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Abstract
Android is a platform for mobile devices that captures more than 85% of the total market share [14].
Currently, mobile devices allow people to develop multiple tasks in different areas. Regrettably, the
benefits of using mobile devices are counteracted by increasing security risks. The important and
critical role of these systems makes them a prime target for formal verification. In our previous
work [10], we exhibited a formal specification of an idealized formulation of the permission model
of version 6 of Android. In this paper we present an enhanced version of the model in the proof
assistant Coq, including the most relevant changes concerning the permission system introduced
in versions Nougat, Oreo, Pie and 10. The properties that we had proved earlier for the security
model have been either revalidated or refuted, and new ones have been formulated and proved.
Additionally, we make observations on the security of the most recent versions of Android. Using
the programming language of Coq we have developed a functional implementation of a reference
validation mechanism and certified its correctness. The formal development is about 23k LOC of
Coq, including proofs.
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1 Introduction

Android [24] is the most used mobile OS in the world, capturing approximately 85% of the
total market-share [14]. It offers a huge variety of applications in its official store that aim to
help people in their daily activities, many of them critical in terms of privacy. In order to
guarantee their users the security they expect, Android relies on a multi-party consensus
system where user, OS and application must be all in favour of performing a task. This
security framework is built upon a system of permissions, which are basically tags that
developers declare on their applications to gain access to sensitive resources. Whenever an
action that requires some of this permissions is executed for the first time, the user will be
asked for authorization and if provided, the OS will ensure that only the required access is
granted. The important and critical role of this security mechanism makes it a prime target
for (formal) verification.

Security models play an important role in the design and evaluation of security mechanisms
of systems. Earlier, their importance was already pointed in the Anderson report [1], where
the concept of reference monitor was first introduced. This concept defines the design
requirements for implementing what is called a reference validation mechanism, which shall
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3:2 Towards a Certified Reference Monitor of the Android 10 Permission System

be responsible for enforcing the access control policy of a system. For ensuring the correct
working of this mechanism three design requirements are specified: i) the reference validation
mechanism (RVM) must always be invoked (complete mediation); ii) the RVM must always
be tamper-proof (tamper-proof ); and iii) the RVM must be small enough to be subject to
analysis and tests, the completeness of which can be assured (verifiable).

The work presented here is concerned with the verifiability requirement. In particular we
put forward an approach where formal analysis and verification of properties is performed on
an idealized model that abstracts away the specifics of any particular implementation, and
yet provides a realistic setting in which to explore the issues that pertain to the realm of
(critical) security mechanisms of Android. The formal specification of the reference monitor
shall be used to establish and prove that the security properties that constitute the intended
access control policy are satisfied by the modeled behavior of the validation mechanisms.

Contributions. In our previous work [10] we presented a formal specification of an idealized
formulation of the permission model of version 6 of Android. We also developed, using the
programming language of Coq [27], an executable (functional) specification of the reference
validation mechanism and we proved its correctness conforming to the specified model.
Lastly, we used the program extraction mechanism provided by Coq [18] to derive a certified
Haskell implementation of the reference validation mechanism. Here we present an enhanced
version of the model, including the most relevant changes concerning the permission system
introduced in versions Nougat, Oreo, Pie and 10. Some of these changes don’t have a
direct impact on our abstract model. In those cases, an informal analysis is included. The
executable specification was also updated, and with that, the derived implementation as well.
The properties that we had proved for the security model have been either revalidated or
refuted, and new ones have been formulated and proved. The formal development is about
23k LOC of Coq, including various lemmas and their proofs.

Organization of the paper. Section 2 reviews the security mechanisms of Android and
briefly describes the changes introduced in the later versions. Sections 3 and 4 present the
formal axiomatic specification and the semantics of the certified implementation, respectively.
Both sections discuss relevant properties concerning the new features. Section 5 considers
related work and finally, Section 6 concludes with a summary of our contributions and
directions for future work. The full formalization is available at https://github.com/
g-deluca/android-coq-model [19] and can be verified using the Coq proof assistant. A
preliminary version of this paper is accessible on arXiv [20].

2 Android’s security model

2.1 Basic security mechanisms
The Android security model is primarily based on a sandbox and permission mechanism. Each
application runs in a private virtual machine with a unique ID assigned to it, which means
that one application’s code is isolated from the code of the rest. This isolation means that, by
default, applications can not interact with each other and have limited access to the OS. For
example, if an application tries to do something malicious, like reading the user’s contacts
without permission, the action will fail due to the lack of privileges. However, these actions
could also be started by trusted applications, and therefore, need to be done. Android’s
permission system is the mechanism in charge of deciding which of these actions should occur
and which ones should not, depending on the permissions that each application has.

https://github.com/g-deluca/android-coq-model
https://github.com/g-deluca/android-coq-model
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Every permission is identified by a unique name/text, has a protection level and may
belong to a permission group. Furthermore, permissions can be classified into two groups:
the ones defined by an application, for the sake of self-protection; and those predefined by
Android, which are required to gain access to certain system features, like internet or location.
Depending on the protection level of the permission, the system defines the rules to grant
that permission. There are three classes of permission levels [4]: i) normal, these permissions
can be automatically granted since they cover data or resources where there’s very little
risk to the user’s privacy or the operation of other apps; ii) dangerous, permissions of this
level provide access to data or resources that may be sensitive or could potentially affect
the operation of other applications, and explicit user approval is needed to be granted; and
iii) signature, a permission of this level is granted only if the application that requires it and
the application that defined it are both signed with the same certificate. An application must
declare –in an XML file called AndroidManifest– the set of permissions it needs to acquire
further capacities than the default ones. From version 6 of Android, dangerous permissions
are granted at runtime whereas both normal and signature are given when the application is
installed.

