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Abstract 

Cloud computing has been characterized to be large-scale multi-tenant systems 

that are able to dynamically scale-up and scale-down computational resources to 

consumers with diverse Quality-of-Service requirements. In recent years, a 

number of dependability and resource management approaches have been 

proposed for Cloud computing datacenters. However, there is still a lack of real-

world Cloud datasets that analyse and extensively model Cloud computing 

characteristics and quantify their effect on system dimensions such as resource 

utilization, user behavioural patterns and failure characteristics. This results in 

two research problems: First, without the holistic analysis of real-world systems 

Cloud characteristics, their dimensions cannot be quantified resulting in 

inaccurate research assumptions of Cloud system behaviour. Second, simulated 

parameters used in state-of-the-art Cloud mechanisms currently rely on 

theoretical values which do not accurately represent real Cloud systems, as 

important parameters such as failure times and energy-waste have not been 

quantified using empirical data. This presents a large gap in terms of practicality 

and effectiveness between developing and evaluating mechanisms within 

simulated and real Cloud systems. 

 

This thesis presents a comprehensive method and empirical analysis of large-

scale production Cloud computing environments in order to quantify system 

characteristics in terms of consumer submission and resource request patterns, 

workload behaviour, server utilization and failures. Furthermore, this work 

identifies areas of operational inefficiency within the system, as well as 

quantifies the amount of energy waste created due to failures. We discover that 

4-10% of all server computation is wasted due to Termination Events, and that 

failures contribute to approximately 11% of the total datacenter energy waste. 

These analyses of empirical data enables researchers and Cloud providers an 

enhanced understanding of real Cloud behaviour and supports system 

assumptions and  provides parameters that can be used to develop and validate 

the effectiveness of future energy-efficient and dependability mechanisms. 
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1     Introduction 

1.1     Research Motivation 

Modern computing systems can be characterized by their requirement for 

substantial computing power; this has been augmented by an exponential  

increase in the volume of data available for processing. One approach to fulfill 

this requirement is to establish large scale computing systems, which typically 

require significant time and financial effort. Such systems are usually designed 

with respect to a maximum, least or average usage requirement, making the 

resultant system either under-used or unable to deliver desired functionality due 

to shortage of resources. Furthermore, such systems do not exhibit the ability to 

grow dynamically, and require extensive design and development procedures to 

cope with evolving user requirements. This problem is aggravated when the user 

requirements are susceptible to unexpected changes. Therefore, contemporary 

computing systems are inflexible by nature and it is extremely difficult to 

guarantee on-demand availability for them in a cost effective manner.  

Cloud computing has emerged as a new paradigm to facilitate the establishment 

of large scale, flexible computing infrastructures that are able to provide services 

that are encapsulated as workloads to customers on demand. However, Cloud 

computing faces new challenges that are not found in traditional distributed 

systems and require extensive and in-depth research to characterize and quantify 

real operational behaviour. This in turn will facilitate research into a large number 

of research domains including security, resource management, dependability and 

energy-efficient computing. 

1.2     Research Context 

Research into distributed systems is enhanced by the empirical analysis of real-

world systems. This is required in order to understand and study behaviour 

within operational environments as well as quantify system characteristics such 

as consumer behaviour, workload utilization and server failures [1]. Such analysis 

is critical for both researchers and system providers; for providers, it enables a 

way to understand and study behavioural patterns and identify areas of 

operational inefficiency in terms of energy-waste within the system [2]. For 
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researchers, it enables deeper understanding of system behaviour and is 

fundamental to defining and justifying system assumptions; both of which can be 

exploited in order to improve Quality of Service (QoS) and aid in business 

decision making. Moreover, parameters derived from such analyses can be 

exploited in order to develop simulation models which accurately reflect the 

operational conditions of a system. Such parameters are critical when evaluating 

the practicality of mechanisms which aim to enhance the resource management 

[3] and dependability [1] of a system. 

Cloud computing systems have been characterized as large-scale multi-tenant 

systems that are able to dynamically scale-up and scale-down computational 

resources to consumers who have diverse Quality of Service requirements 

[8][10]. Such system infrastructure are typically deployed in datacenters which 

are collocated systems within the same physical location due to common 

environmental and physical security requirements, forming the Cloud 

datacenter. In recent years, a number of dependability and resource 

management approaches have been studied for Cloud computing datacenters. 

However, there are a lack of real-world Cloud datasets that have been analysed 

and extensively modelled in order to study the characteristics of Cloud 

computing and quantify their effect on system dimensions such as resource 

utilization, user behavioural patterns and failure characteristics. This leads in two 

key research problems. First, without the holistic analysis of real-world Cloud 

systems characteristics, dimensions of interest such as workload behavioural 

patterns, user submission patterns, server resource utilization, failure rates and 

energy consumption cannot be quantified, resulting in inaccurate research 

assumptions of Cloud system behaviour. Second, the simulated parameters used 

in state-of-the-art Cloud mechanisms such as resource management and 

dependability currently rely on theoretical values which do not accurately 

represent real Cloud systems, as important parameters such as failure times and 

energy-waste are not quantified from empirical data. This leads to a large gap in 

terms of practicality and effectiveness between developing and evaluating 

mechanisms within simulated and real Cloud environments.  

This thesis presents a general analysis method and an in-depth analysis of large-

scale production Cloud computing environments in order to study system 
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behaviour and quantify system characteristics in terms of consumer submission 

and resource request patterns, workload resource utilization and execution 

length, server utilization characteristics, and failures. Furthermore, this work 

identifies areas of operational inefficiency within a system, as well as quantifies 

the amount of energy waste created due to failures. These analyses of empirical 

data provide researchers and Cloud providers with an increased understanding 

of real Cloud characteristics and behavioural patterns, and provide realistic 

system assumptions and experiment parameters. These parameters can be used 

in a large number of Cloud research domains that require accurate workload 

behaviour, and develop and validate the effectiveness of energy-efficient and 

dependability mechanisms. 

1.3     Aims and Objectives 

The aim of this research is to study and present an in-depth analysis of large-

scale production Cloud computing environments. This is urgently needed as the 

characteristics and behavioural patterns of real Cloud computing environments 

need to be comprehensively studied in order to understand large-scale system 

behaviour as well as produce quantifiable parameters and model key 

components such as consumer behaviour, workload characteristics, server 

resource utilization and failure characteristics. Furthermore, this work also 

identifies and quantifies the operational inefficiencies within these systems in 

terms of wasted resource utilization of servers as well as energy waste due to 

failures within the system. The findings in this work can be leveraged by other 

researchers and Cloud providers in order to evaluate developed mechanisms 

based on realistic simulation parameters.  

Specifically, the objectives of this research are as follows: 

i) To enable a more thorough understanding of the issues in accurately 

modelling Cloud computing environments and comprehensively study 

how Cloud behavioural characteristics impact the system. Cloud 

computing has been stated to be a multi-tenant, heterogeneous, and 

flexible system that provisions computational services to diverse 

consumer requirements. However, there is a lack of in-depth studies that 

attempt to quantify fundamental system characteristics and their impact 

on the system environment. This is challenging due to the scale and 
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complexity of systems analysis when considering the relationships of 

components within a large-scale Cloud environment. 

ii) To provide an in-depth method of holistic analysis for operational trace 

logs to study and model Cloud behaviour. This work proposes a general 

method of analysis that can be applied to Cloud datasets in order to 

study, model and quantify behavioural patterns and characteristics of 

system operation. 

iii) Empirical analysis and modelling of large-scale Cloud computing 

behavioural patterns and characteristics. This research aims to study 

behavioural patterns and quantify key components within the Cloud 

environment, specifically within the areas of user behaviour, server 

resource utilization, workload execution length, resource utilization and 

failures. Such analysis is critical in understanding and building realistic 

research assumptions of the Cloud operational environment and deriving 

accurate simulation patterns derived from real systems. 

iv) To identify and quantify operational inefficiency in terms of wasted 

resource utilization and energy waste due to failures within large-scale 

Cloud environments. This work for the first time quantifies and studies 

the root cause of energy waste due to failures within large-scale 

distributed systems. These results can be used by providers to identify 

areas and root causes of operational inefficiency within production 

systems, and by researchers to enhance dependable energy-efficient 

research that presently rely on theoretical values and assumptions for 

energy waste. 

1.4     Research Methodology 

The research methodology of this work consists of two core components: 

 Identification of the challenges involved in studying and accurately modelling 

components of large-scale Cloud computing environments. 

 An approach to address these challenges through the development of an 

analysis method, which leverages techniques such as cluster analysis, 

distribution modelling, temporal and spatial analysis of Cloud datasets to 

study system behaviour and construct accurate Cloud environment models 
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for user behaviour, workload classification and utilization, server resource 

utilization, failures and energy-waste due to failures. 

This analysis is decomposed into four main areas to characterize and model the 

Cloud environment: Workload, Servers, failures and failure-related energy-waste. 

