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A B S T R A C T

In this paper, we introduce a new corpus of oral cancer speech and present our study on the automatic
recognition and analysis of oral cancer speech. A two-hour English oral cancer speech dataset is collected
from YouTube. Formulated as a low-resource oral cancer ASR task, we investigate three acoustic modelling
approaches that previously have worked well with low-resource scenarios using two different architectures;
a hybrid architecture and a transformer-based end-to-end (E2E) model: (1) a retraining approach; (2) a
speaker adaptation approach; and (3) a disentangled representation learning approach (only using the hybrid
architecture). The approaches achieve a (1) 4.7% (hybrid) and 7.5% (E2E); (2) 7.7%; and (3) 2.0% absolute
word error rate reduction, respectively, compared to a baseline system which is not trained on oral cancer
speech. A detailed analysis of the speech recognition results shows that (1) plosives and certain vowels are
the most difficult sounds to recognise in oral cancer speech — this problem is successfully alleviated by our
proposed approaches; (3) however these sounds are also relatively poorly recognised in the case of healthy
speech with the exception of/p/. (2) recognition performance of certain phonemes is strongly data-dependent;
(4) In terms of the manner of articulation, E2E performs better with the exception of vowels — however,
vowels have a large contribution to overall performance. As for the place of articulation, vowels, labiodentals,
dentals and glottals are better captured by hybrid models, E2E is better on bilabial, alveolar, postalveolar,
palatal and velar information. (5) Finally, our analysis provides some guidelines for selecting words that can
be used as voice commands for ASR systems for oral cancer speakers.
1. Introduction

It is a great problem that many assistive technologies are only
accessible to people with unimpaired speech. Often those who have the
biggest need of such technologies are deprived of them. Oral cancer
survivors are one such group of speakers. Approximately 500,000
people get diagnosed with oral cancer every year worldwide (Shield
et al., 2017), of which 53,000 in the USA (The Oral Cancer Foundation,
2019) alone.

Oral cancer leads to speech impairments due to the (partial) re-
moval of the tissues surrounding the tongue during surgery as part
of the treatment of the oral cancer (Ward and van As-Brooks, 2014).
Oral cancer speakers’ speech impairments are predominantly on the
articulatory level. Plosives (i.e. /k/, /g/, /b/, /p/, /t/, /d/) (Bressmann
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et al., 2009, 2004) and alveolar sibilants (i.e., /s/, /z/) (Laaksonen
et al., 2011) have been found to be the most impacted (Halpern
et al., 2020). In certain cases, patients are able to learn articulatory
compensation techniques to adjust for the lost tongue tissue (Ward
and van As-Brooks, 2014). Their impaired ability to speak affects their
quality of life to a great extent (Epstein et al., 1999). This comes in
addition to difficulty swallowing, chewing (Ward and van As-Brooks,
2014; Logemann et al., 1997), and decreased tongue mobility (Kappert
et al., 2019) after operation.

This research focuses on building an automatic speech recognition
(ASR) system for oral cancer speech. Such an ASR could have a large
positive impact on survivors’ quality of life and could be used in the
objective evaluation of survivors’ speech intelligibility during speech
therapy (Windrich et al., 2008). To that end, this paper (1) presents a
vailable online 10 May 2022
167-6393/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.specom.2022.04.006
Received 1 March 2021; Received in revised form 13 February 2022; Accepted 22
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

April 2022

http://www.elsevier.com/locate/specom
http://www.elsevier.com/locate/specom
mailto:b.halpern@nki.nl
mailto:s.feng@tudelft.nl
mailto:r.v.son@nki.nl
mailto:M.W.M.vandenBrekel@uva.nl
mailto:o.e.scharenborg@tudelft.nl
https://doi.org/10.1016/j.specom.2022.04.006
https://doi.org/10.1016/j.specom.2022.04.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.specom.2022.04.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Speech Communication 141 (2022) 14–27B.M. Halpern et al.
newly collected database of English oral cancer speech; (2) investigates
several approaches to building an ASR for oral cancer speech, where
we specifically focus on the acoustic model to improve oral cancer
speech recognition (and leave sophisticated language models and data
augmentation for future research; see also the General Discussion); and
(3) presents an analysis into the differences and similarities between
oral cancer speech and normal speech.

Training a deep neural network (DNN) acoustic model (AM) for
the automatic recognition of speech usually requires a large amount
of labelled training data. In the case of oral cancer speech, though,
we typically only have a very limited amount of labelled oral cancer
speech data. This makes DNN AM training for oral cancer speech a
low-resource problem. We investigate three hybrid approaches in low-
resource ASR that previously have been shown to be competitive on
low-resource tasks: (1) a retraining approach (Xu et al., 2015), (2) a
speaker adaptation approach (Heck et al., 2017), and (3) a disentangled
representation learning approach (Hsu et al., 2017) in order to leverage
non-pathological, normal speech resources in DNN AM training for
building AMs for oral cancer speech. (4) Due to the recent success
of end-to-end (E2E) architectures, we additionally perform DNN AM
retraining with a Transformer-based ASR architecture.

The acoustic model retraining approach leverages an AM pretrained
on a healthy speech corpus and retrains this AM with oral cancer
speech data. This approach has shown to be effective in improving
acoustic modelling for pathological speech (Christensen et al., 2013;
Liu et al., 2017), including dysarthria (Yilmaz et al., 2017; Hermann
and Doss, 2020), and aphasia (Qin et al., 2018) for hybrid models. An
effective multi-stage acoustic modelling method for dysarthric speech
was proposed in Yilmaz et al. (2017).

Transformer-based E2E models are known to perform well when
exposed to a large amount of training data and for standard, general-
purpose ASR tasks (Karita et al., 2019). There is, however, limited
research in pathological ASR using a Transformer-based architecture,
with the exception of Harvill et al. (2021) for dysarthric ASR. However,
the Transformer-based model achieves worse WER performance (even
with data augmentation) than the current state-of-the-art (Hermann
and Doss, 2020). The present study adopts a similar method to Yilmaz
et al. (2017), and studies the efficacy of the retraining approach for the
recognition of oral cancer speech using a hybrid and an E2E model.

The goal of speaker adaptation, or speaker adaptive training (SAT),
is to normalise speaker variation contained in speech (Anastasakos
et al., 1996), and is widely applied in general-purpose ASR systems
(Gupta et al., 2014; Anastasakos et al., 1997; Miao et al., 2015; Cui
et al., 2017). It is expected that speaker adaptation is even more
important in oral cancer ASR, as oral cancer speech is much more
variable than normal speech. We propose to use speaker adaptation,
and particularly feature-space maximum likelihood linear regression
(fMLLR) (Gales, 1998) based speaker adaptation, to suppress pathologi-
cal speech sound characteristics in oral cancer speech, encouraging oral
cancer speech representations to be more similar to those of normal
speech. fMLLR has previously been successfully applied to improve
pathological speech recognition performance (Hahm et al., 2015; Liu
et al., 2017; Bhat et al., 2016). The resulting AM is expected to
perform better on the oral cancer ASR task than that without speaker
adaptation.

Disentangled speech representation learning aims to separate pho-
netic and speaker information in the speech signal into two feature rep-
resentations in an unsupervised manner (Hsu et al., 2017), i.e., without
the need of labelled speech data. One of the two learned represen-
tations, the phonetically-discriminative representation, is expected to
retain the linguistic content in the original speech signal while sup-
pressing speaker-dependent information. Conversely, the other learned
representation is expected to capture speaker-dependent information
and carry little phonetic information. The effectiveness of disentan-
gled representation learning has been demonstrated for low-resource
15

ASR (Feng and Lee, 2019; Feng et al., 2019) and noise robust ASR (Hsu
and Glass, 2018). In the present study, we propose to apply this
approach to suppress pathological speech sound characteristics while
retaining the linguistic content in the oral cancer speech. Specifically,
we adopt the factorised hierarchical variational auto-encoder (FH-
VAE) (Hsu et al., 2017) to perform disentangled speech representation
learning. The learned phonetically-discriminative feature representa-
tion is used as the input feature to train a DNN AM for the oral cancer
ASR task.

We further carry out an extensive phoneme-level and articulatory-
level analysis in Section 4.2. The goal of this analysis is five-fold:

• Firstly, we want to find out what phonemes and articulatory
features of the oral cancer speech are the most difficult to capture
for current ASR systems trained on typical speech. This will allow
us to investigate whether these sounds are the sounds that are
known to be impacted in oral cancer speech or if ASR systems
have problems with other sounds or aspects of oral cancer speech.

