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ABSTRACT

Yu, Tianqi M.S., Purdue University, May 2016. A case study of Two-echelon
Multi-depot Vehicle Routing Problem College of Technology. Major Professor:
Edie K. Schmidt.

The Vehicle Routing Problem (VRP) is a classic combinatorial optimization

problem and a topic still studied for practical applications. Current research focuses

on single echelon distribution systems such as distribution centers serving

customers. However, in typical distribution, goods flows among regional distribution

centers, local warehouses and customers, defined as a two-echelon network.

The two-echelon multiple depot VRP problem is documented and applied to

two stages illustrated by a small scale computational example. In the first stage, the

simulated annealing algorithm is employed to determine the routes between local

warehouses and final customers. For the second stage, trial-and-error is applied to

obtain the number and location of regional distribution centers and the routes

between regional distribution centers and local warehouses. Matlab is utilized to

simulate annealing iterations and cost functions are analyzed. The convergence

tendency of simulated annealing is depicted in figures by Matlab coding.

Contributions include demonstration between the SA algorithm and a specific

combinatorial optimization problem, and an application of the algorithm.
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CHAPTER 1. INTRODUCTION

This chapter provides some background information about the two-echelon

problem and motivation for the problem, as well as the definition, the significance

and problem statement. Limitations and delimitations are also discussed in this

chapter.

1.1 Background

Logistics is significant for modern society because it gives economic

globalization an impetus. Logistics industry is also growing as a pillar of industry

for global economies. From a macroeconomic point of view, the impact of logistics

cost for the country’s economy plays a decisive role. According to data from China

National Bureau of Statistics, since the mid-1990s, the domestic logistics cost of

China increased annually. Between 16-18% of China Gross Domestic Product

(GDP) is generated from logistics related activities. This ratio was almost twice the

U.S GDP (CFLP, 2013). In 2012, this ratio was 8.5% for the US (CSCMP, 2014).

From a corporate perspective, logistics significantly affects corporate profit, which is

a relatively large component of the cost of final products.

Logistics defined as a management process delivering goods in order to meet

customer demand. Logistics cost are generated by seven related activities which

include transportation, warehousing, packaging, handling, distribution processing,

distribution, and related logistics information.

Transportation costs, accounting for about 50% to 54% of total logistics

costs, is a significant factor of logistics (Establish, Inc. Grubb& Ellis Global

Logistics). Transportation accounts for 5.5% of the U.S. GDP in 2013 (Bureau of

Transportation Statistics, 2014).Therefore, improving the organization and
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management of the transportation systems and reducing costs have become an

important research area for companies.

Over the past few decades, scholars began to focus on using operations

research, mathematical programming and other optimization techniques to

effectively determine vehicles routes and full-truck-load strategies. There is a classic

optimization problem called the Vehicle Routing Problem (VRP) (Dantzig &

Ramser, 1959), which has now become a core of transportation and distribution

management modeling. The objective is minimizing cost under the constraints of

time, the number of vehicles or length of routes. It is a more general version of the

Travelling Salesman Problem (TSP).

Graph theory is used to describe vehicle routing problem as follows: Assume

that G = {V,E} is a complete undirected graph, where V = {0, 1, 2, ..., n} is a set of

vertices and E = {(i, j), i, j ∈ V, i �= j} is a set of edges. V0 = V \{0} is a set of

customers. 0 is the depot (local warehouse). A fleet of vehicles with identical

capacities Q start from a local warehouse serving customers to fulfill their demand.

Each customer has a fixed demand qi and fixed service time δi. Every edge (i, j) has

a weight which denotes distance between i and j or cost per mile cij. Usually,

assume that C = (cij) satisfies triangle inequality, that is cij ≤ cik + ckj, i, j, k ∈ V

(Toth & Vigo, 2011). The objective for a standard VRP is: determine a minimal

number of vehicles and their corresponding minimized travel distance and routes,

which satisfy the following constraints:

• Every vehicle starts from one local warehouse and ends the route at the same

local warehouse

• Each customer can only be served by one vehicle

• Total demand of customers in one route should not exceed vehicle capacity Q

Historical research could date back to two seminal papers. Dantzig and

Ramser (1959) published The Truck Dispatching Problem, the first study on the

optimal vehicle routing problem of gasoline distribution. The proposed solution was
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based on linear programming. As an improvement to the Dantzig and Ramer’s

algorithm, Clarke and Wright (1964) proposed an efficient greedy heuristic in 1964.

Since that time, scholars in the field of operations research have proposed

many alternative mathematical models and algorithms to obtain the optimal or

approximate optimal solution for many different types of vehicle routing problems.

Constraints were added to the basic vehicle routing problem so that different types

of variants reflect the actual production problem. These constraints include the

vehicle routing problem with time windows, different vehicles capacities, open route

and VRP with backhauls. An overview of research on VRP is presented in the

literature review chapter.

This problem attracts much attention due to its computational complexity.

An efficient vehicle routing algorithm is always a challenging research topic.

Currently, the exact algorithm for VRP can only solve routes for around 50

customers. For larger scale VRP, the algorithm computation time increases at an

exponential growth rate relative to the size of the problem, such as the number of

customers.

Optimization is of great significance for improving the quality of a

transportation system, customer satisfaction and enhancing the competitiveness of

businesses. Vehicle routing problems can be used to manage the distribution of

goods collection and for many applications in the transportation system, such as

solid waste collection, school bus routing problems and the Dial-a-Ride problem

(See Definition section). In summary, optimization technology is increasingly

applied to various fields of production based on operations research, applied

mathematics, computer science and management science to reduce operating costs.

1.2 Significance

This research makes it useful for solving small case city logistics problem

(parcel delivery). This research is a new model for the two-echelon problem. The
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two-echelon could be divided to multi-depot(MDVRP) between customers and local

warehouses and the location-routing problem between local warehouses and

distribution centers which cover larger areas than local warehouses. In addition,

heuristics method, the simulated annealing (SA) is applied to solve MDVRP. There

is a demonstration showing how SA could be applied to specific optimization

problem and programmed by Matlab.

1.3 Statement of purpose

The purpose of this research was to generate an easier method to solve

2E-VRP. In previous research, all methods for the two-echelon problem are complex

to program and very unique from problem to problem. One subproblem produces

routing decisions between decisions customers and multiple local warehouses. The

other one is location decision of number and location of DC(s) and after that,

routing decisions between DC(s) and local warehouses. By separating the problem

into two separate echelons, each subproblem can be used as a small independent

problem combing with other new variants of VRP. The calculation speed improves

significantly by separating the problem.

Visualized results for a simple case study produces convenience for both

drivers and supervisors. The research problem is divided into two subproblems.

Additionally, a link between Simulated Annealing (SA) and programming in

Matlab is presented, with a clear demonstration of the application of the SA

algorithm.

1.4 Research Question

This research explains how to optimize costs for an integrated logistics

system − a two-echelon logistics network design considering location and

transportation routing decisions, which are foundations for all logistics activities. A

sample network is shown in Figure 1.1:
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and its appropriate allocation assignment. Vehicle Routing Problem (VRP) designs

the optimal routes of vehicles to minimize the transportation cost serving a set of

customers.

Companies sometimes need to group both location and routing decisions

together to reduce cost. As a result, some research has defined a new problem which

combines LAP and VRP, which evolved in the Location-routing problem (LRP).

Location and routing problems are closely related because they affect each other.

