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Abstract: The output frequency response function (OFRF) of nonlinear systems is a new
concept, which defines an analytical relationship between the output spectrum and the
parameters of nonlinear systems. In the present study, the parametric characteristics of
the OFRF for nonlinear systems described by a polynomial form differential equation
model are investigated based on the introduction of a novel coefficient extraction
operator. Important theoretical results are established, which allow the explicit structure
of the OFRF for this class of nonlinear systems to be readily determined, and reveal
clearly how each of the model nonlinear parameters has its effect on the system output
frequency response. Examples are provided to demonstrate how the theoretical results are
used for the determination of the detailed structure of the OFRF. Simulation studies
verify the effectiveness and illustrate the potential of these new results for the analysis
and synthesis of nonlinear systems in the frequency domain.
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1 Introduction

Analysis and synthesis of nonlinear systems have been studied for many years both in the
time and frequency domain (Khalil 2002, Sastry 1999, Rugh 1981). The frequency
domain analysis can often provide a physically meaningful insight into system behaviors.
Consequently the frequency domain methods have always been important approaches in
control and signal processing fields. The study of nonlinear systems in the frequency
domain is based on the Volterra series method (Corduneanu and Sandberg 2000, Rugh
1981, Bedrosian and Rice 1971). As shown in Boyd and Chua (1985), any nonlinear
system which is time invariant, causal and of fading memory can be approximated by a
Volterra series of a sufficient high order. By defining the multidimensional Fourier
transformation of the kernel functions of the Volterra series, George (1959) proposed the
concept of the generalized frequency response functions (GFRFs). Based on this concept,
many results and techniques were developed in order to estimate or compute the GFRFs



of nonlinear systems (Bendat 1990, Nam and Powers 1994, Kim and Powers 1988). In
Peyton-Jones and Billings (1989), Billings and Peyton-Jones (1990), and Swain and
Billings (2001), the recursive algorithms for the computation of the GFRFs of discrete
time, continuous time and multi-input multi-output nonlinear systems were developed,
respectively. Based on these results, the output frequency characteristics of nonlinear
systems were studied by Lang and Billings (1996), and some other frequency
characteristics of nonlinear systems are also studied and discussed (Lang and Billings
2005, Zhang and Billings 1996). These results provide an important basis for further
study of the analysis and synthesis of nonlinear systems in the frequency domain.

In Lang et al. (2006), an expression for the output frequency response, which defines an
analytical relationship between the output spectrum and the system parameters, was
derived for nonlinear systems described by a polynomial form differential equation
model. The result is referred to as the output frequency response function (OFRF) of
nonlinear Volterra systems. The new OFRF concept reveals that for a wide class of
nonlinear systems there exists a simple polynomial relationship between the output
spectrum and the system parameters which define the system nonlinearities. This is an
important extension of the well-known linear frequency domain relationship that the
output spectrum equals to the input spectrum times the frequency response function, and
provides an important basis to extend the linear frequency domain analysis and synthesis
methods to the nonlinear case.

In order to determine the structure of the OFRF so as to reveal what model nonlinear
parameters are available in the analytical system output frequency response description
and how each of those parameters has its effect on the system output spectrum, a
symbolic computation procedure was adopted for the computation of the OFRF in Lang
et al. (2006). Although the symbolic computation is effective when the degrees of the
system nonlinearity involved in the OFRF is not high, it is very computationally
demanding and especially difficult to be used when the maximum degree of system
nonlinearity considered in the OFRF is higher than 5. In order to circumvent these
problems, in the present study, the OFRF of nonlinear systems is studied by a new
approach referred to as the parametric characteristic analysis proposed in Jing et al
(2006b), which is to study what model parameters affect a specific system response
function and how those parameters have their effect on this function. By introducing a
novel coefficient extraction operator, the parametric characteristics of the GFRFs are first
derived and studied. Then important results about the parametric characteristics of the
OFRF are developed, which explicitly reveal the analytical polynomial relationship
between the system nonlinear parameters and the output spectrum, and allow the detailed
structure of the OFRF to be readily determined up to any high orders without complicated
symbolic computations. Examples are provided to demonstrate the application of the new
results. Simulation studies verify the effectiveness and illustrate the potential of using
these new results for the analysis and synthesis of nonlinear systems in the frequency
domain.

