5 research outputs found

    MERITXELL: the Multifrequency Experimental Radiometer with Interference Tracking for Experiments over Land and Littoral—instrument description, calibration and performance

    Get PDF
    MERITXELL is a ground-based multisensor instrument that includes a multiband dual-polarization radiometer, a GNSS reflectometer, and several optical sensors. Its main goals are twofold: to test data fusion techniques, and to develop Radio-Frequency Interference (RFI) detection, localization and mitigation techniques. The former is necessary to retrieve complementary data useful to develop geophysical models with improved accuracy, whereas the latter aims at solving one of the most important problems of microwave radiometry. This paper describes the hardware design, the instrument control architecture, the calibration of the radiometer, and several captures of RFI signals taken with MERITXELL in urban environment. The multiband radiometer has a dual linear polarization total-power radiometer topology, and it covers the L-, S-, C-, X-, K-, Ka-, and W-band. Its back-end stage is based on a spectrum analyzer structure which allows to perform real-time signal processing, while the rest of the sensors are controlled by a host computer where the off-line processing takes place. The calibration of the radiometer is performed using the hot-cold load procedure, together with the tipping curves technique in the case of the five upper frequency bands. Finally, some captures of RFI signals are shown for most of the radiometric bands under analysis, which evidence the problem of RFI in microwave radiometry, and the limitations they impose in external calibration.Peer ReviewedPostprint (published version

    Using DDM asymmetry metrics for wind direction retrieval from GPS ocean-scattered signals in airborne experiments

    No full text
    Reflectometry of signals of opportunity such as those emitted by a global navigation satellite system, known as GNSS-R, has been developed over the past years as a technique with great potential for ocean scatterometry, among other applications. Different approaches have been proposed to use GNSS-R for remote sensing of ocean surface roughness. One of them is based on deriving some descriptor/metric from the measured delay-Doppler map (DDM) and directly relating it to a geophysical property of the scattering surface. For instance, different descriptors have been proposed in the literature to measure the DDM spreading caused by the increase in ocean surface mean square slopes due to surface winds. In this paper, a new descriptor based on the DDM is proposed for wind direction retrieval. This descriptor, designated as the skewness angle 1,skew, measures the asymmetry in the DDM power distribution along the Doppler frequency axis, and it was modeled as a function of wind direction by means of a simulation study. Then, that model was validated using real GNSS-R data from an airborne experiment. After validation, the DDM skewness model was successfully used for wind direction retrieval, with a resulting rms error on the order of 20°Peer Reviewe

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Advanced GNSS-R instruments for altimetric and scatterometric applications

