103 research outputs found

    Dependability in Federated Cloud Environments

    Get PDF
    Cloud Computing has emerged as a large-scale distributed system model for utility computing, whereby services are supplied on-demand. It has been proposed that Clouds are in the process of evolving from single, monolithic Clouds such as EC2 or Microsoft Azure serving many consumers to a federation of autonomous Clouds. However, there remain a number of research challenges in building dependable and robust Clouds; a critical research problem that has not yet to be fully understood. This paper discusses the issues and challenges surrounding Cloud dependability, and outlines research areas of opportunity for improving the dependability and robustness of federated Clouds

    Holistic cloud computing environmental quantification and behavioural analysis

    Get PDF
    Cloud computing has been characterized to be large-scale multi-tenant systems that are able to dynamically scale-up and scale-down computational resources to consumers with diverse Quality-of-Service requirements. In recent years, a number of dependability and resource management approaches have been proposed for Cloud computing datacenters. However, there is still a lack of real-world Cloud datasets that analyse and extensively model Cloud computing characteristics and quantify their effect on system dimensions such as resource utilization, user behavioural patterns and failure characteristics. This results in two research problems: First, without the holistic analysis of real-world systems Cloud characteristics, their dimensions cannot be quantified resulting in inaccurate research assumptions of Cloud system behaviour. Second, simulated parameters used in state-of-the-art Cloud mechanisms currently rely on theoretical values which do not accurately represent real Cloud systems, as important parameters such as failure times and energy-waste have not been quantified using empirical data. This presents a large gap in terms of practicality and effectiveness between developing and evaluating mechanisms within simulated and real Cloud systems. This thesis presents a comprehensive method and empirical analysis of large-scale production Cloud computing environments in order to quantify system characteristics in terms of consumer submission and resource request patterns, workload behaviour, server utilization and failures. Furthermore, this work identifies areas of operational inefficiency within the system, as well as quantifies the amount of energy waste created due to failures. We discover that 4-10% of all server computation is wasted due to Termination Events, and that failures contribute to approximately 11% of the total datacenter energy waste. These analyses of empirical data enables researchers and Cloud providers an enhanced understanding of real Cloud behaviour and supports system assumptions and provides parameters that can be used to develop and validate the effectiveness of future energy-efficient and dependability mechanisms

    Failure Analysis in Next-Generation Critical Cellular Communication Infrastructures

    Full text link
    The advent of communication technologies marks a transformative phase in critical infrastructure construction, where the meticulous analysis of failures becomes paramount in achieving the fundamental objectives of continuity, security, and availability. This survey enriches the discourse on failures, failure analysis, and countermeasures in the context of the next-generation critical communication infrastructures. Through an exhaustive examination of existing literature, we discern and categorize prominent research orientations with focuses on, namely resource depletion, security vulnerabilities, and system availability concerns. We also analyze constructive countermeasures tailored to address identified failure scenarios and their prevention. Furthermore, the survey emphasizes the imperative for standardization in addressing failures related to Artificial Intelligence (AI) within the ambit of the sixth-generation (6G) networks, accounting for the forward-looking perspective for the envisioned intelligence of 6G network architecture. By identifying new challenges and delineating future research directions, this survey can help guide stakeholders toward unexplored territories, fostering innovation and resilience in critical communication infrastructure development and failure prevention
    • …
    corecore