426 research outputs found

    Certainty Modeling of a Decision Support System for Mobile Monitoring of Exercise-induced Respiratory Conditions

    Get PDF
    Mobile health systems in recent times, have notably improved the healthcare sector by empowering patients to actively participate in their health, and by facilitating access to healthcare professionals. Effective operation of these mobile systems nonetheless, requires high level of intelligence and expertise implemented in the form of decision support systems (DSS). However, common challenges in the implementation include generalization and reliability, due to the dynamics and incompleteness of information presented to the inference models. In this paper, we advance the use of ad hoc mobile decision support system to monitor and detect triggers and early symptoms of respiratory distress provoked by strenuous physical exertion. The focus is on the application of certainty theory to model inexact reasoning by the mobile monitoring system. The aim is to develop a mobile tool to assist patients in managing their conditions, and to provide objective clinical data to aid physicians in the screening, diagnosis, and treatment of the respiratory ailments. We present the proposed model architecture and then describe an application scenario in a clinical setting. We also show implementation of an aspect of the system that enables patients in the self-management of their conditions

    Mobile Health Technologies

    Get PDF
    Mobile Health Technologies, also known as mHealth technologies, have emerged, amongst healthcare providers, as the ultimate Technologies-of-Choice for the 21st century in delivering not only transformative change in healthcare delivery, but also critical health information to different communities of practice in integrated healthcare information systems. mHealth technologies nurture seamless platforms and pragmatic tools for managing pertinent health information across the continuum of different healthcare providers. mHealth technologies commonly utilize mobile medical devices, monitoring and wireless devices, and/or telemedicine in healthcare delivery and health research. Today, mHealth technologies provide opportunities to record and monitor conditions of patients with chronic diseases such as asthma, Chronic Obstructive Pulmonary Diseases (COPD) and diabetes mellitus. The intent of this book is to enlighten readers about the theories and applications of mHealth technologies in the healthcare domain

    Towards using Cough for Respiratory Disease Diagnosis by leveraging Artificial Intelligence: A Survey

    Full text link
    Cough acoustics contain multitudes of vital information about pathomorphological alterations in the respiratory system. Reliable and accurate detection of cough events by investigating the underlying cough latent features and disease diagnosis can play an indispensable role in revitalizing the healthcare practices. The recent application of Artificial Intelligence (AI) and advances of ubiquitous computing for respiratory disease prediction has created an auspicious trend and myriad of future possibilities in the medical domain. In particular, there is an expeditiously emerging trend of Machine learning (ML) and Deep Learning (DL)-based diagnostic algorithms exploiting cough signatures. The enormous body of literature on cough-based AI algorithms demonstrate that these models can play a significant role for detecting the onset of a specific respiratory disease. However, it is pertinent to collect the information from all relevant studies in an exhaustive manner for the medical experts and AI scientists to analyze the decisive role of AI/ML. This survey offers a comprehensive overview of the cough data-driven ML/DL detection and preliminary diagnosis frameworks, along with a detailed list of significant features. We investigate the mechanism that causes cough and the latent cough features of the respiratory modalities. We also analyze the customized cough monitoring application, and their AI-powered recognition algorithms. Challenges and prospective future research directions to develop practical, robust, and ubiquitous solutions are also discussed in detail.Comment: 30 pages, 12 figures, 9 table

    Chronic cough—the limitation and advances in assessment techniques

    Get PDF
    Accurate and consistent assessments of cough are essential to advance the understanding of the mechanisms of cough and individualised the management of patients. Considerable progress has been made in this work. Here we reviewed the currently available tools for subjectively and objectively measuring both cough sensitivity and severity. We also provided some opinions on the new techniques and future directions. The simple and practical Visual Analogue Scale (VAS), the Leicester Cough Questionnaire (LCQ), and the Cough Specific Quality of Life Questionnaire (CQLQ) are the most widely used self-reported questionnaires for evaluating and quantifying cough severity. The Hull Airway Reflux Questionnaire (HARQ) is a tool to elucidate the constellation of symptoms underlying the diagnosis of chronic cough. Chemical excitation tests are widely used to explore the pathophysiological mechanisms of the cough reflex, such as capsaicin, citric acid and adenosine triphosphate (ATP) challenge test. Cough frequency is an ideal primary endpoint for clinical research, but the application of cough counters has been limited in clinical practice by the high cost and reliance on aural validation. The ongoing development of cough detection technology for smartphone apps and wearable devices will hopefully simplify cough counting, thus transitioning it from niche research to a widely available clinical application

    Smart technologies and beyond: exploring how a smart band can assist in monitoring children’s independent mobility & well-being

