226 research outputs found

    Freight distribution systems with cross-docking: a multidisciplinary analysis

    Get PDF
    Freight transport constitutes one of the main activities that influences economy and society, as it assures a vital link between suppliers and customers and it represents a major source of employment. Multi-echelon distribution is one of the most common strategies adopted by the transport companies in an aim of cost reduction. This paper presents the main concepts of multi-echelon distribution with cross-docks through a multidisciplinary analysis that includes an optimisation study (using both exact and heuristic methods), a geographic approach (based on the concept of accessibility) and a socio-economic analysis. a conceptual framework for logistics and transport pooling systems, as well as a simulation method for strategic planning optimisation.Freight transport systems, cross-docking, simulation, collaboration, socio-economic issues

    The Bi-objective Periodic Closed Loop Network Design Problem

    Get PDF
    © 2019 Elsevier Ltd. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Reverse supply chains are becoming a crucial part of retail supply chains given the recent reforms in the consumers’ rights and the regulations by governments. This has motivated companies around the world to adopt zero-landfill goals and move towards circular economy to retain the product’s value during its whole life cycle. However, designing an efficient closed loop supply chain is a challenging undertaking as it presents a set of unique challenges, mainly owing to the need to handle pickups and deliveries at the same time and the necessity to meet the customer requirements within a certain time limit. In this paper, we model this problem as a bi-objective periodic location routing problem with simultaneous pickup and delivery as well as time windows and examine the performance of two procedures, namely NSGA-II and NRGA, to solve it. The goal is to find the best locations for a set of depots, allocation of customers to these depots, allocation of customers to service days and the optimal routes to be taken by a set of homogeneous vehicles to minimise the total cost and to minimise the overall violation from the customers’ defined time limits. Our results show that while there is not a significant difference between the two algorithms in terms of diversity and number of solutions generated, NSGA-II outperforms NRGA when it comes to spacing and runtime.Peer reviewedFinal Accepted Versio

    The Two-Echelon Multi-products Location-Routing problem with Pickup and Delivery: Formulation and heuristic approaches

    Get PDF
    The two-echelon location routing problem (LRP-2E) considers the first-level routes that serve from one depot a set of processing centers, which must be located and the second-level routes that serve customers from the open processing centers. In this paper, we consider an extension of the LRP-2E, where the second level routes include three constraints, that have not been considered simultaneously in the location routing literature, namely, multi-product, pickup and delivery and the use of the processing center as intermediate facility in the second-level routes. This new variant is named two-Echelon Multi-products Location-Routing problem with Pickup and Delivery (LRP-MPPD-2E). The objective of LRP-MPPD-2E is to minimize both the location and the routing costs, considering the new constraints. The first echelon deals with the selection of processing centers from a set of potential sites simultaneously with the construction of the first-level routes, such that each route starting from the main depot, visits the selected processing centers and returns to the main depot. The second echelon aims at assigning customers to the selected processing centers and defining the second-level routes. Each second-level route, starts at a processing center, visits a set of customers, through one or several processing centers, and then returns to the first processing center. We present a mixed integer linear model for the problem and use a Cplex solver to solve small-scale instances. Furthermore, we propose non-trivial extensions of nearest neighbour and insertion approaches. We also develop clustering based approaches that seldom investigated on location routing. Computational experiments are conducted to evaluate and to compare the performances of proposed approaches. The results confirm the effectiveness of clustering approaches.

    A case study of two-echelon multi-depot vehicle routing problem

    Get PDF
    The Vehicle Routing Problem (VRP) is a classic combinatorial optimization problem and a topic still studied for practical applications. Current research focuses on single echelon distribution systems such as distribution centers serving customers. However, in typical distribution, goods flows among regional distribution centers, local warehouses and customers, defined as a two-echelon network. The two-echelon multiple depot VRP problem is documented and applied to two stages illustrated by a small scale computational example. In the first stage, the simulated annealing algorithm is employed to determine the routes between local warehouses and final customers. For the second stage, trial-and-error is applied to obtain the number and location of regional distribution centers and the routes between regional distribution centers and local warehouses. Matlab is utilized to simulate annealing iterations and cost functions are analyzed. The convergence tendency of simulated annealing is depicted in figures by Matlab coding. Contributions include demonstration between the SA algorithm and a specific combinatorial optimization problem, and an application of the algorithm