2 The output frequency responséunction of nonlinear systems



Consider the following nonlinear differential equation model

M m K d t D+qd t
Cp,q(kl7 .. p“l)H y()H U() -0 (1)

i=p+1

m=1 p=0 Kk ,k.q=0

k
where d’x (t)

=xt) , pto=m, Z() Z() 2(~) , M is the maximum degree of

k=0 K Kpiq=0 k, = Kpiq=0
nonlinearity in terms of Yy(t) and u(t), and K is the maximum order of the derivative. In
this model, the parameters such as Cpi(.) and Cjo(.) are linear parameters, which

k k
correspond to the linear terms in the model, i.e., dd:/k(t) and %for k=0,1,...,L, and
oq() for p+0>1 are nonlinear parameters corresponding to nonlinear terms in the model

piq
of the form H d* y(t) H d* u(t) , €.0., y()Pu(t)?. p+q is called the nonlinear degree of the

i=p+l
nonlinear parameter Coy ()

Under the condition that system (1) is stable at zero equilibrium, the input output
relationship of the system can be approximated in the neighbourhood of the equilibrium
by a Volterra series up to maximum order N

Y(t)zz_[z "'J.:ohn(Tl"”’Tn)ﬂu(t_Ti )dz; (2)

where h (z,,---,7,) 1s a real valued function of ¢,,---,7z,, called the nth order Volterra kernel.

The output spectrum of the system when subject to a general input can be described as
(Lang and Billings 1996)

Y(jo)= Ho(jo,, jo,)] |U(jo)do, 3)
Zf(z )I 1 1
where,
Hn(ja)lﬂ"'7 an) :J.:O J.:O hn(T17'“7Tn)exp(_j(w1T1 +"'+60n7,'n))d1'1 "'dTn (4)
is the nth order GFRF. When the system is subject to a multi-tone input described by
K
u(t) :Z|Fi|cos(a)it+LFi) (5)
i=1
the system output spectrum can be written as (Lang and Billings, 1996):
N
. 1 . .
Y(io) =3 = D Ho(og jo, F@)F,) (6)
n=1 O+t =0

jZF‘ i = coe
where F(m):{“:i'e if e {o, k=1, ,iK}‘
0 else
In order to study the system output spectrum from (3) or (6), the GFRFs should first be

determined. A recursive algorithm can be utilized to compute the GFRFs of system (1) as
follows (Billings and Peyton-Jones 1990):
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K
+ Zcp,o(klo"'akp)Hn,p(jwla"'ajwn)
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Hn,p('): Hi(ja)lﬂ”'7ja)i)Hn—i,p—l(ja)iﬂ»'”:jwn)(ja)1+"‘+ja)i) ’ (83)
i=1
Hn,l(ja)la“'aja)n):Hn(ja)ls”'sjwn)(ja)1+"'+jwn)kl (8b)
H,,(j@. o, in(8a) can also be rewritten as
) . n-p+l p ) ) ) . )
Hn,p(Ja)la"'a jo,)= Z HHr‘(]a)rXH"“s]a)rx+r,)(10)rx+l +oeet Ja)r><+r,)I (9)
rerp=1 i=1
2=
K i—1
where L(n)=l—Zcm(kl)(ja)1 ot jo,), X :er .
k=0 x=1

From equations (3)(6-9), it can be seen that the direct computation of the system output
spectrum involves very complicated integral and symbolic operations. Consequently the
analytical relationship between the model parameters and the output frequency response
can not be readily revealed from these results. In order to solve this problem, in Lang et
al. (2006) an analytical relationship between the output spectrum and the system
parameters was derived from these equations. The result is a polynomial function of the
system nonlinear parameters as given by

Y(j@)= D7) (@)X x (10)

Ji sy

where x, ---x, are the elements in a set consisting of all the system nonlinear parameters,

ji--Js, are nonnegative integers, and 7j,.i,, (@) represents the coefficient of the term

x) ~-~xj;N which is a function of frequency variable and depends on the system linear

parameters. Equation (10) was referred to as the output frequency response function
(OFRF) of system (1). In order to conduct an OFRF based nonlinear system analysis and
design, the first step is to determine the detailed structure of the OFRF to reveal which of
the system nonlinear parameters is actually in the polynomial form expression (10) and
how these parameters literally consists of the terms of the polynomial. To solve this basic
problem more effectively, the OFRF is studied by using the parametric characteristic
analysis in the next section.

3 Parametric characteristic analysis of the OFRF

In this section, some notations and a novel operator are first introduced. Then the
parametric characteristic analysis is performed for the GFRFs. Finally, the parametric
characteristics of the OFRF for system (1) are established, which provide an effective
approach for the determination of the OFRF.



3.1 Notations and a novel coeftiient extraction operator

Define the p+qth degree nonlinear parameter vector as
Cogq =[Cpq(0,::,0),Cp 4 (0, 1)+, € o (Koo, K]
prg=m
which includes all the nonlinear parameters of the form C, ¢(.) with nonlinear degree p+q
in equation (1). Note that Cpq can also be regarded as a set of the (p+Q)th degree
nonlinear parameters of the form ¢, ¢(.).