Permissions may belong to groups that reunite a device’s capabilities. The main purpose
of grouping permissions in this way is to handle permission requests at the group level, in
order to avoid overwhelming the user with too many questions. For example, the SMS group
includes the permission needed to read text messages as well as the one needed to receive
them (both considered to be dangerous). Whenever an application needs one of those for the
first time, the user will be asked to authorize the whole group. In Section 2.2, we explain
what authorizing a group means depending on the platform version.

An Android application is built up from components. A component is a basic unit that
provides a particular functionality and that can be run by any other application with the
right permissions. There exist four types of components [2]: i) activity, which is essentially a
user interface of the application; ii) service, a component that executes in the background
without providing an interface to the user; iii) content provider, a component intended
to share information among applications; and iv) broadcast receiver, a component whose
objective is to receive messages, sent either by the system or an application, and trigger
the corresponding actions. The communication between components is achieved with the
exchange of special messages called intents, which can be either i) explicit, meaning that
the target application is specified; or ii) implicit, where only the action to be performed is
declared and the system determines which application will run the task (if there is more
than one capable application, the user is allowed to choose). In order to be candidates for
the resolution of implicit intents, an application must declare on their manifest an intent
filter that indicates the types of intents it can respond to.

Android provides two mechanisms by which an application can delegate its own permissions
to another one. These mechanisms are called pending intents and URI permissions. An
intent may be defined by a developer to perform a particular action. A PendingIntent
specifies a reference to an action, which might be used by another application to perform the
operation with the same permissions and identity of the one that created the intent. The
URI permissions mechanism can be used by an application that has read/write access to a
content provider to temporarily delegate those permissions to another application. These
permissions are revoked once the receiver activity or service becomes inactive.

TYPES 2020



3:4 Towards a Certified Reference Monitor of the Android 10 Permission System

2.2 A brief review on the changelog
As we described in our previous work [10], the sixth version of Android introduced an
important change to the system, allowing the users to handle permissions at runtime. In this
section, we give a short account of the changes introduced between Android Nougat (7) and
Android 10, that had a significant impact on the permission system.

Filesystem

In order to improve security, the private directory of applications targeting1 Android 7.0 or
higher has restricted access: only the owner is capable of reading, writing or executing files
stored in it. This configuration prevents leakage of metadata of private files, like the size or
existence. With this change, applications are no longer able to share files simply by changing
the file permissions and sharing their private URI; a content provider must be used in order
to generate a reference to the file. With this approach, a new kind of URI is generated, which
grants a temporary permission that will be available for the receiver activity or service only
while they are active/running.

Our previous model already allowed granting temporary permissions to content providers
URIs, so no change was required to formalize this new feature.

Grouped permissions

Prior to Android 8, if an application requested a grouped permission at runtime and the
user authorized it, the system also granted the rest of the permissions from the same group
that were declared on the manifest. This behaviour was incorrect since it violated the
intended least privilege security policy claimed by the designers of the platform. For ap-
plications targeting Android 8 or higher, this action was corrected and only the requested
permission is granted. However, once the user authorized a group, all subsequent requests
for permissions in that group are automatically granted. This change was added to the model.

Normal grouped permissions. According to Android’s official documentation, any per-
mission can belong to a permission group regardless of protection level [3]. However, it is
not specified if normal and dangerous permissions can share a group or, in case that it
is possible, how the system should handle this situation. A few questions we have raised
are the following: i) Is the authorization to automatically concede permissions from that
group granted at installation time together with the normal permissions?; ii) Is the user
warned about that decision?; iii) If that is the case, then there’s a contradiction with the
documentation, since it claims that a permission’s group only affects the user experience if
the permission is dangerous; and iv) If it’s not, how does the system avoid that dangerous
permissions from the same group are not automatically granted later by the system?

In this work we formalized a worst-case scenario (that still suits the informal specification
given by the authors of the platform), where a normal permission enables the automatic
granting of dangerous permissions belonging to the same group. We formally discuss this
situation in Section 3.4.

1 Applications can target a particular version of the system. Android uses this setting to determine
whether to enable any compatibility behaviors or features.
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Privacy changes

Android Pie (9) introduced several changes aiming to enhance users’ privacy, such as limiting
background apps’ access to device sensors, restricting information retrieved from Wi-Fi scans,
and adding new permission groups and rules to reorganize phone calls and phone state related
permissions. Later, the tenth version of the platform continued adding limitations to services:
a new permission for accessing the location in the background was added. Furthermore,
Android 10 placed restrictions on when a service can start an activity, in order to minimize
interruptions for the user and keep the user more in control of what is shown on their screen.

These changes are specific to the implementation, meaning that they have no impact on
an abstract representation like ours.

Permission check on legacy apps

Applications that target Android 5.1 or lower are considered to be old2. If an old application
runs on an Android 10 system for the first time, a prompt appears on the screen, giving the
user an opportunity to revoke access to permissions that the system previously granted at
install time. This feature has been added to our model.