To facilitate this, it was necessary to model the lifecycle and relationships of 

components in a real production Cloud datacenter trace log, as well as construct 

an analysis infrastructure for data extraction and processing in a timely manner. 

Each area of analysis includes the study of statistical properties and 

characteristics in order to analyze and model the behaviour of the Cloud 

environment, as well as how findings can be used for practical application. 

1.5     Major Contributions 

The major contributions of this work are: 

 The identification of in-depth analysis of operational traces from Cloud 

computing datacenters as an effective means to comprehensively understand 

system behaviour and enhance system assumptions of Cloud research. 

Current Cloud research presently use theoretical values, small-scale 

experiments or characteristics from non-Cloud systems to derive system 

assumptions. These assumptions are greatly enhanced by the empirical 

analysis of real-world Cloud datacenters in order to derive and quantify 

realistic system behaviour.  

 A solution to the challenges of analyzing large-scale Cloud environments to 

obtain meaningful results and identify relationships between components 

within the system. Due to the massive scale and number of components 

within a Cloud environment, there are challenges in performing non-

superficial analyses to model the relationships and behaviour of users, 

workload, servers, failures and energy-waste. Furthermore, there are 

additional technical challenges in extrapolating and processing relevant data 

in a timely manner due to data size and heterogeneity, as well as lack of 

suitable analysis infrastructure. Finally, there are a limited number of 

methods of Cloud component analysis and modelling which contain a 

sufficient degree of abstraction that can be applied to Cloud trace logs 

agnostically of the underlying trace log format. This work provides a 

comprehensive method of analysis which models and captures key 
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characteristics of Cloud components including workload, failures, servers and 

resource-inefficiency which can be applied to system trace logs when 

performing empirical system analysis. 

 The analysis of Cloud datasets to study and model realistic user behaviour, 

task classification, Cloud utilization models and failure characteristics and 

models. Through the analysis of real world Cloud operational traces it is 

possible to empirically study actual Cloud computing behaviour. Specifically, 

we present a non-superficial and comprehensive spatial and temporal 

analysis of user submission rates and resource estimation, workload 

classification, resource utilization and execution length, and failure and repair 

characteristics of workloads and servers. Furthermore, we present the model 

parameters for these components that can be used by other researchers to 

construct their own simulations derived from realistic Cloud environment 

assumptions, as well as aid system architects when designing resource 

managers to improve Cloud workload reliability. 

 The study and quantification of operational inefficiencies within Cloud 

environment. This work not only quantifies resource waste in terms of server 

utilization, but also presents the first analysis of failure-related energy waste 

produced within a Cloud environment. This is critical in not only identifying 

operational inefficiencies, but also quantifying their impact within large-scale 

systems in terms of energy cost. 

1.6     Thesis Organization 
The thesis is composed of seven chapters, of which this is the first: 

Chapter 2 provides an introduction to the topics of Cloud computing and 

dependability. Existing work in analyzing and modelling Cloud computing 

environments specifically within the areas of workloads and servers is explored. 

Furthermore, the current state-of-the-art in failure analysis and energy waste in 

modern systems is discussed. This work is presented in order to understand the 

challenges associated with studying, quantifying and modelling large-scale Cloud 

environments. 

Chapter 3 The case study of this research - the Google Cloud trace log - is 

presented. The trace log specification, data attributes, and lifecycle of datacenter 

components are discussed and described in detail. The modelling of relationships 
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between the system logs, the method of data extraction and construction of the 

analysis infrastructure required for data processing is presented and discussed in 

detail. This chapter concludes by analysis of the statistical parameters of coarse-

grain statistics of the datacenter operation. 

Chapter 4 presents the method, analysis and modelling of workload behaviour 

within large-scale Cloud computing environments, including user submission 

rates, resource estimation, task resource utilization and execution length. This 

chapter concludes by demonstrating how these results have been integrated 

within energy-efficient resource management mechanisms. 

Chapter 5 presents the method and analysis of server characteristics within the 

Cloud datacenter, including resource utilization per server architecture type as 

well as quantifying the operational inefficiencies of servers in terms of wasted 

resource utilization. 

Chapter 6 presents the analysis of failures and failure-related energy waste of 

both workload and servers. Specifically, the failure characteristics of tasks and 

servers are comprehensively studied and modelled. Furthermore, the amount of 

energy-waste created due to failures is quantified and studied in detail. This 

chapter concludes by discussion of practical application of these results. 

Chapter 7 summarises findings and provides conclusions and outlines potential 

future research directions for this work. 
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2     Cloud Analytics 

2.1     Evolution of Modern Computing Systems 

This chapter describes the broad context of this research - i.e. analysis of Cloud 

computing datacenters to quantify system characteristics, behavioural patterns 

and system inefficiencies. The evolution of modern computing systems and 

relevant technologies are presented in order to better understand the 

emergence of Cloud computing. The background of Cloud computing is discussed 

and then defined within the context of this thesis. The concepts of dependability 

and systems analysis and how they are can be used to enhance system operation 

is defined and discussed in detail. Finally, the current state-of-the-art in Cloud 

analytics within the areas of workload, failures, servers and energy-waste are 

discussed, highlighting the importance of such work within this thesis.  

2.1.1     Software System Model Definition  

In order to better understand the emergence of Cloud computing presented in 

this thesis, it is necessary to present and discuss the conceptual design of a 

system and the evolution of modern distributed systems. 

A software system is composed of a number of components, which work 

together to provide functionality and interact with entities in the system 

environment [4] as shown in Figure 2.1. These components can be humans, 

software, hardware or even other systems. This concept can be used recursively, 

in that individual components may be composed of multiple subcomponents 

operating within a system environment.  In this model, a consumer (which can 

also be seen as a user) is defined as another system that exists within the system 

environment, interfacing at the system boundary. 

Computing and communication systems can be characterized by five 

fundamental properties: functionality, performance, cost, security and 

dependability [5]. The function of a system, which is the intended purpose of the 

system, is usually described by the functional specification in terms of system 

functionality and performance. Systems which provide different properties of 

interest and pursue different functions will exhibit different system behaviour. 
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The behaviour of the system is what the system does in order to perform its 

defined function and can be described as a sequence of states [5]. 

2.1.2     Conceptual Design of Software Systems 

The architecture of most software systems are designed by separation into three 

distinct layers: presentation, application logic and resource [6] as presented in 

Figure 2.2. These layers are defined as follows: 

The presentation layer is responsible for presenting information to the system 

environment, and the interaction and communication with components that 

exist outside of the system. Examples of such entities include human users or 

other systems. A presentation layer can be implemented in a number of ways, 

such as a graphical user interface or a component that formats data into a given 

syntax. A typical example for this type of service is a program which drives an 

ATM screen. 

The application logic layer is responsible for data processing and performing 

actual operation requested by a user through the presentation layer. This layer is 

also referred to as the services offered by the system. A typical example for this 

type of service is a program which implements a withdrawal operation from a 

bank account. 

Component a

Component b

Component c

Component i

Component j

System System Environment

Interacts

Component x

Component y

 

Figure 2.1 Conceptual model of a software system. 
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The resource management layer is responsible for the management and 

implementation of data sources in the system irrespective of nature of the data 

source. This includes data residing within databases, file systems and other data 

repositories. 

2.1.3     Tiered software System Architectures 

These three layers are conceptual, logically separating the functionality of the 

software system. In reality, implementing such layers within a system can be 

combined and distributed in a variety of ways, referred to as tiers. There are four 

fundamental types of software system architectures, dependant on tier 

organisation: 1-tier, 2-tier, 3-tier and N-tier [6]. 

1-tier architectures consist of all three layers (presentation, application logic and 

resource management) merged into a single tier as shown in Figure 2.3(a). These 

architectures were the result of the development of mainframe-based systems 

that can be interacted with through the use of dumb terminals which display 

information prepared by the mainframe. Such practises were necessary at the 

time of conception due to system CPU efficiency being high priority due to 

limited CPU resources available. These systems are monolithic and interaction 

with the system environment is limited through the use of dumb terminals; as a 

result, 1-tier systems are viewed today as legacy systems as they are difficult and 

expensive to maintain as they are essentially monolithic pieces of code.  

S
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Presentation layer
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Resource management 
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Figure 2.2 The layers of a software design system. 
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2-tier architectures are an evolution of the 1-tier architecture, and emerged due 

to the development of the PC, which replaced dumb terminals of a mainframe 

with smaller computer systems that interacted with larger, more 

computationally powerful servers. Conceptually, this resulted in the separation 

of the presentation layer from the server, and instead merging with the client 

(i.e. a user's PC) as shown in Figure 2.3(b). This architecture is commonly known 

as ‘Client-Server’. 

This architecture presents two distinct advantages. First, as the presentation 

layer is separated from the server, the system can utilize computing resources 

from the client instead of the application logic and resource management layers, 

reducing resource utilization overhead. Second, it is possible to modify the 

presentation layer for different purposes without increasing system complexity, 

allowing different functionality for individual clients. However, there are 

limitations with this architecture in terms of scalability when increasing the 

number of clients interacting with the system causing increased server overhead. 