Consider a series which can be written as
Hee = f, +c,f, +o 4+ G f‘c‘
where the coefficients ¢ e® (i=I,..., |C| ), % denotes all the real numbers,

CH C1,C25- -5 Gy ], |C| denotes the dimension of vector C, fiey (i=1,...,|C|) are real or

complex valued functions, y denotes a set of real or complex valued scalar functions, and
F=[ fl,f2,. .oy f‘C‘ ]T.

Define a Coefficient Extraction operator CE:y — %' such that for any
Hee =¢ f +c,f, + 4 Cg f‘c‘ ey
CE(He)=Ce%Rl®, where®!is the IC|-dimensional real vector space. This operator has
the following properties acting as operation rules:
(1) Reduced vectorized sum “® .
CE(Hcp +Hcp)=CE(H¢ )®CE(H. . )=C,®C, =[C,,C;], where C}is a reduced
vector of C, which include all the elements in C, except the same elements as those in C;.
(2) Reduced Kronecker product “®”.
CE(H¢r, -Her, ) =CE(H¢r )®CE(H ) =C, ®C,, and “reduced” here means that
there are no repetitive components in C, ®C, .
(3) Invariant.
(@) CE(a-Hg ) =CE(H ), Va € R which is not a parameter of concern;
(b) CE(HCF, + HCFZ )= CE(HC(F,-v-F:)) =C
(4) Unitary. VH_.is not a function of ¢; for i=1...n, CE(H ;) =1.
Obviously, when there is a unitary 1 in CE(HcE), there is a constant term in the
corresponding series Hcg which has no relation with the coefficients ¢ (for
i=1...n).
(5) Inverse. CE'(C)=Hcr.
(6) CE(H¢r)~CE(Hy ) if the elements of C, are the same as those of C,, where “~”
means equivalence, i.e., both series are in fact the same result.

From property (6), it is known that the CE operator is also commutative and associative
considering the order of Cif; in the series has no effect on the value of a function series
Hcr, for instance, CE(H.r +H¢r)=C ®C, ~CEH., +H;)=C,®C, . It should be
emphasized that the coefficient extractor CE is a coefficient oriented operator. That is,
only the concerned coefficients involved in a series are extracted after applying the



operator. Hence, the operation result is different for different purposes. Moreover, for
convenience, let %(-) and %(-) denote the multiplication and addition in terms of the

2

reduced Kronecker product “®” and vectorized sum “@® ” for the non-repetitive (.)’s

k
satisfying (*), respectively; and denote ®Cpy=Cpq®-®Cy simply as Cf,

According to the definition of the CE operator, the parametric characteristics of the
GFRFs can be obtained by directly replacing the operations “+” and “.” in the recursive
algorithm (7-9) with “@® ” and “ ® “respectively, and neglecting the corresponding
complex valued functions of frequency which are independent of the nonlinear
parameters. In order to derive the parametric characteristics of the OFRF, the GFRFs are
first investigated by the parametric characteristic analysis in the following section.

3.2 Parametric characteristics of the GFRFs
This is the first step to derive the parametric characteristics of the OFRF.
3.2.1 Derivation of the GFRFs’ parametric characteristics

The parametric characteristics of the GFRFs of equation (1) can be obtained by directly
applying the CE operator as follows.

Applying the CE operator to equation (7) for the nonlinear parameters yields

CE(H,(j@,.+, j@,)) = CE(L(N) - H, (jo,, -, an»:CE[ > ok k) @)" -~-<1wn)k"]

K.k, =0
n— q
+CE
K

+CE[ Z So(K, ok )Hn)p(ja)“...,jwn)J

=2 Kk, =

n—

K
Zcp,q(kls'”skp+q)(ja)n—qﬂ)kwH "'(ja)pqu)kmq H Wq,p(ja)la"'a Ja)wq)J
KKy, q=0

1

el
i

p=

=1

k=]

P

n-1n-q K

D=

:kl,kﬁocov"(k“” )®EBIP@IM® Coq(Kis Ko ) OCE(H g, (J@y, s j@r )
n K
@}D@ZK% 0 pO(kl7 : ’k )®CE(Hn,p(Ja)17‘”7Ja)n))

n-1n-q n
_C()n@q@ G:DIC p.q ®CE(Hn—qp(lea ' ajwn—q))®p@ch,o®CE(Hn,p(jw]9"'ajwn))
which can be rewritten as

n-1n-q

CEH, (jo,, - jo,)) = COH@(GB@C ®CE(HMP())] (échp@caHn,p(.))) (11a)

