update latency will increase, as it is dominated by the module's compila-
tion time.  The largest module we tested was Text3D at 14,731 lines of code (includes 
blank lines and comments), which is representative of the sizes of the applications we are 
writing.  As we reported in the previous sections, the update latency was negligible at un-
der one second. 

To support larger projects, we will need to look at traditional compilation time optimi-
zation techniques such as splitting the projects into smaller modules or performing in-
cremental compilation, and pre-loading the CodeDOM libraries as mentioned earlier. 

5. Limitations of Edit-and-Continue 
Our Edit-and-Continue solution has some limitations, some of which are implementa-

tion-related and some which are problems common to the field of dynamic software up-
dating. 

 
5.1 Implementation Issues 

Build description file.  The build description file allows us to reproduce the compila-
tion information exactly.  This eliminates guesswork or the need to create build configu-
ration files manually.  We currently support the bug report file format (.bugreport) 
produced by the C# and VB.NET compilers when the /bugreport flag is used.  Unfortu-
nately, not all compilers produce a build description file.  For example, we have to manu-
ally create the build description file for the JScript.NET compiler.  This can potentially 
                                                                 
11 This range makes it appear that sometimes JIT compilation takes no time.  However, our timer resolution is only 10 

ms, which means measurements 10ms or less cannot be fully trusted (i.e., they range anywhere from 0 to 10ms). 
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lead to the build description file being out of sync with the actual build settings.  We are 
currently looking at supporting the JScript project file format as well as using command-
line utilities for automatically determining build settings. 

Method inlining. Method inlining is a common and very effective compiler optimiza-
tion.  Unfortunately, the Profiler API does not allow inlined methods to be replaced. 
When Edit-and-Continue is enabled, we are forced to disable method inlining for the tar-
get process.  This contributes to the performance overhead of our solution.  In contrast, 
Java HotSwap supports updating inlined methods by first “de-inlining” them, while leav-
ing other inlined methods alone [5]. 

Enabling Edit-and-Continue requires the user to set some profiler-related environment 
variables (Cor_Enable_Profiling=1, COR_PROFILER=CLSID of Patcher, and 
WATCHER_PATH=Path to Watcher.exe) and to compile the application with the 
/bugreport compiler switch.  If the user forgets these steps, Edit-and-Continue will 
not be enabled.  This is not obvious, since our Edit-and-Continue solution works entirely 
in the background.  A useful feature would be to provide some type of visual indication of 
status, including errors (e.g., with a system tray icon).  Hopefully, a future version of the 
.NET Common Language Runtime will support a more convenient interface for enabling 
profiling; for example, to allow the user to specify which applications to profile in the 
Windows Registry, or to attach a profiler to a running application. 

 
5.2 Open Issues 

We must address issues that are common to dynamic software updating systems, includ-
ing what types of updates are allowed, when updates are applied, and how active func-
tions are handled. 

Types of updates allowed. By definition, the only changes an Edit-and-Continue im-
plementation should support are those that can be automatically and quickly applied 
without extra help from the user.  These include implementation changes (i.e., changes to 
method bodies), and type-safe design changes (e.g., adding fields and methods and re-
moving/renaming private fields and methods).  Supporting arbitrary design changes 
would complicate the user’s workflow because special instructions, transformation or 
conversion rules are needed to ensure the system remains in a consistent state [10]. This 
defeats our goal of interactive development. This is the same position taken by other IDE-
based Edit-and-Continue implementations, including gdb and Microsoft Visual C++ 
[29]. 

Currently, our solution only supports changes to method bodies (i.e., implementation 
changes).  If the user wants to make design changes, they have to compile them outside of 
Edit-and-Continue.  In the future, we would like to support type-safe design changes. 