An additional issue is the legacy problem when 2-tier systems are used for 

objectives not originally intended; as the code written for clients is separate from 

the server, it is possible for clients to be developed to communicate with 

multiple servers enabling service integration. This results in increased system 

size, complexity and server dependency as modifications to a server also requires 

the client to be subsequently modified, causing clients to become larger and 

more complex than originally intended.  
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Figure 2.3 (a) 1-tier, (b) 2-tier software system architecture. 
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3-tier architectures overcome some of the problems within 2-tier architectures; 

these architectures, as shown in Figure 2.4(a), feature a distinct separation 

between the three layers. Similar to the 2-tier architecture, the presentation 

layer resides on the client, while the application logic resides within a middle tier 

which communicates between the client and back-end resources. The 

abstraction and infrastructure that is used to support the application logic is 

often referred to as the Middleware [7]. 

3-tier architectures separate the application logic from the resource 

management layer as well as reducing the complexity of clients by preventing 

data resources from being accessed directly by the presentation layer. This 

minimises bottlenecks, as the application logic layer does not need to transfer 

additional data to the client. Moreover, system maintainability is improved as 

changes to the Middleware do not require corresponding changes to the 

presentation layer. By separating the middleware tier and linking it across many 

nodes, the scalability and reliability of the system is enhanced. However, 3-tier 

architectures face issues when integrating clients to multiple systems or other 

three-tier systems. This is due to a lack of standards in terms of interfaces and 

communication protocols resulting in the requirement of significant 

development in order to integrate different 3-tier systems together. 

N-Tier architectures are similar to 3-tier systems; the main difference however is 

that they are more capable of linking to other systems and are capable of 

connecting to the Internet. An N-Tier architecture can emerge from one of two 

situations: the resource layer of the system is composed of other complete 2-tier 

or 3-tier architecture systems, or an additional tier is created by deploying a Web 

Service within the presentation layer that is treated as an additional layer due to 

its complexity in comparison to the client as shown in Figure 2.4(b). However, N-

Tier architectures face the same problems as 3-tier architectures in terms of lack 

of standards to enable interoperability between systems over the Internet, and 

consequently increased complexity and the amount of middleware required for 

system integration [151]. This is particularly true when application logic is 

distributed across multiple machines that each use heterogeneous middleware. 

The evolution of software system architectures, from monolithic systems 

interacting through a dummy terminal, to many complex systems interconnected 
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together which can be accessed over the Internet demonstrates several trends in 

the evolution of software systems: 

The first trend is that software systems are becoming increasingly complex; from 

the above discussion is it observable that an increasing amount of tiers are 

required in order to build systems which are capable of handling increased 

number of users and resource pools. Unfortunately, the introduction of 

additional tiers results in increased challenges when developing and maintaining 

the system due to complexity in tier configuration and communication [5]. 

The second trend is that there is an increasing requirement for software systems 

to be integrated together. As systems grow more complex, with the integration 

of additional tiers as well as application logic and data resources residing across 

multiple machines, there is an increased challenge in effectively integrating 

systems together. Furthermore, these systems must be capable of integrating 

and communicating with legacy systems currently used by the organization 

[150]. 

The third trends entails that software systems described above have evolved to 

facilitate the needs of individual organisations; the Internet age has since 

resulted in the formation of organizations which are in constant state of 

evolution in order to compete and prosper within the global marketplace [151]. 
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Figure 2.4 (a) 3-tier, (b) N-Tier software system architecture.  
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Such an environment has resulted in the need for systems that are capable of 

integration from different administrative domains, as well as potentially 

difference organisations. 3-tier and N-Tier system architectures are only capable 

of limited support in terms of system integration in such conditions. This is due 

to the lack of standards for communication and interactions between systems 

with heterogeneous architectures and administrative controls, resulting in 

increased complexity in middleware [5]. 

Service-oriented architectures have emerged as a means to address these 

challenges by enabling the development of applications composed of dynamic 

and loosely coupled applications capable of integrating across multi-

organisational systems over the Internet in a standard way. 

2.1.4     Service Computing 

Service computing focuses on the connection between business processes and IT 

services so that business processes are seamlessly automated [8]. Service 

Oriented Architecture (SOA) is an architecture proposed for business to redefine 

processes to take advantage of 'formerly isolated component activities' [5]. Such 

architectures offer advantages over N-tier architectures in that complexity is 

reduced due to middleware decentralisation and modification less likely to affect 

existing services due to loose-coupling, in addition to well supported standards 

for developing cross-organizations systems over the Internet. A typical 

implementation of SOAs are through the use of Web Services, which are defined 

as self-contained, modular business applications that use standard interfaces 

over the Internet [23]. Web service developers make use of standards to enable 

interoperability between services. Two popular service based protocols for 

communication are SOAP [148] and REST [154]. 

The maturity of service computing has enabled the resurgence of a long sought 

concept: systems providing services to consumers as computing utilities.   

2.1.5     Utility Computing 

In modern day society, utilities such as water, gas, telecommunication and 

electricity are deemed as requirements for fulfilling routines in daily life [8]. In 

this context, we define utility as an essential service that can be easily obtained 

by the general population.  
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The idea of computing utility was realised as early as 1966 [9], where it was 

envisioned that computing networks would mature to reach a point where the 

idea of 'computer utilities' was made a reality and worked in similar principle to  

electrical and telephone utilities; able to provision computing service such as 

computing resources, development platforms or applications to consumers. 

There are two main actors within such environments; consumers and providers. 

Providers are defined as entities that own and maintain the underlying 

infrastructure to provision computing service. Consumers are entities (individuals 

or companies) that require computing power in order to achieve business 

objectives [10]. This service utility model for provisioning computing service 

provides a distinct advantage over traditional computing: Consumers pay 

providers for the amount of computer resources used over a given time frame, 

instead of investing, building and maintaining their own computing infrastructure 

which may be heavily underutilized for the majority of its life span if it is required 

for only handling large demand on a short-term basis. 

There have been a number of technologies developed which increase the 

feasibility of computer utility. The first is the creation of communication 

protocols capable of forming distributed computer systems that are able to 

interact across the globe via the Internet, enabling the formation of potentially 

massive computer resource pools [8]. The second technology that has recently 

seen resurgence is Virtualization, which enables the abstraction of computing 

resources from the physical infrastructure enabling computing resources used by 

a consumer to be dynamically added and released on demand controlled by a 

virtual management system [11]. A typical use of this technology is the creation 

of Virtual Machines (VMs) which are self-contained environments which 

encapsulate state and virtual computing resources. The third technology is the 

evolutionary shift to service computing as discussed above, which allows 

computing utility and IT service to be provisioned to consumers as an automated 

business process through the use of standards. 

As consumers move towards adopting such systems, the quality and reliability of 

the service provided becomes increasingly important. However, the level of 

service required by consumers can vary significantly depending on their business 

objectives. As a result, it may not be possible to fulfil all expectations for every 
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consumer from a service provider's perspective; hence a balance needs to be 

made via a negotiation process. At the end of the negotiation process, providers 

and consumers commit to a Service Level Agreement (SLA) [24]. SLAs provide a 

firm definition of the service agreement between service providers and 

consumers which includes defining the related service parties, service level 

objectives which formally express guarantee service conditions, and service 

parameters which are a measureable representation of service parties' 

obligations in order to measure whether service has been satisfactorily 

provisioned [153]. This typically includes service level guarantees, parameters 

and actions required in the case of violation [64]. One element provisioned and 

enforced through an SLA is the Quality of Service (QoS); QoS is a broad topic in 

the domain of Distributed Systems research, and can include a large variety of 

attributes ranging from geographical, economic, performance, real-time and 

security constraints of the service. Service providers use the SLA to optimize their 

infrastructures to meet the agreed terms of service, whilst service consumers use 

it to ensure that the agreed QoS has been fulfilled. 

Modern day IT usage has grown at a substantial rate; consuming 1.8% of the 

global electricity consumption [25] and increased global data traffic more than 

fourfold within the past five years, and an expected further threefold increase by 

2018 [26]. To meet this need, there has been a significant growth of large-scale 

distributed interconnected systems which are capable of providing computing 

service as a utility. 

Through breakthroughs in research and technology, as well as the increased 

heterogeneity in consumer objectives, there have been a number of distributed 

systems with distinct characteristics that have emerged within the past few 

decades to pursue specific consumer objectives and attempt to realise the vision 

of computing utility. 

Cluster computing [12][13][14] is a type of High-Performance Computing (HPC) 

paradigm that is capable of solving complex and huge-scale computing problems 

at reduced costs in comparison to traditional supercomputing systems. A cluster 

system is defined as a series of independent machines connected together by a 

network. Through the use of middleware, it is possible to create the illusion of a 

single system by abstracting the underlying infrastructure from users thereby 
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reducing system complexity [15]. Cluster systems have two principle actors; 

producers and consumers, which act in the same manner as the role for 

providers and consumers in utility computing [16].  