3 Formalization of Android’s permission system

In this section we describe the axiomatic semantics of our model of the system, focusing on
the features introduced in the later versions. We also discuss some of the verified properties.

Formal language used. Coq is an interactive theorem prover based on higher order logic
that allows to write formal specifications and interactively generate machine-checked proofs
of theorems. It also provides a (dependently typed) functional programming language that
can be used to write executable algorithms. The Coq environment also provides program
extraction towards languages like Ocaml and Haskell for execution of (certified) algorithms
[17, 18]. In this work, enumerated types and sum types are defined using Haskell-like
notation; for example, option T

def= None | Some (t : T ). Record types are of the form
{l1 : T1, . . . , ln : Tn}, whereas their elements are of the form {t1, . . . , tn}. Field selection is
written as r.li. We also use {T} to denote the set of elements of type T . Finally, the symbol
× defines tuples, and nat is the datatype of natural numbers. We omit Coq code for reasons
of clarity; this code is available in [19].

3.1 Model states
The Android security model we have developed has been formalized as an abstract state
machine. In this model, states (AndroidST) are modelled as 13-tuples that store dynamic
data about the system such as the installed applications and their current permissions, as well
as static data like the declared manifest of each installed app. A complete formal definition
is given in Figure 1.

The type PermId represents the set of permissions identifiers; PermGroup, the set of
permission groups identifiers; Comp, the application components whose code will run on the
system; AppId represents the set of application identifiers; iComp is the set of identifiers of
running instances of application components; ContProv is a subset of Comp, a special type

2 We can also refer to them as legacy applications.

TYPES 2020



3:6 Towards a Certified Reference Monitor of the Android 10 Permission System

Auxiliary definitions
OpTy ::= read | write | rw
PermLvl ::= Dangerous | Normal | Signature | Signature/System
Perm ::= PermId × option PermGroup × PermLvl
CompInstance ::= iComp × Comp
Manifest ::= {Comp} × option nat × option nat × {PermId} × {Perm} × option PermId

State components
InstApps ::= {AppId}
VerifiedApps ::= {AppId}
AppPS ::= {AppId × PermId}
PermsGr ::= {AppId × PermGroup}
CompInsRun ::= {CompInstance}
DelPPerms ::= {AppId × ContProv × Uri × OpTy}
DelTPerms ::= {iComp × ContProv × Uri × OpTy}
ARVS ::= {AppId × Res × Val}
Intents ::= {iComp × Intent}
Manifests ::= {AppId × Manifest}
Certs ::= {AppId × Cert}
AppDefPS ::= {AppId × Perm}
SysImage ::= {SysImgApp}
AndroidST ::= InstApps × VerifiedApps × PermsGr × AppPS × CompInsRun × DelPPerms × DelTPerms ×

ARVS × Intents × Manifests × Certs × AppDefPS × SysImage

Figure 1 Android state.

of component that allows sharing resources among different applications; a member of the
type Uri is a particular URI (uniform resources identifier); the type Res represents the set
of resources an application can have (through its content providers, members of ContProv);
the type Val is the set of possible values that can be written on resources; an intent –i.e. a
member of type Intent– represents the intention of a running component instance to start or
communicate with other applications; a member of SysImgApp is a special kind of application
which is deployed along with the OS itself and has certain privileges, like being impossible to
uninstall.

The first component of the state records the identifiers (AppId) of the applications
installed by the user. The second component is a subset of the first one, and represents those
applications that are considered to be old but have already been verified, also by the user.
The third component keeps track of the permissions granted to every application present in
the system, including the ones preinstalled on the system. Similarly, the next component
holds the information about what permission groups have already been authorized by the user
on each app. The fifth component of the state stores the set of running component instances
(CompInstance), while the components DelPPerms and DelTPerms store the information
concerning permanent and temporary permissions delegations, respectively3. The eighth
and ninth components of the state store respectively the values (Val) of resources (Res) of
applications and the set of intents (Intent) sent by running instances of components (iComp)
not yet processed. The four last components of the state record information that represents
the manifests of the applications installed by the user, the certificates (Cert) with which they
were signed and the set of permissions they define. The last component of the state stores
the set of (native) applications installed in the Android system image, information that is
relevant when granting permissions of level Signature/System.

A manifest (Manifest) is modelled as a 6-tuple whose members respectively declare
application components (set of components, of type Comp, included in the application);
optionally, the minimum version of the Android SDK required to run the application;

3 A permanent delegated permission represents that an app has delegated permission to perform an
operation on the resource identified by an URI. A temporary delegated permission refers to a permission
that has been delegated to a component instance.



G. De Luca and C. Luna 3:7

optionally, the version of the Android SDK targeted on development; the set of permissions
it may need to run at its maximum capability; the set of permissions it declares; and the
permission required to interact with its components, if any. Application components are all
denoted by a component identifier. A content provider (ContProv), in addition, encompasses
a mapping to the managed resources from the URIs assigned to them for external access.
While the components constitute the static building blocks of an application, all runtime
operations are initiated by component instances, which are represented in our model as
members of an abstract type.