Applying the CE operator to equation (8) yields
n-p+l1
CE(HH,P(ja)l""s jo,) = CE( ZHi(ja)1"", jwi)Hn—i,p—l(jwi+1,"', jo ) jo, +-+ ja)i)kp]
i=1

n-p+l

= I(_Pl CE(H|(Jw17 : 7Jw))®CE(Hn|p 1(]w|+19 ' bjwn))



which can be written as
CE(H,, ()= & CE(H,()®CEH, () (11b)
Applying the CE operator to equation (9) yields
CE(H,, (jo,, -, jo,) = CE(H,(jo, -, jo)(jo, +-+ jo,)")
=CE(H,(jo,,-, jo,)
which can be written as

CE(H,,,()) =CE(H,()) (I1c)
Moreover, by applying the CE operator to equation (9), (11b) can also be written as
CE(H,,()= & HCEH, () (11d)
St

Note that when n=1, H,(jw,)has no relation with the nonlinear parameters of equation (1),
thus it follows from the definition of the CE operator that CE(H,(-)) =1. From equations
(11a-d), the nonlinear parameters involved in the nth order GFRF H (jo,, -, jw,) can be

determined recursively. The following example is provided to make an illustration of the
results above.

Example 1 Computation of the parametric characteristics of the GFRFs of system (1) up
to 3™ order according to (11a-d). For n=2,

. i 1 2-q 2
CE(H,(jo, jo,))=C,, ® gg g@lcp,q ®CE(H, ,,()® p@sz,o ®CE(H, ()

2-q.p

= Co,z ® C],l ® CE(H 1,1 Q) Cz,o ® CE(H 2,2 )

=C,, ®C, ®18C,, ® [, _é:éCE(H . (-))J
r=2

= Co,z ® C1,1 Q1D Cz,o ® (CE(H () ®CE(H, ()))

=C,,®C, ®C,, (12)
where equations (11cd) are used in the third and fourth equalities. From the definition of
the CE operator, equation (12) implies that there exist complex valued functions of
frequencies f, (jo,,jw,), 1=1,2,3,...,D,, where D, is the dimension of CE(H,(jw,, j®,)),
such that

Ha(iey, jo;) = CEM, (o, jo) [ () 1,0 - £ Of
= (Co,z @Cl,l @C2,0)' f,(jo, jo,)

where f,(jo,, jo,) = [f, () f,() -~ i, O] . Similarly, for n=3

(13)



. . 2 3-q 3
CEH;(Jor, . 10,) =Cos ® B B Cpq ®CE(H; 4,,()® © Cp @CE(H, ()

3-q.p

2 3-q

3
=Cy; ® q@l p@ZICpYq ®CE(H e p@chp ®CEH, ,()

3-q,p
= Co,3 ® (Cl,l ® CE(H 2,1 ()) ® Cz,l ® CE(H 2,2 ()) ® Cl,z ® CE(H 11 ()))

®(C,, ® CE(H,,()) ®C,, ®CE(H,,()))
=Cy; ® (Cu ®CE(H,()®C,, ®CE(H,()® CE(H,()®C,, ® CE(H, (')))

® (C,, ® CE(H, () ® CE(H, () ® C,,, ® CE(H, () ® CE(H, () ® CE(H, ()
~C,, ®(C,, ®CE(H,())®C,, ®C,,)®(C,, ®CE(H, () ®C,,)
= CO,3 @ (Cl,l ® (CO,Z (_B Cl,l @ CZ,O) (_B CZ,I @ CI,Z )® (CZ,O ® (CO,Z @ Cl,l @ CZ,O) @ C3,0)

= Co,3 ® C1,1 ® Co,z @ Cl,lz @ Cl,l ® Cz,o ® Cz,l @ Cl,z ® Cz,o ® Co,z ® Cz,o2 ® C3,o (14)

In the derivation of equation (14), equations (11cd) and (12) and the properties of CE are

used.  Obviously, there also exists a complex valued function
vector f,(jo,, jo,, jo,) = [f31(-) fa() - i (-)]T of frequencies such that

H;(jaw, jo,, jo;) =CEH;(jo,, jo,, jo,)- f,(jo,, jo,, joy) (15)

Equations (12) and (14) show clearly that which of the nonlinear parameters in equation
(1) contribute to the 2™ and 3™ order GFRFs and how the contributions are made. In
addition, equations (13) and (15) indicate that the GFRFs can be expressed as an explicit
polynomial function of the system nonlinear parameters. m

From the definition of the CE operator and the parameter characteristics of the GFRFs in
(11), the following proposition can be established following the discussions in Example 1.