Peer-to-Peer (P2P) systems are a class of systems which enables distributed 

resources to perform a function in a decentralized manner [17]. There is no 

division between client and servers since all nodes within the system are treated 

equally and can act as both clients and servers simultaneously. The objective of 

P2P systems is to aggregate resources across the system to improve system 

reliability and system scalability by reducing the dependency on centralized 

points within the system [18]. Such systems are highly effective for file sharing 

[19], security authentication and shared workspaces [20].  

Grid computing systems coordinate resources not subject to centralized control 

using standard protocols and interfaces in order to deliver non-trivial service 

enabling sharing and selection of a large number of system types [21]. The 

motivation for Grid computing is to solve problems associated with "coordinated 

resource sharing and problem solving in dynamic, multi-institutional virtual 

organizations (VOs)" [22]. Such systems are typically suited for solving research 

problems that require massive amounts of computation and data within the 

domains of science, engineering and commerce [22]. 

It is possible for these distributed systems to be deployed within Datacenters;  

co-located systems within the same physical location in order to satisfy common 

environmental and physical security requirements, as well as ease system 

maintenance [27]. Datacenters are traditionally used by consumers as                           

co-locational facilities (i.e. consumers are provisioned physical space to purchase 

and configure their own IT equipment which is maintained by the datacenter 

provider). Datacenter systems continue to grow and an unprecedented rate, with 

Datacenter sales in 2013 totalling over $143 billion [28], with a forecasted 

growth of Datacenter installations between 2013-2016 at 15-20% [29], and 

number of server racks in the UK increasing from 7.7 million by 15% [25].  

Unfortunately, all of the above systems fail to realise the vision of true 

computing utility; for cluster computing, such systems are typically tightly 

coupled, resulting in limitations in portability due to middleware modification. 
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Grids are project-oriented in nature, with VOs forming in order to complete 

mutually beneficial objectives [66]. Furthermore, the business model of Grids is 

composed of providing computing services and resources as units to be spent, 

allowing the provider to manage schedule resources and available allotted time 

prior to provisioning service to consumers. This characteristic is debilitating to its 

capability to provide true utility to consumers on an ad-hoc basis [66]. In the case 

of Datacenters, providers only provision physical space to consumers who 

purchase, install and maintain their own IT infrastructure while the datacenter 

provider is responsible the physical security and operational environment 

conditions. This ultimately leads to limitations in dynamically providing 

computing utility to consumers as described previously. 

The most modern paradigm to emerge that addresses this problem and further 

realises utility computing provisioned as a service is Cloud computing; loosely 

coupled systems - typically deployed within datacenters - capable of dynamically 

providing computing service and utility to consumers.  

2.2     Cloud Computing 

2.2.1     Cloud Computing Definition 

Cloud computing has emerged as an increasingly popular means of providing 

utility computing to consumers. There is currently no standard definition for 

Cloud computing, however there are a number of proposed definitions. A 

popular definition for Cloud computing is taken from the National Institute of 

Standards and Technology (NIST) [30], which states that Cloud computing is: 

 "a model for enabling ubiquitous, convenient, on-demand network access to a 

shared pool of configurable computing resources that can be rapidly provisioned 

and released with minimal management effort or service provider interaction". 

Furthermore, Cloud computing from an implementation perspective is defined as 

[31]:  

"parallel and distributed system consisting of interconnected and virtualized 

computers that are dynamically provisioned and presented as one or more 

unified computing resources base on service-level agreements established 

through negotiation between the service provider and consumers".  
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Cloud computing environments are typically deployed within datacenters, which 

is owned by a provider or a third party. In recent years, datacenters have been 

increasingly deployed to provide global IT services and have been a key factor in 

the increased formation and uptake of Cloud computing which is typically 

deployed using such systems. As a result, within this work the term Cloud 

datacenter and Cloud computing environment are synonymous. 

2.2.2     Cloud Computing Characteristics 

As systems are capable of being constructed and implemented by using a wide 

variety of architectures, technologies, designs, etc. it is advantageous to define 

the characteristics of the system in order to comprehensively understand the 

definition and behaviour agnostic of physical implementation. Identified by NIST 

[30], there are five essential characteristics of Cloud computing. 

On-demand self-service: Cloud self-service interfaces provide mechanisms that 

support the management of the entire service delivery lifecycle. This allows 

consumers to acquire, manage and utilize computing resources and capability 

such as server resources and network storage automatically without needing 

direct human interaction from the service provider. 

Broad network access: Cloud services are delivered over standard network 

protocols and can be accessed through standard interfaces to promote 

heterogeneous devices (i.e. Mobile phones, workstations, laptops). This grants 

providers the capacity to deliver a variety of Cloud services to a wide selection of 

devices used by consumers over networks. 

Resource Pooling: The Cloud provider is able to pool resources to multiple 

consumers in the form of a multi-tenant model. These resources are assigned 

dependant on the demands of the consumer, who generally do not have fine-

grained control or knowledge over the precise location of the resources 

provisioned. Instead, depending on the provider policy, consumers are capable 

of specifying the location of resource pooling at a higher level of abstraction such 

as country, state or datacenter.  

Rapid Elasticity: Elasticity is the capability of a computing system to add or 

remove capacity from the system environment. Cloud resources are capable of 

being scaled-in and out dynamically in order to maintain expected QoS for 
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consumers as well as reduce costs; the latter is made possible as consumers are 

capable of adding and removing resources when required. These resources can 

be scaled in two directions: vertically (scale-up) by adding or removing resources 

from prior existing VMs or horizontally (scale-out) by adding or removing 

additional VMs. 

Measured Service: Resource usage within Cloud systems can be monitored, 

managed and reported to both consumers and providers transparently for 

metering and billing.  This enables consumers capable of being billed based on 

their usage of Cloud resources and services while providers are able to track 

billing patterns in order to enhance provisioned service. 

As a result of these system characteristics, there are secondary characteristics 

that manifest within Cloud environments which have been observed and 

identified within the literature. 

Massive scalable and complex architectures: With the increased market uptake 

of Cloud services [32][33][34], there has been a substantial growth in 

infrastructure [25][29], number of consumers [26][35] and Cloud services 

provisioned in datacenters; this growth is further augmented by the use of 

virtualisation technology and the ability to provision Cloud services on-demand. 

This has resulted in the increase in not just the number of Cloud datacenter 

facilities, but also the scale of such systems. Such increases have resulted in more 

complex management, architectures and applications [36][37][38], resulting in 

challenges when attempting to understand system characteristics as well as the 

relationship between components and their impact on system behaviour. 

Wide diversity of dynamic workloads due to heterogeneous consumer demands. 

Clouds typically are multi-tenant nature, with consumers pursuing different 

business objectives and QoS requirements [10]. As a result, the properties and 

characteristics of workload deployed within the Cloud environment can vary 

substantially [39][40]. Due to the Cloud's ability to scale to consumer needs, as 

well as the diversity of consumer business objectives through the use of rapid 

elasticity, workload in Cloud can be substantially heterogeneous in terms of 

resource consumption and execution length. 
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2.2.3     Cloud Computing Taxonomy 

It is important to define Cloud computing by its capabilities in order to formulate 

a concise taxonomy. Cloud computing implementations can be classified 

according to their service delivery model in terms of Software, Platform and 

Infrastructure [41]. Different service models result in different functionality and 

responsibility for the Cloud consumer and provider, respectively. Furthermore, 

Cloud systems can also be deployed in a number of ways to provision service 

classified as Private, Public, Hybrid, Community and Federated [41][42]. These 

concepts and their relation to each other are shown in Figure 2.5 and are 

described in subsequent sections. 
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Figure 2.5 Cloud taxonomy of service deployment and service model. 

2.2.4     Cloud Actors 

It is necessary to define the principle actors within Cloud computing agnostic of 

service objective and physical deployment. According to the NIST Cloud 

Computing Reference Architecture [41] there are five principle actors within 

Cloud computing environments:  

Cloud Provider: Entities that are responsible for management and administration 

of the physical Cloud infrastructure as well as the mechanisms to deliver service 

to the consumer [42]. Providers are generally responsible for the overall 

management of Cloud, which includes physical server maintenance, cooling 

systems and VM scheduling and resource management.  
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Figure 2.6 NIST Cloud Computing Model. 

Cloud Auditor: Entities independent of the provider that assess Cloud services in 

order to evaluate whether services conform to standards such as system 

operation, performance and infrastructure security controls. The purpose of the 

auditor is to ensure that these controls are implemented and deployed correctly 

and that they produce the desired results for the system.  

Cloud Broker: Responsible for the integration of Cloud services; Cloud brokers are 

perceived as consumers to Cloud providers, while perceived as providers 

themselves when interacting with consumers. The three main activities of a 

Cloud broker performs on Cloud service can be divided into intermediation, 

aggregation and arbitrage. 

Cloud Carrier: Responsible for connecting, managing and transporting Cloud 

computational service through network, telecommunication and other devices 

between providers and consumers.  