• Secondly, we want to pinpoint which phonemes and articulatory
features contribute most to improvements in the proposed ASR
systems. The motivation for this analysis is to identify perfor-
mance bottlenecks, which will guide the development of future
ASR systems. It is especially important to pinpoint phoneme
classes where adding more oral cancer speech data is not expected
to help. We would like to see which phonemes are better recog-
nised by E2E models/hybrid models in the case of oral cancer
speech. End-to-end models became superior to hybrid models on
many ASR tasks, therefore we hypothesise that for certain sounds
end-to-end models will be better. Determining which ones are
better are essential for choosing the appropriate architecture for
future pathological speech studies.

• Thirdly, we would like to compare the errors that the ASR archi-
tectures make on healthy and oral cancer speech. The goal of this
analysis is to pinpoint which phoneme classes are specific to oral
cancer speech, and which phonemes seem to be problematic for
both kind of speech.

• Fourthly, the outcomes of the analyses will be used to provide
guidelines on the selection of the words used for voice commands
or stimuli for ASR systems aimed at oral cancer speakers. For
example, if a particular class of phonemes are better recognised
by the proposed systems than other phonemes, a voice command
consisting mostly of phonemes from that class of phonemes can
be selected. Such an analysis could bear meaningful lessons when
deploying these systems to voice assistant tools or when these are
used for objective evaluation of oral cancer speech.

Finally, it is well known that background noise negatively affects
the performance of ASR systems (Cui and Alwan, 2005). Our dataset
was collected from YouTube, which left us with little control regarding
the noise in the audio. Therefore, it would be useful to quantify the
influence of noise on the ASR performance, and compare it to the
influence of speech severity. In Section 3.6, we perform an analysis to
compare the influence of noise and speech severity in our ASR systems.

2. Dataset

In our experiments, we will use two datasets: a new, publicly avail-
able dataset we have recently collected containing English oral cancer
speech2; and the Wall Street Journal (WSJ) dataset (Paul and Baker,
1992) containing English (non-pathological) read speech to leverage as
training data for our baseline system and as a starting point for training
our low-resource scenario ASR systems.

2 https://karkirowle.github.io/oral_cancer_corpus/.

https://karkirowle.github.io/oral_cancer_corpus/
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2.1. Oral cancer speech dataset

We manually collected 2.25 h of audio data containing English oral
cancer speech from 10 different speakers from YouTube. Presence of
oral cancer speech was determined by the content of the video and the
authors’ (B.H., R.v.S, M.v.d.B) clinical experience with such speakers.
The audio was then manually cut to exclude music, healthy speakers,
non-American English speakers, unintelligible speech, and other factors
which could negatively influence recognition of the oral cancer speech.
The resulting corpus has been automatically cut into chunks of 10
econd. The cuts do not necessarily occur at natural pauses. When we
ranscribed the utterances, we tried to account for this as much as
ossible.

Baseline transcriptions were generated using the Baseline ASR sys-
em used in this study, which consisted of a DNN AM and a tri-gram
anguage model (LM; see Section 3.1.1). Subsequently, these automatic
ranscriptions were manually checked and corrected by one of the
uthors (B.H.).

Table 1 shows the number of recordings and the amount of speech
n minutes for each of the recordings of each of the speakers, as well
s the speakers’ gender. Since the total amount of oral cancer speech
ata is rather limited and because the total amount of audio for each
peaker is highly variable, we carried out 5-fold cross-validation rather
han creating separate training and test sets. A completely random,
lind shuffling of the speakers into the five separate training and test
ets would lead to (1) high variance in the observed WERs due to the
arge differences in the amount of audio used for training and testing in
ach possible partition, (2) high gender imbalance, i.e., in a completely
andom shuffling, an all-male train and all-female test set could easily
ccur. Therefore, to create the five training-test set combinations, the
rain and test set speakers are selected so that (1) the total audio used
or training is always around 100 min (1.7 h), and (2) the gender
alance of the train/test set varies within acceptable ranges, so that the
raining set contains at least two speakers of the same gender; and at
east one speaker of that same gender is present in the test set. As a large
ortion of the audio data comes from the speaker with ID id011 (see
able 1), this speaker is always kept in the training set. The partitions
re shown in Table 1. The speakers are either assigned to the training
et or the test set, there is no overlap. The amounts of audio data in
ours, the total numbers of words in the transcriptions, and the total
umber of audio files in the training and test data separated per gender
re listed in Table 2 for each partition separately.

.2. Wall street journal corpus

The Wall Street Journal (WSJ) corpus is an American English read
peech corpus (Paul and Baker, 1992). We used the si284 set, which
ontains 37,416 speech utterances spoken by 283 speakers, for training.
he total amount of data is 81.3 h. All speakers in the WSJ are healthy
peakers.

. Methods

The three approaches with the two different architectures to the
utomatic recognition of oral cancer speech will be compared against
wo Baseline ASR systems – one hybrid system and one E2E system – on
he task of word recognition on the oral cancer speech test set. Word
ecognition performance is measured in word error rate (WER). We also
eport WER on the oral cancer speech training set, which is used in
he analyses of the oral cancer recognition results (see Section 4.1.1).
ig. 1 present a schematic overview of the three approaches and the
aseline model implemented in the hybrid DNN-HMM architecture
top of Fig. 1). For ease of comparison of the three approaches, we
sed colours to indicate similarities (and differences) between the
pproaches: The blue colour indicates GMM-HMM training, the green
16

olour indicates DNN AM (re-)training (the same approach is used
Table 1
Details of the oral cancer speech dataset and its train-test partitioning design for 5-fold
cross-validation. Blue means train, while red means test.

Wav id Spk id Minutes Gender Partition index

1 2 3 4 5

1 id001 1.6 Female Test Test Train Train Train
3 3.3 Test Test Train Train Train

10 id003 17.5 Female Train Train Train Test Train

21 id007 12.8 Female Train Train Train Train Test

23 id008 6.2 Female Train Test Test Train Train
24 15.0 Train Test Test Train Train

18 id005 6.1 Female Test Test Test Train Train

4

id011

1.4

Male

Train Train Train Train Train
5 4.2 Train Train Train Train Train
6 2.9 Train Train Train Train Train
7 3.2 Train Train Train Train Train
13 4.1 Train Train Train Train Train
22 11.9 Train Train Train Train Train
28 13.9 Train Train Train Train Train

26 id011/id009 13.3 Mixed Train Train Train Train Train

30 id014 0.4 Male Test Test Test Train Train

33 id016 1.8 Male Test Test Test Test Train

34 id017 15.5 Male Test Train Train Test Test

Table 2
Statistics of the training and test data in the 5-fold cross-validation scheme.

Partition index 1 2 3 4 5

Training set

Hours 1.77 1.68 1.76 1.67 1.78
#words 17.2k 16.7k 17.3k 17.2k 17.5k
#male audio files 7 8 8 8 9
#female audio files 4 2 4 6 6
#mixed audio files 1 1 1 1 1

Test set

Hours 0.48 0.57 0.49 0.58 0.47
#words 4.7k 5.3k 4.6k 4.7k 4.4k
#male audio files 3 5 3 1 1
#female audio files 3 2 2 2 1
#mixed audio files 0 0 0 0 0

for both architectures), and the orange colour indicates the feature
representation method (only for the hybrid approach). The dashed
boxes indicate the type of data that is used in the various stages of the
pipelines of the three approaches. An overview of the training data, fea-
ture representations, and training methods of the three approaches and
the Baseline models implemented in the hybrid and E2E architectures
is provided in Table 3.

3.1. Baseline ASR systems

3.1.1. Baseline hybrid ASR
The Baseline hybrid ASR system is visualised in the left part of Fig. 1

(top) in the part of the pipeline that says ‘‘WSJ data’’, and consists of a
hybrid DNN-hidden Markov model (DNN-HMM) AM only trained with
WSJ. The input features of the Baseline system are 23-dimension filter
banks (FBanks) appended by 3-dimension pitch features (Ghahremani
t al., 2014). The 26-dimension features are further processed by con-
extual splicing {0,±1,±2,±3,±4,±5} (following the recommendation

in Kaldi3), i.e., each frame-level feature appended by its 5 left and 5
right frames, to capture longer temporal dependencies. This results in
286 (26 × (5 + 1 + 5)) dimensions.

