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Abstract: The output frequency response function (OFRF) of nonlinear systems is a new 

concept, which defines an analytical relationship between the output spectrum and the 

parameters of nonlinear systems. In the present study, the parametric characteristics of 

the OFRF for nonlinear systems described by a polynomial form differential equation 

model are investigated based on the introduction of a novel coefficient extraction 

operator. Important theoretical results are established, which allow the explicit structure 

of the OFRF for this class of nonlinear systems to be readily determined, and reveal 

clearly how each of the model nonlinear parameters has its effect on the system output 

frequency response. Examples are provided to demonstrate how the theoretical results are 

used for the determination of the detailed structure of the OFRF. Simulation studies 

verify the effectiveness and illustrate the potential of these new results for the analysis 

and synthesis of nonlinear systems in the frequency domain. 
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1    Introduction 
 

Analysis and synthesis of nonlinear systems have been studied for many years both in the 

time and frequency domain (Khalil 2002, Sastry 1999, Rugh 1981). The frequency 

domain analysis can often provide a physically meaningful insight into system behaviors. 

Consequently the frequency domain methods have always been important approaches in 

control and signal processing fields. The study of nonlinear systems in the frequency 

domain is based on the Volterra series method (Corduneanu and Sandberg 2000, Rugh 

1981, Bedrosian and Rice 1971). As shown in Boyd and Chua (1985), any nonlinear 

system which is time invariant, causal and of fading memory can be approximated by a 

Volterra series of a sufficient high order. By defining the multidimensional Fourier 

transformation of the kernel functions of the Volterra series, George (1959) proposed the 

concept of the generalized frequency response functions (GFRFs). Based on this concept, 

many results and techniques were developed in order to estimate or compute the GFRFs 
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of nonlinear systems (Bendat 1990, Nam and Powers 1994, Kim and Powers 1988). In 

Peyton-Jones and Billings (1989), Billings and Peyton-Jones (1990), and Swain and 

Billings (2001), the recursive algorithms for the computation of the GFRFs of discrete 

time, continuous time and multi-input multi-output nonlinear systems were developed, 

respectively. Based on these results, the output frequency characteristics of nonlinear 

systems were studied by Lang and Billings (1996), and some other frequency 

characteristics of nonlinear systems are also studied and discussed (Lang and Billings 

2005, Zhang and Billings 1996). These results provide an important basis for further 

study of the analysis and synthesis of nonlinear systems in the frequency domain.  

       

In Lang et al. (2006), an expression for the output frequency response, which defines an 

analytical relationship between the output spectrum and the system parameters, was 

derived for nonlinear systems described by a polynomial form differential equation 

model. The result is referred to as the output frequency response function (OFRF) of 

nonlinear Volterra systems. The new OFRF concept reveals that for a wide class of 

nonlinear systems there exists a simple polynomial relationship between the output 

spectrum and the system parameters which define the system nonlinearities. This is an 

important extension of the well-known linear frequency domain relationship that the 

output spectrum equals to the input spectrum times the frequency response function, and 

provides an important basis to extend the linear frequency domain analysis and synthesis 

methods to the nonlinear case.  

       

In order to determine the structure of the OFRF so as to reveal what model nonlinear 

parameters are available in the analytical system output frequency response description 

and how each of those parameters has its effect on the system output spectrum, a 

symbolic computation procedure was adopted for the computation of the OFRF in Lang 

et al. (2006). Although the symbolic computation is effective when the degrees of the 

system nonlinearity involved in the OFRF is not high, it is very computationally 

demanding and especially difficult to be used when the maximum degree of system 

nonlinearity considered in the OFRF is higher than 5. In order to circumvent these 

problems, in the present study, the OFRF of nonlinear systems is studied by a new 

approach referred to as the parametric characteristic analysis proposed in Jing et al 

(2006b), which is to study what model parameters affect a specific system response 

function and how those parameters have their effect on this function. By introducing a 

novel coefficient extraction operator, the parametric characteristics of the GFRFs are first 

derived and studied. Then important results about the parametric characteristics of the 

OFRF are developed, which explicitly reveal the analytical polynomial relationship 

between the system nonlinear parameters and the output spectrum, and allow the detailed 

structure of the OFRF to be readily determined up to any high orders without complicated 

symbolic computations. Examples are provided to demonstrate the application of the new 

results. Simulation studies verify the effectiveness and illustrate the potential of using 

these new results for the analysis and synthesis of nonlinear systems in the frequency 

domain. 