These actors within the context of the Cloud environment are presented in 

Figure 2.6. 

2.2.5     Service Model  

As described previously in Chapter 2.2.2, a key driving concept behind Cloud 

computing is provisioning service to consumers. There is a consensus held that 

Cloud computing can be categorized into one of three fundamental service 

models [41][43]. Definitions of these service models are as follows: 
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Software-as-a-Service (SaaS): Cloud providers supply remotely run software to 

consumers via the Internet. Specifically, consumers do not have access or 

permission to alter the configuration of the underlying operating platform and 

physical infrastructure running the software. The provider is responsible for 

software installation, maintenance and management. Examples of typical 

applications are word processors or project management tools. SAP, 

Salesforce.com and Oracle On Demand are examples of SaaS providers. 

Platform-as-a-Service (PaaS): Cloud providers offer a software platform above 

virtualised infrastructure to consumers. Consumers are able to access a hosting 

environment (platform) and have complete control over deploying and 

configuring their own applications whilst having limited configuration over the 

operating platform. The consumer is unable to configure and access the 

underlying infrastructure such as the virtualized hardware and network. 

Examples of PaaS providers are Google App Engine, Flexiscale and Windows 

Azure. 

Infrastructure-as-a-Service (IaaS): Providers provision computing resources to 

consumers, who are able to build their own operating platforms and software 

using virtualised resources. These resources include CPU, Memory, Storage and 

Network capability. Consumers are unable to manage the underlying 

infrastructure that provisions these resources, but are capable of configuring and 

deploying the operating platform and applications deployed within them. 

Providers on the other hand are responsible for the management and 

administration of the underlying physical infrastructure. Examples of IaaS 

providers are Amazon EC2, Rackspace and GoGrid. 

These three deployment models can be deployed on top of each other. For 

example, a SaaS provider provisions service from a third party PaaS provider to 

host their applications, which use another third party IaaS for infrastructure. In 

such a scenario, tiers lower down the Cloud stack are obfuscated from the 

consumer and provided transparently as shown in Figure 2.7. 

In addition, there exist a number of sub-categories that blur the boundaries of 

the three service models described: 
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Failure-as-a-Service  (FaaS): A service model that routinely injects faults into 

Cloud services in order to evaluate service resiliency, identify risks and the 

impact of failures on the system holistically, and allow providers to schedule 

failures instead of waiting for unplanned failures to occur [44]. 

Hardware-as-a-Service (HaaS): This service is traditionally provided in co-

locational datacenters, where providers are responsible for the network and 

physical environmental conditions of the datacenter and provide physical space 

and computing infrastructure to consumers who are given total control over the 

physical hardware. This service is best suited for consumers who wish to take 

advantage of scalable virtualized services whilst having total control over the 

resource management and security policies of the physical hardware [45]. 

Security-as-a-Service (SECaaS): This provisions security services such as intrusion 

detection systems, identity management and Virtual Private Networks (VPNs) to 

consumers, allowing them to attain desired levels of security and privacy. 

Example applications include shared datasets being protected from malicious 

alteration and configurable access control to protect service integrity [46]. 

2.2.6     Deployment Model 

The Cloud service models described previously can be deployed in a number of 

different configurations as well as exhibit different security constraints, levels of 

system complexity and implementation cost [41]. There are five identified Cloud 

deployment models: 

Private: The Cloud service is provisioned exclusively to a single organization or 

institution. The physical infrastructure may be owned or administrated by the 

Cloud stack

SaaS

PaaS

IaaS

 

Figure 2.7 Cloud Service Stack. 
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organization or a third party provider. This approach shares similarities to a 

traditional IT infrastructure, and brings similar advantages in terms of security 

and data privacy, as data and computation is kept within the boundaries of the 

organization. Private Clouds allow organizations to improve security due to 

restricted user access, boundaries and service optimization as the service and 

infrastructure is configured specifically to facilitate the business objectives of the 

organization. An example domain where such a deployment model is typically  

implemented is within the healthcare industry, where there are regulatory 

standards and jurisdictional constraints on data storage and management. 

Public: Cloud services and infrastructure is provisioned to the general public who 

act as consumers, typically over the Internet. The Cloud infrastructure is hosted 

and fully managed by the Cloud provider, and consumers have no control over 

operational policy or location of the physical infrastructure. Public Clouds allow 

consumers to handle spikes in resources demanded by adding virtual resources 

to facilitate service load for their business objectives for a finite period of time 

(for reasons such as sharp increase in service demand). This is advantageous to 

consumers as they do not need to invest in extending their own infrastructure to 

handle the temporally high service load. As a result, the use of public Cloud can 

result in reduced expenditure and operational costs as well as improve resource 

utilization of a consumer’s infrastructure. 

Hybrid: Hybrid Clouds refers to the use of both Private and Public Clouds by an 

organization. Consumers typically outsource a section of their service to the 

public Cloud, typically non-critical data or services, whilst keeping mission critical 

data within the private Cloud. Similar to Public Clouds, this deployment allows 

additional resources to be quickly scaled-up for a finite amount of time to 

facilitate business objectives during peak demand of service. A common practise 

in such deployments is the use of Cloud bursting, which leverages a public Cloud 

for additional computing service when a private Cloud is momentarily unable to 

fulfil SLA due to high demand and system usage [30]. 

Community: Community Clouds are defined as multiple organizations with 

shared interests that share their infrastructure in order to complete their 

individual business objectives. An example of this would be sharing infrastructure 
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and resources between governmental departments that each manages their own 

Cloud infrastructure. 

Federated Cloud: Federated Cloud is an emerging deployment model defined as 

two or more independent Cloud providers that are capable of sharing resources 

and are "able to scale applications across multiple domains to meet QoS targets 

of Cloud customers" [10]. This differs from the definition of a community Cloud in 

that each system environment is not under the control of a central entity or 

administrative control [47], and are typically heterogeneous in terms of service 

and technologies as shown in Figure 2.8. Such service models are advantageous 

for consumers who desire to migrate workload based on desired consumer QoS 

[48], or a provider requiring additional computing resources [49]. 

2.2.7      Workload in Cloud 

As discussed previously, the characteristics of Cloud computing result in highly 

dynamic and heterogeneous environments which have enabled a paradigm shift 

allowing consumers to dynamically request and utilise computational resources 

and services in order to pursue different business and QoS objectives. These 

resources and services are utilised through the concept of workload. We define 

workload as: 

"The amount of work assigned to, or done by, a client, workgroup, server, or 

system in a given time period." [50] 

Within the context of Cloud computing, workloads are composed of two 

components; tasks and users. A task is defined as the basic unit of computation 
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Figure 2.8 Cloud federation model. 

Figure 2.8.  
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assigned or performed in the Cloud and a user is defined as the actor responsible 

for creating and configuring the volume of tasks to be computed. Tasks are 

submitted by users via the Internet which are then executed within the Cloud 

computing environment. A workload can also be composed of multiple related 

tasks working towards a common objective known as a job. 

Workload behaviour can be identified and characterized based on their 

attributes and properties; such properties include the execution length as well as 

the amount and type of resource utilized. Furthermore, workloads can be 

characterized by the constraints which limit where the task can be executed. 

Such constraints include requiring a specific server hardware architecture, or 

geographical location due to security and privacy constraints [51] 

Table 2.1 Classification of Typical Cloud Workloads. 

Workload Type Description/Examples 

Enterprise Resource 

Planning (ERP) 

Business management software used for product 

planning, data mining. 

WebMail 
Typically free email services offered to consumers 

via a browser. 

Storage 
Storage services are used for backup and archiving 

purposes. 

Analytics 
Business analytics, data mining, temporal and 

spatial patterns within submitted datasets. 

Development/test 
Development and testing environments and 

services for software as well as developed products. 

Collaboration 
Multiple institutions collaborating together in order 

to complete project goals. 

Gaming Latency sensitive gaming applications. 

Web Applications 
eCommerce, java application, web searching, other 

well developed applications. 

Desktop 
Desktop computing, desktop management and 

desktop monitoring services. 

Batch Processing 

CPU intensive render farms for 3d modelling, 

visualization of large scale geo-data and performing 

large numerical calculations. 
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Workload can be classified by the type and amount of resource consumed such 

as CPU, Memory, Disk, Network, as well as its function. For example, workload 

which contain dependencies with each other are 'batch processing', typically 

used for computationally intensive scientific computing [52][53], while 'latency-

sensitive' workload are typically used in real-time applications such as gaming,  

and financial analysis [54]. Table 2.1 lists common examples of workloads within 

Cloud environments, identified by IBM [55]. 

2.2.8     Hardware 

Workload is deployed and executed in hardware of Cloud computing systems. As 

stated in Chapter 2.2.1, Cloud computing environments are typically 

implemented in datacenters, composed of hundreds or thousands of 

interconnected servers to provide computing utility. The servers in a Cloud 

datacenter are typically heterogeneous in nature, as different architectures are 

better suited to executing different types of workload submitted by consumers, 

or a workload requires a specific hardware architecture such as GPU [56].  