To obtain the phone labels for each speech frame of the WSJ data
for DNN training, first a context-dependent GMM-HMM (CD-GMM-
HMM) AM is trained from scratch with the WSJ training data and
transcriptions using the standard Kaldi recipe (Povey et al., 2011). The

3 wsj/s5/steps/nnet/pretrain_dbn.sh.

https://wsj/s5/steps/nnet/pretrain_dbn.sh
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Table 3
Attributes of the hybrid and E2E models compared in this study. FB+P: FBank + Pitch feature. OC: oral cancer speech. ‘→’:
pretraining followed by retraining. ‘+’: merging of the two datasets during training.

Architecture Hybrid E2E

Method Attributes

GMM-HMM DNN Transformer

Data Input Data Input Data Input

Baseline WSJ MFCC WSJ FB+P WSJ FB+P

DNN AM/E2E ASR retraining WSJ MFCC WSJ→OC FB+P WSJ→OC FB+P

Baseline+OC WSJ+OC MFCC WSJ+OC FB+P N/A N/A
fMLLR for AM training WSJ+OC MFCC WSJ+OC fMLLR N/A N/A

FHVAE WSJ+OC MFCC WSJ+OC 𝒛𝟏 N/A N/A
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CMU dictionary4 is used to map the words in the training data transcrip-
tions to sequences of phonemes. The input features are 39-dimension
MFCCs+𝛥 + 𝛥𝛥. After CD-GMM-HMM AM training, the number of
modelled HMM states is 3431. Frame labels are then obtained via
forced alignment with the CD-GMM-HMM.

The DNN contains 5 feed-forward layers of dimension 1500 and a
softmax output layer of dimension 3431 (equal to the number of HMM
states). The DNN AM is trained using the WSJ frame labels as training
labels and cross-entropy (CE) (Veselỳ et al., 2013) as the training
criterion, and implemented based on Kaldi nnet1.5 A 10% subset of
raining data is randomly selected for cross-validation (CV). The initial
earning rate (LR) is 0.008, and is halved when no improvement of
he loss value in the CV set is observed. Following the Kaldi nnet1
onvention, the training process is terminated if the LR is smaller than
.5625 × 10−5.

The Baseline ASR system uses a tri-gram LM trained with the tran-
criptions of the WSJ si284 set. This LM is adopted consistently

throughout all experiments in this paper.6
The Baseline ASR system achieves a WER of 6.7%7 on the official

WSJ test set eval92.

3.1.2. Baseline end-to-end (E2E) ASR
The baseline E2E ASR system adopts a transformer architecture

(Karita et al., 2019) and is, like the Baseline hybrid model, only
trained with the WSJ training material. The input features of the E2E
Baseline system are 23-dimension FBanks appended by 3-dimension
pitch features, the same input features as used for the Baseline hybrid
system as described in Section 3.1.1. The transformer model parameters
are taken mainly from the official ESPnet WSJ recipe8: 12 encoder
layers and 6 decoder layers, all with 2048 dimensions; the attention di-
mension is 256 and the number of attention heads is 4; the convolution
subsampling layer in the encoder has 2-layer CNN with 256 channels,
stride with 2, and a kernel size of 3. The transformer model is trained
with 50 epochs (no early-stopping), with a LR of 10.0, using a joint
connectionist temporal classification (CTC)-attention objective (Kim
et al., 2017) in which the CTC and attention weights are 0.3 and
0.7 respectively. Letters of the English alphabet are used as the basic
subword units. The E2E baseline achieved 5.3% WER on the WSJ eval92
test set.

4 http://www.speech.cs.cmu.edu/cgi-bin/cmudict.
5 The LF-MMI criterion (Povey et al., 2016) was found more effective

han CE in dysarthric ASR (Hermann and Doss, 2020). However, our initial
xperiments using DNN AM trained with LF-MMI using the more recent nnet3

in Kaldi showed no improvements over training using CE.
6 RNNLM rescoring on top of tri-gram LM based results could lead to a WER

reduction, however, this paper focuses on acoustic modelling, hence RNNLM
rescoring to a hybrid model is not applied in this paper.

7 This result falls short of state of the art (Zeghidour et al., 2018), mainly
due to (1) the use of a tri-gram LM, and (2) the use of CMUdict without the
extension to include the out-of-vocabulary words in the WSJ LM training data.

8 egs/wsj/asr1/conf/tuning/train_pytorch_transformer.
yaml from ESPNet.
17
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3.2. Model retraining

In this approach, an ASR system is first trained with normal, i.e., in
this case WSJ, speech data, and then retrained with oral cancer speech
data. Sections 3.2.1 and 3.2.2 discuss the retraining approach applied
to the hybrid and E2E ASR architectures, respectively.

3.2.1. Hybrid DNN AM retraining
The general framework of applying the retraining approach to a

hybrid ASR system is illustrated in the top part of Fig. 1. The Baseline
DNN AM described in Section 3.1.1 is chosen as the pretrained model
and used as the starting point for retraining.

First, the Baseline DNN AM is used to force-align the oral cancer
speech. Then, these alignments are used as labels to retrain the Base-
line model. Preliminary experiments compared retraining some of the
hidden layers vs. all hidden layers. The results showed that retraining
all the hidden layers gave the best WER on the oral cancer speech test
set. Therefore, DNN AM retraining in this study is always performed on
all the hidden layers.

The loss function and stopping criterion of DNN AM retraining are
he same as those for the Baseline DNN AM training. The initial LR
as carefully tuned using the oral cancer speech data of partition 1 in

he range of {0.002, 0.004, 0.008, 0.016} because we discovered that with
ery limited amounts of oral cancer training speech data for DNN AM
etraining, the WER performance on the oral cancer speech was sensitive
o the initial LR.Our preliminary experiments showed that the optimal
R was 0.008, and it is used in all experiments in this paper.

.2.2. E2E ASR retraining
The baseline E2E ASR system described in Section 3.1.2 is chosen as

he pretrained model and used as the starting point for retraining. We
arried out E2E ASR retraining on all the encoder and decoder network
ayers of the pretrained model, in order to be consistent with the setup
n hybrid DNN AM retraining (see Section 3.2.1). Similarly, as in the case
f hybrid DNN AM retraining, we experimentally found the performance
f E2E ASR retraining is sensitive to the LR. Our results indicated that
he optimal LR for transformer is 0.5, and it is used in all E2E ASR
etraining experiments in this paper.

.3. Speaker-adapted features for acoustic modelling

The idea of fMLLR is to map acoustic speech features from the orig-
nal unadapted space to a speaker-adapted space, so that the adapted
eatures are less dependent on speaker identities. This is realised by the
stimation of speaker-specific transform matrices and bias vectors.

Mathematically, let 𝒐𝒔𝒕 be an unadapted speech feature at frame 𝑡,
poken by speaker 𝑠. fMLLR estimates a matrix 𝐀𝐬 and a bias vector 𝒃𝒔,
nd transforms 𝒐𝒔𝒕 to �̂�𝒔𝒕 by,

̂ 𝒔𝒕 = 𝐀𝐬 ⋅ 𝒐𝒔𝒕 + 𝒃𝒔, (1)

here �̂�𝒔𝒕 is the corresponding speaker adapted feature. The estimation
𝐬 𝒔
f 𝐀 and 𝒃 can be realised by an expectation-maximisation (EM)

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Fig. 1. (Top) Schematic overview of the DNN AM retraining approach. The left-most part, indicated with the dashed lines, shows the Baseline model. (Middle) Schematic overview
of the fMLLR for AM training approach. (Bottom) Schematic overview of the disentangled speech representation learning for AM training approach. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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algorithm proposed in Gales (1998). The speaker adapted features �̂�𝒔𝒕
are also often referred to as fMLLR features.

The use of fMLLR features in acoustic modelling for oral cancer
speech is illustrated in Fig. 1 (middle). The oral cancer speech data and
WSJ data are merged to train a CD-GMM-HMM AM from scratch using
the training procedure of the Baseline ASR system (see Section 3.1.1),
except that here we also include the oral cancer speech data in the
training of the CD-GMM-HMM AM model. Subsequently,fMLLR-based
SAT is performed on the CD-GMM-HMM AM to estimate speaker-
specific matrices and bias vectors. After SAT, a new CD-GMM-HMM
AM with fMLLR features as input features is trained. This model is
denoted as the CD-GMM-HMM-SAT. The dimension of fMLLR features
is 40. The number of HMM states modelled by the CD-GMM-HMM-SAT
model is 5080. Next, frame alignments are generated with CD-GMM-
HMM-SAT for both the WSJ and the oral cancer speech data. These
alignments and fMLLR features are used as training labels and input
features, respectively, to train a DNN AM for oral cancer ASR.

