1,220 research outputs found

    Robust Speech Recognition for Adverse Environments

    Get PDF

    Gaze Assisted Prediction of Task Difficulty Level and User Activities in an Intelligent Tutoring System (ITS)

    Get PDF
    Efforts toward modernizing education are emphasizing the adoption of Intelligent Tutoring Systems (ITS) to complement conventional teaching methodologies. Intelligent tutoring systems empower instructors to make teaching more engaging by providing a platform to tutor, deliver learning material, and to assess students’ progress. Despite the advantages, existing intelligent tutoring systems do not automatically assess how students engage in problem solving? How do they perceive various activities, while solving a problem? and How much time they spend on each discrete activity leading to the solution? In this research, we present an eye tracking framework that can assess how eye movements manifest students’ perceived activities and overall engagement in a sketch based Intelligent tutoring system, “Mechanix.” Mechanix guides students in solving truss problems by supporting user initiated feedback. Through an evaluation involving 21 participants, we show the potential of leveraging eye movement data to recognize students’ perceived activities, “reading, gazing at an image, and problem solving,” with an accuracy of 97.12%. We are also able to leverage the user gaze data to classify problems being solved by students as difficult, medium, or hard with an accuracy of more than 80%. In this process, we also identify the key features of eye movement data, and discuss how and why these features vary across different activities

    Gaze Assisted Prediction of Task Difficulty Level and User Activities in an Intelligent Tutoring System (ITS)

    Get PDF
    Efforts toward modernizing education are emphasizing the adoption of Intelligent Tutoring Systems (ITS) to complement conventional teaching methodologies. Intelligent tutoring systems empower instructors to make teaching more engaging by providing a platform to tutor, deliver learning material, and to assess students’ progress. Despite the advantages, existing intelligent tutoring systems do not automatically assess how students engage in problem solving? How do they perceive various activities, while solving a problem? and How much time they spend on each discrete activity leading to the solution? In this research, we present an eye tracking framework that can assess how eye movements manifest students’ perceived activities and overall engagement in a sketch based Intelligent tutoring system, “Mechanix.” Mechanix guides students in solving truss problems by supporting user initiated feedback. Through an evaluation involving 21 participants, we show the potential of leveraging eye movement data to recognize students’ perceived activities, “reading, gazing at an image, and problem solving,” with an accuracy of 97.12%. We are also able to leverage the user gaze data to classify problems being solved by students as difficult, medium, or hard with an accuracy of more than 80%. In this process, we also identify the key features of eye movement data, and discuss how and why these features vary across different activities

    Automatic Emotion Recognition: Quantifying Dynamics and Structure in Human Behavior.

    Full text link
    Emotion is a central part of human interaction, one that has a huge influence on its overall tone and outcome. Today's human-centered interactive technology can greatly benefit from automatic emotion recognition, as the extracted affective information can be used to measure, transmit, and respond to user needs. However, developing such systems is challenging due to the complexity of emotional expressions and their dynamics in terms of the inherent multimodality between audio and visual expressions, as well as the mixed factors of modulation that arise when a person speaks. To overcome these challenges, this thesis presents data-driven approaches that can quantify the underlying dynamics in audio-visual affective behavior. The first set of studies lay the foundation and central motivation of this thesis. We discover that it is crucial to model complex non-linear interactions between audio and visual emotion expressions, and that dynamic emotion patterns can be used in emotion recognition. Next, the understanding of the complex characteristics of emotion from the first set of studies leads us to examine multiple sources of modulation in audio-visual affective behavior. Specifically, we focus on how speech modulates facial displays of emotion. We develop a framework that uses speech signals which alter the temporal dynamics of individual facial regions to temporally segment and classify facial displays of emotion. Finally, we present methods to discover regions of emotionally salient events in a given audio-visual data. We demonstrate that different modalities, such as the upper face, lower face, and speech, express emotion with different timings and time scales, varying for each emotion type. We further extend this idea into another aspect of human behavior: human action events in videos. We show how transition patterns between events can be used for automatically segmenting and classifying action events. Our experimental results on audio-visual datasets show that the proposed systems not only improve performance, but also provide descriptions of how affective behaviors change over time. We conclude this dissertation with the future directions that will innovate three main research topics: machine adaptation for personalized technology, human-human interaction assistant systems, and human-centered multimedia content analysis.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133459/1/yelinkim_1.pd

    A Sketch-Based Educational System for Learning Chinese Handwriting

    Get PDF
    Learning Chinese as a Second Language (CSL) is a difficult task for students in English-speaking countries due to the large symbol set and complicated writing techniques. Traditional classroom methods of teaching Chinese handwriting have major drawbacks due to human experts’ bias and the lack of assessment on writing techniques. In this work, we propose a sketch-based educational system to help CSL students learn Chinese handwriting faster and better in a novel way. Our system allows students to draw freehand symbols to answer questions, and uses sketch recognition and AI techniques to recognize, assess, and provide feedback in real time. Results have shown that the system reaches a recognition accuracy of 86% on novice learners’ inputs, higher than 95% detection rate for mistakes in writing techniques, and 80.3% F-measure on the classification between expert and novice handwriting inputs

    Exploring Cross-linguistic Effects and Phonetic Interactions in the Context of Bilingualism

    Get PDF
    This Special Issue includes fifteen original state-of-the-art research articles from leading scholars that examine cross-linguistic influence in bilingual speech. These experimental studies contribute to the growing number of studies on multilingual phonetics and phonology by introducing novel empirical data collection techniques, sophisticated methodologies, and acoustic analyses, while also presenting findings that provide robust theoretical implications to a variety of subfields, such as L2 acquisition, L3 acquisition, laboratory phonology, acoustic phonetics, psycholinguistics, sociophonetics, blingualism, and language contact. These studies in this book further elucidate the nature of phonetic interactions in the context of bilingualism and multilingualism and outline future directions in multilingual phonetics and phonology research

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF
    • …
    corecore