    Performance Comparison of Two-phase LP-based Heuristic Methods for Capacitated Vehicle Routing Problem with Three Objectives

    Get PDF
    This paper develops a two-phase LP-based heuristic for the Capacitated Vehicle Routing Problem (CVRP). It considers three objectives: (1) minimizing the total costs of fuel consumption and overtime, (2) maximizing the total personal relationships between customers and drivers, and (3) balancing the delivery weights of vehicles. The two-phase LP-based heuristic (cluster-first route-second) is proposed. First, in the clustering stage, three LP-based clustering models (denoted by C1, C2, and C3) are developed. Customers are grouped into clusters based on real distances between the customers for C1, personal relationships between the customers and drivers for C2, and the delivery weights of vehicles for C3. Second, in the routing stage, an LP-based traveling salesman problem model is used to form a route for each cluster, to minimize the total costs of fuel consumption and overtime labor. The experimental results from a case study of Thai SMEs show that when the C2 clustering model is applied, the performances are the best. Significant contributions of this paper include: (1) it is an original paper that proposes the C2 clustering model, and it has the best performances based on the experimental results, and (2) the proposed two-phase LP-based heuristic methods are suitable for practical use by SMEs since the required computational time is short, and it has multiple models with different objectives that can be selected to match a user's requirements

    Multi-echelon distribution systems in city logistics

    Get PDF
    In the last decades , the increasing quality of services requested by the cust omer, yields to the necessity of optimizing the whole distribution process. This goal may be achieved through a smart exploitation of existing resources other than a clever planning of the whole distribution process. For doing that, it is necessary to enha nce goods consolidation. One of the most efficient way to implement it is to adopt Multi - Echelon distribution systems which are very common in City Logistic context, in which they allow to keep large trucks from the city center, with strong environmental a dvantages . The aim of the paper is to review routing problems arising in City Logistics , in which multi - e chelon distribution systems are involved: the Two Echelon Location Routing Problem ( 2E - LRP) , the Two Echelon Vehicle Routing Problem (2E - VRP) and Truck and Trailer Routing Problem (TTRP), and to discuss literature on optimization methods, both exact and heuristic, developed to address these problems

    Model and algorithm of two-stage distribution location routing with hard time window for city cold-chain logistics

    Get PDF
    Taking cold-chain logistics as the research background and combining with the overall optimisation of logistics distribution networks, we develop two-stage distribution location-routing model with the minimum total cost as the objective function and varying vehicle capacity in different delivery stages. A hybrid genetic algorithm is designed based on coupling and collaboration of the two-stage routing and transfer stations. The validity and feasibility of the model and algorithm are verified by conducting a randomly generated test. The optimal solutions for different objective functions of two-stage distribution location-routing are compared and analysed. Results turn out that for different distribution objectives, different distribution schemes should be employed. Finally, we compare the two-stage distribution location-routing to single-stage vehicle routing problems. It is found that a two-stage distribution location-routing system is feasible and effective for the cold-chain logistics network, and can decrease distribution costs for cold-chain logistics enterprises.Peer ReviewedPostprint (published version

    Routing Applications in Newspaper Delivery

    Get PDF
    -The goal of this report is to give an up-to-date account of routing applications in the newspaper business. We describe the newspaper supply chain, and focus on the “last mile” distribution that has been advocated as an application of arc routing in the literature. A literature survey is provided, followed by a discussion of the arc routing model and its adequacy to newspaper applications. A more general and normally more adequate model: The Node, Edge, and Arc Routing Problem, is discussed. Characteristics of routing problems in carrier delivery are presented, together with a case study from the development of a web-based route design and revision system. Finally, summary, conclusions, and prospects for the future are given

    A concise guide to existing and emerging vehicle routing problem variants

    Get PDF
    Vehicle routing problems have been the focus of extensive research over the past sixty years, driven by their economic importance and their theoretical interest. The diversity of applications has motivated the study of a myriad of problem variants with different attributes. In this article, we provide a concise overview of existing and emerging problem variants. Models are typically refined along three lines: considering more relevant objectives and performance metrics, integrating vehicle routing evaluations with other tactical decisions, and capturing fine-grained yet essential aspects of modern supply chains. We organize the main problem attributes within this structured framework. We discuss recent research directions and pinpoint current shortcomings, recent successes, and emerging challenges
    • …
    corecore