Update timing.  We apply changes as soon as a file is updated (i.e., when the user saves 
the file). This overloads the save operation and may result in updates being applied unin-
tentionally.  In contrast, IDE-based solutions typically provide a separate way to apply 
code changes. The benefit is that our solution automatically applies updates, which is use-
ful when applying updates remotely, and does not require a special editor.  Another con-
sideration is that the timing of the update may compromise program correctness.  This is 
an open problem that has been shown to be undecideable [9]. 
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Handling of active functions.  An active function is a function that has a stack frame 
currently on the call stack.  This includes the function that is currently executing on the 
top of the stack and those further down the stack.  Some IDE-based Edit-and-Continue 
implementations, such as Microsoft Visual C++ [29], allow the user to modify the code 
of the currently executing function.  For example, this is very helpful if the user needs to 
update the main function. This requires a more sophisticated method patch procedure, as 
well as adjusting the current instruction pointer.  Similar to the Java HotSwap solution 
[5], our Edit-and-Continue solution cannot support updating the currently executing func-
tion because this is not supported by the Profiler API. 

In our solution, the user is allowed to modify a function that is already on the stack, but 
the update is not actually applied until the function is called again (i.e., the existing stack 
frames are not updated). This is a consequence of the SetFunctionReJIT function.  This 
can result in instances of both the old and new function existing on the stack at the same 
time.  The Java HotSwap API provides a mechanism for updating stack frames; however, 
as mentioned earlier, we are not aware of an Edit-and-Continue implementation that uses 
it. 

 

6. Conclusions and Future Work 
Our Edit-and-Continue system allows the user to edit the source files of their running 

application and see the updates applied immediately.  The system incurs a modest 1–5% 
runtime overhead and the update latency is less than one second.  Moreover, the system 
runs on any Windows platform with the standard implementation of the Microsoft Com-
mon Language Runtime and does not require an IDE, thus making the solution more gen-
erally applicable. 

Our system allows the user to treat source files as high-performance, dynamic scripts.  
This makes it particularly well-suited for dynamic reconfiguration, performance tuning, 
interactive development, and online debugging of high-performance and real-time appli-
cations. 

Our initial experiences with using Edit-and-Continue on a large 3D application written 
in C# indicate that our solution is quite useful.  For example, we used Edit-and-Continue 
to continually refine the field-of-view for a head-worn display and to tweak the matrix 
transformations for our head-tracking device.  This would have been impossible using an 
IDE, because our application used the full screen and captured all mouse and keyboard 
input.  We were able to tweak the settings by modifying the source files remotely using a 
separate machine. 

By creating a library-based implementation of Edit-and-Continue, we have elevated it 
from a development-time only feature to a general application feature.  Whereas in the 
past the application designer was limited to configuration files or scripting interfaces, 
now they can select situations in which Edit-and-Continue will provide a superior solu-
tion.  It is especially useful for real-time applications, such as VR applications, and 3D 
games, that need powerful yet high-performance reconfiguration capabilities.  However, 
Edit-and-Continue is a general application feature that can be transparently applied to any 
.NET application. 

There are a number of areas that we are interested in addressing in future work, which 
we review here. 
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Source-level debugging. This will not work after a method update, because the debug 
information will be out of sync.  As we believe source-level debugging is critical, we 
would like to find a way to support it. 

Improved security. Dynamic software updating techniques can be used to circumvent 
security [21].  It would be very difficult (“security through obscurity”), but not impossi-
ble, to use our Edit-and-Continue system for this malicious purpose.  We would like to 
study the security implications of our solution to determine what security improvements 
can be made (e.g., encrypting source files, namespace partitioning [17], or using the .NET 
Code Access Security API). 

Aspect-Oriented Programming. We would like to leverage our ability to dynamically 
replace method bodies, even those that have already been JITed, to implement low-
overhead dynamic aspect-oriented programming [6, 13, 14]. This would allow us to add 
monitoring and profiling support dynamically to a running application. We can support 
the ability to modify a function at runtime, while still ensuring that the function stays 
weaved properly (i.e., by reweaving whenever a method is replaced). 

Arbitrary patching.  We require an incremental build file and source files for Edit-and-
Continue to work. Removing these restrictions, at the cost of a greatly increased security 
risk, would allow us to perform arbitrary patches of running methods, including system 
methods, to support applying security, performance, and bug fix patches [6, 28] and adap-
tive optimizations [27]. 
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