    Get PDF
    The problem which is being investigated through this thesis is not having a device(s) or method(s) which are appropriate for monitoring a child’s vital and tracking a child’s location. This aspect is being explored by other researchers which are yet to find a viable solution. This work focuses on providing a solution that would consider using the Internet of Things for measuring and improving children’s health. Additionally, the focus of this research is on the use of technology for health and the needs of parents who are concerned about their child’s physical health and well-being. This work also provides an insight into how technology is used during the pandemic. This thesis will be based on a mixture of quantitative and qualitative research, which will have been used to review the following areas covering key aspects and focuses of this study which are (i) Children’s Independent Mobility (ii) Physical activity for children (iii) Emotions of a child (iv) Smart Technologies and (v) Children’s smart wearables. This will allow a review of the problem in detail and how technology can help the health sector, especially for children. The deliverable of this study is to recommend a suitable smart band device that enables location tracking of the child, activity tracking as well as monitoring the health and wellbeing of the child. The research also includes an element of practical research in the form of (i) Surveys, the use of smart technology and a perspective on the solution from parents. (ii) Focus group, in the form of a survey allowing opinions and collection of information on the child and what the parents think of smart technology and how it could potentially help with their fears. (iii) Observation, which allows the collection of data from children who were given six activities to conduct while wearing the Fitbit Charge HR. The information gained from these elements will help provide guidelines for a proposed solution. In this thesis, there are three frameworks which are about (i) Research process for this study (ii) Key Performance Indicators (KPIs) which are findings from the literature review and (iii) Proposed framework for the solution, all three combined frameworks can help health professionals and many parents who want an efficient and reliable device, also deployment of technologies used in the health industry for children in support of independent mobility. Current frameworks have some considerations within the technology and medical field but were not up to date with the latest elements such as parents fears within today’s world and the advanced features of technology

    Smart system and mobile interface for healthcare: stress and diabetes

    Get PDF
    In this thesis, a system with multi-channel measurement capabilities was designed and implemented, associated with the monitoring of stress levels, through a proposed algorithm that correlates heart rate, respiratory rate, and galvanic skin response. Experimental validation tests were carried out, as well as experiments with patients suffering from diabetes. To this end, measurements were made not only of stress-related parameters, but also of parameters such as blood glucose levels and blood pressure levels, seeking to extract correlations between stress and diabetes status. In addition, body temperature was another parameter acquired, in order to assess its importance and relation to stress and diabetes. The proposed multichannel system also features RFID technology for authentication purposes, as well as Wi-Fi access for internet connection and storage of the acquired data in a database structured for that purpose, thus enabling remote access. To allow the assessment of stress levels and diabetes progress, a mobile application was also developed, which also allows the visualisation of the analysed data.In this thesis, a system with multi-channel measurement capabilities was designed and implemented, associated with the monitoring of stress levels, through a proposed algorithm that correlates heart rate, respiratory rate, and galvanic skin response. Experimental validation tests were carried out, as well as experiments with patients suffering from diabetes. To this end, measurements were made not only of stress-related parameters, but also of parameters such as blood glucose levels and blood pressure levels, seeking to extract correlations between stress and diabetes status. In addition, body temperature was another parameter acquired, in order to assess its importance and relation to stress and diabetes. The proposed multichannel system also features RFID technology for authentication purposes, as well as Wi-Fi access for internet connection and storage of the acquired data in a database structured for that purpose, thus enabling remote access. To allow the assessment of stress levels and diabetes progress, a mobile application was also developed, which also allows the visualisation of the analysed data

    Continuous remote monitoring of COPD patients—justification and explanation of the requirements and a survey of the available technologies

    Get PDF
    Remote patient monitoring should reduce mortality rates, improve care, and reduce costs. We present an overview of the available technologies for the remote monitoring of chronic obstructive pulmonary disease (COPD) patients, together with the most important medical information regarding COPD in a language that is adapted for engineers. Our aim is to bridge the gap between the technical and medical worlds and to facilitate and motivate future research in the field. We also present a justification, motivation, and explanation of how to monitor the most important parameters for COPD patients, together with pointers for the challenges that remain. Additionally, we propose and justify the importance of electrocardiograms (ECGs) and the arterial carbon dioxide partial pressure (PaCO2) as two crucial physiological parameters that have not been used so far to any great extent in the monitoring of COPD patients. We cover four possibilities for the remote monitoring of COPD patients: continuous monitoring during normal daily activities for the prediction and early detection of exacerbations and life-threatening events, monitoring during the home treatment of mild exacerbations, monitoring oxygen therapy applications, and monitoring exercise. We also present and discuss the current approaches to decision support at remote locations and list the normal and pathological values/ranges for all the relevant physiological parameters. The paper concludes with our insights into the future developments and remaining challenges for improvements to continuous remote monitoring systems
    • 

    corecore