Proposition 1 There exists a complex valued function vector f (jw, -, jw,) with an
appropriate dimension, such that

H.(j@, -, j@,)=CEH,(jo, -, jo,)) f.(jo, -, jo,) (16)
where CE(H,(jo,, -, jo,)) can be recursively determined from (11a)-(11d). m

Remark 1. It should be noted that f (je,, ,jw,) in equation (16) is a function of
frequency variables w,, -+, @, and the linear parameters Cjo(.) and Cy(.), but is independent
of the nonlinear parameters in CE(H ,(jo,, -, jo,)). ®

Proposition 1 provides an explicit analytical relationship between the nonlinear
parameters and the GFRFs of system (1) by the parametric characteristic analysis of the
GFRF. From this explicit analytical expression of the GFRFs in Equation (16), the
parametric characteristics of the OFRF of system (1) can be obtained.

3.2.2 Some further results

It can be noted from Example 1 that there are many repetitive terms and computations in
equations (1la-d). In order to have a much deeper understanding of the parametric



characteristics of the GFRFs and to simplify the computation of CE(H,(je,,-, je,)), the
following results are established.

Lemma 1 The elements of CE(H, (jo, -, jw,)) include the nonlinear parameters in Cop

and all the non-repetitive monomial functions (of the nonlinear parameters) in
k

c,®C,, ®C,, ®--®C, , where the subscripts satisfy p+q+Z(pi +q)=n+k ,
i=1

2<p +g <n-k, 0<k<n-2,2<p+g<n-k and 1< p<n-k.

Proof. See Appendix. m

Remark 2. Lemma 1 provides detailed information about what nonlinear parameters are
involved in the analytical description of the GFRF H,(jo,, -, jo,) and how these

parameters have their effects on the GFRFs. It also provides a very effective method for
the determination of CE(H,(jw,,-, jw,)). It is easy to directly write out the elements of

CE(H,(jo,, -, jm,)) according to Lemma 1 without any recursive computations. This can
be performed by a simple computer program which will be discussed in a future study. =

To demonstrate the significance of Lemma 1, consider the following example.

Kk
Example 2 Consider the 2" order GFRF. Then p+ q+Z:(pi +q)=2+k, 0<k<2-2 =0.

i=l
Therefore, all the subscript combinations for k=0 is (p,q): (0,2);(1,1),(2,0), corresponding
to the nonlinear parameters: Co», Cy.1, Co0. Thus CE(H,(ja,, jw,))= Co2+Cy1+Cay. This is
consistent with equation (12).

Consider the 3™ order GFRF, then p+q+zk:(pi +0)=3+k, 0<k<3-2=1.
i=1

When k=0, the involved nonlinear parameters are C3, C; 2, Ca.1, Cs;
When k=1, p+q+ p, +q, =3+1=4, which has the following non-repetitive combinations

(p,q,p,a ):(1,1,2,0), (1,1,1,1),(1,1,0,2),(2,0,0,2),(2,0,2,0)
thus the involved nonlinear parameter monomials are:

Cr10Ca0, Ci10Cr 1, Cr10 Cop, Cap0 Cop, Cao Cap
Hence CE(H, (j,, -, j@;))= Co3+tC12+Ca1+C30F Ci10 CootCy 10 Cpi+Cy 10 Cop
+Ca00 Cop +Co00 Cap

The result is consistent with Equation (14). m

The following result follows from Lemma 1, which can be used to simplify equation
(11a).

Lemma 2 CeH,,()=CEH, ,.0)
Proof. See the Appendix. m

Based on the discussions above, a simplified formula for the computation of the
parametric characteristics of the nth-order GFRF can be obtained.

10



Proposition 2 For n>1,
CE(Hn(jwla"'a an))

n-1n-q Lmlz
€10 8 8, @CEM, 0,10 [C ® & C,y®CEH, ., (-))] a7

where |-]is to take the integer part.
Proof. Using Lemma 2, equation (11a) now can be written as (n>1)

. . n-1n-q n
CE(H, (o, jo,)) =Cy, @(q@l D Cpg ®CEH 5 ('))j@(gcp,o ®CE(H, ,, (-)))

Considering the symmetry of the last term of this equation, Equation (17) follows. This
completes the proof. m

Obviously, it is much simpler to determine the parametric characteristics of the GFRFs
by equation (17) than by equations (11a-d).

3.3 Parametric characteristics of the OFRF

From the parametric characteristics of the GFRFs above, the following results for the
output spectra of system (1) can be achieved.

