3,183 research outputs found

    Using Content Analysis for Privacy Requirement Extraction and Policy Formalization

    Get PDF
    Abstract: Privacy in cyberspace is a major concern nowadays and enterprises are required to comply with existing privacy regulations and ensure a certain level of privacy for societal and user acceptance. Privacy is also a multidisciplinary and mercury concept, which makes it challenging to define clear privacy requirements and policies to facilitate compliance check and enforcement at the technical level. This paper investigates the potential of using knowledge engineering approaches to transform legal documents to actionable business process models through the extraction of privacy requirements and formalization of privacy policies. The paper features two contributions: A literature review of existing privacy engineering approaches shows that semi-automatic support for extracting and modeling privacy policies from textual documents is often missing. A case study applying content analysis to five guideline documents on implementing privacy-preserving video surveillance systems yields promising first results towards a methodology on semi-automatic extraction and formalization of privacy policies using knowledge engineering approaches

    Semantic hierarchies for extracting, modeling, and connecting compliance requirements in information security control standards

    Get PDF
    Companies and government organizations are increasingly compelled, if not required by law, to ensure that their information systems will comply with various federal and industry regulatory standards, such as the NIST Special Publication on Security Controls for Federal Information Systems (NIST SP-800-53), or the Common Criteria (ISO 15408-2). Such organizations operate business or mission critical systems where a lack of or lapse in security protections translates to serious confidentiality, integrity, and availability risks that, if exploited, could result in information disclosure, loss of money, or, at worst, loss of life. To mitigate these risks and ensure that their information systems meet regulatory standards, organizations must be able to (a) contextualize regulatory documents in a way that extracts the relevant technical implications for their systems, (b) formally represent their systems and demonstrate that they meet the extracted requirements following an accreditation process, and (c) ensure that all third-party systems, which may exist outside of the information system enclave as web or cloud services also implement appropriate security measures consistent with organizational expectations. This paper introduces a step-wise process, based on semantic hierarchies, that systematically extracts relevant security requirements from control standards to build a certification baseline for organizations to use in conjunction with formal methods and service agreements for accreditation. The approach is demonstrated following a case study of all audit-related controls in the SP-800-53, ISO 15408-2, and related documents. Accuracy, applicability, consistency, and efficacy of the approach were evaluated using controlled qualitative and quantitative methods in two separate studies

    Disagreeable Privacy Policies: Mismatches between Meaning and Users’ Understanding

    Get PDF
    Privacy policies are verbose, difficult to understand, take too long to read, and may be the least-read items on most websites even as users express growing concerns about information collection practices. For all their faults, though, privacy policies remain the single most important source of information for users to attempt to learn how companies collect, use, and share data. Likewise, these policies form the basis for the self-regulatory notice and choice framework that is designed and promoted as a replacement for regulation. The underlying value and legitimacy of notice and choice depends, however, on the ability of users to understand privacy policies. This paper investigates the differences in interpretation among expert, knowledgeable, and typical users and explores whether those groups can understand the practices described in privacy policies at a level sufficient to support rational decision-making. The paper seeks to fill an important gap in the understanding of privacy policies through primary research on user interpretation and to inform the development of technologies combining natural language processing, machine learning and crowdsourcing for policy interpretation and summarization. For this research, we recruited a group of law and public policy graduate students at Fordham University, Carnegie Mellon University, and the University of Pittsburgh (“knowledgeable users”) and presented these law and policy researchers with a set of privacy policies from companies in the e-commerce and news & entertainment industries. We asked them nine basic questions about the policies’ statements regarding data collection, data use, and retention. We then presented the same set of policies to a group of privacy experts and to a group of non-expert users. The findings show areas of common understanding across all groups for certain data collection and deletion practices, but also demonstrate very important discrepancies in the interpretation of privacy policy language, particularly with respect to data sharing. The discordant interpretations arose both within groups and between the experts and the two other groups. The presence of these significant discrepancies has critical implications. First, the common understandings of some attributes of described data practices mean that semi-automated extraction of meaning from website privacy policies may be able to assist typical users and improve the effectiveness of notice by conveying the true meaning to users. However, the disagreements among experts and disagreement between experts and the other groups reflect that ambiguous wording in typical privacy policies undermines the ability of privacy policies to effectively convey notice of data practices to the general public. The results of this research will, consequently, have significant policy implications for the construction of the notice and choice framework and for the US reliance on this approach. The gap in interpretation indicates that privacy policies may be misleading the general public and that those policies could be considered legally unfair and deceptive. And, where websites are not effectively conveying privacy policies to consumers in a way that a “reasonable person” could, in fact, understand the policies, “notice and choice” fails as a framework. Such a failure has broad international implications since websites extend their reach beyond the United States

    Towards a Certified Reference Monitor of the Android 10 Permission System

    Get PDF
    Android is a platform for mobile devices that captures more than 85% of the total market share [International Data Corporation (IDC), 2020]. Currently, mobile devices allow people to develop multiple tasks in different areas. Regrettably, the benefits of using mobile devices are counteracted by increasing security risks. The important and critical role of these systems makes them a prime target for formal verification. In our previous work [Betarte et al., 2018], we exhibited a formal specification of an idealized formulation of the permission model of version 6 of Android. In this paper we present an enhanced version of the model in the proof assistant Coq, including the most relevant changes concerning the permission system introduced in versions Nougat, Oreo, Pie and 10. The properties that we had proved earlier for the security model have been either revalidated or refuted, and new ones have been formulated and proved. Additionally, we make observations on the security of the most recent versions of Android. Using the programming language of Coq we have developed a functional implementation of a reference validation mechanism and certified its correctness. The formal development is about 23k LOC of Coq, including proofs

    Interoperability and FAIRness through a novel combination of Web technologies

    Get PDF
    Data in the life sciences are extremely diverse and are stored in a broad spectrum of repositories ranging from those designed for particular data types (such as KEGG for pathway data or UniProt for protein data) to those that are general-purpose (such as FigShare, Zenodo, Dataverse or EUDAT). These data have widely different levels of sensitivity and security considerations. For example, clinical observations about genetic mutations in patients are highly sensitive, while observations of species diversity are generally not. The lack of uniformity in data models from one repository to another, and in the richness and availability of metadata descriptions, makes integration and analysis of these data a manual, time-consuming task with no scalability. Here we explore a set of resource-oriented Web design patterns for data discovery, accessibility, transformation, and integration that can be implemented by any general- or special-purpose repository as a means to assist users in finding and reusing their data holdings. We show that by using off-the-shelf technologies, interoperability can be achieved atthe level of an individual spreadsheet cell. We note that the behaviours of this architecture compare favourably to the desiderata defined by the FAIR Data Principles, and can therefore represent an exemplar implementation of those principles. The proposed interoperability design patterns may be used to improve discovery and integration of both new and legacy data, maximizing the utility of all scholarly outputs

    An Ontology for Sustainability Reporting Based on Global Reporting Initiative (GRI) G4

    Get PDF
    The aim of this research is to fill the gap by developing ontology for Sustainability Reporting based on GRI G4 Guidelines. The chief research question is: What is the best approach to developing an Ontological Model for the knowledge domain Sustainability Reporting? The main objective of this research is to develop such ontology for Sustainability Reporting based on GRI G4.The developed ontology for Sustainability Reporting was validated by applying it to existing business data
    corecore