Also, a logistics network contains many echelons, with one-echelon problems

including routes between local warehouses and final customers. However, there are

also routing problems between regional distribution centers and local warehouses.

In this study, a new model covering these factors will be created to optimize

the total cost.

1.5 Assumptions

The assumptions of this study follow:

• Both DCs and local warehouses have their own capacity and are limited by

the number of trucks or other vehicles which can be sent from depots.

• The location coordinates of all potential DCs, local warehouses, and final

customers are given.

• Product being delivered is homogeneous among two echelons.

• Product demand from each customer is given.

• At one level, vehicles are all the same and speed is the same regardless of

carrying capacity.

• Each customer can only be served by one vehicle at one time.
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1.6 Limitations

This study is based on the two-echelon multi-depot network results in:

• This study is limited to a small case (within 50 customers).

• MDVRP uses heuristics method to solve.

1.7 Delimitations

The delimitations of this research study include:

• There is no length limit for each delivery route.

• Each route must start from one depot and come back to the same depot.

• This study was limited to routes between depots (distribution centers),

intermediate depots (local warehouse) and customers.

• For the location problem, there is a minimum of two depots.

• The distance for each pair of two depots will not change for different

directions.

1.8 Definitions

Gross Domestic Product: The Organisation for Economic Co-operation and

Development (OECD) defines GDP as ”an aggregate measure of production

equal to the sum of the gross values added of all resident, institutional units

engaged in production (plus any taxes, and minus any subsidies, on products

not included in the value of their outputs).

Vehicle routing problem: The vehicle routing problem (VRP) is a combinatorial

optimization and integer programming problem seeking to service a number of

customers with a fleet of vehicles (Dantzig & Ramser, 1959).
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Echelon: Each pair of stages represents one level of the distribution network and is

usually referred to as an echelon (Cuda, Guastaroba, & Speranza, 2015).

The Dial-a-Ride Problem: The Dial-a-Ride Problem (DARP) consists of designing

vehicle routes and schedules for n users who specify pickup and delivery

requests between origins and destinations (Cordeau & Laporte, 2007).

Combinatorial optimization: Typical optimization problems can be divided into two

categories, one is the real-valued variable, one is discrete variables

(Papadimitriou & Steiglitz, 1982). The combinatorial optimization problem is

one of the important branches in dealing with discrete variables problem.

According to the definition (Cook, Cunningham, Pulleyblank, & Schrijver,

1998), combinatorial optimization is a topic that consists of finding an optimal

object from a finite set of objects over a discrete structure and this objective

could normally be a subset, sort of items, grouping or a graphic structure etc.

In other words, combinatorial optimization problems find a global optimal

solution rather than a local optimal solution.

Heuristic algorithm: The term heuristic is used for algorithms which guide solutions

among all possible solutions, but do not guarantee that the optima will be

found. Therefore, they are considered approximate and not accurate

algorithms. These algorithms usually find a good solution, but quicker than

exact searching method (Yang, Bekdaş, & Nigdeli, 2015).

1.9 Summary

This chapter provided an overview including background information, the

significance of the study, research questions, limitations and delimitations. A

detailed literature review is provided in the next chapter.
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Vehicle routing problems have many applications in the real world with the

advance of computing technologies addressing problems, such as city garbage

collection problems, parcel distribution problems, school bus arrangement problem,

newspaper distribution, milk distribution. VRP have become an important research

topic in the field of logistics and distribution management. A large number of

real-world applications have widely shown that the use of computerized procedures

for the distribution process planning produces substantial savings (generally from

5% to 20%) in global transportation costs (Toth & Vigo, 2011).

The chapter is organized in the following sections according to the three-level

decisions: In Section 2.1, a standard mathematical model and some reviews are

given. Section 2.2 shows elements and variations of the problem. Section 2.3 reviews

the combination of location and routing problems. Section 2.4 is a summary of

current research, guiding the research question being proposed in this study.

2.1 Basic Model of VRP

A standard VRP is a vehicle routing problem with the limit of loading

capacity which is also called capacitated vehicle routing problem (CVRP). For each

vehicle, it has a maximum capacity. It is the most basic vehicle routing problem as

shown in Figure 2.2 below. The middle depot could be the local warehouse and each

vehicle has capacity in real-life applications.

Other vehicle routing problems are based on CVRP. This section gives a

standard mathematical model for vehicle routing problem. VRP could be presented

in three different models from different perspectives including vehicle flow,

commodity flow, and set-partitioning problem (Toth & Vigo, 2011). Vehicle flow

formulations is a more common one, which uses integer variables to denote whether

one edge is included in an optimal solution.

min
∑

i∈V

∑

j∈V
cijxij (2.1)





12

arc (i, j) (from customer i to j) belongs to the optimal solution and xij = 0

otherwise (Toth & Vigo, 2014).

(2.2) and (2.3) mean that only one edge enters one customer and only one

edge leaves one customer, where 0 is the depot, and K is the number of routes. If

K = 3, it means with the limit of vehicles, all the demand from customers could be

delivered with 3 vehicles and therefore, there are 3 routes. (2.4) and (2.5),

analogously, mean that K vehicles leave and return the depot. (2.6) is the so-called

capacity-cut constraints (CCCs). r(S) is the minimum number of vehicles needed to

serve all customers in S (S ⊆ V \{0}, V is all points including depot and

customers). (2.6) satisfies the capacity requirement and also promises that any

route must include a depot.

2.2 Variants of CVRP

This section first gives the main characteristics and elements of the CVRP.

Based on this, variants of CVRP are discussed. The related research on this

problem and its extension problems were widespread, where there are more research

questions developing.

2.2.1 Elements of CVRP

Elements of a classic CVRP are network, customer, depot, vehicle and

objective function or operational objective. Definitions and characteristics are being

discussed below.

• Network

A network is a foundation of transportation. Network is a weighted graph

containing vertex and arc or edge. Vertex could be customer or depot. Arc is

connectivity between customer and depot. According to different

characteristics of real situations, arcs could be directed or undirected. A
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typical example of directed arc is some one-way street in city while the

undirected arc is a two-way road. If the distance matrix among all vertex is

symmetric, all arcs are undirected. If not, at least one arc is directed.

Therefore, there are symmetric and asymmetric (SCVRP and ACVRP). For

each arc, a non-negative weight is given to denote travel distance or time

spent. Normally, calculation of distance in VRP problem satisfies Triangle

Inequality.

• Customer

Customer is a general term, which may represent any type of depot in an

actual CVRP, such as retail stores, distribution centers, and individual

families. The customer is one vertex in network graph and its demand could

be the quantity that delivers from depots to customers and collects from

customers. According to this two opposite process, there are extensions such

as VRP with backhauls (VRPB) or VRP with simultaneous pickup and

delivery. (VRPSPD).

In addition, there could be time limits for customers. Customer service time,

which represents a moment that customer requires the products to be

delivered. However, time window (VRPTW) refers to a period. Customers

could only be served within this time interval each day, otherwise, there will

be penalty cost.

• Depot

In the network graph, another important type of vertex is depot. Depot is the

start and end of one route. There is a fleet of vehicles at depots to serve the

distribution or collection of customer service. Usually, there is only one depot

in VRP problems unless the author points out that it is a multi-depot VRP

(MDVRP).

• Vehicle



14

Vehicles are the tool to finish a delivery. Several aspects that will affect the

problem are as follows:

– Types of vehicle: Typically, if there is no special statement of type,

homogeneous vehicles will be used in papers, which includes same

capacity, same fixed cost and variable cost. However, in real cases,

companies will use different vehicles to fulfill full-truck-load as much as

possible.