  

2   The output frequency response function of nonlinear systems 
 



 4

Consider the following nonlinear differential equation model 
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Under the condition that system (1) is stable at zero equilibrium, the input output 

relationship of the system can be approximated in the neighbourhood of the equilibrium 

by a Volterra series up to maximum order N  
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where ),,( 1 nnh ττ L is a real valued function of nττ ,,1 L  called the nth order Volterra kernel. 

The output spectrum of the system when subject to a general input can be described as 

(Lang and Billings 1996) 

∑ ∫ ∏
= =++ =

−
=

N

n

n

i

innn

n

djUjjH
n

jY
1 1

11

1

)(),,(
)2(

1
)(

ωωω
ωσωωω

π
ω

L

L                       (3)  

where,  

∫∫
∞

∞−

∞

∞−
++−= nnnnnnn ddjhjjH τττωτωττωω LLLLL 11111 ))(exp(),,(),,(          (4) 

is the nth order GFRF. When the system is subject to a multi-tone input described by 
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In order to study the system output spectrum from (3) or (6), the GFRFs should first be 

determined. A recursive algorithm can be utilized to compute the GFRFs of system (1) as 

follows (Billings and Peyton-Jones 1990): 
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From equations (3)(6-9), it can be seen that the direct computation of the system output 

spectrum involves very complicated integral and symbolic operations. Consequently the 

analytical relationship between the model parameters and the output frequency response 

can not be readily revealed from these results. In order to solve this problem, in Lang et 

al. (2006) an analytical relationship between the output spectrum and the system 

parameters was derived from these equations. The result is a polynomial function of the 

system nonlinear parameters as given by  
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where 
Nsxx L1 are the elements in a set consisting of all the system nonlinear parameters, 

Nsjj L1 are nonnegative integers, and )(
1

ωγ
Nsjj L represents the coefficient of the term 

Ns

N

j

s
j xx L1

1  which is a function of frequency variable and depends on the system linear 

parameters. Equation (10) was referred to as the output frequency response function 

(OFRF) of system (1). In order to conduct an OFRF based nonlinear system analysis and 

design, the first step is to determine the detailed structure of the OFRF to reveal which of 

the system nonlinear parameters is actually in the polynomial form expression (10) and 

how these parameters literally consists of the terms of the polynomial. To solve this basic 

problem more effectively, the OFRF is studied by using the parametric characteristic 

analysis in the next section.  

 

3   Parametric characteristic analysis of the OFRF 
       

In this section, some notations and a novel operator are first introduced. Then the 

parametric characteristic analysis is performed for the GFRFs. Finally, the parametric 

characteristics of the OFRF for system (1) are established, which provide an effective 

approach for the determination of the OFRF.  
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3.1 Notations and a novel coefficient extraction operator 
 

Define the p+qth degree nonlinear parameter vector as 
)],,(,),1,,0(),0,,0([ ,,,, 43421LLLL

mqp

qpqpqpqp KKcccC
=+

=  

which includes all the nonlinear parameters of the form cp,q(.) with nonlinear degree p+q 

in equation (1). Note that Cpq can also be regarded as a set of the (p+q)th degree 

nonlinear parameters of the form cp,q(.).  

       

Consider a series which can be written as 

CCCF fcfcfcH +++= L2211  

where the coefficients ci ℜ∈  (i=1,�, C ), ℜ denotes all the real numbers,  

C=[ c1,c2,�,
Cc ], C denotes the dimension of vector C, fi ψ∈ (i=1,�, C ) are real or 

complex valued functions,ψ denotes a set of real or complex valued scalar functions, and 
F=[ f1,f2,�, Cf ]

T
. 

       

Define a Coefficient Extraction operator CCE ℜ→ψ: such that for any  

ψ∈+++= CCCF fcfcfcH L2211  

C
CF CHCE ℜ∈=)( , where Cℜ is the C -dimensional real vector space. This operator has 

the following properties acting as operation rules: 

(1) Reduced vectorized sum �⊕ �. 

     ],[)()()( 212122112211
CCCCHCEHCEHHCE FCFCFCFC ′=⊕=⊕=+ , where 2C′ is a reduced 

vector of C2 which include all the elements in C2 except the same elements as those in C1. 

(2) Reduced Kronecker product �⊗�.  

      21)()()(
22112211

CCHCEHCEHHCE FCFCFCFC ⊗=⊗=⋅ , and �reduced� here means that 

there are no repetitive components in 21 CC ⊗ . 

(3) Invariant.  