Valid states. The states defined in this way include some cases that are not relevant with
the model we are trying to analyze. For example, we don’t want a state where a preinstalled
application and one installed by the user have the same identifier. In order to prevent
this inconsistencies, we define a notion of valid state that captures several well-formedness
conditions. It is formally defined as a predicate valid_state on the elements of type
AndroidST. This predicate holds on a state s if the following conditions are met:

all the components both in installed applications and in system applications have different
identifiers;
no component belongs to two different applications present in the device;
no running component is an instance of a content provider;
every temporally delegated permission has been granted to a currently running component
and over a content provider present in the system;
every running component belongs to an application present in the system;
every application that sets a value for a resource is present in the system;
the domains of the partial functions Manifests, Certs and AppDefPS are exactly the
identifiers of the user-installed applications;
the domains of the partial functions AppPS and PermsGr are exactly the identifiers of the
applications in the system, both those installed by the users and the system applications;
every installed application has an identifier different from those of the system applications,
whose identifiers differ as well;
all the permissions defined by applications have different identifiers;
every partial function is indeed a function, that is, their domains don’t have repeated
elements;
every individually granted permission is present in the system; and
all the sent intents have different identifiers.

All these safety properties have a straightforward interpretation in our model. The full formal
definition of the predicate is available in [19].

3.2 Action semantics
We modelled the different functionalities provided by the Android security system as a set of
actions (of type Action) that determine how the system is able to transition from one state
to another. Table 1 summarises the actions specified in our previous model that remained
mostly the same since the new features didn’t affect them whereas Table 2 groups those that
are new or that suffered a big semantic change.

The behaviour of each action is specified in terms of a precondition (Pre : AndroidST →
Action → Prop) and a postcondition (Post : AndroidST → Action → AndroidST → Prop).

TYPES 2020



3:8 Towards a Certified Reference Monitor of the Android 10 Permission System

Table 1 Legacy actions.

install app m c lRes Install application with id app, whose manifest is m, is signed with
certificate c and its resources list is lRes.

uninstall app Uninstall the application with id app.
read ic cp u The running comp. ic reads the resource corresponding to URI u

from content provider cp.
write ic cp u val The running comp. ic writes value val on the resource corresponding

to URI u from content provider cp.
startActivity i ic The running comp. ic asks to start an activity specified by the intent

i.
startActivityRes i n ic The running comp. ic asks to start an activity specified by the intent

i, and expects as return a token n.
startService i ic The running comp. ic asks to start a service specified by the intent i.
sendBroadcast i ic p The running comp. ic sends the intent i as broadcast, specifying that

only those components who have the permission p can receive it.
sendOrdBroadcast i ic p The running comp. ic sends the intent i as an ordered broadcast,

specifying that only those components who have the permission p

can receive it.
sendSBroadcast i ic The running comp. ic sends the intent i as a sticky broadcast.
resolveIntent i app Application app makes the intent i explicit.
stop ic The running comp. ic finishes its execution.
grantP ic cp app u pt The running comp. ic delegates permanent permissions to application

app. This delegation enables app to perform operation pt on the
resource assigned to URI u from content provider cp.

revokeDel ic cp u pt The running comp. ic revokes delegated permissions on URI u from
content provider cp to perform operation pt.

call ic sac The running comp. ic makes the API call sac.

Table 2 New or modified actions.

grant p app Grant the permission p to the application app with user confirmation.
grantAuto p app Grant automatically the permission p to the application app (without

user confirmation).
revoke p app Remove an ungrouped permission p from the application app.
revokePermGroup g app Remove the every permission of group g from the application app.
hasPermission p app Check if the application app has the permission p.
receiveIntent i ic app Application app receives the intent i, sent by the running comp. ic.
verifyOldApp app Application app granted permissions are verified by the user
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For instance, the axiomatic semantics of the new feature about automatic granting of
permissions grantAuto is given by:

P re(s, grantAuto p app) def=
(∃m : Manifest, m = getManifestF orApp(app, s)

∧ getP ermissionId(p) ∈ (use m)) ∧
(isSystemP erm p ∨ usrDefP erm p) ∧
p /∈ grantedP erms(app, s) ∧
permLevel(p) = dangerous ∧
(∃g : PermGroup, getP ermissionGroup(p) = Some g

∧ g ∈ getAuthorizedGroups(app, s))
P ost(s, grantAuto p app, s′) def=

grantP erm(app, p, s, s′) ∧
sameOtherF ieldsOnGrantAuto(s, s′)

The precondition establishes several conditions that must be fulfilled before this action is
able to transition. The first one requires that the permission p is listed on the application’s
manifest (and this manifest, of course, is required to exist). Regarding the permission, it is
also required that it is defined either by the user or the system, that its level is dangerous

and that it has not been already granted to app. Up to this point, the precondition of
grantAuto is exactly the same as the one of grant. The main difference is established by
the following condition: the permission at issue should belong to a group g and the system
should know that the user had previously authorized that group for automatic granting.

The postcondition of grantAuto p a requires that for an initial state s and a final state
s′, the individual permission p is granted to application app. This condition is enforced
by the grantPerm a p s s′ predicate which only alters the state in component that maps
applications with their current dangerous permissions. Every other component of the state
remains the same.

3.3 Executions
Whenever the system attempts to execute an action a over a valid state s, there are two
possible outcomes. If the precondition holds, the system will transition to another state s′

where the postcondition of a is established; but if the precondition is not satisfied on s, then
the state remains unchanged and the system answers with an error message determined by
the relation ErrorMsg4.