– Duration: There is a maximum travel distance or time constraint per day

which corresponds to the maximum working time for a driver.

• Objective function

There could be multiple objectives in one problem. Most of the articles now

are solving a single objective which includes:

– Minimized distance

– Minimized number of vehicles

– Minimized cost which contains fixed and variable cost of vehicles

– Two-phase objective: Optimize number of vehicle first and then optimize

distance based on the first phase

Multiple objective means to optimize two or more objectives simultaneously.

At present, there are many classifications of VRP, the most representative

proposed by Min et al. (1998). This classification contains more details and includes

almost all aspects as shown in Table 2.1.

2.2.2 Extension Problem

According to the analysis of basic elements of CVRP, there are a lot of

extension problems which are listed below:
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Table 2.1
Classification of VRP (Min et al., 1998)

Standard of classification Types of problems

1 Direction of goods One direction Bi-direction

2 Demand type Deterministic Dynamic

3 Number of facility Single Multiple

4 Number & Typle of vehicles Single Multiple

5 Capacity of vehicle Determinate Undetermined

6 Capacity of depot Determinate Undetermined

7 Number of echelon Single Multiple

8 Time windows Hard & Soft None

9 Objective function Single Multiple

• VRP with Time Window

Vehicle Routing Problem with Time Window (VRPTW) has a great

significance in real life situations, which are widely used in practical

applications. Serving period [ei, li] is fixed for customer i in addition to

constraints of basic VRP. Customer i could only be serviced in a fixed period.

VRPTW can be divided into a vehicle routing problem with a hard time

window (VRPHTW) and a vehicle routing problem with a soft time window

(VRPSTW). Hard time window is strict, hen customers are served out of

period, which makes it an infeasible solution. While in soft time window

problem, it is still feasible, but just some penalty cost will be added to

objective function.

Vehicle routing problems with due times (VRPDT) are a special case of

VRPTW, with slack in the lower bound on the time window. VRPDT has a

requirement that the service should be done before a predetermined deadline.
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If it is violated, then a penalty fee is generated. The goal of VRPDT is not

only the shortest travel time, but requires a minimum penalty fee due to the

violation of the deadline.

Early work on VRPTW focused on a case study. Pullen and Webb (1967)

scheduled van drivers’ duty for the bulk conveyance of mail in the Central

London area. Knight and Hofer (1968) developed a manual method to

schedule a vehicle fleet to save 12%. Later research focused more on

developing effective algorithms to solve realistic-size problems (Cordeau &

Laporte, 2001). Park (2001) studied a school bus routing problem against

this background and proposed a Bi-criteria algorithm depending on the

difference in time and regional speed.

• Multi-depot VRP

In a standard VRP, there is only one depot which all vehicles start from and

end at. If there are several depots in one area, customers can be served by any

of the depots.

Customers are clustered together to be served by different depots and then the

sub-problem becomes a standard VRP. The objective function will be realized

by two phase. The first objective is to achieve a minimum number of vehicles

and the second one is to minimize total distance.

• VRP with Backhauls

VRP with backhauls (VRPB) divided customers into two subsets, one is

Linehaul customers, each requiring a given quantity of product to be

delivered. The other set is Backhaul customers, where a given quantity of

inbound product must be picked up (Toth & Vigo, 2011). All outbound

customers must be served before inbound and all demand is fixed and given.

• VRP with Pickup and Delivery
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VRP with pickup and delivery (VRPPD) is more complex than VRPB. It

focused on three aspects:

– The distribution and collection of goods occur at the same time, i.e., a

client can be both a client receiving delivery and the delivery generator.

– It is about the mixed distribution and collection of goods, which means

there is no limit in route order for any client who can be distributors or

in charge of goods collection.

– Distribution goes first, and then follows the collecting process which

distribution arrangement customer should come after the good collection

clients.

Min (1989) first conducted some research to solve the library book shipping

problem. In this problem, Min (1989) developed a scenario of one

collector-distributor point, two trucks and 22 nodes. First, the author divided

the customers into different groups and then in each group figured it out

exploiting traveling salesman problem (TSP) method. For the two nodes with

no direct links in the real situation, the author assumed that the distance

between the points was infinite and then solving as the traveling salesman

problem. Halse (1992) did a lot of research on the VRP, including VRPB and

VRPPD (Desrosiers, Dumas, Solomon, & Soumis, 1995). Halse solved this

types of problems by grouping first and then determining the vehicle routes.

First, each of the groups was served by only one truck and then the routes

were determined by 3-opt after dividing the clients into various groups. The

research tried the theory in both a VRPPD with 100 customers and a VRPB

problem with 150 customers. Gendreau (1999) extended his study to the

traveling salesman problem with pickup and delivery (TSPPD). First, the

author solved the basic TSP without considering the distribution and

collection request and then determined the order of the routes of distribution

and pickup request.
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Gendreau, Laporte, and Vigo (1999) determine the route of each distribution

customer, and then inserted each delivery and client pickup to this route. This

insertion method took into account the customers who hadnt been served on

the current delivery routes using a penalty coefficient. Casco (1988) presented

a method based on the insertion path which, for the cost of insertion,

considered the loading of trucks on the delivery route (Jacobs-Blecha &

Goetscalckx, 1992). Salhi and Nagy (1999) extended Cascos approach

allowing multiple pickup clients to be inserted to the existing distribution

groups. The quality of this method was improved with a slight increase in

computational time, which can be used to solve the first type of VRPPD

questions as well (Chen & Wu, 2006).

Toth and Vigo (1996) grouped the clients at first and matched the distribution

and pickup nodes before exploiting TSP to improve the quality of the solution.

This was a VRPPD problem with one distribution center and 150 clients. In

the following year, they used the Lagrangian branch and bound algorithm for

solving 100 clients and one distribution center. Osman and Wassan (2002)

used saving insertion method to obtain the original feasible solution in the

study of such problems, then using tabu search algorithm to solve a 150-clients

and one distribution problem.

2.2.3 Combination of Inventory and VRP

Thomas and Griffin (1996) proposed that logistics costs account for 30% of

the total supply chain cost. According to the research of Buffa and Munn (1989),

logistics cost is mainly made up of transportation cost and inventory cost, where

transportation cost accounts for one-third of total logistics cost and inventory is

one-fifth. In the traditional logistics system research, most transportation and

inventory problems are studied alone. But in recent years, more and more

researchers have incorporated the two parts and developed a comprehensive problem
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to meet the practical needs in the development of a supply chain management

system.

Incorporating the transportation and inventory decisions is what researchers

called dynamic routing and inventory problems (DRAI).

Baita, Ukovich, Pesenti, and Favaretto (1998) categorized the DRAI problem

into two kinds.

The first kind is related to frequency. In this type of study, the decision

variable is replenishment frequency. Anily and Federgruen (1990) proposed a

method of fixed-partition policies (FPPs) which fix the DRAI problem in the

variable of frequency. In the FPPs method, customers are grouped into different

regions. The regions and each customer within the region are independent of others.