      (a) )()( CFCF HCEHCE =⋅α , ℜ∈∀α which is not a parameter of concern;  

      (b) CHCEHHCE FFCCFCF ==+ + )()( )( 2121
 

(4) Unitary. CFH∀ is not a function of ci for i=1�n, 1)( =CFHCE .  

      Obviously, when there is a unitary 1 in CE(HCF), there is a constant term in the 

corresponding series HCF which has no relation with the coefficients ci (for 

i=1�n).  

(5) Inverse. CE-1
(C)=HCF. 

(6) )()(
2211 FCFC HCEHCE ≈  if the elements of C1 are the same as those of C2, where � ≈� 

means equivalence, i.e., both series are in fact the same result. 

 

From property (6), it is known that the CE operator is also commutative and associative 

considering the order of cifi in the series has no effect on the value of a function series 

HCF, for instance, 1221 )()(
11222211

CCHHCECCHHCE FCFCFCFC ⊕=+≈⊕=+ . It should be 

emphasized that the coefficient extractor CE is a coefficient oriented operator. That is, 

only the concerned coefficients involved in a series are extracted after applying the 
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operator. Hence, the operation result is different for different purposes. Moreover, for 

convenience, let )(
(*)
⋅⊗  and )(

(*)
⋅⊕ denote the multiplication and addition in terms of the 

reduced Kronecker product �⊗ � and vectorized sum �⊕ � for the non-repetitive (.)�s 

satisfying (*), respectively; and denote pqpqpq

k

i
CCC ⊗⊗=⊗

=
L

1
simply as k

pqC .  

       

According to the definition of the CE operator, the parametric characteristics of the 

GFRFs can be obtained by directly replacing the operations �+� and �.� in the recursive 

algorithm (7-9) with � ⊕ � and � ⊗ �respectively, and neglecting the corresponding 

complex valued functions of frequency which are independent of the nonlinear 

parameters. In order to derive the parametric characteristics of the OFRF, the GFRFs are 

first investigated by the parametric characteristic analysis in the following section.  

 

3.2 Parametric characteristics of the GFRFs 
 

This is the first step to derive the parametric characteristics of the OFRF. 

 
3.2.1  Derivation of the GFRFs’ parametric characteristics 
       

The parametric characteristics of the GFRFs of equation (1) can be obtained by directly 

applying the CE operator as follows. 
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Applying the CE operator to equation (8) yields 
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which can be written as 
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Moreover, by applying the CE operator to equation (9), (11b) can also be written as  
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Note that when n=1, )( 11 ωjH has no relation with the nonlinear parameters of equation (1), 

thus it follows from the definition of the CE operator that 1))(( 1 =⋅HCE . From equations 

(11a-d), the nonlinear parameters involved in the nth order GFRF ),,( 1 nn jjH ωω L  can be 

determined recursively. The following example is provided to make an illustration of the 

results above. 

 

Example 1. Computation of the parametric characteristics of the GFRFs of system (1) up 

to 3
rd

 order according to (11a-d). For n=2,  
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where equations (11cd) are used in the third and fourth equalities. From the definition of 

the CE operator, equation (12) implies that there exist complex valued functions of 
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In the derivation of equation (14), equations (11cd) and (12) and the properties of CE are 

used. Obviously, there also exists a complex valued function 

vector [ ]TDfffjjjf )()()(),,(
3331313213 ⋅⋅⋅= Lωωω  of frequencies such that 

),,()),,((),,( 321232133213 ωωωωωωωωω jjjfjjjHCEjjjH ⋅=                   (15) 

 

Equations (12) and (14) show clearly that which of the nonlinear parameters in equation 

(1) contribute to the 2
nd

 and 3
rd

 order GFRFs and how the contributions are made. In 

addition, equations (13) and (15) indicate that the GFRFs can be expressed as an explicit 

polynomial function of the system nonlinear parameters. Ŷ 

       

From the definition of the CE operator and the parameter characteristics of the GFRFs in 

(11), the following proposition can be established following the discussions in Example 1. 

 

Proposition 1. There exists a complex valued function vector ),,( 1 nn jjf ωω L with an 

appropriate dimension, such that 

( ) ),,(),,(),,( 111 nnnnnn jjfjjHCEjjH ωωωωωω LLL ⋅=                        (16) 

where ( )),,( 1 nn jjHCE ωω L can be recursively determined from (11a)-(11d). Ŷ 

 

Remark 1. It should be noted that ),,( 1 nn jjf ωω L in equation (16) is a function of 

frequency variables nωω ,,1 L and the linear parameters c10(.) and c01(.), but is independent 

of the nonlinear parameters in ( )),,( 1 nn jjHCE ωω L . Ŷ 

       

Proposition 1 provides an explicit analytical relationship between the nonlinear 

parameters and the GFRFs of system (1) by the parametric characteristic analysis of the 

GFRF. From this explicit analytical expression of the GFRFs in Equation (16), the 

parametric characteristics of the OFRF of system (1) can be obtained.  