In short, the DNN training procedure and architecture follow the
settings of the Baseline hybrid DNN AM training, except: (1) Training
data consists of both WSJ and oral cancer speech; (2) The softmax
output layer dimension is 5080; (3) Input features to the DNN AM
are fMLLR features, instead of FBank+pitch features. This method is
denoted as fMLLR for AM training (or fMLLR for simplicity), and is only
carried out for the hybrid architecture.

To explicitly measure the efficacy of fMLLR-based speaker adapta-
tion, we trained another DNN AM, which takes 23-dimension FBanks
appended by 3-dimension pitch features as input, instead of fMLLR
features. Other training and model settings are the same as the system
with fMLLR for AM training. This system is referred to as Baseline+OC,
where OC stands for oral cancer speech.

3.4. Disentangled speech representation learning for acoustic modelling

Disentangled speech representation learning is based on the assump-
tion that speaker characteristics vary less within an utterance than the
linguistic content does, while linguistic content tends to have similar
amounts of variation within and across utterances (Hsu et al., 2017).
The FHVAE model (Hsu et al., 2017), which learns to factorise segment-
level and sequence-level attributes of sequential data into different
18
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latent variables, is applied to disentangle phonetic (linguistic) and
speaker information in the speech signal.

The FHVAE’s encoder encodes input speech data into segment-
level (expected to capture phonetic information) and sequence-level
(expected to capture speaker information) latent variables separately,
and the FHVAE’s decoder reconstructs the original speech based on
both the segment- and sequence-level latent variables (Hsu et al.,
2017). Mathematically, let 𝒛𝟏 and 𝒛𝟐 denote the latent segment variable
and the latent sequence variable, respectively. 𝝁𝟐 is the sequence-
dependent prior,9 named as s-vector. 𝜃 and 𝜙 denote the parameters
of the generation (decoder) and the inference (encoder) models of the
FHVAEs, respectively. Let  = {𝑿𝒊}𝑀𝑖=1 denote a speech dataset with
𝑀 sequences. Each 𝑿𝒊 contains 𝑁 𝑖 speech segments {𝒙(𝒊,𝒏)}𝑁 𝑖

𝑛=1, where
𝒙(𝒊,𝒏) contains a number of consecutive frames.

The joint probability for the FHVAE decoder to generate 𝑿 is
formulated as,

𝑝𝜃(𝝁𝟐)
𝑁
∏

𝑛=1
𝑝𝜃(𝒛𝒏𝟏 )𝑝𝜃(𝒛

𝒏
𝟐 |𝝁𝟐)𝑝𝜃(𝒙𝒏|𝒛𝒏𝟏 , 𝒛

𝒏
𝟐 ). (2)

In the FHVAE, the exact posterior inference is intractable. The FHVAE
introduces an inference model 𝑞𝜙 to approximate the intractable true
osterior as,

𝜙(𝝁𝟐)
𝑁
∏

𝑛=1
𝑞𝜙(𝒛𝒏𝟐 |𝒙

𝒏)𝑞𝜙(𝒛𝒏𝟏 |𝒙
𝒏, 𝒛𝒏𝟐 ). (3)

etails of the formulation of Eqs. (2) and (3) are described in Section
1.1. The FHVAE model is trained by optimising a discriminative
egmental variational lower bound (see Equation (S.4) in Section S1.1).
o let 𝒛𝟐 learn speaker-dependent feature representations, speech ut-
erances of the same speaker in the training data are concatenated into
single sequence before training the FHVAE model. By this means, 𝑖,

riginally defined as the sequence index, becomes equal to the speaker
ndex, and 𝒛𝟏 learns a speaker-independent representation.

9 Conceptually analogous to the i-vector in speaker recognition, one vector
orresponding to a sequence.
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The use of 𝒛𝟏 features in acoustic modelling for oral cancer speech
is illustrated in Fig. 1 (bottom). The GMM-HMM training and the
training data are exactly the same as for the fMLLR speaker adaptation
method (see Section 3.3). The FHVAE model training is implemented
using open-source software developed by Hsu et al. (2017). We used
FHVAE parameters in Feng and Lee (2019) in our experiments: The
encoder and decoder of the FHVAE are both 2-layer LSTMs with a
layer dimension of 256. The dimensions of 𝒛𝟏 and 𝒛𝟐 are 32. The input
features to the FHVAE are fixed-length (10 frames) speech segments.
Each frame is represented by a 13-dimensional MFCC with cepstral
mean normalisation at the speaker level. During the inference of the
𝒛𝟏 features, the FHVAE input segments are shifted by 1 frame, in order
to match the length between speech frames and inferred 𝒛𝟏.

After FHVAE model training, the 𝒛𝟏 features of the WSJ and oral
cancer speech are extracted and used as input features for the DNN AM
training (see Table 3). This system is referred to as FHVAE. Compared
with the fMLLR for AM training system, the only difference in the
FHVAE system is the input representation to the DNN (𝒛𝟏 versus
fMLLR).

3.5. Phoneme and articulatory feature analysis

In this section, we describe the error analysis of our trained ASR
systems. As a reminder, these analyses have five aims:

• (1) to investigate if the errors made by the ASRs are the same as
the known articulation problems in oral cancer speech;

• (2) to find which sounds are poorly/well recognised in the pro-
posed ASR system and to find out which sounds are better recog-
nised with hybrid/E2E architectures

• (3) to compare the errors of the ASR models on healthy and oral
cancer speech;

• (4) to provide input to the design of voice commands for ASR
systems used by oral cancer speakers.

In our analyses, we will use the phoneme error rate (PER), and the
articulatory feature error rate (AFER) as error measures. These metrics
are similar to the word error rate (WER), except that they are calculated
and interpreted at the level of phonemes and articulatory features (see
Section 3.5.1). Confusion matrices of each model will be created and
compared with one another to answer our research questions.

Specifically, for our first aim, we are going to look at the worst-
performing phonemes and AFs of the Baseline system. This analysis
assumes that the errors the ASR makes are based on the pronunciation
mismatch between oral cancer and WSJ speakers.

For (2), we will investigate which phonemes are consistently mis-
recognised in the different approach and architecture combinations,
and will compare them in terms of PER and WER. We will investigate
whether the different approaches show problems with specific (groups
of) phonemes by analysing whether the models have problems captur-
ing particular articulatory feature information by looking at confusion
matrices of AFs, or whether these systems’ performances are mostly
data dependent. We are going to further compare the differences be-
tween the best performing Hybrid and E2E techniques. This comparison
will allow us to investigate which sounds are better handled by the E2E
architectures, and which sounds are better with Hybrid.

For (3), we are going to compare the PER and AFER performances
of the E2E and Hybrid Baseline models on the oral cancer and the
WSJ test set. We will denote the WSJ test set experiments as Hybrid
on Healthy and E2E on Healthy. The comparative analysis will allow us
to investigate whether the same phonemes are found relatively difficult
to the ASR systems.

For (4), we are going to compare the approaches in terms of PER
and AFER, and we are interested in which phonemes are recognised
well. Phonemes that are recognised well should be preferred in voice
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commands.
Table 4
PoA (columns) and MoA (rows) for each phoneme. Abbreviations from left to right:
Bilabial, Labiodental, Dental, Alveolar, Postalveolar, Palatal, Velar, Glottal.