If one client was touched by one truck, then this truck was also in charge of visiting

other clients in this region. The zoning method defined in the FPPs problem

enables a minimized total cost which includes the transportation and inventory

parts taking the load of vehicles into account. Anily and Federgruen (1993) studied

the possible replenishment strategies to minimize the total cost of long-term

transportation costs and stocking costs. First, the retailers were divided according

to their locations. All the retailers in the same region were replenished by the same

truck. Bramel and Simchi-Levi (1995) proposed a problem of capacitated vehicle

routing problem (CVRP) and the basic framework of inventory routing problem and

used numerical experiments to show that the solution of inventory routing problem

was better than the vehicle routing problem.

The second kind is to schedule transportation order within the time

framework. The transportation quantity and route were determined by operating

discrete-time model within a fixed time interval. The most representative example is

inventory routing problem (IRP) of natural gas transportation issues. Such issues

like keeping a constant inventory level to avoid being out of stock should be

considered in this type of question. In an IRP problem, the researchers assumed
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that each client had a fixed demand rate that could promise the minimized

transportation cost while inventory cost was not the main concern.

Bell et al. (1983) researched the storage and transportation of natural gas

with a specific goal and developed the corresponding support system for calculating

the distance and time between clients. An optimized mathematical model was

designed to calculate the quantity delivered every day and the Lagrangian relaxation

method was used to solve a mixed integer programming problem with 200,000

constraints and 800,000 variables. Golden, Assad, and Dahl (1984) researched on

traditional large-scale vehicle routing problems with inventory cost constraints, as

well as conducted a corresponding analysis. Dror, Ball, and Golden (1985) proposed

several different algorithms for the inventory routing problem and the attributes of

these algorithms were analyzed and tested by numerical experiments. Campbell,

Clark, and Savelsbergh (2002) proposed an inventory routing problem based on a

two-stage decision algorithm. The first stage used integer programming to generate

a delivery plan and in the second stage, routing was generated by heuristic

algorithms. Adelman (2003) figured the natural gas issue out based on price

manipulation. The stock replenishment and the penalty cost of losing sales were

compared using a linear programming model to obtain optimal decisions.

Researchers took a number of different strategies for IRP. Chien,

Balakrishnan, and Wong (1989) studied this issue in a single time period and got a

feasible solution using mixed integer programming models and also produced a

better upper bound based on Lagrangian relaxation. Federgruen and Zipkin (1990)

evaluates the allocation of inventory quantities included in the vehicle routing

problem, where not all the customers were generating inventory cost. The authors

assign the stocks to certain customers with the premise of ensuring a minimum total

cost. Dror and Ball (1985) studied the difference between the transportation and

inventory cost within short and long period time frames respectively. Trudeau and

Dror (1992) studied the stochastic inventory routing problem which treated the

customers’ needs as a random variable and considered the possible loss of trucks’
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transportation route at the same time, for example, the situation that the customer

demand exceeds the capacity of a truck. Viswanathan and Mathur (1997)

researched the inventory routing problem with one distribution center, multiple

customers, and multiple products. Herer and Levy (2008) focused on a multi-stage

decision-making or simplifying the multiple stages to a single time-phase decision.

Constable and Whybark (1978) were earlier researchers on making joint decisions

for transportation and inventory. Baumol and Vinod (1970) developed a

measurement of the transportation performance. The process of making

transportation decisions consists of selecting a transportation mode which could be

rail, truck, pipe or air and shipping to minimize cost and time spent. After the

mode was chosen, the policy maker should evaluate the transit, such as the

variability of the transit time. They also summarized the process into three

attributes which are: the transportation cost, the expected time in transit, and the

variability of transit time. If one transportation alternative was lower in cost, speed

and variability, it would dominate other alternatives.

The research defined the transportation alternative and inventory factors

(reorder level and order quantity for each cycle) leading to the minimized total cost

(transportation cost and inventory cost). The three attributes affect each other,

such as the shipping speed can affect the inventory quantity and the cost of

transportation could have an impact on the ordering quantity. The solution method

was to present a mathematical model adding the two parts cost together and then

enumeration solution. Finally, a heuristic procedure can identify decisions by

estimating the lowest cost or the relatively lower cost close to the extreme value.

Blumenfeld et al. (1985) modeled a trade-off between transportation cost

presented in the form of three types of networks and inventory cost and production

cost. The three types of networks are direct networks, network with consolidation

terminal(s) and the combination of the previous networks. The main contributions

were showing how transportation cost affects production set-up cost and how these

two costs affected the inventory decision. Second, the authors divided the network
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link by link and then calculated the optimal quantity respectively. Finally, they

built a concave cost function to solve the problem. In the same year, Burns et al.

(1985) developed the analytical methods to minimize distribution costs where trucks

travel from suppliers to several customers. This compares the two allocation

strategies: direct shipping and peddling (i.e., send one truck to deliver products to

multiple clients each load). The trade-off made was related to the shipment size.

For the direct mode, the optimal shipment size was decided by the economic order

quantity (EOQ) model, the optimal shipment size was to ensure the truck has a full

truckload.

Benjamin (1989) added more real life situations into the problem, such as

production constraints and demand requirements. It was a heuristic problem which

was solved by exploiting the linear network algorithm. A hypothetical corporate

sourcing which used the reduced gradient algorithm and a heuristic solution was

defined. A reduced gradient algorithm solution got a 21% improvement compared to

a separate optimization problem. Also, the heuristic method got similar results as

the reduced gradient algorithm with an even higher efficiency which is good news

for researchers.

2.3 Combination of Location and VRP

The decision problem to simultaneously determine facility locations and

delivery routes is commonly known as location routing problem (LRP, (Min et al.,

1998)) . Normally, there are 3 decisions which LRP are making:

• facilities selection which includes number and location

• allocation to facilities after first decision

• optimize routes

LRP has many applications among different industries including retailing,

transportation, product distribution, postal service, disaster relief, and so on (Liu &
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Kachitvichyanukul, 2013). LRP could date back to 1961, Böventer (1961) proposed

the relationship between transportation cost and facility cost. Interdependence

between location and routing was realized until the 1970s. Gandy and Dohrn are

the first to do research in LRP (Tuzun & Burke, 1999). However, due to the

difficulty of solving the LRP, very little progress was made. At the beginning of the

1980s, with the development of integrating logistics, LRP attracted more attention.

Laporte, Mercure, and Nobert (1986) proposed the exact algorithm for solving LRP.

LRP could be divided into single and multiple echelons and this study focuses on a

two-echelon problem.

From the perspective of a whole transportation network, two-echelon (2E)

problem was first initiated by Jacobsen and Madsen (1980), Madsen (1983). LRP

has at least three levels. The current research assumed that the locations of the first

echelon are fixed when finding the solution of the second echelon. These studies

used real applications of a newspaper distribution with 4500 customers (Rahmani,

Oulamara, & Ramdane Cherif, 2013). In the newspaper distribution system,

newspapers were delivered from the printing factories (depots) to transfer points

(processing centers) and from these points to customers. Boccia, Crainic, Sforza,

and Sterle (2011),Sterle (2009) and Boccia, Crainic, Sforza, and Sterle (2010)

proposed the mixed integer programming model (MIP) in which both echelons have

capacities and establishing cost. Four MIP are given. The first one is a three-index

model based on Ambrosino and Scutella (2005). The second one is a two-index MIP

model referring to multi-depot VRP. The third one is a variant of two-index LRP.

The last one is a path variable model and small-scale cases were given and solved by

commercial software. Those cases were 3 depots, 8 intermediate depots, and 10

customers at most and the results showed that three-index model is better. Boccia

et al. (2010) applied Tabu Search to solve 2E problem with capacity and

establishing cost. First, 2E-LRP is divided to two 1E-LRP and 1E-LRP is then

separated to capacitated facility location problem and multi-depot VRP. The results

showed that for small-scale problems, Tabu Search could cost less time to find the
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global optimal solution that found by branch-and-cut. For larger scale problem, the

different combination of parameters will get a good solution.