 

3.2.2   Some further results  
       

It can be noted from Example 1 that there are many repetitive terms and computations in 

equations (11a-d). In order to have a much deeper understanding of the parametric 
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characteristics of the GFRFs and to simplify the computation of ( )),,( 1 nn jjHCE ωω L , the 

following results are established. 

 
Lemma 1. The elements of CE( ),,( 1 nn jjH ωω L ) include the nonlinear parameters in C0n 

and all the non-repetitive monomial functions (of the nonlinear parameters) in 

kkqpqpqppq CCCC ⊗⊗⊗⊗ L
2211

, where the subscripts satisfy knqpqp
k

i
ii +=+++ ∑

=1

)( , 

knqp ii −≤+≤2 , 20 −≤≤ nk , knqp −≤+≤2  and knp −≤≤1 .  

Proof. See Appendix. Ŷ 

       
Remark 2. Lemma 1 provides detailed information about what nonlinear parameters are 

involved in the analytical description of the GFRF ),,( 1 nn jjH ωω L  and how these 

parameters have their effects on the GFRFs. It also provides a very effective method for 

the determination of ( )),,( 1 nn jjHCE ωω L . It is easy to directly write out the elements of 

( )),,( 1 nn jjHCE ωω L  according to Lemma 1 without any recursive computations. This can 

be performed by a simple computer program which will be discussed in a future study. Ŷ 

       

To demonstrate the significance of Lemma 1, consider the following example. 

       

Example 2. Consider the 2
nd

 order GFRF. Then kqpqp
k

i
ii +=+++ ∑

=

2)(
1

, 220 −≤≤ k  =0. 

Therefore, all the subscript combinations for k=0 is (p,q): (0,2);(1,1),(2,0), corresponding 

to the nonlinear parameters: C0,2, C1,1, C2,0. Thus ( )),( 212 ωω jjHCE = C0,2+C1,1+C2,0. This is 

consistent with equation (12).  

       

Consider the 3
rd

 order GFRF, then kqpqp
k

i
ii +=+++ ∑

=

3)(
1

, 1230 =−≤≤ k . 

When k=0, the involved nonlinear parameters are C0,3, C1,2, C2,1, C3,0; 

When k=1, 41311 =+=+++ qpqp , which has the following non-repetitive combinations 

(p,q,p1,q1 ):(1,1,2,0), (1,1,1,1),(1,1,0,2),(2,0,0,2),(2,0,2,0) 

thus the involved nonlinear parameter monomials are: 

C1,1 o C2,0, C1,1 o C1,1, C1,1 o C0,2, C2,0 o C0,2, C2,0 o C2,0 

Hence ( )),,( 313 ωω jjHCE L = C0,3+C1,2+C2,1+C3,0+ C1,1 o C2,0+C1,1 o C1,1+C1,1 oC0,2  

                                              +C2,0 o C0,2 +C2,0 o C2,0 

The result is consistent with Equation (14). Ŷ 

       

The following result follows from Lemma 1, which can be used to simplify equation 

(11a). 

 
Lemma 2. ( ))())(( 1, ⋅=⋅ +− pnpn HCEHCE   

Proof. See the Appendix. Ŷ 

       

Based on the discussions above, a simplified formula for the computation of the 

parametric characteristics of the nth-order GFRF can be obtained.  
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Proposition 2. For n>1,  

⎣ ⎦
)17())(())((

)),,((

10,

2
1

2
0,1,

1

1

1
,0

1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅⊗⊕⊕⊕⎟

⎠

⎞
⎜
⎝

⎛ ⋅⊗⊕⊕⊕= +−

+

=
+−−

−

=

−

=
pnp

n

p
npqnqp

qn

p

n

q
n

nn

HCECCHCECC

jjHCE ωω L

 

where ⎣ ⎦⋅ is to take the integer part. 