Proposition 3 Assume system (1) is stable at zero equilibrium and can be approximated
by a Volterra series of a finite order. Then there exist a series of complex valued function
vectors F,(jo) (n=1,2,...,N) of frequency variable » with appropriate dimensions such

that the OFRF of system (1) can be expressed as
N — — —
Y(jw):(gCE(Hn(ja)lﬂ'“’ja)n))j'[Fl(ja))T F(o) - FN(J'CO)TIr (18)

where F, (jo) = I f.(jo, -, ja)n)~HU(jwi)daw. If the input of system (1) is
i=l

1
n@en)™ .
the multi-tone signal (5), then there exist a series of complex valued function vectors
?n(ja)) (n=1,2,...,N) of frequency variable » with appropriate dimensions, such that the
OFRF of system (1) can be expressed as

Y(jw>:(§>ICE(Hn(jwk,~-,jwkn)))[?l(jwf Fajo) = Fu(jo) | (19)

Where?n(jw) =2in Z f.(jo, . jo ) F(o,)F(o, ). The parametric characteristics of

O+t O =0

the OFRF is
N
CE(Y(j@)) = ®CE(H, (jo,. . joy)) (20)
Proof. From Proposition 1, substituting (16) into (3) yields

11



Y(iw)=;m [ CEH, (o jo)- fy(jo o) [ [U(ie)ds,

O+ 0, =0 i=l1

CEH,(jo, - jo,))

Vi

1 . . L .
—_— f.(jo, -, jo,) | |U(jo)do,
N j (jo., ] )H (jo)

>
o

1=

>

1l
VO
r@z I

CE(Hn<Jw1,---,jwn))j-[ﬁ(jwf E(jo) - Fyio]

Following a similar procedure, equation (19) can be obtained for the OFRF of equation (1)
actuated by a multi-tone input function in (5). Moreover, (20) is obvious from equations
(18-19). This completes the proof. m

Equations (18) and (19) show that the OFRF of system (1) can now be expressed as an
explicit polynomial function of the nonlinear parameters, and the specific form of the
OFRF of system (1) is completely defined by its parametric characteristics in (20).
Because the parametric characteristics defined by equation (20) can be readily
determined using Proposition 2 or Lemma 1, the parametric characteristic analysis for the
OFRF of system (1) provides an effective approach to the determination of the OFRF.

In order to demonstrate the use of Proposition 3, consider the following example.

Example 3 Consider a nonlinear system,

240% = —16000X — 296X — ¢, X* — ¢, XX+ U(t) (21)
subject to a sinusoidal input u(t) =100sin(8.1t). (21) is a simple case of system (1) with
M=3, K=2, c,(2)=240, c,(1)=296, C,,(0)=16000, c,,(111)=c,, ¢,,(110)=c,, C,(0)=-1,
and all other parameters are zero.

In system (21), only nonlinear parameters in Cs are not zero, i.€.,
Cy = [C30 (110) ¢, (11 1)] = [Cz Cl]
In this case, equation (17) can be rewritten as (n>1)

|1/ ]

2
CE(H n(ja)] PR Ja)n)) = Cn,O ® p@Z Cp,O ® CE(H n-p+l ()) (22)
Since only Cs is not zero, it can be shown from equation (22) that
CE(H, (jw,,-,jw,)=0and CEH,,,, (jo,, -, jo,)) =C3k0, fork=1,2, 3,...
From equation (20) in Proposition 3,
CE(X(jw)) = %CE(Hn<jwl,~-, 0,))=18C,, ©C;, &C}, & @ Ch /4 (23a)
so that
CoN 2 3 ... LN’%J.=-T=-T.“=-TT
X(jo)=[1®C,, ®C ®C}, ®---®C}, Fi(jo)) Fa(jo) Fn(jo)' | (23b)
where LN —%J is to take the integer part. From (23) CE(X (jw)) can be readily obtained. For

instance, for N=5
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CEX(jow)=1®C,, ® C320 @ C330 D---® ngi%J = [1 ,Cz,Cl,sz,Czcl,C12,023,02201,CQC12,013,C24,
c’ercolerneac e tel’, ea'er, ealeitea’er’ cacit o] (23¢)
Therefore an explicit analytical expression for the OFRF X(jw)in terms of the system
nonlinear parameters C; and C; are obtained as given by (23b-c). m

3.4 A numerical method forthe determination of the OFRF

As discussed in the last section, the detailed polynomial structure of the OFRF can be
determined definitely by the parametric characteristic analysis. Based on structure of the
OFRF, a numerical method can be used to determine the OFRF of system (1).