Lin and Lei (2009) separated the customers based on their demand:

customers with small demand and with big demand. They proposed to use the

Genetic algorithm. In the GA, the chromosome represents the open distribution

centers and customers with large demand in the first level. The algorithm based on

local path search of clustering methods. When using a small scale case to test the

effectiveness of GA, the gap between LINGO and GA is within 1%. When using the

case of Tuzun and Burke (1999), it took a long time to get the result and the gap is

3.5% comparing to well-known optimal solution internationally.

2.4 Summary

From the perspective of time span, all the decisions made in logistics are

divided to three levels, which are long, medium and short terms and the

corresponding decisions can be called the strategic, tactical and operational

decisions. Long term typical questions could be site selection, which is called facility

location problem. The medium term decisions relate to warehouses, which is called

inventory control problem and the strategy will be kept for a period of time, people

would not change it every day. The short term can be vehicle routing problem. This

study combines the long and short term problems.

Specifically speaking, this study focuses on making the integration decision

on strategic and operational level because there is limited research on applying

simulated annealing algorithm to solve 2E-LRP and some of the factors are ignored

due to the problem complexity.
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CHAPTER 3. FRAMEWORK, METHODOLOGY AND FINDINGS

This chapter provides a theoretical framework and the methodology to

gather case study data and solve the two-echelon multi-depot VRP.

3.1 Theoretical Framework

This study is an optimization problem divided into two subproblems between

two echelons. One echelon consists of intermediate depots (local warehouses) and

customers. The other echelon is depots (distribution centers) and intermediate

depots (local warehouses).

In this section, the relationship between the independent variables and

dependent variables are identified in respectively and shown and described.

3.1.1 Develop Routes Between Local Warehouses and Customers

The framework of this subproblem is shown as Figure 3.1.

In this figure, there are two sets of independent variables which are the

independent variables for sample company generation and the independent variables

of SA algorithm. The dependent variables are total distance, routes between local

warehouses and customers and time spent to achieve routes.

The independent variables for sample company generation are specifically for

this case study which affects the routes and total distance which include:

• Vehicle capacity

Vehicle capacity determines the number of customers in one route. The larger

the vehicle capacity, the fewer the number of routes. And then, the number of

routes affects the total distance. The more routes, the more connections
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3.1.2 Relationship Between Dependent Variables and SA Algorithm Parameters

SA algorithm, one of searching methods will be used to solve this case study.

Searching strategy to get the global optimal solution is generally a combination of

random search within a large range and a narrow search in a small range.

The value of algorithm parameters affect time spent to achieve routes, and

also the routes and the total distance of all the routes, which are the quality of a

solution. The selection criteria for algorithm variables would be discussed below:

• Initial temperature

In general, searching requirements of the algorithm could be met only when

initial temperature is high enough. However, for different problems, the

standard of ’high enough’ is different. In large-scale problems, if T0 is too low,

it will be very difficult to jump out of the range of local best solution.

Alternatively, to reduce the amount of calculation, T0 should not be too large.

For this problem, 100 is already high enough to achieve a good solution and

convergence process. Higher initial temperature is also implemented, however

the result is no better than 100.

• Temperature decreasing function of T

Temperature decreasing function has many forms, a common one is as

followed:

T(k+1) = T(k), k = 0, 1, 2, ... (3.1)

Where, α is a constant which ranges from 0.5 to 0.99. 0.95 is picked in this

research. Its value determines the cooling process.

Large α leads to an increasing number of iterations and time spent to achieve

solution will increase. However, there will be more transformations accepted,

larger search space and more range would be visited during the process so that

better final solution would be returned.

• Terminated temperature
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Lower terminated temperature leads a trend to achieve a solution of better

quality.

According to acceptable probability e
−(Ej−Ei)

kT of Metropolis criterion, when the

temperature T is high the denominator is relatively large within the exponent,

which is a negative exponential, so the value of the whole function tends to 1

(in fact, it is the probability to jump out of current solution). The worse

solution will also be accepted, therefore, it is possible to escape from local

minima and continue a new wide-area search in the solution space.

While with temperature cooling down, when T reduced to a relatively small

value, the denominator is relatively small for exponent part and so is the value

of the whole function, which means a small probability to accept the worse

solution. If random search within a large range has been implemented at high

temperatures and the range containing global optimal solution has been

found, also, if enough narrow searches in a small range have been

implemented, then it is possible to get the global optimal solution.

3.1.3 Determine Number of DC and Routes Between Local Warehouses and DC

The framework of this subproblem is showed as Figure 3.2.

Independent variables including vehicle capability, the capacity of DC, the

number of potential DC(s) have an effect on dependent variables which contain

number of DC selected, routes between DC and local warehouses and the total

distance of these routes.

• Vehicle capacity

It has the same impact to routes and total distance as in the first echelon.

The larger the vehicle capacity, the fewer the number of routes and the less

the total distance.

• Capacity of DC
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model is not necessary when heuristics are applied. The reason that heuristics could

achieve a good solution in limited time is because it is a searching process with

limited times. SA starts with a random solution and does random iterations, so

there is no guarantee that the good solution is the global optimal solution.

SA is applied in 5 steps to solve this MDVRP. They are:

• Step 1:

– Generate location coordinates of customers

– Generate demand of customers

– Generate coordinates of local warehouses

• Step 2: Generate Key Parameters

• Step 3: Determine Simulated Annealing Parameters

• Step 4: Implement SA Algorithm in MDVRP

– Start solving this problem with a random initial solution

– Start SA iterations

• Step 5: Obtain routes for MDVRP

3.3.1 Step 1: Generate Location Coordinates and Demand

Step 1 is to develop coordinates and demand of customers and coordinates of

local warehouses.

• Generate location coordinates for the company local warehouses using

’RAND’ and ’ROUND’ functions in Matlab and save the coordinates in Excel.

In this research, the sample company has three existing local warehouses. The

location generated is shown in Figure 3.5 :
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will be served averagely. 5 units or 7 units are also reasonable values for this

independent variable and will lead to different optimal solutions.

• Capacity of local warehouses

Capacity is limited by the number of vehicles that send local warehouses.

There are 3 local warehouses and total daily demand is 36.15. In case of the

seasonal demand, each local warehouse could send at most 3 vehicles, which

means maximum capacity of all three local warehouses is 54.

The penalty of local warehouses and trucking cost per mile are two key

parameters needed to be generated.

• Penalty of local warehouses

A cost penalty to local warehouses occurs if the quantity that a local

warehouse served exceeds its capacity. A high penalty cost would prevent

warehouse overload.

Normally, there are two methods to exclude a bad solution for a minimized

cost problem. One is a strict constraint if the quantity (demand) served by

one local warehouse exceeds its capacity, it is not a feasible solution. The

other is to add a cost penalty to the objective function, which is also called

the fitness function. Overload is not acceptable, so even if there exists a

shorter route, the total cost would be high, but the goal is to minimize cost.

Because heuristics algorithms are not like enumeration, which could list all

possibilities, it is more common to add penalty costs. Strict constraints

sometimes limit feasible solution with a limited number of iterations.