Proof. Using Lemma 2, equation (11a) now can be written as (n>1) 

⎟
⎠
⎞

⎜
⎝
⎛ ⋅⊗⊕⊕⎟

⎠

⎞
⎜
⎝

⎛ ⋅⊗⊕⊕⊕= +−=+−−

−

=

−

=
))(())(()),,(( 10,

2
1,

1

1

1
,01 pnp

n

p
pqnqp

qn

p

n

q
nnn HCECHCECCjjHCE ωω L  

Considering the symmetry of the last term of this equation, Equation (17) follows. This 

completes the proof. Ŷ 

       

Obviously, it is much simpler to determine the parametric characteristics of the GFRFs 

by equation (17) than by equations (11a-d).  

 

3.3 Parametric characteristics of the OFRF 
 

From the parametric characteristics of the GFRFs above, the following results for the 

output spectra of system (1) can be achieved. 

 

Proposition 3. Assume system (1) is stable at zero equilibrium and can be approximated 

by a Volterra series of a finite order. Then there exist a series of complex valued function 

vectors )( ωjFn (n=1,2,�,N) of frequency variable ω with appropriate dimensions such 

that the OFRF of system (1) can be expressed as 

( ) [ ]TT
N

TT
nn

N

n
jFjFjFjjHCEjY )()()(),,()( 211

1
ωωωωωω LL ⋅⎟

⎠
⎞

⎜
⎝
⎛⊕=

=
            (18) 

where ∫ ∏
=++ =

−
⋅=

ωωω
ωσωωω

π
ω

n

n

i
innnn djUjjf

n
jF

L

L

1
1

11
)(),,(

)2(

1
)( . If the input of system (1) is 

the multi-tone signal (5), then there exist a series of complex valued function vectors 

)( ωjF n  (n=1,2,�,N) of frequency variableω with appropriate dimensions, such that the 

OFRF of system (1) can be expressed as 

( ) T
T

N
TT

kkn

N

n
jFjFjFjjHCEjY

n ⎥⎦
⎤

⎢⎣
⎡⋅⎟

⎠
⎞

⎜
⎝
⎛⊕=

=
)()()(),,()( 21

1 1
ωωωωωω LL             (19) 

where ∑
=++

⋅=
ωωω

ωωωωω
nkk

nn kkkknnn FFjjfjF
L

LL

1

11
)()(),,(

2

1
)( . The parametric characteristics of 

the OFRF is 

( )),,())(( 1
1

nn

N

n
jjHCEjYCE ωωω L

=
⊕=                                    (20) 

Proof. From Proposition 1, substituting (16) into (3) yields 
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( )

( )

( )

( ) [ ]TT
N

TT
nn

N

n

N

n
nnn

N

n

n

i
innnnn

N

n

n

i
innnnn

jFjFjFjjHCE

jFjjHCE

djUjjf
n

jjHCE

djUjjfjjHCE
n

jY

n

n

)()()(),,(

)(),,(

)(),,(
)2(

1
),,(

)(),,(),,(
)2(

1
)(

211
1

1

1

1 1

111

1 1

111

1

1

ωωωωω

ωωω

σωωω
π

ωω

σωωωωω
π

ω

ωωω
ω

ωωω
ω

LL

L

LL

LL

L

L

⋅⎟
⎠
⎞

⎜
⎝
⎛⊕=

⋅=

⋅⋅=

⋅⋅=

=

=

= =++ =
−

= =++ =
−

∑

∑ ∫ ∏

∑ ∫ ∏

 

Following a similar procedure, equation (19) can be obtained for the OFRF of equation (1) 

actuated by a multi-tone input function in (5). Moreover, (20) is obvious from equations 

(18-19). This completes the proof. Ŷ 

       

Equations (18) and (19) show that the OFRF of system (1) can now be expressed as an 

explicit polynomial function of the nonlinear parameters, and the specific form of the 

OFRF of system (1) is completely defined by its parametric characteristics in (20). 

Because the parametric characteristics defined by equation (20) can be readily 

determined using Proposition 2 or Lemma 1, the parametric characteristic analysis for the 

OFRF of system (1) provides an effective approach to the determination of the OFRF.  

       

In order to demonstrate the use of Proposition 3, consider the following example. 

       
Example 3. Consider a nonlinear system, 

)(29616000240 2

2

3

1 tuxxcxcxxx +−−−−= &&&&&                                (21) 

subject to a sinusoidal input )1.8sin(100)( ttu = . (21) is a simple case of system (1) with 

M=3, K=2, 240)2(10 =c , 296)1(10 =c , 16000)0(10 =C , 130 )111( cc = , 230 )110( cc = , 1)0(01 −=c , 

and all other parameters are zero.  