    Get PDF
    This work is the result of more than eight years during a bachelor thesis, a master thesis, and the Ph.D. thesis dedicated to the development of the Microwave Interferometric Reflectometer (MIR) instrument. It summarizes all the knowledge acquired during this time, and describes the MIR instrument as detailed as possible. MIR is a Global Navigation Satellite System - Reflectometer (GNSS-R), that is, an instrument that uses Global Navigation Satellite System (GNSS) signals scattered on the Earth's surface to retrieve geophysical parameters. These signals are received below the noise level, but since they have been spread in the frequency domain using spread-spectrum techniques, and in particular using the so-called Pseudo Random Noise (PRN) codes, it is still possible to retrieve them because of the large correlation gain achieved. In GNSS-R, two main techniques are used for this purpose: the conventional technique cGNSS-R and the interferometric one iGNSS-R, each with its pros and cons. In the former technique, the reflected signal is cross-correlated against a locally generated clean-replica of the transmitted signal. In the latter technique the reflected signal is cross-correlated with the direct one. Nowadays multiple GNSS systems coexist, transmitting narrow and wide, open and private signals. A comparison between systems, signals, and techniques in fair conditions is necessary. The MIR instrument has been designed as an airborne instrument for that purpose: the instrument has two arrays, an up-looking one, and a down-looking one, each with 19 dual-band antennas in a hexagonal distribution. The instrument is able to form 2 beams at each frequency band (L1/E1, and L5/E5A), which are pointing continuously to the desired satellites taking into account their position, as well as the instrument's position and attitude. The data is sampled and stored for later post-processing. Last but not least, MIR is auto-calibrated using similar signals to the ones transmitted by the GNSS satellites. During the instrument development, the Distance Measurement Equipment/TACtical Air Navigation (DME/TACAN) signals from the Barcelona airport threatened to disrupt the interferometric technique. These signals were also studied, and it was concluded that the use of a mitigation systems were as strongly recommended. The interferometric technique was also affected by the unwanted contribution of other satellites. The impact of these contributions was studied using real data gathered during this Ph.D. thesis. During these 8 years, the instrument was designed, built, tested, and calibrated. A field campaign was carried out in Australia between May 2018 and June 2018 to determine the instrument's accuracy in sensing soil moisture and sea altimetry. This work describes each of these steps in detail and aims to be helpful for those who decide to continue the legacy of this instrument.Este trabajo es el resultado de más de 8 años de doctorado dedicados al desarrollo del instrumento Microwave Interferometric Reflectometer (MIR). Esta tesis resume todo el conocimiento adquirido durante este tiempo, y describe el MIR lo más detalladamente posible. El MIR es un Reflectómetro de señales de Sistemas Globales de Navegación por Satélite (GNSS-R), es decir, es un instrumento que usa señales de GNSS reflejadas en la superficie de la tierra para obtener parámetros geofísicos. Estas señales son recibidas bajo el nivel de ruido, pero dado que han sido ensanchadas en el dominio frecuencial usando técnicas de espectro ensanchado, y en particular usando códigos Pseudo Random Noise (PRN), es todavía posible recibirlas debido a la elevada ganancia de correlación. En GNSS-R existen dos técnicas para este propósito: la convencional (cGNSS-R), y la interferométrica (iGNSS-R), cada una con sus pros y sus contras. En la primera se calcula la correlación cruzada de la señal reflejada y de una réplica generada del código transmitido. En la segunda técnica se calcula la correlación cruzada de la señal reflejada y de la señal directa. Hoy en día muchos sistemas GNSS coexisten, transmitiendo señales de distintos anchos de banda, algunas públicas y otras privadas. Una comparación entre sistemas, señales, y técnicas en condiciones justas es necesaria. El MIR es un instrumento aerotransportado diseñado como para ese propósito: el instrumento tiene dos arrays de antenas, uno apuntando al cielo, y otro apuntando al suelo, cada uno con 19 antenas doble banda en una distribución hexagonal. El instrumento puede formar 2 haces en cada banda frecuencial (L1/E1 y L5/E5A) que apuntan continuamente a los satélites deseados teniendo en cuenta su posición, y la posición y actitud del instrumento. Los datos son guardados para ser procesados posteriormente. Por último pero no menos importante, el MIR se calibra usando señales similares a las transmitidas por los satélites de GNSS. Durante el desarrollo del instrumento, señales del sistema Distance Measuremt Equi Distance Measurement Equipment/TACtical Air Navigation (DME/TACAN) del aeropuerto de Barcelona mostraron ser una amenaza para la técnica interferométrica. Estas señales fueron estudiadas y se concluyó que era encarecidamente recomendado el uso de sistemas de mitigación de interferencias. La técnica interferométrica también se ve afectada por las contribuciones no deseadas de otros satélites, llamado cross-talk. El impacto del cross-talk fue estudiado usando datos reales tomados durante esta tesis doctoral. A lo largo de estos 8 años el instrumento ha sido diseñado, construido, testeado y calibrado. Una campaña de medidas fue llevada a cabo en Australia entre Mayo de 2018 y Junio de 2018 para determinar la capacidad del instrumento para estimar la humedad del terreno y la altura del mar. Este documento describe cada uno de estos pasos al detalle y espera resultar útil para aquellos que decidan continuar con el legado de este instrumento.Postprint (published version
    corecore