• Trucking cost per mile

Total cost equals trucking cost per mile times total distance and cost of the

penalty. According to the data from RTSFinancial, the total trucking cost per

mile is $1.098, so $1.0 is assumed in this problem.
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3.3.3 Step 3: Determine Simulated Annealing Parameters

The annealing process is controlled by a set of initial parameters, which is

the cooling schedule, including necessary parameters for SA algorithm. The

essential is to achieve equilibrium so that the algorithm could approach global

optima in a limited time. The cooling schedule includes:

• Initial temperature T0

• Temperature decreasing function of T

• Tf is a temperature set in advance to make loop stop

• Length of Markov Chain Lk: Iteration times at one temperature T

T0 should generally be set to a sufficiently large positive number. In

large-scale problems, if T0 is too low, it will be very difficult to jump out of the

range of local best solutions. Alternatively, to reduce the amount of calculations, T0

should not be too large.

Tf should be set to a sufficiently small positive number, such as 0.01 to 5,

but this is only a rough estimate with a more sophisticated set of final value and

other criteria can be found in Aarts and Korst (1988) and Johnson, Aragon,

McGeoch, and Schevon (1989).

3.3.4 Step 4: Implement SA Algorithm in MDVRP

Apply the SA algorithm to MDVRP and the corresponding procedure are as

Figure 3.7.

SA starts with a random initial solution and then record the initial solution

in Matlab. There are outer and inner loops. Initial temperature equals to 100,

α = 0.95 after several trials for this case study.

Outer loop: When T = Ti, inner iteration runs 50 times and then it jumps to

next T : Tj = 0.95Ti. Outer loops runs 50 times which means T decreases 50 times.

Every time, T is 0.95 times of last time’s T .
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ii. If the current cost is larger than initial solution, calculate e
−ΔE
Ti

which is the probability to accept this worse solution;

iii. Compare e
−ΔE
Ti with a random positive number between 0 and 1

generated by Matlab ’RAND’ function. If rand<probability, accept

the worse solution as current solution; or refuse this solution.

(d) Update current solution

(e) Repeat the inner loop for 50 times

(f) Jump to next temperature to calculate cost. Next temperature is

T=0.95× 95 (current temperature)=90.25

The outer loop is a process of temperature decreasing. It terminates when

temperature decreases for 300 times, at which time T = T0 × 0.95300

3.3.5 Step 5: Obtain routes for MDVRP

The detailed results will be shown in Chapter 4 which includes the routing

between warehouses and customers.

3.3.6 Matlab coding logic

The whole SA process is in the main script in which other steps including

neighbor generation, cutting 19 customers to different routes, routes allocation are

made in separate M-files as functions and called in the main script. Functions are

discussed in this section.

• Cutting 19 customers to different routes

Loop structure is used here to cut 19 customers to different routes. The flow

chart is as Figure 3.27. In the flow chart, a is used to represent the number of

the first city in one route, j is the number of cities in one route, T load is

temporary load, i runs from 1 to 19.
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Neighbor generation is called in the main file as a separate function. The

random sequence of 19 cities is a 1× 19 matrix and ’flipfr’ function is used to

flip a matrix, which means the sequence of 19 cities is changed.

Both SA and cost function code are attached in Appendices.

3.4 Location-routing Problem between DC and Local Warehouse

Trial-and-error solutions are time-consuming. The reason for selecting

trail-and-error is first, this location routing problem is repeated every two or more

years to minimizing total cost because location decisions are relatively a long-term

decision. In addition, it is only suitable for the small case. For this problem, there

are only two DCs in the potential set and three local warehouses.

This location-routing problem is to determine:

1. The number of DC(s)

2. The location of the picked DC(s)

3. The routes between local warehouses and the picked DC(s)

Since the number of DC and local warehouses is small, trial-and-error is applied to

solve this problem.

3.4.1 Step 1: Determination of basic parameters and independent variables

• Number of DC(s)

In this case, there are three local warehouses, and DC’s normally cover larger

areas than local warehouses, so the number of DC should be less than three.

In this example, there should be one or two DC(s).

• Vehicle capacity for echelon of DC and local warehouse
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Vehicles running in this echelon have a larger capacity than vehicles between

local warehouses and customers. Five times large as the vehicle is picked,

which is vehicle capacity is 30 units. Similarly, smaller or larger vehicles of 4

times or 6 times are also reasonable.

• Capacity of DCs

The capacity of DCs is an independent variable. Based on the previous

assumption that maximum service one local warehouse could provide is 6× 3=

capacity of each vehicle × number of vehicles= 18 and there are three local

warehouses. The total service capability is 18 ×3= 54. From the DC

perspective, this is the total demand of local warehouses. To avoid seasonal

problems, assume that larger vehicles can be used to deliver goods between

DCs and local warehouses. The vehicle capacity is 30. The number of vehicles

that can be sent from each DC is 3. The total demand of 54 is smaller than

the delivering capacity of one depot 90, therefore, all three local warehouses

could be served by one DC.

• Generate demand of local warehouses

Develop demand using ’RAND’ function in Matlab and it is shown in

Table 3.2 .

Table 3.2
Demand of three local warehouses

Warehouse 1 Warehouse 2 Warehouse 3

demand 10 30 20

• Generate coordinates of the two DCs using ’RAND’ function in Matlab.

• Calculate distance
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Number the Depot A (2,94) and Depot B(85,7) and the local warehouses

1(10,40), 2 (30,90) and 3 (80,60). The distance matrix among local

warehouses is calculated as Table 3.3. The distance matrix between DC and

local warehouses is showed in Table 3.4.

Table 3.3
Distance Matrix among 3 local warehouses

Warehouse 1 Warehouse 2 Warehouse 3

Warehouse 1 0 53.58 72.80

Warehouse 2 53.85 0 58.31

Warehouse 3 72.80 58.31 0

Table 3.4
Distance Matrix between local warehouses and DCs

Depot A Depot B

Warehouse 1 54.59 81.94

Warehouse 2 28.28 99.57

Warehouse 3 85.10 53.24

3.4.2 Step 2: Trial-and-error

All possible situations with three local warehouses served by either one or

two DCs will be discussed in this section.

• Depot A is picked

Route 1: Depot A- warehouse 1-warehouse 3-Depot A

Route 2: Depot A-2-Depot A
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2. 54.59 + 72.80 + 85.10 + 99.57× 2 = 411.63

3. 54.59× 2 + 28.28× 2 + 53.24× 2 = 272.22

4. (54.59 + 99.57 + 53.24)× 2 = 414.8

5. 28.28× 2 + 81.94 + 72.8 + 53.24 = 264.54

6. (85.10 + 81.94 + 99.57)× 2 = 533.22

The shortest path is Warehouse 2 is served by Depot A, Warehouse 1 and 3 are

served by Depot B and the total distance is 264.54.

In Chapter 3, case study company data generation and selection of key SA

parameters were explained. This chapter has also explained the specific

methodology employed in this sample company case study for both the two echelons

among DCs, local warehouses and customers. Chapter 4 presents the results from

the case study and covers the sample company case study results.
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The SA algorithms were implemented in MATLAB ® 2015b platform and

carried out on a personal computer with common specifications of 2.30GHz Intel

Core i5, 8 MB RAM. Time spent to solve the MDVRP is 2.88 seconds. There are

seven total routes. The longest route contains five customers and the shortest

contains only one customer (Customer 11), whose demand coupled with the

following customer demand (Customer 6, see Figure 4.1) would exceed the vehicle

capacity.