Formally, the possible answers of the system are defined by the type Response def=
ok | error (ec : ErrorCode) and the executions can be specified with this operational
semantics:

valid_state(s) Pre(s, a) Post(s, a, s′)

s ↪
a/ok−−−→ s′

valid_state(s) ErrorMsg(s, a, ec)

s ↪
a/error(ec)−−−−−−−→ s

One-step execution with error management preserves valid states.

▶ Lemma 1 (Validity is invariant).
∀ (s s′ : AndroidST)(a : Action)(r : Response), s ↪

a/r−−→ s′ → valid_state(s′)

4 Given a state s, an action a and an error code ec, ErrorMsg(s, a, ec) holds iff error ec is an acceptable
response when the execution of a is requested on state s.

TYPES 2020
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The property is proved by case analysis on a, for each condition in valid_state, using several
auxiliary lemmas [19].

System state invariants, such as state validity, are useful to analyze other relevant
properties of the model. In particular, the results presented in this work are obtained from
valid states of the system.

3.4 Reasoning over the specified model
In this section we present and discuss some properties about the Android 10 security
framework. We focus on safety-related properties about the changes introduced on the later
versions of Android (mainly Oreo and 10) rather than on security issues. Nevertheless, we
also found potentially dangerous behaviours that may not be considered in the informal
documentation of the platform and we formally reasoned about them as well. The full formal
definition of these properties can be found in [19], along with the corresponding proofs.

On Table 3 we introduce helper functions and predicates used to define the properties
that will follow.

Table 3 Helper functions and predicates.

Function/Predicate Description
appHasP ermission(app, p, s) holds iff app is considered to have permission p on state s.
canGrant(cp, u, s) holds iff the content provider cp allows the delegation of permis-

sions over the resource at URI u on state s.
canStart(c′, c, s) holds if the app containing component c′ (installed in s) has

the required permissions to create a new running instance of c.
cmpP rotectedByP erm(c) returns the permission by which the component c is protected.
componentIsExported(c) holds iff the component c is exported and can be accessed from

other applications.
existsRes(cp, u, s) holds iff the URI u belongs to the content provider cp on s.
getAppF romCmp(c, s) given a component c on s, returns the app to which it belongs.
getAppRequestedP erms(m) given the manifest m of an app, returns the set of permissions

it uses.
getDefP ermsApp(app, s) returns the set of permissions defined by app on state s.
getGrantedP ermsApp(app, s) returns the set of indvidual permissions granted to app on s.
getAuthorizedGroups(app, s) returns the set of permission groups that have been authorized

for automatic granting for app on s.
getInstalledApps(s) returns the set of identifiers of the applications installed on s.
getManifestF orApp(app, s) returns the manifest of application app on state s.
getP ermissionId(p) returns the identifier of permission p.
getP ermissionLevel(p) returns the permission level of permission p.
getP ermissionGroup(p) returns Some g if the permission p is grouped or None if not.
getRunningComponents(s) returns the set of pairs consisting of a running instance id, and

its associated component currently running on state s.
inApp(c, app, s) holds iff the component c belongs to application app on state s.
permissionRequiredRead(c) returns the permission required for reading the component.
permSACs(p, sac) holds iff permission p is required for performing the system call

sac (of type SACall).
oldAppNotV erified(a, s) holds iff the application a is considered old and the user hasn’t

verified it in state s.
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The first property that we proved establishes a safety condition about the automatic
granting of grouped permissions. It states that the system is not able to transition with this
action unless the group of the permission involved is already authorized.

▶ Property 1 (Automatic grant only possible on authorized groups).
∀(s, s′ : AndroidST)(p : Perm)(g : PermGroup)(app : AppId),
getPermissionLevel(p) = dangerous ∧ getPermissionGroup(p) = Some g ∧
g /∈ getAuthorizedGroups(app, s) → ¬s ↪

grantAuto p app/ok−−−−−−−−−−−−→ s′

Android’s permission system ensures that an automatic granting can only occur on permissions
that belong to authorized groups.

However, a few questions arise when trying to formally describe the situations in which
a group is authorized. For instance, there is at least one valid state where the system can
automatically grant a grouped permission to an app even though that the application has no
other permission of the same group granted at that moment. This means that an application
can have a group authorized for automatic granting via a permission that no longer exists.
This is not necessarily a security flaw. It may be a design principle to avoid asking the user
to authorize the same group too many times, but the decision is not clear or disambiguated
in the official documentation.

▶ Property 2 (Auto-granting permission without having others of the same group).
∃(s : AndroidST)(p : Perm)(g : PermGroup)(app : AppId), valid_state(s) ∧
getPermissionLevel(p) = dangerous ∧ getPermissionGroup(p) = Some g ∧
¬(∃(p′ : Perm), p′ ∈ getGrantedPermsApp(app, s) ∧
getPermissionGroup(p′) = Some g) ∧ Pre(s, grantAuto p a)
System can automatically grant a permission even though there is currently no other permis-
sion of that group granted to the app.

The next property formalizes the situation described in Section 2.2 about normal and
dangerous permissions sharing a group. We believe that permissions with different protection
levels should not be allowed to share a group, since it could lead to a privilege escalation
scenario.