At the fundamental physical infrastructure, there are minor differences between 

the infrastructure architecture between Cloud datacenters and other distributed 

systems such as Grids and Cluster systems, which are also interconnected 

network systems which are capable of leveraging technologies such as 

virtualization. Virtualization is a key technology which enables Cloud computing 

characteristics such as elasticity, scalability, resiliency and multi-tenancy [57]. 

2.2.9     Virtualization  

As mentioned previously, a key technology used in many implementations of 

Cloud computing is virtualization. Virtualization is broadly defined as  

"separation of a service requested from the physical delivery of that service." [58]  

and specifically defined as  

"the creation of substitutes for real resources, that is, substitutes that have the 

same functions and external interfaces, but differ in attributes such as size, 

performance and cost." [59]  
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These substitutes are known as virtual resources that are capable of creating 

multiple emulated computing environments defined as a Virtual Machine (VMs) 

on a single physical server known as the host.    

Virtualization is typically used for consolidating hardware resources such as CPU, 

Memory, Disk and Network resulting in reduced hardware costs. These VMs are 

controlled through the use of a Virtual Machine Manager (VMM) (also known as 

a Hypervisor) which is responsible for the creation, deletion, migration and 

monitoring of the VM status [11].  Interactions between VMs and the underlying 

hardware are performed through the use of virtualization software using 

programs known as system calls. 

There are several widely used techniques for virtualization: Full Virtualization, 

Para-virtualization and Operating System-level Virtualization. 

Full Virtualization provides total abstraction from the underlying physical 

resources of the hardware in order to encapsulate VMs. Specifically, there is no 

modification made to the Operating Systems (OSs) and the VM which are 

unaware that it is a virtualized environment and that it shares the same physical 

infrastructure with other VMs. The VMM is responsible for providing access and 

allocation of resources between VMs and the physical hardware through the use 

of dispatching and paging [60]. Applications can be deployed within the platform 

of each VM, which are executed above the VMM as shown in Figure 2.9. 

The concept of para-virtualization is similar to that of full virtualization, however 

the difference is that the OS is modified so that it is aware it is within a 
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Figure 2.9 Virtualization techniques. 
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virtualized environment and consequently aware of resource demands from 

other VMs within the same physical server, resulting in less virtualization 

overhead. However, as OSs within the VMs require modification, this results in 

limitations to its compatibility and portability as it requires configuration and 

modification to run in different server architectures.  

Operating System-Level Virtualization results in the host OS instead of the 

hardware being virtualized, resulting in multiple isolated user-space instances 

that share an identical OS. This allows system administrators the ability to assign 

resources upon VM creation as well as change them dynamically at runtime.  It is 

also known as Single Kernel Image or container-based virtualization. This 

approach offers minimal overheard, however requires all VMs within the host to 

share a homogenous OS. A popular implementation of this type of virtualization 

is Linux containers (LXC) [61] which allows multiple isolated emulated Linux 

systems on a single host. Other implementations of Operating System-Level 

virtualization include OpenVZ [62] and HP-UX [63]. 

2.2.10     Cloud Computing Quality of Service 

An important concept in the Cloud computing model is the ability for Cloud 

providers to guarantee negotiated levels of QoS through the use of SLAs 

(discussed in Chapter 2.1.5) to consumers. 

Typical parameters of Cloud SLAs include availability, service performance, 

monitoring and service cost, security and reliability [8][65]. QoS parameters used 

by Cloud consumers are dependent on their business objectives, and more 

specifically the characteristics of the workload. For example, consumers whose 

workload consists of a database application might require high availability and 

geographical QoS constraints while a real-time application might emphasize high 

availability and a boundary on acceptable response time.   

2.2.11     Differences between Cloud and Previous Distributed Systems 

Cloud computing shares a number of its characteristics described in Chapter 

2.2.2 with previous distributed paradigms; and there has been a sizable amount 

of work that discusses their differences, most notably Grid computing 

[66][67][68]. As discussed in Foster, et al. [66], Cloud shares similar system 

characteristics with service-oriented systems such as Grids which use similar 



Chapter 2 31 Cloud Analytics 

  

technologies such as virtualization in order to scale VMs. The primary difference 

between these two computing systems is the service model described in Chapter 

2.1.5. Grid systems are typically more project-oriented with a number of 

institutes forming Virtual Organisations in order to complete mutually beneficial 

objectives; computing services and resources are provided as units to be spent, 

allowing the provider to manage scheduled resources and available allotted time 

prior to workload execution. In comparison, Cloud consumers are not required to 

"book" resources and are free to request resources on an ad-hoc basis, making it 

is possible for a consumer to request a large amount of computing resources 

without prior knowledge for the Cloud provider [66]. 

Moreover, due to these different system objectives, the type of workload 

applications deployed tend to also vary; Grid systems typically use scientific and 

computationally heavy jobs in order to solve research problems or further 

project goals [66]. In comparison, Clouds (and in particular Public Cloud 

datacenters) contain many different types of consumers pursuing varied business 

objectives not just limited to collaborative projects and scientific computing, but 

also workload applications as described previously and shown in Table 2.1.  

Furthermore, Cloud datacenters are business critical systems which require high-

assurance to provision service to potentially millions of consumers. As a result, it 

is necessary to draw attention towards a major property of software systems: 

dependability. 

2.3     Cloud Dependability 

2.3.1     Faults, Errors and Failures 

Before the concept of dependability is discussed in detail, it is necessary to 

define the concepts of faults, errors and failures and their relationship to the 

state of a software system. 

The behaviour of a system (as discussed in Chapter 2.1.1) is defined as its 

implementation in order to perform its function, and can be described as a 

sequence of states. The total state of a system is composed of five states: 

Computation, communication, stored information, interconnection and physical 

condition [5]. The external state of a system is any state which can be perceived 

at the service interface, while the remainder is the internal state. 
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Correct service is delivered when the service implements the system function, 

however it is possible for the system to experience service failure (abbreviated to 

failure) if the service deviates from correct service. Service failure within a 

system is a result of noncompliance with the functional specification of the 

service, or the specification does not describe adequately the system function. 

Within normal system operation conditions, the delivered system service is the 

sequence of external state, and the system advances from one valid internal 

state to the next by means of valid transition. However, it is possible for this 

internal state to transition to an invalid state, known as an error. Errors occur 

due to presence of faults within the system. In this context, a fault is defined as 

"the adjudged or hypothesized cause of an error" [5]. Faults occur due to 

vulnerabilities that exist within the internal or external state; for example, a fault 

in the internal state of the system enables an external fault to damage the 

system. An error that results in the external state of the system becoming invalid 

causes a failure, which results in the system deviating from correct service as 

perceived by the user. While not all faults and errors within the system result in 

errors and failures, respectively all errors and consequentially all failures are the 

result of faults within the system. In the context of the system environment, the 

occurrence of a failure within a component as shown in Figure 2.10 results in a 
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Figure 2.10 Fault, error and failure propagation between system components [5]. 
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fault to become activated in other components within the system as well as 

components which interface with the failed component. As a result, a failure of a 

component becomes a fault for the components which interact with it.  

2.3.2     Dependability 

The term dependability is a key concept in provisioning software systems. 

Dependability in [69] is defined as “that property of a computer system such that 

reliance can justifiably be placed on the service it delivers. The service delivered 

by a system is its behaviour as it is perceived by its users.” and similarly in [5], as 

"a level of trust to be justifiably assigned to a system for it to avoid failures". 

Dependability is a global concept, and is subsumed by three main elements; 

attributes, means and threats as shown in Figure 2.11. 

The attributes of dependability allow the properties expected from a system to 

be expressed, and are used to support the assessment of system quality [5][70]. 

Availability: The degree which a system or component is accessible when 

required for use and is typically expressed as a probability. 

Reliability: The ability of a system to perform its system function under specified 

period of time, and is often expressed in time. 
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Figure 2.11 Dependability Tree. 
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Safety: The ability for a system to avoid catastrophic consequences on system 

users and the system environment. 

Integrity: The degree which a system to run without alterations to correct service 

caused by unauthorized alterations being made to the system. 

Maintainability: The ability for a system to undergo modification to correct 

faults, improve other attributes or adapt to changes within the system 

environment. 

It is worth noting that reliability is not a synonym for dependability; rather, 

reliability is just one attribute of the overall concept. [5] distinguishes attributes 

of interest between the dependability and security research communities as 

shown in Figure 2.12. The attributes of dependability are included within the 

dependability specification of a system, which contains the requirements for the 

accepted frequency and severity of failures. It also includes the classes of faults 

which will be covered within the system. Furthermore, the specification only 

includes attributes which are of importance, resulting in some attributes to be 

more emphasized than others, or in some cases omitted. 

