27,900 research outputs found

    Adaptive Mesh Refinement for Characteristic Codes

    Get PDF
    The use of adaptive mesh refinement (AMR) techniques is crucial for accurate and efficient simulation of higher dimensional spacetimes. In this work we develop an adaptive algorithm tailored to the integration of finite difference discretizations of wave-like equations using characteristic coordinates. We demonstrate the algorithm by constructing a code implementing the Einstein-Klein-Gordon system of equations in spherical symmetry. We discuss how the algorithm can trivially be generalized to higher dimensional systems, and suggest a method that can be used to parallelize a characteristic code.Comment: 36 pages, 17 figures; updated to coincide with journal versio

    Motion Planning of Uncertain Ordinary Differential Equation Systems

    Get PDF
    This work presents a novel motion planning framework, rooted in nonlinear programming theory, that treats uncertain fully and under-actuated dynamical systems described by ordinary differential equations. Uncertainty in multibody dynamical systems comes from various sources, such as: system parameters, initial conditions, sensor and actuator noise, and external forcing. Treatment of uncertainty in design is of paramount practical importance because all real-life systems are affected by it, and poor robustness and suboptimal performance result if it’s not accounted for in a given design. In this work uncertainties are modeled using Generalized Polynomial Chaos and are solved quantitatively using a least-square collocation method. The computational efficiency of this approach enables the inclusion of uncertainty statistics in the nonlinear programming optimization process. As such, the proposed framework allows the user to pose, and answer, new design questions related to uncertain dynamical systems. Specifically, the new framework is explained in the context of forward, inverse, and hybrid dynamics formulations. The forward dynamics formulation, applicable to both fully and under-actuated systems, prescribes deterministic actuator inputs which yield uncertain state trajectories. The inverse dynamics formulation is the dual to the forward dynamic, and is only applicable to fully-actuated systems; deterministic state trajectories are prescribed and yield uncertain actuator inputs. The inverse dynamics formulation is more computationally efficient as it requires only algebraic evaluations and completely avoids numerical integration. Finally, the hybrid dynamics formulation is applicable to under-actuated systems where it leverages the benefits of inverse dynamics for actuated joints and forward dynamics for unactuated joints; it prescribes actuated state and unactuated input trajectories which yield uncertain unactuated states and actuated inputs. The benefits of the ability to quantify uncertainty when planning the motion of multibody dynamic systems are illustrated through several case-studies. The resulting designs determine optimal motion plans—subject to deterministic and statistical constraints—for all possible systems within the probability space

    Adaptive Mesh Refinement for Coupled Elliptic-Hyperbolic Systems

    Full text link
    We present a modification to the Berger and Oliger adaptive mesh refinement algorithm designed to solve systems of coupled, non-linear, hyperbolic and elliptic partial differential equations. Such systems typically arise during constrained evolution of the field equations of general relativity. The novel aspect of this algorithm is a technique of "extrapolation and delayed solution" used to deal with the non-local nature of the solution of the elliptic equations, driven by dynamical sources, within the usual Berger and Oliger time-stepping framework. We show empirical results demonstrating the effectiveness of this technique in axisymmetric gravitational collapse simulations. We also describe several other details of the code, including truncation error estimation using a self-shadow hierarchy, and the refinement-boundary interpolation operators that are used to help suppress spurious high-frequency solution components ("noise").Comment: 31 pages, 15 figures; replaced with published versio

    Enforcing Termination of Interprocedural Analysis

    Full text link
    Interprocedural analysis by means of partial tabulation of summary functions may not terminate when the same procedure is analyzed for infinitely many abstract calling contexts or when the abstract domain has infinite strictly ascending chains. As a remedy, we present a novel local solver for general abstract equation systems, be they monotonic or not, and prove that this solver fails to terminate only when infinitely many variables are encountered. We clarify in which sense the computed results are sound. Moreover, we show that interprocedural analysis performed by this novel local solver, is guaranteed to terminate for all non-recursive programs --- irrespective of whether the complete lattice is infinite or has infinite strictly ascending or descending chains

    Parametric characteristic analysis for the output frequency response function of nonlinear volterra systems

    Get PDF
    The output frequency response function (OFRF) of nonlinear systems is a new concept, which defines an analytical relationship between the output spectrum and the parameters of nonlinear systems. In the present study, the parametric characteristics of the OFRF for nonlinear systems described by a polynomial form differential equation model are investigated based on the introduction of a novel coefficient extraction operator. Important theoretical results are established, which allow the explicit structure of the OFRF for this class of nonlinear systems to be readily determined, and reveal clearly how each of the model nonlinear parameters has its effect on the system output frequency response. Examples are provided to demonstrate how the theoretical results are used for the determination of the detailed structure of the OFRF. Simulation studies verify the effectiveness and illustrate the potential of these new results for the analysis and synthesis of nonlinear systems in the frequency domain
    • …
    corecore