MoA PoA

B LD D A P PAL V G

Plosives p, b t,d k,g
Nasal m n ng
Fricative f,v th,dh s,z sh,zh hh
Affricate jh,ch
Approximant w l y r

The complete code for the analyses can be found online.10

3.5.1. Phoneme error rates and articulatory feature error rate
The PER is calculated as follows. First, the reference (ground truth)

sentences and the sentences predicted by the ASR (hypothesis) are con-
verted to phoneme sequences using the CMUdict.11 The CMUdict con-
tains the ARPABET phonemic transcription of 133,896 English words.
Note that we do not take stress into account: Vowels with differ-
ent stress markers are all treated as the same vowel. Second, the
ground-truth phoneme sequence and the hypothesised phoneme se-
quence are aligned using the Levenshtein distance. We call these align-
ments Levenshtein alignments. Then, the PER is usually defined as:

PER = insertion + substitution + deletion
𝑁

, (4)

where 𝑁 is the total number of phonemes in the ground truth phoneme
sequence. We also calculate the PER for each individual phoneme f in
question as:

PERf =
insertionf + substitutionf + deletionf

𝑁f
. (5)

The AFER is calculated similarly to the PER, the main difference
being that the aligned phoneme sequences are converted to place of
articulation (PoA) and manner of articulation (MoA) feature sequences
following Table 4 prior to the calculations of the error rates. The AFERs
are also reported with respect to each individual articulatory feature,
i.e., for the plosives,

AFERplosives =
insertionplosives + substitutionplosives + deletionplosives

𝑁plosives
.

(6)

We report the mean and standard deviations of PER and AFER
over all five test set partitions. In these analyses, we focus on those
phonemes that have on average at least 100 occurrences (𝑁 = 100)
in the ground truth, as we believe that 100 occurrences are the bare
minimum to make meaningful conclusions. When 𝑁 ≤ 100, the results
might be influenced too much by data scarcity.

3.5.2. Confusion matrices
Confusion matrices are used in the error analyses to investigate

which articulatory feature classes are difficult for the ASRs to capture
and which articulatory features are easily confused (modelling error).
Using the Levenshtein alignments, we obtain an alignment of the
ground truth phoneme sequences and the hypothesised phoneme se-
quences and create confusion matrices of the phoneme misrecognitions.
In our description of the results, we group the phonemes by their AFs.

10 https://github.com/karkirowle/relative_phoneme_analysis.
11 In this method, we assume that any errors we observe at the phoneme

level are due to the misrecognition of an individual phoneme (leading to a
misrecognised word) rather than due to the misrecognition of a word which
then would lead to the misrecognition of the phoneme. As we are using a large
lexicon for training the ASR (see Section 3.1.1), we think this assumption is

reasonable.

https://github.com/karkirowle/relative_phoneme_analysis
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Since we are interested in the improvement or degradation of AFs
in the trained systems compared to the Baseline, the Baseline confusion
matrix will be separately shown in absolute terms. For the other
systems’ confusion matrices, the Baseline absolute performance will be
subtracted.

3.6. Noise analysis

In this section, we describe our analysis which aims to quantify
the influence of noise versus speech severity on the per-recording WER
performance.

When quantifying the amount of noise in an audio file, usually
the signal-to-noise ratio (SNR) is the figure of interest. Most existing
SNR estimation methods are based on measuring the energy content of
speech and non-speech regions in a signal. In the case of pathological
speech, it has previously been shown that Parkinson’s speech and
whispered speech can negatively affect the SNR estimation (Poorjam
et al., 2018). In other words, it is possible to obtain low SNR estimates
in pathological voices even though there is no real background noise
present in the recordings.

In order to avoid quantifying noise level by an SNR estimation
algorithm that is heavily influenced by the severity of the pathological
speech, we wanted to ensure that the correlation between the SNR
and severity is low. In order to do that, first, the speech severity of
each recording was quantified by an expert listener. To that end, an
American English speech language pathologist (SLP) was asked to rate
the severity of each recording on a 5-point Likert scale (1: very severe
speech, 5: healthy speech) by listening to (at least one) 10 s segment
of a recording. (Note that the 10 s segment constraint is based on
constraints from an on-going study for which these ratings have been
originally collected). The important consequence from the perspective
of our analysis is that for some utterances the ratings have higher
resolution. By resolution, we mean the step size of MOS during ratings,
using one rating only 1-2-3-4-5 is obtainable (step size of 1), using two
utterances it is possible to obtain 1-1.5-2-2.5-3-3.5-4-4.5-5 (step size of
0.5). This is because in the case of multiple ratings, we take the mean
of the ratings.

Next, for the calculation of the SNR, the gold standard NIST algo-
rithm is used. The NIST SNR is calculated as follows. First, a signal
energy histogram is calculated by computing the root mean square
(RMS) in dB over a 20 ms analysis window, with a time shift of 10 ms.
Typically, this results in a bimodal histogram, one peak (left-most)
corresponding to the noise level, and the other peak (right-most) cor-
responding to the signal level. A raised cosine function is fitted to the
noise peak with a direct search algorithm (Hooke and Jeeves, 1961),
with the objective to minimise the Chi-squared distance. The midpoint
of the raised cosine function is labelled as the mean noise power level.
The raised cosine curve is then subtracted from the complete RMS
histogram to obtain a ‘‘noiseless’’ histogram with a single peak. Then,
the peak corresponding to the 95th percentile is defined to be the
speech level. Subtracting the noise level from the speech level, the
signal to noise ratio is obtained.

Subsequently, Spearman’s correlation was calculated between the
severity scores and the SNR level (𝑟 = 0.12, 𝑝 ≥ 0.5). The obtained
low correlation means that the severity scores and the SNR level are
not correlated, therefore the SNR values seem to be independent of the
influence of speech severity. This means that our SNR estimates can be
reliably used to estimate noise in the recordings.

Finally, to assess the influence of noise on the WER, we did a
Pearson’s correlation of the per-recording WER (mean across all test
partitions) with the SNR for each experiment (SNR-WER 𝑟). We perform
this analysis for each approach and architecture combination in the pa-
per to see if there are architecture-specific differences in the influence
of noise. Furthermore, to assess the influence of speech severity on the
WER, we performed a Spearman’s correlation of the per-recording WER
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with the speech severity score (SLP-WER 𝜌). r
4. Results and discussion

4.1. ASR results

In Section 4.1.1, we first discuss the experimental results of the first
five systems listed in Table 5, all of which adopt a hybrid DNN-HMM
ASR architecture. Next, in Section 4.1.2, we discuss the experimental
results of the retraining approach applied to the hybrid versus E2E ASR
architectures.

4.1.1. Hybrid ASR results on the training and test sets
The word error rates (% WER) on the oral cancer speech data

achieved by the Hybrid Baseline ASR system, the Hybrid Baseline+OC
ystem and the three proposed hybrid systems discussed in
ections 3.2.1, 3.3 and 3.4 are shown in the top rows in Table 5. For
ach system, the training and test WER results are listed for each of the
ive training-test data partitions separately (see Table 1 for details) and
veraged over all partitions. The training WER results are calculated
nly on the oral cancer training data. Bold results indicate the best
erformance on a particular partition or on the average of all partitions.

Table 5 shows that the Hybrid Baseline system has the highest
raining and test WER results of all the systems on all the data partitions
excluding E2E systems). Considering that the Hybrid Baseline system
chieved a WER of 6.7% on normal speech (see Section 3.1.1), the high
ER results for the Hybrid Baseline system indicate a severe mismatch

etween oral cancer speech collected for this study and speech in
he WSJ corpus. Although there are several differences between the

SJ and the oral cancer data set (including recording conditions and
peaking style (read speech vs. spontaneous speech)). The primary
ause of this deterioration is most likely the difference in type of
peech, i.e., healthy versus oral cancer speech.

Table 5 shows that the fMLLR method achieved the best test WER
esults overall and on four out of the five data partitions (partition 2
s the exception). The hybrid DNN AM retraining method achieved an
verage absolute WER reduction of 34.0% on the training data and of
.7% on the test data compared to the Hybrid Baseline system. The only
ifference between the AM retraining method and the Hybrid Baseline
ystem is the use of a small amount (less than 2 hours, see Table 1)
f oral cancer speech data during training in the DNN AM retraining
ystem. These results show that such a small amount of speech material
lready helps to adapt the DNN AM from healthy speech to oral cancer
peech and leads to an improvement in recognition performance.

The fMLLR system achieved the best performance on the oral cancer
est data, achieving an average absolute WER reduction of 7.8% com-
ared to the Hybrid Baseline system, and 3.1% compared to the hybrid
NN AM retraining system. Not only does the fMLLR system outperform

he hybrid DNN AM retraining system overall on the test data, it also
as a better performance on most of the test data partitions (except
artition 2). These results suggest that the fMLLR approach is better
han the DNN AM retraining approach, both in terms of the average

ER performance and the per-partition WER performance.
The better performance of the fMLLR approach compared to the

ybrid DNN AM retraining approach is in part due to the merging of the
ral cancer speech data with the normal speech data during training,
hich allows the fMLLR model to leverage phonetic information from
oth healthy speech and oral cancer speech — unlike the DNN AM
etraining approach which only has access to the oral cancer speech
uring the retraining phase. A further 4.5% absolute WER reduction on
he test data is due to using the fMLLR features (as can be seen when
omparing the fMLLR system with Hybrid Baseline+OC), which allows
he model to leverage speaker diversity information.