▶ Property 3 (Dangerous permission automatically granted without explicit consent).
∀(s, s′ : AndroidST) (a : AppId) (m : Manifest) (c : Cert) (resources : list Res)
(g : PermGroup) (pDang pNorm : Perm), s ↪

install a m c resources/ok−−−−−−−−−−−−−−−−−−→ s′ →
getPermissionLevel(pDang) = dangerous → getPermissionGroup(pDang) = Some g →
getPermissionLevel(pNorm) = normal → getPermissionGroup(pNorm) = Some g →
{pDang, pNorm} ⊆ getAppRequestedPerms(m) → Pre(s′, grantAuto pDang a)
An application that uses a normal and a dangerous permission of the same group, can obtain
the dangerous one automatically after being installed.

Users are able to revoke permissions at runtime. However, the UI does not allow to revoke
grouped permissions individually, the complete group is invalidated instead. We consider this
behavior to be expected and desirable, and therefore, we proved that our model is consistent
with it.

▶ Property 4 (Revoking group revokes grouped individual permissions).
∀(s, s′ : AndroidST) (g : PermGroup) (app : AppId), s ↪

revokePermGroup g app/ok−−−−−−−−−−−−−−−−→ s′ →
¬(∃(p : Perm), p ∈ getGrantedPermsApp(app, s′) ∧ getPermissionGroup(p) = Some g)
Whenever a user revokes a permission group from an application, every individual permission
that belongs to that group is revoked.
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The following property reasons about another change mentioned in Section 2.2. It
formalizes a good behaviour about the unverified legacy applications.

▶ Property 5 (Unverified old app cannot receive intents).
∀(s, s′ : AndroidST) (i : Intent) (ic : iComp) (app : AppId),
oldAppNotV erified(app, s) → ¬s ↪

receiveIntent i ic app/ok−−−−−−−−−−−−−−−−−→ s′

An old application that hasn’t been verified by the user yet cannot receive intents, meaning
that it can’t start activities as well.

Finally, we include here a property that holds since version 6 of Android. Any application
that wants to send information through the network must have the permission INTERNET,
but since this permission is of level normal, the application just needs to declare it as used
in its manifest. This will give access to the network in an implicit and irrevocable way.
Once again, this has been criticized due to the potential information leakage it allows. The
following property formally generalizes this situation and embodies a reasonable argument
to roll back this security issue introduced in Android Marshmallow.

▶ Property 6 (Internet access implicitly and irrevocably allowed).
∀(s : AndroidST)(sac : SACall)(c : Comp)(ic : iComp)(p : Perm),
valid_state(s) → permSAC(p, sac) →
getPermissionLevel(p) = normal → getPermissionId(p) ∈
getAppRequestedPerms(getManifestForApp(getAppFromCmp(c, s), s)) →
(ic, c) ∈ getRunningComponents(s) → s ↪

call ic sac/ok−−−−−−−−−→ s

If the execution of an Android API call only requires permissions of level normal, it is enough
for an application to list them as used on its manifest file to be allowed to perform such call.

4 A certified reference validation mechanism

The implementation we developed in our previous model consisted in a set of Coq functions
such that for every action in our axiomatic specification there exists a function which stands
for it. In this work we kept this approach, updating those functions for which its axiomatic
counterpart changed and adding new ones for the new actions verifyOldApp and grantAuto.

Functions that implement actions are basically state transformers. Their definition follows
this pattern: first, it is checked whether the precondition of the action is satisfied in state
s, and then, if that is the case, another function is called to return a state s′ where the
postcondition of the action holds. Otherwise, the state s is returned unchanged along with
an appropriate response specifying an error code which describes the failure. More formally,
the returned value has type Result

def= {resp : Response, st : AndroidST}. In Figure 2 we
present, as an example, the function that implements the execution of the grant action. The
Coq code of this function, together with that of the remaining ones, can be found in [19]5.
The function grant_pre is defined as the nested validation of each of the properties of the
precondition, specifying which error to throw when one of them doesn’t hold. In general,
every <action>_pre function is defined this way. The function grant_post implements the
expected behaviour of the grant action: the permission perm is prepended to the list6 of
given permissions of the application app and, if that permission is grouped, that group is
also added to the list of permissions groups authorized by the user on that application.

5 We omit here the formal definition of these functions due to space constraints.
6 We implement the sets in the model with lists of Coq.
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Definition grant_safe(perm, app, s) : Result :=
match grant_pre(perm, app, s) with

| Some ec ⇒ {error(ec), s}
| None ⇒ {ok, grant_post(perm, app, s)}

end.

Figure 2 The function that implements the grant action.

Step

All of these functions are grouped into a step function, which basically acts as an action
dispatcher7. Figure 3 show the structure of this function.

Definition step(s, a) :=
match a with

| . . . ⇒ . . .

| grant perm app ⇒ grant_safe(perm, app, s)
| . . . ⇒ . . .

end.

Figure 3 Structure of the step function.

Traces

We have modeled the execution of the permission validation mechanism during a session of
the system as a function that implements the execution of a list of actions starting in an
initial system state. The output of the execution, a trace, is the corresponding sequence of
states.

Function trace (s : AndroidST) (actions : list Action) : list AndroidST :=
match actions with

| nil ⇒ nil

| action :: rest ⇒ let s′ := (step s action).st in s′ :: trace s′ rest

end.

4.1 Correctness of the implementation
We proceed now to outline the proof that our functional implementation of the security
mechanisms of Android correctly implements the axiomatic model. This property has been
formally stated as the following correctness theorem which in turn was verified using Coq [19].