The total distance is 217.78 which is smaller than 800 (penalty cost). When

the penalty is high, the shorter total distance has less impact on total cost. There is

no penalty cost in this solution because the total cost is smaller than 800.

The convergence shape in Figure 4.2. is stepwise, which shows the process of

combination of local search and global search in the predetermined iteration times.

After a small plateau which is a local search, there is a deep decrease for the

first 20 times outer iterations. The searching jumps out of this small area which the

objective function is around 365 and enters a global search. That is the greatest

strength of SA, the worse solution will be accepted with a probability.

From around 25th iteration, it is a plateau and there is almost no change in

objective function until 75th iteration and global search causes a significant decline

in the objective function. And then another plateau repeated. Objective function

value keeps at around 210 for a long time until 300 iteration terminates, but it can

not be inferred that more iteration times will obtain a better solution (See

Figure 4.3). As showed in Figure 4.3, when iteration times increases from 300 to

400, the objective function increases to 237.92. Time spent increases from 2.88 to

3.7 seconds.

General conditions for the convergent global optimum are: (1) the initial

temperature is high enough; (2) time of thermal equilibrium is long enough; (3) the

temperature to terminate the process is low enough; (4) the cooling process is slow

enough. However, it is very difficult to meet the above conditions simultaneously.
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CHAPTER 5. CONCLUSIONS

This chapter presents the conclusions for results of both the two echelons,

application and benefits from a company perspective and potential improvements

for future research.

5.1 Study Conclusion

It is of great significance to study different types of vehicle routing problems

and efficient algorithms to meet the actual needs. This thesis focused on a

two-echelon location-routing problem, which is a combinatorial optimization and

heuristic algorithms with trial-and-error given for a small scale example. The

two-echelon is divided into two subproblems, one is the multiple depot VRP and the

other one is the location-routing problem. Multi-depot VRP is coded in Matlab and

the location-routing problem is solved by trial-and-error.

5.1.1 Summary for Simulated Annealing

Essentially, Multi-depot VRP is still a routing problem with an additional

allocation process. Each customer should be allocated to only one of the potential

depots.

As a matter of fact, SA algorithm is a two-tier circulation, which includes

inner loop and outer loop. A new solution is generated under perturbation at any

temperature and the change is calculated in the objective function to determine

whether to accept the new solution. Because of a high initial temperature, new

solutions with higher E may also be accepted so that the algorithm can escape from

the local minimum, then by slowly reducing the temperature, the algorithm may
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eventually converge to a global optimal solution. Further, when the accepting

function value has been very small at low temperatures, but there is still the

possibility to accept a worse solution, so usually the best feasible solution would be

recorded during annealing process and as an output with the last accepted feasible

solution before the algorithm stops. Initial solution and parameter selection all have

an effect on the time and quality of the solution.

5.1.2 Summary of Trial-and-error

The advantage of trial-and-error is that exact global optimal solution will be

achieved. Since the location decision is a long-term strategic decision, an exact

solution is necessary.

The stem distance should be avoided. One way is to group more customer in

one route keeping vehicle full-truck-load. The other way is to have more distribution

center. In this problem, fixed cost of the distribution center is not included, which is

also necessary in real world case.

In the end, the routing and decisions are visualized which makes this

problem more convenient in application.

5.2 Discussion

Two-echelon network optimization problem is derived from real life situation.

This research covers topics including operation level and also the combination of

strategic and operation level.

This research focused on developed a user-friendly way to help companies

make routing and location decisions under the limitation of small-scale case in the

following three aspects:

• Multi-depot VRP is an everyday routing decision based on the changing

demand. It is simple to set up and applied to a real-life case. Input is location
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coordinates of all customers, local warehouses which will not change very

often. Demand is another input. Data including location coordinates and

demand are exported to Excel, which will be read into Matlab directly to

reach the final routes decision. When demand changes, the company could

just change the data in Excel and it is very easy for front-end user.

• In this problem, there is only one set of value of independent variables

including vehicle capacity and warehouse capacity. Other different

combinations could also be implemented to determine the best vehicle

capacity like a control experiment. For example, 6 units are picked in this

research as vehicle capacity between local warehouses and customers. Keep all

other independent variables and key parameters involved in the problem the

same except for the vehicle capacity. Then, different capacities could be tried

to optimize the total cost. Warehouse capacity could also be tested to achieve

an optimized solution.

• There is a clear demonstration between MDVRP and the SA algorithm. The

SA algorithm itself is already a fixed structure. The only difference is how to

calculate the objective function. If the company in the future needs to add

more constraints and change it to another variant of VRP, for example, VRP

with simultaneous pickup and delivery, only the coding for objective function

needed to be changed. Also, for this research, it is a combination of LRP and

MDVRP. MDVRP could be combined with other problem for a new

two-echelon problem. The idea of separation two echelons increases the

calculation speed significantly and also makes each echelon an independent

module which could be added to other problem conveniently for companies.
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5.3 Recommendations for Future Studies

In Chapter 4, a small scale case is given. It takes around 3 seconds to solve

the local warehouse-customer echelon of the network and the time will increase

exponentially. However, in real situations, there will be a larger scale problem.

Also, from an algorithmic perspective, new heuristic algorithms could be

used in future studies for the location-routing problem. For example, Intelligent

Water Drops (IWD) is a relatively new algorithm which is a simulation of the

formation of rivers and waterways. Kamkar, Akbarzadeh-T, and Yaghoobi (2010)

applied IWD to solve VRP in 2010. 14 VRP problems were tested. Other heuristics

algorithms including (simulated annealing, tabu search algorithm, ant colony

algorithm are compared together and it turns out that IDW can quickly converge to

the optimal solution and get better results).

Additionally, there are some factors that are ignored in this thesis due to

complexity. More parameters such as fixed cost of establishing depots, dispatching

vehicles could be added to the objective function which makes it closer to real-world

situations in the future. The time window, asymmetrical distance matrix and limit

of route length are also very meaningful considerations. In modern logistics

industry, especially express, delivery time and fixed delivery period have become a

more and more important factor. Some of the routes are one-way so that

asymmetrical distance matrix should be taken into consideration. For route length,

it is usually a factor to measure the labor time of drivers. Fatigue in driving is not

only dangerous, but also will reduce the customer satisfaction.

The other research direction is to combine inventory into routing and

location so that more benefits may be obtained from this more integrated system.

Especially with the development of driverless cars, distribution could be achieved

with less faults.
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APPENDIX A. SIMULATED ANNEALING MAIN CODE

1 %% Multi-Depot VRP

2 clc, clear, close all;

3 feature jit off

4 tic

5 %% Parameters

6 capacity=6; % Capacity of vehicles

7 capacityW=3; % Capacity of intermediate depot

8 penalcoef=800;

9 % Penalty of Warehouse (Constance in fitness function)

10

11 percost =1 ; % cost per mile

12 Whouse.position= xlsread('warehouse.xlsx');

13 % coorinates of warehouse

14 Whouse.number= size(Whouse.position, 1); % # of warehouse

15 B= xlsread('customer.xlsx'); % demand & coordinates of customer

16 customer.position=B(:,1:2); % coordinates of customer

17 customer.demand=B(:,3); % demand of customer

18 customer.number=size( customer.position ,1); % # of customer

19 [customer.distance ]=customdist(customer.position);

20 % distance matrix among customers

21 [customer.CWd] =CWdist( Whouse.position , customer.position );

22 %distance between customer and ID(warehouses)

23

24 %% SA Parameters

25 MaxIt=300; % Maximum Number of Iterations

26 MaxIt2=50; % Maximum Number of Inner Iterations

27 T0=100; % Initial Temperature

28 alpha=0.95; % Temperature Damping Rate
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29

30 %% Create initial solution randomly, calculate obj fun

31

32 [sol.chrom ]=CreateRandomSolution(customer.number );

33

34 % [sol.routing, sol.allocation, sol.Objfun]=

35 %Costfun(sol.chrom, percost, capacity, customer.CWd,

36 %customer.demand, customer.distance);

37

38 [sol.routing, sol.allocation, sol.Objfunfit, sol.Objfun]

39 =Costfun...