       

In system (21), only nonlinear parameters in C30 are not zero, i.e.,  
[ ] [ ]12303030 )111()110( ccccC ==  

In this case, equation (17) can be rewritten as (n>1) 
⎣ ⎦

))(()),,(( 10,

2
1

2
0,1 ⋅⊗⊕⊕= +−

+

= pnp

n

p
nnn HCECCjjHCE ωω L                         (22) 

Since only C30 is not zero, it can be shown from equation (22) that  

0)),,(( 12 =nk jjHCE ωω L and k
nk CjjHCE 30112 )),,(( =+ ωω L , for k=1,2, 3,� 

From equation (20) in Proposition 3, 

( ) ⎣ ⎦2
1

30

3

30

2

30301
1

1),,())((
−

=
⊕⊕⊕⊕⊕=⊕=

N

nn

N

n
CCCCjjHCEjXCE LL ωωω            (23a) 

so that 

⎣ ⎦ T
T

N
TTN

jFjFjFCCCCjX ⎥⎦
⎤

⎢⎣
⎡⋅⎟

⎠
⎞⎜

⎝
⎛ ⊕⊕⊕⊕⊕=

−
)()()(1)( 21

2
1

30

3

30

2

3030 ωωωω LL   (23b) 

where ⎣ ⎦2
1−N  is to take the integer part. From (23) ))(( ωjXCE can be readily obtained. For 

instance, for N=5 
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 ⎣ ⎦ =⊕⊕⊕⊕⊕=
−

2
1

30

3

30

2

30301))((
N

CCCCjXCE Lω  [1,c2,c1,c2
2
,c2c1,c1

2
,c2

3
,c2

2
c1,c2c1

2
,c1

3
,c2

4
, 

c2
3
c1,c2

2
c1

2
,c2c1

3
,c1

4
,c2

5
, c2

4
c1, c2

3
c1

2
,c2

2
c1

3
,c2c1

4
,c1

5
].                                               (23c) 

Therefore an explicit analytical expression for the OFRF )( ωjX in terms of the system 

nonlinear parameters c1 and c2 are obtained as given by (23b-c). Ŷ 

 

3.4   A numerical method for the determination of the OFRF 
       

As discussed in the last section, the detailed polynomial structure of the OFRF can be 

determined definitely by the parametric characteristic analysis. Based on structure of the 

OFRF, a numerical method can be used to determine the OFRF of system (1).  

       

Denote the dimension of ))(( ωjYCE  as DY which can be known from the parametric 

characteristics of the OFRF. Let ))((][ 21 ωφ jYCEaaa
YD == L where ai, i=1�DY, are the 

monomial functions of the system nonlinear parameters known from the OFRF structure 

using Proposition 3, and 

[ ] [ ]TT
N

TT
D jFjFjFjhjhjhjh

Y
)(

~
)(

~
)(

~
)()()()( 2121 ωωωωωωω LL ==  

where )()(
~ ωω jFjF ii = when the input is a general input and )()(

~ ωω jFjF ii = when the input 

is a muli-tone signal. Then equation (18) can be rewritten as 

)()( ωφω jhjY ⋅=                                                    (24) 

In order to obtain the OFRF, )( ωjh  in (24) is needed to be determined. This can be 

achieved by following a numerical method in Lang et al. (2006). The basic idea of this 

method is to perform simulations or experimental tests on the system under NY (>0) 

different sets of nonlinear parameters φ 1, φ 2, � φ NY to obtain NY output frequency 

responses of the system )( ωjY 1, )( ωjY 2, � )( ωjY NY for a considered input excitation. 

Thus from (24), it is known that  

YYjh =⋅Φ )( ω                                                      (25) 

 

where

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Φ

YYYYY

Y

Y

Y D

Y

NDNN

D

D

N jY

jY

jY

Y

aaa

aaa

aaa

)(

)(

)(

,
2

1

11

22212

12111

2

1

ω

ω
ω

φ

φ
φ

MMOMM

L

L

M
. Consequently )( ωjh can be 

obtained as 

( ) Y
TT Yjh ⋅Θ⋅Φ⋅Φ=

−1
)( ω                                          (26) 

Therefore, the OFRF of system (1) can be well determined. From this explicit analytical 

expression of the system output frequency response, the analysis and synthesis of system 

(1) in the frequency domain can be conducted. These will be illustrated in a simulation 

study in the next section. 

 

5   Simulation studies 
       

Consider the nonlinear system (21) again, but the output of interest in this simulation 

study is  
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y= xxcxcxx 2

2

3

129616000 &&& +++                                                          (27) 

which is a more complicated function of the system states. 