▶ Theorem 2 (Correctness of the reference validation mechanism).
∀ (s : AndroidST) (a : Action), valid_state(s) → s ↪

a/step(s,a).resp−−−−−−−−−−→ step(s, a).st

The proof of this theorem starts by performing a case analysis on the (decidable) predicate
Pre(s, a). Then, in case that the predicate holds, we apply Lemma 3; otherwise we continue
by applying Lemma 4.

7 Mechanism to trigger actions, on a state, according to the type of event considered.
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▶ Lemma 3 (Correctness of valid execution).
∀ (s : AndroidST) (a : Action), valid_state(s) → Pre(s, a) →
s ↪

a/ok−−−→ step(s, a).st ∧ step(s, a).resp = ok

▶ Lemma 4 (Correctness of error execution).
∀ (s : AndroidST) (a : Action), valid_state(s) → ¬Pre(s, a) → ∃ (ec : ErrorCode),
step(s, a).st = s ∧ step(s, a).resp = error(ec) ∧ ErrorMsg(s, a, ec)

The proof of these lemmas proceeds by applying functional induction on step(s, a). Then,
in Lemma 3, the proof continues by applying the corresponding subproof of soundness of the
function that implements each action; whereas in Lemma 4, a subproof about the existence
of a proper error code is provided.

4.2 Reasoning over the certified reference validation mechanism
In this section we present several security properties we have stated and proved about the
function trace defined in Section 4.

The first property states that in Android 10, if an application that is considered to be
old (as we defined in Section 2.2) is able to run, then it has been verified and validated by
the user previously.

▶ Property 7 (Old applications must be verified).
∀(initState, lastState : AndroidST)(app : AppId)(l : list Action), valid_state(initState) →
app ∈ getInstalledApps(initState) → oldAppNotV erified(a, initState) →
canRun(a, lastState) → last(trace(initState, l), initState) = lastState →
uninstall app /∈ l → verifyOldApp app ∈ l

The only way for an old application to be able to execute is if the user verified it.

The next property establishes that for an application to have any dangerous permission
(grouped or ungrouped) it must be explicitly granted to it, either by the user or automatically
by the system.

▶ Property 8 (Dangerous permissions must be explicitly granted).
∀(initState, lastState : AndroidST)(app : AppId)(p : Perm)(l : list Action),
valid_state(initState) → app ∈ getInstalledApps(initState) →
getPermissionLevel(p) = dangerous → appHasPermission(app, p, lastState) →
¬appHasPermission(app, p, initState) → uninstall app /∈ l →
last(trace(initState, l), initState) = lastState → (grant p app ∈ l ∨ grantAuto p app ∈ l)
The only way for an application to get a permission is if the user authorized it, or if the user
authorized a group and the system is able to automatically grant it.

The following property formally states that if an application used to have a permission
that was later revoked, only re-granting it will allow the application to have it again.

▶ Property 9 (Revoked permissions must be regranted).
∀(initState, sndState, lastState : AndroidST)(app : AppId)(p : Perm)(l : list Action),
valid_state(initState) → getPermissionLevel(p) = dangerous →
p /∈ getDefPermsForApp(app, initState) →
step(initState, revoke p app).st = sndState →
step(initState, revoke p app)).resp = ok → uninstall app /∈ l → grant p app /∈ l →
grantAuto p app /∈ l → last(trace(sndState, l), sndState) = lastState →
¬appHasPermission(app, p, lastState)
If a permission is revoked from an application, only regranting it will allow the application to
have it again.



G. De Luca and C. Luna 3:15

Whenever an application app receives a READ/WRITE permission perm, it also receives the
right to delegate this permission to another application, say app′, to access that same resource
on its behalf. However, if perm is later revoked from application app, there’s a chance that
app′ still has access to that resource, since delegated permissions are not recursively
revoked. The following property formalizes this situation and is a proof that the current
specification allows a behavior which is arguably against the user’s will.

▶ Property 10 (Delegated permissions are not recursively revoked).
∀(s : AndroidST)(p : Perm)(app, app′ : AppId)(ic, ic′ : iComp)(c, c′ : Comp)(u : Uri)
(cp : CProvider), valid_state(s) → step(s, grant p app).resp = ok →
getAppFromCmp(c, s) = app → getAppFromCmp(c′, s) = app′ →
(ic, c) ∈ getRunningComponents(s) → (ic′, c′) ∈ getRunningComponents(s) →
canGrant(cp, u, s) → existsRes(cp, u, s) → componentIsExported(cp) →
permissionRequiredRead(cp) = Some p →
let opsResult := trace(s, [grant p app, grantP ic cp app′ u Read,
revoke p app] in step(last(opsResult, s), read ic′ cp u).resp = ok

In Android 10, if a permission p is revoked for an application app not necessarily shall it be
revoked for the applications to which app delegated p.

The purpose of the following property is to show that with runtime permissions introduced
after Android 6, certain assertions on which a developer could rely in previous versions do
not hold. For example, a running component may have the right of starting another one
on a certain state, but may not be able to do so at a later time, even though no involved
application was uninstalled. The property still holds on the latest version of Android.