Denote the dimension of CE(Y(jw)) as Dy which can be known from the parametric
characteristics of the OFRF. Letg=[a, a, --- a, ]=CE(Y(jw)) where &, i=1...Dy, are the
monomial functions of the system nonlinear parameters known from the OFRF structure
using Proposition 3, and
h(jo) = (i@ hije) - b (o)=[F(e) Elo)’ -~ Eo'|

where F,(jo) = Fi(jo) when the input is a general input and F,(jo)= Fi (jw) when the input
is a muli-tone signal. Then equation (18) can be rewritten as

Y(jo)=¢-h(jo) (24)
In order to obtain the OFRF, h(jw) in (24) is needed to be determined. This can be

achieved by following a numerical method in Lang et al. (2006). The basic idea of this
method is to perform simulations or experimental tests on the system under Ny (>0)
different sets of nonlinear parameters ¢ |, ¢, ... ¢ nv to obtain Ny output frequency
responses of the system Y(jw) 1, Y(jw)2, ...Y(jw)n for a considered input excitation.
Thus from (24), it is known that

®-h(jo)=Y, (25)
& a, &, - 8p, Y(jo),
Y (i
where @ = ¢:2 = afz a?z N aDjz , Y, = (J:w)z Consequently h(jo) can be
¢NY Ay, Ay, ap N, Y(ja’)Dv
obtained as
h(jo)=(@ @) .07 Y, (26)

Therefore, the OFRF of system (1) can be well determined. From this explicit analytical
expression of the system output frequency response, the analysis and synthesis of system
(1) in the frequency domain can be conducted. These will be illustrated in a simulation
study in the next section.

5 Simulation studies

Consider the nonlinear system (21) again, but the output of interest in this simulation
study is

13



y=16000X + 296X + ¢, X* + C, X’ X (27)
which is a more complicated function of the system states.

Since it can be shown that CE(Y(jw)) = CE(X(jw)) (Jing, et. al. 2006a), the theoretical
results for X (jw) still hold for Y(jw). Therefore, it follows from Example 3 that

. _ N . L _ 2 3 LN’%J
CE(Y(jo) = @ CE(H,(jo,. -, ]@,))=1®Cy, ®C5, &C5, @ D C, (28a)
and
. 2 o @0 4 [Fiio) Faljo) — Fn(jo) |
Y(jo)=[1®C,, ®C;, ®C;, @@ Cy, Fi(jo)' Fa(jo) Fn(jo) (28b)

For clarity of illustration, consider the simpler case of ¢,=0, i.e., C,, =c,. When N=21, it
can be shown from (28ab) that
CEX(jon=l ¢ ¢ ¢ - o]
and
Y(jo)=¢-h(o) =] ¢ ¢ ¢ - '|hGe) hio) - h o]
In order to determine h(jw)in the above equation, simulation studies are carried out for

11 different values of c; as ¢,=0.5,50,100,500, 800,1200, 1800, 2600, 3500, 4500, 5000,
to produce 11 corresponding output responses. The FFT results of these responses at the
system driving frequency o, =8.1 rad/s were obtained as

Yv=[(3.355387229685395¢+002)-9.144123368552089¢-+000i,
(3.311400634432650e+002)-8.791324203084603¢+000i,
(3.270304131496312e+002)-8.453482697096458e+000i,
(3.020996757260479¢+002)-6.232073185455284¢e+000i,
(2.889224705331136e+002)-4.937579404570077e+000i,
(2.753247618357106e+002)-3.513785421406298e-+000i,
(2.599814606290563e+002)-1.799344961942028e-+000i,
(2.449407272303421e+002)-7.146831574203648e-0031,
(2.322782654921158e+002)+1.587748875652816e+000i,
(2.213884644417550e+002)+3.022652971105967e+000i,
(2.168038059608033e+002)+3.644341792781596¢+000i]

Then from (26), h(jw,) was determined as

h(jw,)=[3.355850061999765¢+002 +9.147787717329777¢+000i,

-0.09260545518186 - 0.00733079515829i1
7.802545290190465¢-005 +4.196941358069068e-0061
-8.171412395831490e-008 -3.472552369765044e-0091
7.983194136013857¢-011 +2.975659825236403¢-012i
-6.014819558373321e-014 -2.095287675780629¢-0151
3.139462445085954e-017 +1.055716258995395¢-018i1
-1.065920417366710e-020 -3.515136904764629¢-022i
2.214834610655676e-024 +7.220197982843919¢-0261
-2.536564081104798e-028 -8.209302192093296¢-0301
1.219975622824295e-032 +3.929425356306088e-0341].
Consequently, the OFRF of nonlinear system (27) at frequency o, was obtained as