       

Since it can be shown that ))(())(( ωω jXCEjYCE = (Jing, et. al. 2006a), the theoretical 

results for )( ωjX still hold for )( ωjY . Therefore, it follows from Example 3 that 

( ) ⎣ ⎦2
1

30

3

30

2

30301
1

1),,())((
−

=
⊕⊕⊕⊕⊕=⊕=

N

nn

N

n
CCCCjjHCEjYCE LL ωωω           (28a) 

and 

⎣ ⎦ T
T

N
TTN

jFjFjFCCCCjY ⎥⎦
⎤

⎢⎣
⎡⋅⎟

⎠
⎞⎜

⎝
⎛ ⊕⊕⊕⊕⊕=

−
)()()(1)( 21

2
1

30

3

30

2

3030 ωωωω LL    (28b) 

For clarity of illustration, consider the simpler case of c2=0, i.e., 130 cC = . When N=21, it 

can be shown from (28ab) that 

[ ]10

1

3

1

2

111))(( ccccjYCE L=ω  

and  

[ ] [ ]TjhjhjhccccjhjY )()()(1)()( 1121

10

1

3

1

2

11 ωωωωφω LL ⋅=⋅=  

In order to determine )( ωjh in the above equation, simulation studies are carried out for 

11 different values of c1 as c1=0.5,50,100,500, 800,1200, 1800, 2600, 3500, 4500, 5000, 

to produce 11 corresponding output responses. The FFT results of these responses at the 

system driving frequency 0ω =8.1 rad/s were obtained as 

YY=[(3.355387229685395e+002)-9.144123368552089e+000i,  

        (3.311400634432650e+002)-8.791324203084603e+000i,  

        (3.270304131496312e+002)-8.453482697096458e+000i,  

        (3.020996757260479e+002)-6.232073185455284e+000i,  

        (2.889224705331136e+002)-4.937579404570077e+000i,  

        (2.753247618357106e+002)-3.513785421406298e+000i,  

        (2.599814606290563e+002)-1.799344961942028e+000i,  

        (2.449407272303421e+002)-7.146831574203648e-003i,  

        (2.322782654921158e+002)+1.587748875652816e+000i,  

        (2.213884644417550e+002)+3.022652971105967e+000i,  

        (2.168038059608033e+002)+3.644341792781596e+000i] 

Then from (26), )( 0ωjh was determined as 

)( 0ωjh =[3.355850061999765e+002 +9.147787717329777e+000i, 

            -0.09260545518186 - 0.00733079515829i 

7.802545290190465e-005 +4.196941358069068e-006i 

-8.171412395831490e-008 -3.472552369765044e-009i 

7.983194136013857e-011 +2.975659825236403e-012i 

-6.014819558373321e-014 -2.095287675780629e-015i 

3.139462445085954e-017 +1.055716258995395e-018i 

-1.065920417366710e-020 -3.515136904764629e-022i 

2.214834610655676e-024 +7.220197982843919e-026i 

-2.536564081104798e-028 -8.209302192093296e-030i 

1.219975622824295e-032 +3.929425356306088e-034i]. 

Consequently, the OFRF of nonlinear system (27) at frequency 0ω was obtained as  

[ ] [ ]TjhjhjhccccjY )()()(1)( 0110201

10

1

3

1

2

110 ωωωω LL ⋅=            (29) 
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From equation (29), the effect of the nonlinear parameter 1c on the system output 

frequency response at frequency 0ω  can readily be analysed. Figure 1 shows a 

comparison of the magnitudes of the output spectrum evaluated by (29) and their real 

values under different values of the nonlinear parameter c1. Clearly, an excellent match is 

achieved. Furthermore, the frequency domain analysis and design of system (21) to 

achieve a desired output response y(t) can now be conducted from (29). The idea is 

straightforward. Given a desired output spectrum Y*
 at frequency 0ω , the nonlinear 

parameter c1 can be optimized using (29) such that the difference | )( 0ωjY -Y*
| can be made 

as small as possible. Ŷ 

 

0 100 200 300 400 500 600 700 800 900 1000
280

290

300

310

320

330

340

c1

|Y
|

 

 

Real magnitude of the output spectrum

Magnitude valued by equation (26)

 
Figure 1   Relationship between the output spectrum and nonlinear parameter c1 

 

6   Conclusions 
       

The parametric characteristics of the output frequency response function (OFRF) of 

nonlinear systems described by a polynomial form differential equation model have been 

established. Based on these results, the OFRF with its detailed structure for this class of 

nonlinear systems can explicitly be determined up to any high orders. The OFRF concept 

provides an important basis for the analysis and design of nonlinear systems in the 

frequency domain. The present study solves an important and basic problem associated 

with the OFRF based nonlinear system analysis and design. The results should be 

considerately significant for the frequency domain study of nonlinear systems, and for the 

application of the nonlinear system frequency domain approach in engineering practice.  