▶ Property 11 (The right to start an external component is revocable).
∀(initState : AndroidST)(l : listAction)(app, app′ : AppId)(c : Comp)(act : Activity)
(p : Perm), valid_state(initState) →
getPermissionLevel(p) = dangerous → permissionIsGrouped(p) = None →
app ̸= app′ → p /∈ getDefPermsApp(app, initState) → inApp(c, app, initState) →
inApp(act, app′, initState) → cmpProtectedByPerm(act) = Some p →
canStart(c, act, initState) → ∃(l : list Action), uninstall app /∈ l ∧
uninstall app′ /∈ l ∧ ¬canStart(c, act, last(trace(initState, l), initState))
A running component may have the right of starting another one on a certain state, but may
not be able to do so at a later time.

5 Related work

Several analyses have been carried out concerning the security of the Android permission
system. Plenty of them [11, 30, 13, 29, 23, 5] implement a static analysis tool that is capable
of detecting overprivileges and unwanted information flow on a set of applications. This
pragmatic approach may be helpful for Android users to keep their private information
secure, but no properties about the system can be established. Recently, Mayrhofer et al.
[22] described the Android security platform and documented the complex threat model and
ecosystem it needs to operate, but no formal analysis was performed in it.

Few works study the aspects of the permission enforcing framework in a formal way. In
particular, Shin et al. [25, 26] developed using Coq a framework that represents the Android
permission system, similarly to what we did. Although, that work does not consider the
different types of components, the interaction between a running instance and the system, the
R/W operation on a content provider, the semantics of the permission delegation mechanism.
Also, their work is based on an older version of the platform and some novel aspects, like the
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management of runtime permissions or the verification of legacy applications, are not included.
Similarly, Bagheri et al. [6] formalized Android’s permission protocol using Alloy [15]. The
analysis performed, however, was based on the ability to automatically find counterexamples
provided by the Alloy framework, which the authors claim to be tremendously helpful for
identifying vulnerabilities. A Coq-based approach like ours, requires more human effort to
identify a flaw but provides stronger guarantees on security and safety properties. Another
formal work on Android is CrashSafe [16], where the authors formalized in Coq the inter-
component communication mechanism and proved its safety with regard to failures (or
crashes). This work, similarly to ours, focus on safety properties rather than security ones.

On the other hand, many works have addressed the problem of relating inductively defined
relations and executable functions. In particular, Tollitte et al. [28] show how to extract a
functional implementation from an inductive specification in Coq, and [9] exhibits a similar
approach for Isabelle. Earlier, alternative approaches such as [7, 8] aim to provide reasoning
principles for executable specifications. In [12], the verification of properties of imperative
programs is performed using techniques based on the specialization of constrained logic
programs. In this work we are able to develop independently the specification of the reference
monitor and the implementation of the validation mechanism, considering that Coq provides
a reasoning framework based on higher order logic to perform proofs of specifications and
programs and a functional programming language. Other approaches could be considered to
develop the formalization. For instance, a logical approach like the one used in [12]. However,
a logical approach does not allow us to have the same functionalities in a unified formal
environment.

Specifically, in this work we present a model of a reference monitor and demonstrate
properties which shall hold for every correct implementation of the model. Then, we have
developed a functional implementation in Coq of the reference validation mechanism and
proved its correctness with respect to the specified reference monitor. Applying the program
extraction mechanism provided by Coq we have also derived a certified Haskell prototype of
the reference validation mechanism, which can be used to conduct verification activities on
actual real implementations of the platform. The results presented in this paper extend the
ones reported in [10, 21]. We have enriched the model presented in [10, 21] so as to consider
the changes introduced in Android permission system by version Nougat, Oreo, Pie and 10.

6 Final remarks

We have enhanced the formal specification considered in our previous work [10] with the new
features concerning the permission system that have been added during the later releases
of Android. With a conservative approach, we first analyzed the validity of the already
formulated properties and then established new ones about the novel changes; summing
up a total of 14 valid properties, without including the auxiliary lemmas that have been
separated just for modularization. Among these properties we included several that aim to
highlight how formal methods help to disambiguate unclear behaviours that may be inferred
from an informal specification. For instance, we found a potentially dangerous situation in
which an application can gain access to every dangerous permission that shares group with
a normal one, without explicit consent of the user (see Property 3). This scenario fits the
model (informally) described in the official documentation of the platform.

We also enriched our previous functional implementation of the reference validation
mechanism with these new characteristics and updated its correctness proof. As consequence,
the derived Haskell prototype obtained using the program extraction mechanism provided
by the proof assistant, has been updated as well. The full certified code is available in [19]
and is about 23k LOC of Coq, including proofs.
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One important goal of our work is to keep our formalization up to date with the
later versions of Android in order to constitute a reliable framework for reasoning about
its permission system. We aim to help to increase the confidence on Android’s security
mechanisms by providing certified guarantees about the enforcement of this measures. The
use of idealized models and certified prototypes is a good step forward but no doubt the
definitive step is to be able to provide similar guarantees concerning actual implementations
of the platform. We plan to use the certified extracted algorithm as a testing oracle and also
to conduct verification activities on actual implementations of the platform, following the
methodology proposed in [21]. In particular, we are investigating the use of that algorithm
to compare the results of executing an action on a real Android platform and executing that
same action on the correct program. This would allow us to monitor the actions performed
in a real system and assessing whether the intended security policy is actually enforced by
the particular implementation of the platform.

On September 8th 2020, Android 11 was released. This update includes features that
continue increasing the security of the device, such as auto-resetting permissions from unused
applications or one-time permissions for the most sensitive resources, like the microphone or
camera. In future work, we intend to add this features to our model.
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