The means of dependability are the methods by which the attributes of 

dependability are attained. They are classified as fault prevention, fault 

tolerance, fault removal and fault forecasting. The objective of fault prevention 

and tolerance is to deliver service which can be trusted, while fault removal and 

forecasting aim to obtain confidence in that ability.  
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Figure 2.12 Dependability and Security attributes. 
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The threats to dependability aim to identify and classify threats to the system 

service. A failure within a system can manifest in a variety of different forms and 

characteristics (known as failure modes); ranging in terms of severity (minor to 

catastrophic), domain (content and timing) and consistency (consistent and 

inconsistent).  

One way to classify faults in computing systems is to study behaviour upon 

failure. This classification defines what assumptions can be made about the 

behaviour of failed components. Failures are classified in [71][72][73] as: 

Crash fault: The component proceeds to halt and to lose its internal state, 

resulting in a fail-stop failure. 

Omission fault: The component does not to respond to a number of inputs. 

Timing fault: The fault causes the component to deliver service too early or too 

late [74], resulting in either an early-timing or late-timing failure. 

Byzantine fault: Faults that result in a component to behave arbitrarily. Faults 

can be caused from malicious attacks, operator errors, or software errors [75]. 

The above four faults form a hierarchy as shown in Figure 2.13, with crash and  

Byzantine being the simplest and most complex to identify and analyze, 

respectively. For crash faults, this is due to other components in the system are 

capable of identifying when a crash failure has occurred. For Byzantine faults 

however, different components may not only perceive whether the component 

is provisioning correct service or not, but may be exhibiting different types of 

faults such as crash, omission and timing [71].  

                                                                   Byzantine                                            Timing                  OmissionCrash

 

Figure 2.13 Fault Hierarchy. 
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Different types of faults are assumed for the nature of system component of 

interest. For example, a processor is frequently assumed to exhibit crash or 

Byzantine faults (in that either the processor stops executing, or no assumption 

is made about the nature of its failure). For communication networks, all type of 

faults can be assumed (crash faults if a message is not delivered, omission faults 

for lost messages, timing fault if there is a long delay for deliverance, etc.). 

Faults result in the manifestation of different failure modes, which can be used 

to characterize failures in software systems from four perspectives as shown in 

Figure 2.14: Domain, Detectability, Consistency and Consequence. 
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Figure 2.14 Failure characterization tree. 

2.3.3     The Need for Dependability in Cloud Datacenters 

Dependability, which is a fundamental property of computing systems, is a key 

concern in Cloud computing for the following reasons: 

There are potentially great economic consequences for failure occurrence. Cloud 

environments are typically deployed in large-scale datacenters. As a result, there 

are potentially great economic consequence for any failures [78], ranging from 

minor to catastrophic failures. For minor failures, this results in systems either 

unable to fulfil QoS or requiring additional resources attempting to do so through 

means such as fault-tolerance and fault-recovery. For catastrophic failures, it has 

been reported by the International Group on Cloud Computing Resiliency 

(IWGCR) that the total downtime for 13 large-scale Cloud providers since 2007 
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equalled 569 hours, with an economic impact of approximately $71.7 million 

dollars [76]. 

Failures are becoming increasingly common and are now the norm, rather than 

the exception due to the large-scale and complexity of many Clouds datacenters 

[27][77]. As mentioned previously in Chapter 2.1.5, the system size and scale of 

state-of-the-art Cloud datacenters are growing by 7% and 17% per annum in 

terms of number of datacenter facilities and server racks, respectively. As of 

2011, Amazon EC2, a popular large-scale Public Cloud, contained more than 449 

billion objects and processed up to 290,000 requests per second at peak time 

[79]; it has been well documented in [1][80][81][82] that increased complexity 

and size of systems results in an increased number of failures to occur in both 

software and hardware.  

Diversity of workload characteristics and behaviour result in different types of 

faults to activate. Cloud consumers have varied business objectives and QoS 

expectations. As a result, consumers will not only use different types of 

workloads such as Scientific Batch Processing, Latency Sensitive, Gaming, 

Databases, Video Streaming, etc. they can also use the same type of workload in 

different ways; this leads to different utilization patterns of resources as well as 

workload size and workload utilization intensity. It has been identified in past 

systems that the workload size and type of workload properties such as and 

computationally and I/O intensive workloads influence the types of faults that 

are activated [83][84]. Within the Cloud environment, due to the volume and 

diversity of workload resource utilization, there are a large variety of different 

types of faults with the potential to become activated. 

A challenge for Cloud providers is deciding the degree of fault assumption 

coverage and failure mode coverage for the system. In this context, coverage is 

defined as the assumption of the types of faults and failures which occur within 

the system, and is typically used as a means to measure the effectiveness of 

fault-tolerance within a system [72]. Developing a system that is capable of large 

failure coverage results in substantial resource and development costs. 

Furthermore, depending on the frequency and severity of the failure, it is often 

viable to only consider a limited scope of failure coverage. For example Byzantine 

Failures, while more complicated and difficult to correct than crash-stop failures, 
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may be omitted from the fault specification due to complexity in fault 

identification and cost in terms of development and resources required for fault 

tolerance and correction [72]. 

Due to the large-scale and complexity of Cloud environments, it is inevitable that 

it is may not be possible to cover all types of faults and failures that occur. The 

authors of [85] state that building highly reliable and available Clouds is a 

"critical, challenging and urgently-required research problem" due to the large 

number of interacting components and their inherit complexity. Furthermore, 

due to the complexity and large-scale system size, analysis of the reliability of 

Cloud is difficult and challenging [86]. As a result, there is an urgent need to 

understanding how to build dependable Cloud environments. 

2.3.4     Current Cloud Dependability Research 

Research in Cloud computing is currently very active, with a number of initiatives  

to improve Cloud dependability by the development of practical mechanisms. A 

large body of current research is focused on well-defined areas. For example, 

improving Cloud availability and reliability by means of enhancing fault-tolerance 

in Cloud computing. A typical approach is to leverage the capability of Cloud 

elasticity in order to create a suitable number of VM replicas based on consumer 

QoS to create acceptable levels of fault-tolerance [87][88]. These works calculate 

the optimal number of replicas based on workload reliability [89] as well as 

additional parameters such as component usage [85], availability [90] and real-

time constraints [91][92].  

In addition, there are a wide variety of other areas which have received 

attention: 

 Provisioning dependable storage within Cloud systems and developing 

solutions to improve the reliability of storage using a number of 

techniques including deduplication [93] and federated storage [94]. 

 Resource-provisioning which attempts to schedule workloads based on 

execution time and failure-characteristics of servers [95][96][97]. 

 Provisioning of federated Cloud workloads across multiple Cloud 

providers as a means to increase reliability [98], reduce migration time 

[48] and reduce costs [99]. 
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The relevance and effectiveness of these works rely on whether the selected 

research assumptions and system parameters used for evaluation are correct. 

Unrealistic assumptions can hamper our understanding of Cloud computing 

environments and how their characteristics impact the physical environment. 

Furthermore, it can result in developing mechanisms which assume unrealistic 

environmental operation such as failure coverage, user behaviour and 

performance, ultimately resulting in reduce effectiveness when deployed within 

real Cloud datacenters. Correct assumptions and parameters can be derived 

from real large-scale production Cloud environments which is achieved through 

empirical analysis and modelling in order to study and quantify system 

characteristics and behavioural patterns.  

2.4     Cloud Analytics 

2.4.1     Systems Analysis 

Studying computing systems is vital in order to further our understanding of 

system characteristics and behaviour, as well as create a set of assumptions 

about the operational behaviour and relationships between components. Such 

assumptions are typically created through either mathematical or logical 

relationships, forming a model. Models are used in order to understand how a 

system and its respective components behave [100]. In order to develop and 

deploy practical mechanisms for computing systems it is desirable to evaluate 

and validate their efficiency under different system environment states. There 

are a number of methods to study a system, as presented in Figure 2.15. 

One of the most effective ways to study a system is to alter the physical system 

environment and monitor the new conditions of operation. This is particularly 

effective when validating the effectiveness of developed mechanisms, as they 

can simply be deployed and evaluated within the actual physical system. 

However, in many cases it is not feasible to perform such experiments as it could 

result in costly disruption to system operation. 

As a result, it is more feasible to build and study a model that is representative of 

the system instead of using the actual physical system. Such models require 

validation to conclude whether the model accurately reflects the system for the 

particular study objective [101]. Model validation is defined as "substantiation 



Chapter 2 40 Cloud Analytics 

  

that a computerized model with its domain of applicability possesses a 

satisfactory range of accuracy consistent with the intended application of the 

model" [102]. In order to create models that accurately represent the physical 

system, it is necessary to analyze the physical system in order to produce system 

parameters which are used by the developed model. 

Due to the large-scale and inherit complexity of modern day systems due to the 

number of component interactions, simulation is a favoured approach when 

studying behaviour and alterations to the system operation; such alterations can 

range from making components fail to study the impact on consumer QoS to 

modifying resource management algorithms to study changes in system resource 

utilization.  