Y(jo) =l ¢ ¢ ¢ - clhGo) ho) - hi(o) (29)
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From equation (29), the effect of the nonlinear parameter c, on the system output
frequency response at frequency o, can readily be analysed. Figure 1 shows a

comparison of the magnitudes of the output spectrum evaluated by (29) and their real
values under different values of the nonlinear parameter c;. Clearly, an excellent match is
achieved. Furthermore, the frequency domain analysis and design of system (21) to
achieve a desired output response y(t) can now be conducted from (29). The idea is
straightforward. Given a desired output spectrum Y at frequency ,, the nonlinear
parameter C; can be optimized using (29) such that the difference |Y(ja,)-Y | can be made

as small as possible. m

340 T T T T T T
+  Real magnitude of the output spectrum

— Magnitude evaluated from (29) I
330+

320+

> 3101

300 -

290 -

280 1 1 L 1 1 1 1 1 L
0 100 200 300 400 500 600 700 800 900 1000

cl

Figure 1 Relationship between the output spectrum and nonlinear parameter C;

6 Conclusions

The parametric characteristics of the output frequency response function (OFRF) of
nonlinear systems described by a polynomial form differential equation model have been
established. Based on these results, the OFRF with its detailed structure for this class of
nonlinear systems can explicitly be determined up to any high orders. The OFRF concept
provides an important basis for the analysis and design of nonlinear systems in the
frequency domain. The present study solves an important and basic problem associated
with the OFRF based nonlinear system analysis and design. The results should be
considerately significant for the frequency domain study of nonlinear systems, and for the
application of the nonlinear system frequency domain approach in engineering practice.
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Appendix: Proofs

PROOF OF LEMMA 1.:
Co,n is the first term in equation (11a). For clarity, consider a simpler case that there is
only output nonlinearities in (11a), then (11a) is reduced to only the last term of equation

. n n n-p+l p
(11a), e, pei(:p,0 ®CE(H, () = per:)chp ®rA€a:lgCE(Hr‘ ) ) Note that
2i=n
erJrl P

P
@ ®CE(H,I (-)) includes all the combinations of (ry,ra,...,Iy) satisfying Zri =n,

ri-rp:li:l i=1
1<r, <n-p+1, and 2<p<n. Moreover, CE( H,() )=1 since there are no nonlinear
parameters in it, and any repetitive combinations have no contribution. Hence,
n-p+l p . . .. . .

@ ®CE<H . (-))must include all the possible non-repetitive combinations of (ry,r2,...,k)

rperp=li=l

2 n=n
k

satisfying Zri =n-p+k, 2<r,<n-p+1 and 1<k< p. So does CE(H, (jo,, -, jo,)). Each
i=1

of the subscript combinations corresponds to a monomial of the involved nonlinear
parameters. Thus, including the term C, o and considering the range of each variable (i.e.,
ri, p, and K), CE(H,(je,,, jw,)) must include all the possible non-repetitive monomial

functions of the nonlinear parameters of the form C,®C ,®C ,®---®C,, satisfying

k

p+Y.r=n+k, 2<r,<n-k, 0<k<n-2 and 2<p<n-k. When the other types of
i=l

nonlinearities are considered, just extend the results above to a more general case that the

nonlinear parameters appear in the formC,®C, , ®C, , ®---®C,  and the subscripts

Kk
satisfy p+q+Z(pi+qi):n+k , 2<p +q <n-k , 0<k<n-2, 2<p+qgq<n-k and
i=1

1< p<n-k. Hence, the proposition is proved. m

PROOF OF LEMMA 2:
According to Lemma 1, CE(H, ,,,()) includes all the terms C,, ®C,, ®--®C,, satisfying

k
D (p+g)=n—p+l+k-1=n—p+k, 2<p +q <n-p-k+2, 0<k-l<n-p-I,

i=1
and at least one p;i>0. Equation (11b) can be rewritten as
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. X n-p+l p n—-p p

CEH ,p(j,++, jo)= ® @CE(H, ())=CEH,,.,0)®| ® @CEH, ()

Yoo i

Considering all the possible effective combinations of (ry,r,...,lp) in the second term on

the right of the second equality in this equation, which can be written as

. ga: (e, () @CEMH, ()®- ®CEH N0)) (AD)

2 k=n-ped
As shown in the proof of Lemma 1, all the terms in (Al) satisfy

o
Zri:n—p+1+q’—1:n—p+q’ , 2<r<n-p-(q-D+1 and O0<g-I1<p , ie,
i=1

o
Z(pi+qi)=n—p+q', 2<p+g <n-p-g+2, and 0<qg -1<n-p-1 corresponding to

i=1

the nonlinear parameter monomialsC,, ®C, ®--®C,, . Moreover, it can be noted

from equation (11a) that the variable p>0. This implies that there at least is one pi>0 from
the nature of the recursive computation of equation (11a). Hence, the terms in (Al) are
included in CE(H rpel (1) This completes the proof. m
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