Interestingly, the hybrid DNN AM retraining method achieves the
est performance on the training data of all tested systems (excluding
2E systems), but performs worse than the fMLLR method on the test
ata. This finding is likely due to overfitting of the hybrid DNN AM

etraining method on the small amount of oral cancer training data. At
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Table 5
The word error rates (% WER) on the oral cancer speech on the different training-test partitions separately and averaged over all five partitions. Bold: best performance among
the five systems. For the Baseline and Transformer E2E baseline systems, both training and test oral cancer speech data are unseen to the system, while for the remaining systems,
the oral cancer speech training data is seen to the systems but not the oral cancer speech test data.

System Partition index

1 2 3 4 5 Average

Training Test Training Test Training Test Training Test Training Test Training Test

Hybrid baseline 78.6 59.7 74.2 75.7 74.0 76.8 74.5 74.9 76.8 65.6 75.6 70.6
Hybrid DNN AM retraining 44.3 55.8 34.7 68.7 40.8 69.5 39.3 71.2 49.3 64.2 41.7 65.9
Hybrid Baseline+OC 53.6 55.8 49.8 74.7 47.5 73.2 47.5 70.9 51.2 62.0 49.9 67.3
fMLLR for AM training 49.0 52.2 49.7 69.4 47.4 68.7 46.2 68.1 48.9 55.7 48.2 62.8
FHVAE 50.3 58.0 48.7 73.1 47.0 73.5 46.5 72.6 48.1 65.2 48.1 68.5

E2E baseline 78.6 62.0 74.9 75.5 74.6 76.6 73.6 80.1 76.7 68.3 75.7 72.5
E2E ASR retraining 23.1 53.4 21.8 66.0 22.3 66.4 23.8 71.0 24.3 58.0 23.1 63.0
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the retraining stage of the DNN AM retraining approach, the training
data consists of oral cancer speech only. The hybrid DNN AM seems
to overfit on the small amount of oral cancer speech training data,
which then leads to a less well generalisation to unseen (test) oral
cancer speech data. On the other hand, the fMLLR method merges
the oral cancer speech and normal speech throughout the AM training
procedure. In the fMLLR approach, during training, the AM is trained
to perform well on both the WSJ data and the oral cancer data. This
alleviates the overfitting problem, and consequently leads to a better
generalisation to unseen oral cancer speech test data compared to the
hybrid DNN AM retraining method.

The FHVAE method achieves better WER performance on the test
data than the Hybrid Baseline system but worse than the other tested
systems. It does achieve the second best WER performance on the
training set among all the systems, after the hybrid DNN AM retraining
method. Notably, the FHVAE method performs slightly better than the
Hybrid Baseline+OC system on the training data, and slightly worse
on the test data. The only difference between the FHVAE system and
Hybrid Baseline+OC is the input feature representation to the DNN AM
training: the FHVAE system uses 𝒛𝟏 while the Hybrid Baseline+OC uses
FBank with pitch features. The comparison between the two systems
indicates FHVAE-based disentangled representation learning is effective
in alleviating speaker-dependent characteristics in the training data in
a limited but consistent manner on all the five partitions. However,
it does not generalise well to unseen test data. A possible explanation
is the small amount of available oral cancer speech data seen during
FHVAE training. In Feng and Lee (2019), the effectiveness of FHVAE
in a low-resource ASR task is shown to be sensitive to the amount of
in-domain training data, and was shown to be very limited when there
are only around 2 hours of training data available. To further explore
the effect of FHVAE in the oral cancer ASR task, more (unlabelled, as
FHVAE is unsupervised) audio recordings from oral cancer speakers
should be used, which we leave for future study. However, due to
the unlabelled nature of the data, this would be substantially easier
to collect in large quantities.

4.1.2. Comparison of the hybrid and E2E ASR architectures in the AM
retraining approach

The WERs (%) on the oral cancer speech data achieved by the two
E2E ASR based systems, i.e., E2E Baseline and E2E ASR retraining, are
shown in bottom rows in Table 5. Table 5 shows that the E2E Baseline’s
performance is slightly worse than that of the Hybrid Baseline system
on both the training and test sets.

Comparison of the two retraining based systems, i.e., E2E ASR
retraining and the hybrid DNN AM retraining, shows that retraining is
more effective in the E2E architecture than in the hybrid architecture
for the oral cancer ASR task, at least with the current amount of
oral cancer retraining data: The absolute WER reduction achieved by
retraining is 9.5% for the E2E model, and is 4.7% for the hybrid model.
Moreover, the E2E ASR retraining system achieves consistently better
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WER performances across all the partitions than the hybrid DNN AM
retraining system. The significantly lower training set WERs achieved
by the E2E ASR retraining indicates stronger modelling capability of the
transformer E2E architecture than the hybrid architecture.

The E2E ASR retraining system achieves an average test data WER
(63.0%) comparable to the best (fMLLR for AM training) system which
dopts the hybrid ASR architecture (62.8%). Taking all results together,
e can conclude that a transformer E2E ASR architecture achieves a
ER for oral cancer ASR that approaches but does not outperform the

peaker adaptation based hybrid DNN-HMM system.

.2. Phoneme and articulatory feature error analysis

In this section, we present the key results of the error analysis. Each
ubsection will try to answer one of the five research questions outlined
n Sections 1 and 3.5. All analyses have been carried out on the five oral
ancer speech test set partitions separately and then averaged.

.2.1. What phonemes are difficult for the baseline ASR systems?
In order to answer this question, we will first look at the phoneme

evel results, followed by the articulatory level results of the baseline
odels. Finally, we will compare our results with articulation problems

nown from the literature.
The phoneme level results are presented in Fig. 2. The 𝑦-axis in-

icates the PER at the phoneme level. The 𝑥-axis shows each of the
phonemes in our data set, grouped by manner of articulation. Each
line indicates a different system. Shaded regions denote the standard
deviation for each model across the 5 folds. As can be seen in Fig. 2,
most phonemes obtain a PER between 40%–60%. This indicates that
the speech recognition task is challenging. Looking at the blue line
(Hybrid Baseline), we can identify peaks corresponding to /g/, /aa/,
/p/, /th/, /uw/. In the case of the E2E Baseline, the most difficult
phonemes are /g/, /th/, /uw/, /aa/, /ey/. These are the most difficult
phonemes for the baseline ASR systems to recognise. We can see that
with the exception of /p/ and /ey/, the systems find the same phonemes
difficult.

The AF level results are presented in Figs. 3 and 4 (top panels). In
the case of the Hybrid Baseline MoA, affricates have the highest error,
followed by plosives, approximants, nasals, fricatives and then vowels.
For PoA, palatal sounds are the worst captured, followed by velars,
postalveolars, bilabials, dentals, labiodentals, alveolars, glottals and,
finally, vowels. In the case of the E2E Baseline MoA, we observe the
same order as in the case of Hybrid Baseline. For E2E Baseline PoA, the
palatals are the worst, followed by glottals, labiodentals, dentals, velars,
postalveolars, bilabials, alveolars and vowels.

