708 research outputs found

    Predicate Abstraction in Program Verification: Survey and Current Trends

    Get PDF
    A popular approach to verification of software system correctness is model checking. To achieve scalability needed for large systems, model checking has to be augmented with abstraction. In this paper, we provide an overview of selected techniques of program verification based on predicate abstraction. We focus on techniques that advanced the state-of-the-art in a significant way, including counterexample-guided abstraction refinement, lazy abstraction, and current trends in the form of extensions targeting, for example, data structures and multi-threading. We discuss limitations of these techniques and present our plans for addressing some of them

    Refinement Type Inference via Horn Constraint Optimization

    Full text link
    We propose a novel method for inferring refinement types of higher-order functional programs. The main advantage of the proposed method is that it can infer maximally preferred (i.e., Pareto optimal) refinement types with respect to a user-specified preference order. The flexible optimization of refinement types enabled by the proposed method paves the way for interesting applications, such as inferring most-general characterization of inputs for which a given program satisfies (or violates) a given safety (or termination) property. Our method reduces such a type optimization problem to a Horn constraint optimization problem by using a new refinement type system that can flexibly reason about non-determinism in programs. Our method then solves the constraint optimization problem by repeatedly improving a current solution until convergence via template-based invariant generation. We have implemented a prototype inference system based on our method, and obtained promising results in preliminary experiments.Comment: 19 page

    Diagnosis and Repair for Synthesis from Signal Temporal Logic Specifications

    Full text link
    We address the problem of diagnosing and repairing specifications for hybrid systems formalized in signal temporal logic (STL). Our focus is on the setting of automatic synthesis of controllers in a model predictive control (MPC) framework. We build on recent approaches that reduce the controller synthesis problem to solving one or more mixed integer linear programs (MILPs), where infeasibility of a MILP usually indicates unrealizability of the controller synthesis problem. Given an infeasible STL synthesis problem, we present algorithms that provide feedback on the reasons for unrealizability, and suggestions for making it realizable. Our algorithms are sound and complete, i.e., they provide a correct diagnosis, and always terminate with a non-trivial specification that is feasible using the chosen synthesis method, when such a solution exists. We demonstrate the effectiveness of our approach on the synthesis of controllers for various cyber-physical systems, including an autonomous driving application and an aircraft electric power system
    • …
    corecore