 

 

Magnitude evaluated from (29) 
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Appendix: Proofs 
 
PROOF OF LEMMA 1:        
C0,n is the first term in equation (11a). For clarity, consider a simpler case that there is 

only output nonlinearities in (11a), then (11a) is reduced to only the last term of equation 

(11a), i.e., ))(())((
1

1

1
0,

2
,0,

2 1

⋅⊗

∑

⊕⊗⊕=⋅⊗⊕
=

+−

=
=== i

i

p
r

p

i

pn

nr
rr

p

n

p
pnp

n

p
HCECHCEC

L
. Note that 

( ))(
11

1

1

⋅⊗

∑

⊕
=

=
=

+−

i

i

p
r

i

p

nr
rr

pn

HCE
L

includes all the combinations of (r1,r2,…,rp) satisfying nr
p

i
i =∑

=1

, 

11 +−≤≤ pnri , and np ≤≤2 . Moreover, CE( )(1 ⋅H )=1 since there are no nonlinear 

parameters in it, and any repetitive combinations have no contribution. Hence, 

( ))(
11

1

1

⋅⊗

∑

⊕
=

=
=

+−

i

i

p
r

i

p

nr
rr

pn

HCE
L

must include all the possible non-repetitive combinations of (r1,r2,…,rk) 

satisfying kpnr
k

i
i +−=∑

=1

, 12 +−≤≤ pnri  and pk ≤≤1 . So does CE( ),,( 1 nn jjH ωω L ). Each 

of the subscript combinations corresponds to a monomial of the involved nonlinear 

parameters. Thus, including the term Cp,0 and considering the range of each variable (i.e., 
r i, p, and k), CE( ),,( 1 nn jjH ωω L ) must include all the possible non-repetitive monomial 

functions of the nonlinear parameters of the form 0000 21 krrrp CCCC ⊗⊗⊗⊗ L satisfying 

knrp
k

i
i +=+∑

=1

, knri −≤≤2 , 20 −≤≤ nk  and knp −≤≤2 . When the other types of 

nonlinearities are considered, just extend the results above to a more general case that the 

nonlinear parameters appear in the form
kkqpqpqppq CCCC ⊗⊗⊗⊗ L

2211
and the subscripts 

satisfy knqpqp
k

i
ii +=+++ ∑

=1

)( , knqp ii −≤+≤2 , 20 −≤≤ nk , knqp −≤+≤2  and 

knp −≤≤1 . Hence, the proposition is proved. Ŷ 

 

 

PROOF OF LEMMA 2:  
According to Lemma 1, ( ))(1 ⋅+− pnHCE  includes all the terms 

kkqpqpqp CCC ⊗⊗⊗ L
2211

satisfying 

kpnkpnqp
k

i
ii +−=−++−=+∑

=

11)(
1

, 22 +−−≤+≤ kpnqp ii , 110 −−≤−≤ pnk ,  

and at least one pi>0. Equation (11b) can be rewritten as 
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( ) ( ) ( ) ( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅⊗

∑

⊕⊕⋅=⋅⊗

∑

⊕=
=

=
=

−

+−
=

=
=

+−

)()()(),,(
11

1
11

1

1,
11

i

i

p
i

i

p
r

i

p

nr
rr

pn

pnr
i

p

nr
rr

pn

npn HCEHCEHCEjjHCE
LL

L ωω  

Considering all the possible effective combinations of (r1,r2,…,rp) in the second term on 

the right of the second equality in this equation, which can be written as 
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                           (A1) 

As shown in the proof of Lemma 1, all the terms in (A1) satisfy 
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)( , 22 +′−−≤+≤ qpnqp ii , and 110 −−≤−′≤ pnq  corresponding to 

the nonlinear parameter monomials
qq qpqpqp CCC
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⊗⊗⊗ L
2211

. Moreover, it can be noted 

from equation (11a) that the variable p>0. This implies that there at least is one pi>0 from 

the nature of the recursive computation of equation (11a). Hence, the terms in (A1) are 

included in ( ))(1 ⋅+− pnHCE . This completes the proof. Ŷ 
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