Previous research has already indicated that particularly plosives
(Bressmann et al., 2009, 2004), sibilants (Laaksonen et al., 2011) and
some vowels (/aa/, /ih/, /uw/) (Takatsu et al., 2017; Jacobi et al.,
2013) are impacted by oral cancer. We can see that plosives have the
second worst AFER, with two plosives (/g/ and /p/) having a PER of
over 60%. As for sibilants (in our analysis: (post)alveolar fricatives),

we observe that /s/ and /z/ are both comparatively well captured
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Fig. 2. Mean PER of each individual phoneme with 𝑛 ≥ 100. Shaded regions denote the standard deviation across the 5 folds. Line graph is used for ease of reading. Top panel
escribes PERs for the oral cancer dataset, while bottom panel describes PERs for the WSJ test set. (For interpretation of the references to colour in this figure legend, the reader
s referred to the web version of this article.)
y the baseline ASR systems, showing that our systems did not have
elatively more difficulty capturing sibilant information compared to
ther groups of phonemes. Finally, we can see that vowels are relatively
ell captured, with the exception of /aa/ and /uw/, which is consistent
ith the literature. The difficulty in recognising words with /ih/ as

ndicated by Takatsu et al. (2017) is not observed.
Overall, we see that those sounds that are known to cause articu-

atory problems after surgery for oral cancer speech, are also hard to
ecognise for the baseline ASR systems we tested. This is particularly
he case for plosives and two vowels /aa/ and /uw/. In deviance to the
iterature, our systems did not have particular problems with sibilants.
he reason for this difference is unclear: it might be that ASRs are more
obust to variations in sibilant realisation. It would be interesting to
onfirm this with lisping speakers, where only sibilants are impacted.
nterestingly, there were no sounds or articulatory features that were
elatively hard for our ASR systems that were as yet unknown in the
iterature.

.2.2. How well/poorly phonemes are recognised in the proposed ASR
ystems?

In order to investigate what techniques lead to a good recognition
erformance of oral cancer speech and what needs further investiga-
ion, we investigate which phonemes are improved and which ones
re still misrecognised by analysing the produced error rates. Both for
he phoneme and articulatory feature analysis, we additionally list the
honemes which seemed to work better with E2E architecture, and
hose which seemed to work better with Hybrid architecture.

As Fig. 2 shows, overall, the individual PER lies between 40%
nd 60%. A comparison of the different models shows that all the
pproaches generally improve the individual PERs compared to the
aseline models (the blue line for the hybrid Baseline model and
he green line for the E2E Baseline model), with a few exceptions,
ost notably the /hh/, /z/, /f/, /ey/ where particularly the Hybrid
aseline+OC orange line) and FHVAE (red line) models perform worse

than the Hybrid Baseline model. In the case of the E2E Baseline, Hybrid
22
Baseline+OC and FHVAE trained models perform worse on /b/. The
hybrid systems outperform the E2E model in the case of /iy/, /uw/,
/ih/, /eh/, /er/, /ao/, /ae/, /ey/, /ow/, /aw/ (therefore with most
vowels), /k/, /g/, /v/, /dh/, /z/, and /hh/. The E2E ASR retraining
system is better with /ah/, /aa/, /ay/, /p/, /b/, /t/, /d/ (therefore with
most plosives), /m/, /n/ (all of the nasals), /g/, /f/, /th/, and /s/.

To further investigate whether certain (groups of) phonemes are
consistently misrecognised, we investigate whether there is particular
articulatory feature information that the models do not capture well.
The extent to which the models can capture articulatory feature infor-
mation is visualised in Figs. 3 and 4, the 𝑥-axis showing the different
MoA/PoA and the number of phonemes (n) in each class, the 𝑦-axis
showing the AFER. For PoA, palatal, postalveolar and velar sounds
seem to be the most challenging, while for MoA these are affricates
and approximants. Although all models in general improved the uptake
of articulatory feature information (glottals being the exception), this
was particularly the case for the Hybrid DNN AM retraining/E2E ASR
retraining models for bilabial and plosive information. We observe that
E2E better captures bilabial, alveolar, postalveolar, palatal, and velar
information, while vowels, labiodentals, dentals and glottals are better
captured by the hybrid models. For MoA (Fig. 4), the E2E model better
captures plosive, nasal, fricative, affricate and approximant informa-
tion, while vowel information is slightly better captured by the hybrid
models, which actually has a larger impact on the overall performance
(this can be observed by looking at the number of phonemes in each
category, which is in parentheses).

We were interested if the difference between the AFER perfor-
mances (i.e., vowels vs. affricates) was due to data scarcity in the
phoneme classes to which the AFs were underlying. To investigate this,
we performed a post-hoc Pearson’s correlation analysis between the
number of phonemes (of the AF class) (𝑛) as the independent variable,
and the PER performance as the dependent variable. The analysis found
relatively strong effect sizes (Hybrid DNN AM retraining : 0.51, fMLLR:

0.55, E2E ASR retraining : 0.52, 𝑝 ≤ 0.01). Along with the fact that
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Fig. 3. Top: Comparison of AFER for PoA on the oral cancer test set. Bottom: Comparison of AFER for PoA on the WSJ test set. Mean 𝑁 (phonemes in test set) rounded to three
ignificant figures are in parentheses.
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early all phonemes improve with our three approaches and for both
rchitectures, we can conclude that the bottleneck of the performance
eems to be mostly data-dependent. This means that it is important to
ollect corpora for oral cancer ASR in a phonetically balanced way, in
rder to have enough data to build good sound representations of each
honeme, including the rarer phonemes, such as glottals and palatals.

The confusion matrices in Fig. 5 enable further interpretation of
hese results. To better visualise the improvements, we have used rela-
ive confusion matrices for the proposed systems. In the case of relative
onfusion matrices, a green diagonal (more correct class) and a red off-
iagonal (fewer incorrect classes) means improved classification. Also,
ote that for the insertion and deletion errors, a white line (meaning
23

t

o errors) would be ideal for the absolute case, and a red or white line
or the relative case (decreased errors or no change).

As a general remark, we can see that the majority of improvements
n the fMLLR and Hybrid DNN AM retraining come from the reduction
f deletion errors (red vertical line on the left side of the plot). For
oA, an additional part of this improvement comes from a reduction

n substitutions of plosive sounds with fricative sounds compared to
he Hybrid Baseline. Regarding PoA, we can see that (mainly) alveolar
ounds and vowels were substituted with glottal sounds in the Hybrid
aseline model (light green vertical line in the middle), which is alle-
iated in the proposed approaches (red vertical lines in the middle of
he plots). In the case of the E2E ASR retraining model we observe that
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Fig. 4. Top: Comparison of AFER for MoA on the oral cancer test set. Bottom: Comparison of AFER for MoA on the WSJ test set. Mean 𝑁 (phonemes in test set) rounded to
hree significant figures are in parentheses.
ewer sounds are classified as glottals, which makes the performance of
he model worse on glottals overall compared to the Hybrid DNN AM
etraining. Furthermore, a lot of phonemes are misclassified as dentals

it can be observed (vertical green lines) that the E2E ASR retraining
odel seems to make dentals as the ‘‘fallback’’ articulatory feature

ategory.
We can summarise the findings as follows: (a) Plosive sounds are

mpacted in oral cancer speech, but speaker-adaptive training (fMLLR
nd FHVAE) and even a relatively small amount of training data (2 h;
ll proposed approaches) seem to alleviate these problems with the
ecognition of plosives. (b) Performance seems to be heavily data
ependent, in general the number of phonemes is a good predictor of
erformance. (c) The ‘‘recognition’’ of /z/ and /hh/ is not improved
24
over Hybrid Baseline, however this is partially explained by (b) as these
two phoneme classes have relatively small amounts of training data
(/z/ = 373 occurrences, /hh/ = 227 occurrences). This means that
data augmentation techniques could be useful to alleviate the data
scarcity problem. Overall, PER improvements brought by the proposed
approaches compared to the baseline systems can be attributed to a
general improvement in recognition performance across all phonemes.
(d) In terms of manner of articulation, hybrid is only better compared to
E2E on vowels — however, vowels have a large contribution to overall
performance. As for place of articulation, vowels, labiodentals, dentals
and glottals are better captured by hybrid models, while E2E better
capture bilabial, alveolar, postalveolar, palatal and velar information.
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Fig. 5. Relative confusion matrices on PoA (top) and on MoA (bottom). Green diagonals and red off-diagonals mean better performance, while red diagonals and green off-diagonals
mean worse performance. Green background denotes the absolute performances, while white background denotes relative performances. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Thus, in order to improve ASR for oral cancer speech, we conclude:
(a) retraining approaches with even a small amount of extra train-
ing data can lead to substantial improvements for the AM; (b) Data
augmentation techniques should be investigated for oral cancer ASR.

4.2.3. Do misrecognitions of oral cancer phonemes coincide with misrecog-
nitions of healthy phonemes?

In this section, we would like to answer the question of whether
the phoneme errors of the different approaches and architectures on
oral cancer speech coincide with their errors on typical, healthy speech.
In order to do that, we compare the PERs and the AFERs of the two
baseline architectures (Hybrid and E2E Baseline) on both the oral
cancer test set and the WSJ test set. (Note that this analysis is only
carried out using the Baseline models as these are the only models that
are only trained on healthy speech.)