40 ( sol.chrom, percost , capacity , customer.CWd,

41 customer.demand, customer.distance , capacityW, penalcoef);

42

43 %% Update Best Solution Ever Found

44 BestSol=sol;

45 % Array to Hold Best Cost Values

46 BestCost=zeros(MaxIt,1);

47 % Set Initial Temperature

48 T=T0;

49

50 %% SA loop

51

52

53 for it=1:MaxIt

54 for it2=1:MaxIt2

55 %% neighbourhood generation

56 [ newchrom ] =CreateNeighbor( sol.chrom );

57 [ newrouting, newallocation, newObjfunfit ,

58 newObjfun ]=Costfun...

59 ( newchrom, percost, capacity ,

60 customer.CWd, customer.demand, customer.distance,...

61 capacityW, penalcoef);

62

63 if newObjfunfit ≤ sol.Objfunfit
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64 % xnew is better, so it is accepted

65 [ sol.chrom ]=newchrom;

66 [ sol.routing, sol.allocation, sol.Objfunfit,

67 sol.Objfun ]=Costfun...

68 (sol.chrom, percost , capacity ,

69 customer.CWd, customer.demand, customer.distance ,

70 capacityW, penalcoef);

71 else

72 Δ=newObjfunfit -sol.Objfunfit;

73 p=exp(-Δ/T);

74 if rand≤p

75 [ sol.chrom ]=newchrom;

76 [ sol.routing, sol.allocation,

77 sol.Objfunfit, sol.Objfun ]=Costfun...

78 (sol.chrom, percost , capacity ,

79 customer.CWd, customer.demand, customer.distance ,

80 capacityW, penalcoef);

81

82 end

83 end

84

85 % Update Best Solution

86 if sol.Objfun≤BestSol.Objfun

87 BestSol=sol;

88 end

89

90 end

91 BestCost(it)=BestSol.Objfun;

92

93 % Reduce Temperature

94 T=alpha*T;

95

96 end

97 toc

98
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99

100 %% results display

101 disp( sprintf('The transportation cost of the final result:

102

103 %12.2f',BestSol.Objfun) );

104 for i=1: length(BestSol.routing)

105 str=['The' num2str(i) '-th route:' ' Depot '

106 num2str( BestSol.allocation(i)) ' Customers(in order): '

107 num2str( BestSol.routing{i}) ];

108 disp(str)

109 end

110

111 %% results illustration

112 %% curve convergence of Transportation cost

113 figure('NumberTitle', 'off', 'Name', ...

114 'Iteration of proposed SA metaheuristic', 'Color',[1 1 1]);

115 plot(BestCost,'LineWidth',2);

116 title(' Curve convergence of fitness value','fontsize',13)

117 set(gca, 'FontName','Times New Roman',

118 'Fontsize',12,'LineWidth',2 );

119 xlabel('Iteration','fontsize',15,'fontname','Times new roman');

120 ylabel('Fitness value of current best solution','fontsize',15,

121 ...'fontname','Times new roman')

122 grid off ;

123 box off

124

125 %% location

126 % customers

127 figure('NumberTitle', 'off', 'Name', ' Schematic diagram of

128 the final solution', 'Color',[1 1 1]);

129 for i=1:length( customer.position)

130 plot( customer.position(i,1) , customer.position(i,2)

131 ,'o', 'MarkerEdgeColor','b', ...

132 'MarkerFaceColor','b', 'MarkerSize',4);

133 hold on
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134 str=[ 'Customer ' num2str(i) ];

135 text( customer.position(i,1)+1 ,

136 customer.position(i,2),str,'FontWeight','Bold','FontSize',9);

137 end

138 % Warehouse

139 for i=1:Whouse.number

140 plot( Whouse.position(i,1) , Whouse.position(i,2)

141 ,'o', 'MarkerEdgeColor','r', ...

142 'MarkerFaceColor','r', 'MarkerSize',7); hold on

143 str=[ 'Warehouse ' num2str(i) ];

144 text( Whouse.position(i,1)+1 ,

145 Whouse.position(i,2),str,'FontWeight','Bold','FontSize',12);

146 %label the id of every task Coordinate fonts and other features

147 end

148 box off

149 axis off; %

150 %% route

151 for i=1: length(BestSol.routing )

152 depott=BestSol.allocation(i);

153 routt=BestSol.routing{i} ;

154 routposition=[ Whouse.position( depott,:) ;

155 customer.position( routt,:) ; Whouse.position( depott,:) ];

156 linecol=0.6-0.6*rand(1,3);

157 for j=2:length( routposition )

158 lineh=plot([ routposition(j-1,1), routposition(j,1) ], ...

159 [ routposition(j-1,2), routposition(j,2) ],...

160 '-','LineWidth',1) ; hold on

161 set( lineh,'color', linecol);

162 end

163 end
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APPENDIX B. COST FUNCTION CODE

1 function [ routing, allocation, Objfunfit, Objfun ]=...

2 Costfun( chrom, percost , capacity , CWd ,demand, distance,

3 capacityW, penalcoef)

4 % routing

5 % allocation

6 % Objfun

7 % Warehouse capcity constraints

8 %% Allocate routes

9 fir=1; j=1;

10 for i=1: length( chrom )

11 tempload=sum( demand( chrom( fir :i ) ) );

12 if tempload > capacity

13 routing{j}= chrom( fir :i-1 );

14 fir=i;

15 j=j+1;

16 end

17 if i== length( chrom )

18 routing{j}= chrom( fir : i );

19 end

20 end

21

22 %% Warehouse allocation for each route

23 allocation=zeros(1, length( routing ) );

24 Drout=zeros(1, length( routing ) );

25 % shortest distance to all warehouse

26 W2rout=zeros( size(CWd ,1) ,1 );

27

28 for i=1: length( routing )
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29 rout=routing{i}; % Route i

30 for j=1:size(CWd ,1)

31 W2rout(j)= CWd(j, rout(1) ) + CWd(j, rout(end)) ;

32 end

33 [ val, ind]=min( W2rout );

34 allocation(i)=ind;

35

36 if length(rout )==1

37 Drout(i)= W2rout( ind );

38 else

39 kk=0;

40 for j=2:length( rout )

41 kk=kk+distance( rout(j-1), rout(j-1) );

42 end

43 Drout(i)=W2rout( ind )+kk;

44 end

45

46 end

47

48 %% Obj Function

49 Objfun= percost * sum(Drout );

50 kk=zeros(1, length( routing ) );

51 for i=1:length( routing )

52 kk( allocation(i) )=kk( allocation(i) )+1;

53 end

54 penalcost=penalcoef*...

55 sum( max( kk- capacityW, zeros(1, length( routing ) )) );

56 % penalty cost

57 Objfunfit= Objfun+penalcost; % fitness value
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