The PERs on the oral cancer speech can be seen in the top panel of
Fig. 2, while the PERs of the healthy speech can be seen in the bottom
panel. We consider a phoneme relatively badly recognised in the case
of oral cancer speech when the PER is over 60%. In the case of healthy
speech, we set a threshold of 4%.

In the case of the hybrid architecture tested on healthy speech
(Hybrid on Healthy) the phonemes /ae/, /aa/, /aw/ and /d/ are above
the 4% threshold. In the case of the E2E architecture tested on healthy
speech (E2E on Healthy), /aa/, /ow/, /d/ and /th/ are above the 4%
threshold. For the hybrid architecture tested on oral cancer speech
(Hybrid Baseline), the phonemes /uw/, /aa/, /p/, /b/, /g/, /ng/, /th/
are above the 60% threshold. For the E2E architecture tested on oral
cancer speech (E2E Baseline), /uw/, /aa/, /ey/, /ow/, /p/, /g/, /ng/,
/th/ are relatively badly recognised.

We can observe the following from these results. (1) The phonemes
/aa/ and /d/ are relatively difficult for all architectures, independent
of the type of speech used. (2) The phonemes /uw/, /p/, /g/, /ng/
are relatively more difficult in the case of oral cancer speech than in
healthy speech.

This last finding (2) is partially consistent with the literature results
discussed in Section 4.2.1, with the exception of /ng/. The /uw, p, and
g/ sounds probably have a different pronunciation in oral cancer speech
25
compared to healthy speech, leading to a worse recognition of these
sounds by the Baseline models which have not been trained on oral
cancer speech.

4.2.4. What voice commands should be used with oral cancer ASR?
When developing speech-driven systems or oral cancer speakers, it

is preferable to base these on either the Hybrid fMLLR or Hybrid DNN
AM retraining approaches as these are the two best systems. The results
in the previous two subsections show that the phonemes that are best
recognised by the DNN AM retraining are /s, k, ah, p, n/, while for
fMLLR retraining these are /n, dh, ah, k, m/. So depending on which
approach is used, we recommend selecting words containing these
phonemes for the voice commands. Note that even though plosives are
affected in oral cancer speech, our ASR results do not indicate that
plosives should be excluded when designing voice commands.

4.3. How does noise in the dataset impact the results of the ASR systems?

Table 6 shows the influence of noise and speech severity on the
WER. Each row corresponds to one audio recording with the cor-
responding WER rates on the different ASR models. From the low
SNR-WER 𝑟 correlation results, we can see that the impact of noise
is generally low on the audio. The highest correlation between the
SNR and the WER is for E2E ASR retraining, none of the SNR-WER
correlations are significant. We can thus conclude that noise does not
seem to have an influence on the WER results.

On the other hand, in all experimental conditions the speech sever-
ity seemed to be highly and significantly correlated with the WER
results. The highest correlation is in the case of the E2E Baseline,
followed by Hybrid Baseline+OC, Hybrid DNN AM retraining, E2E ASR
retraining, and finally the FHVAE and the fMLLR methods. We can thus
conclude that speech severity always has an influence on WER with the
largest influence when there is no oral cancer data used for training,
and the least influence when speaker-adaptive training is used.

Nevertheless, our subjective impression is that some recordings
have quite challenging acoustic conditions for which speech enhance-
ment techniques might be useful. We leave this for future research:
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Table 6
Word error rates (%) and signal to noise ratios (SNR in dB) of the recordings in the dataset. Significance levels: * (p < 0.5), ** (𝑝 < 0.01), *** (𝑝 < 0.001).

Recording id Baseline Baseline + OC DNN AM retraining fMLLR FHVAE E2E baseline E2E ASR retraining SNR SLP score

001 76.76 68.94 60.61 56.32 68.18 79.0 57.0 41.0 3.5
003 64.68 62.74 54.0 61.66 63.72 63.1 53.35 55.0 4.5
010 89.67 85.33 86.06 84.55 86.17 100.2 91.6 63.75 2.3
018 47.63 43.31 44.75 38.27 45.83 48.2 41.87 42.25 5.0
021 70.86 68.7 69.07 56.18 69.02 73.3 59.8 42.25 3.88
023 85.8 85.2 78.46 81.2 82.06 85.7 77.6 41.75 2.3
024 88.56 86.7 80.71 81.17 84.59 87.6 76.5 33.25 2.6
030 57.41 49.38 52.47 42.59 53.09 70.4 51.23 29.25 4.5
033 80.39 81.88 68.58 75.37 83.55 83.3 70.75 25.25 4.4
034 62.18 57.71 60.14 55.42 61.18 64.57 56.23 67.0 4.9
SNR-WER r −0.04 −0.07 0.08 0.07 −0.05 −0.04 0.11 – –
SLP-WER 𝜌 −0.93 *** −0.91 *** −0.91 *** −0.87 ** −0.87 ** −0.93 *** −0.91 *** – –
for instance, one approach could be for speakers who have multiple
recordings (such as id008 and id011) to use a VoiceFilter-based speech
enhancement (Wang et al., 2019). In that enhancement technique, an
auxiliary recording is used to separate channel information pertain-
ing to the speaker and background noise. Because there are many
non-stationary noise sources in these audios, the VoiceFilter approach
would probably be more beneficial than a spectral subtraction based
approach, which is known to remove only stationary noise.

To summarise, we can conclude that speech severity impacts the
WER performance to a great extent, and the impact of noise on the
WER performance is substantially less.

4.4. Future work on the role of data augmentation

We hypothesise that some data augmentation techniques (such as
pitch shift) would not work in the case of oral cancer speech, as
the original speech is often already distorted beyond human compre-
hensibility. Existing literature for similar speech pathologies propose
predominantly specific, custom techniques, i.e., the current state-of-the-
art dysarthric ASR system uses speed perturbation (Hermann and Doss,
2020), other techniques propose voice conversion (Illa et al., 2021;
Harvill et al., 2021). In the work of Harvill et al. (2021), it is also
stated that data augmentation approaches seem to work better for high
intelligibility pathological speakers. Therefore, we believe analysis of
data augmentation techniques warrant a separate study, where effects
such as the type of data augmentation, amount of data, and severity of
speech can be separated in a controlled way.

5. Conclusion

In this paper, we presented a new dataset of American English oral
cancer speech collected from YouTube. We investigated and compared
two different DNN architectures on the task of oral cancer ASR with
three different approaches: a DNN AM retraining (Hybrid, End-to-End)
approach, an fMLLR for AM training approach, and an FHVAE approach.

he fMLLR approach performed the best overall and achieved a WER
f 62.8% on the oral cancer speech test set, which is a 7.8% absolute
mprovement over the Hybrid Baseline. Detailed error analyses on the
ecognition results of these approaches and architectures showed that
1) plosives and some vowels are challenging to recognise for the Base-
ine systems trained without oral cancer data, which is consistent with
he literature on oral cancer speech which indicates that particularly
losives and some vowels are impacted by the removal of (parts of)
he tongue due to oral cancer speech treatment. In contrast to the oral
ancer literature, our models do not show the known problems with
ibilants. In other words, we find that ASRs even without seeing oral
ancer speech perform relatively well on sibilants of oral cancer speech.
2) The proposed approaches successfully alleviate the problems with
he recognition of plosives and vowels. Furthermore, the proposed
pproaches and architectures do not show problems with particular
26

honemes, but rather their performance depends on the amount of
training data for a given phoneme. Future research should therefore
be directed towards data augmentation of particularly those phonemes
with less training material, and speech enhancement techniques. (3) We
find that it is mainly /uw/, /p/, /g/, /ng/ that are relatively difficult
to recognise in the case of oral cancer speech, but not in the case
of healthy speech (this analysis was only carried out on the Baseline
systems). (4) For the development of voice command systems for oral
cancer speakers, we propose to select words that include phonemes /s/,
/k/, /ah/, /p/, /n/ for a system based on Hybrid DNN AM retraining,
and /n/, /dh/, /ah/, /k/, /m/ for a system based on fMLLR. (5) A final
analysis showed that channel noise in the recordings does not have an
impact on the recognition performance of the models, rather the poor
performance on the oral cancer speech is caused by the severity of the
speech pathology.
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