Analysis and simulation of Cloud environments significantly benefits both 

providers and researchers, as it enables a more in-depth understanding of the 

entire system as well as offering a practical way to improve datacenter 

functionality. For Cloud providers, it enables more in-depth understanding of 

their system environments, identifies areas of operational inefficiency, and 

enables a method to enhance a number of mechanisms to increase the 

productivity and QoS of their systems. For example, exploiting task heterogeneity 

to reduce contention for physical resources in servers or analyzing the correlation 

of failures to resource consumption. For researchers, analysis allows for more 

System
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Analytical model Simulation

 

Figure 2.15 Methods of studying systems [100]. 
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realistic system assumptions for Cloud computing environments, enabling 

evaluation of theoretical mechanisms which are supported by empirical findings. 

Specifically, it supports researchers and providers in further understanding the 

actual status and conditions of the Cloud system and identifying Key Performance 

Indicators (KPI) necessary to improve operational parameters. 

An important component of systems analysis is data analysis; used in order to 

study the system and conduct the analysis and simulation described above. There 

are a number of approaches for data analysis, which can be seen more as 

philosophies, as opposed to a set of techniques. 

2.4.2     Data Analysis 

The approach of data analysis used is dependent on the nature of the data being 

analysed, and whether there exist appropriate models for the data source [136]. 

There are a number of different approaches including Frequentist [137], 

Bayesian [138][139], and Exploratory Data Analysis (EDA) [140]. Each of these 

approaches follow different methods in regards to analysing and modelling a 

data population (For example, Bayesian models the data based on prior 

postulation using domain expertise and compares the theorized model against 

that of the true model, while EDA first performs the analysis and then models the 

system based on the prior analysis). Each approach offers advantages when 

considering the nature of the data, availability of accurately modelling the data, 

data size and degrees of statistical rigour required. In application however, 

analysts use such approaches freely dependant on the nature of the problem 

intuitively.  

Moreover, there are a large variety of techniques which can be used in data 

analysis depending on the requirements and research objectives. These include 

classification [136], distribution modelling [141], correlation analysis [142], and 

other statistical analysis techniques. In the context of Cloud computing, data of 

interest for systems analysis includes operational trace logs which record 

resource usage and event occurrence of workload, servers and users. We 

describe two examples of statistical analysis techniques important within Cloud 

computing as well as other distributed systems which can be applied to identify 

component relationships and model system behaviour; Classification and 

Distribution Modelling. 
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2.4.3     Classification 

In order to study the characteristics and behaviour of Cloud computing systems, 

it is advantageous to investigate whether it is possible to classify components 

based on their respective behaviour within the system. A practical example of 

this would be investigating how the behaviour of tasks (in terms of resource 

utilization and execution length) is affected by specific types of users. This leads 

to the ability of being able to study the distinct characteristics of users and tasks 

within a population and provide greater insight into their behaviour as well as 

quantify their impact on different aspects of the system such as server resource 

utilization and failure characteristics. Furthermore, it allows us to abstract 

general behaviours of workload, and enables modelling of the relationship 

between users and tasks. 

One such classification technique is performed through the use of clustering. 

Cluster analysis is "the organization of a collection of patterns (usually 

represented as a vectors of measurements, or a point in a multidimensional 

space) into clusters based on similarity" [136]. A unique data point within a 

cluster pattern (such as a system component) is represented and composed by 

one or more attributes. Cluster analysis is also advantageous as it provides a 

visualization of the data, which can be leveraged when investigating specific 
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Figure 2.16 Example of Cluster analysis over four time periods t. 
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behaviours of a system over a time period. Figure 2.16 presents an example of 

this visualization, which depicts the growth of a clustered data population over 

four time periods t. Cluster analysis is used in a number of research domains 

including exploratory pattern-analysis, grouping and decision making. 

2.4.4     Distribution Modelling 

Another critical aspect of system analysis is modelling the behaviour of the 

system. Specifically, modelling the probability that a certain type of behaviour 

will occur. This behaviour can be represented as a value that is either continuous 

(a state transition within the system) or discrete (CPU resource utilization). 

Systems exhibit different degrees of stochasticity, which can be modelled using a 

probability distribution that calculates the probability of a specific measurement 

or value occurring within a component of the system [100].  

There are different family types of probability distributions which each follow 

different shapes due to their respective parameters. Continuous distributions 

such as Weibull, Lognormal and Gamma are better suited for heterogeneous 

data populations, while examples of discrete distributions including binomial and 

Poisson are typically suited for categorical or homogenous data populations 

[100]. It is ideal to attempt to fit the probability of values occurring within a 

 

Figure 2.17 Example of distribution fitting of empirical data  
against a theoretical distribution. 
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system to a theoretical distribution; however in practise it is more common to 

develop an empirical distribution which fits the probability of a value occurring 

with an empirical data population in comparison to a theoretical distribution as 

shown in Figure 2.17. Distribution modelling has a number of applications in 

computing systems, including studying performance, probability of failures [1] 

and submission rates of users [143]. Distributions follow different parameters, 

which are used as inputs into a simulator when simulating behaviour of 

computing systems.  

Attention is now drawn to application of analysis techniques described in this 

section to Cloud computing. These techniques can be used in order to greatly 

enhance the understanding of Cloud component behaviour and consequently 

Cloud datacenter system operation. Specifically, there are four domains of Cloud 

research which can be enhanced by the empirical analysis of Cloud datacenters: 

workload characterization, failure-analysis, server operation and system 

operational waste. 

2.4.5     Workload Characterization in Cloud Computing 

As discussed in Chapter 2.2.7, a key component within Cloud datacenters is 

workload. Specifically, users request computing services and resources for a task 

which is executed within a server. Analysis of workload characteristics and 

behaviour is critical when studying its affect on the performance and productivity 

of the overall system; such analysis allows the study of behavioural patterns of 

user submissions and task resource utilization over different time periods. 

Furthermore, it enables classification of tasks and users to study the relationship 

between user submissions and task resource utilization patterns at different time 

intervals and server architectures within the system.  

Moreover, such analysis is required in order to model simulation parameters of 

the workload. Such models can be used in a number of research domains 

including resource optimization, security, dependability and energy-efficiency. In 

order to produce such realistic models, it is critical to derive their components 

and parameters from real-world production trace logs. Realistic workload models 

enable the simulation of Cloud environments whilst being able to control 

selected variables in order to study emergent system-wide behaviour, as well as 

support the estimation of accurate forecasting under dynamic system conditions 
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to improve QoS offered to users. Such modelling supports the enhancement of 

Cloud Management Systems (CMSs) as it allows providers to experiment with 

hypothetical scenarios and assess their decisions as a result of changes within the 

Cloud environment (i.e. Capacity planning for increased system size and users, 

alteration of the workload scheduling algorithm, performance tradeoffs, and 

service pricing models). 

Wang, et al. [103] present an approach to characterize the workloads of Cloud 

Computing Hadoop ecosystems, based on an analysis of the first version of the 

Google tracelog [104]. The main objective of this work was to present coarse-

grain statistical data of jobs and tasks in order to classify them by execution 

duration. Furthermore, they synthesized job submissions and execution duration 

which was used to evaluate design alterations to the Hadoop environment. The 

first case study focused on the evaluation of job scheduling of Hadoop tasks; the 

authors discovered that scheduling tasks based on the locality of task execution 

and data storage yields better overall performance. The second case study 

focused on studying how attaching Network-Attached Storage (NAS) affects the 

performance impact of Hadoop applications deployed within the cluster. A 

number of applications were chosen for evaluation including Terasort, 

Computationally heavy workloads, indexing and searching. The authors 

concluded that computationally heavy applications perform better when using 

NAS in comparison to locally attached storage. They concluded that for 

applications which replicate output data, NAS gives a substantial performance 

boost in comparison to local storage. This workload characterization focused on 

studying timing problems making it unsuitable for analyzing other Cloud 

computing issues related to resource usage patterns. Additionally, the analysis 

focused solely on tasks and ignores user behaviour, a crucial component in Cloud 

workload.    

Zhang, et al. [105] presents a study to evaluate whether mean values for task 

waiting time, CPU, Memory, and disk consumption are suitable to accurately 

represent the performance characteristics of real system traces. The data used in 

their study is not publicly available and consists of the historical traces of 6 

Google compute clusters spanning 5 days of operation. The experiments 

conducted suggest that mean values of run-time task resource consumption are a 
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promising way to describe overall task resource usage. However, it does not 

describe how the boundaries for task classification were defined. 

Mishra, et al. [106] describes an approach to develop Cloud computing workload 

classifications based on task resource consumption patterns. The trace log 

analyzed is composed of 5 production Google compute clusters spanning 4 days. 

The proposed approach identifies workload characteristics, constructs the task 

classification, identifies the qualitative boundaries of each cluster and reduces 

the number of clusters by merging adjacent clusters. The authors present a 

number of observations from the analysis; first, tasks characteristics are primarily 

divided into two types: short-running and long-running tasks representing user-

facing and compute intensive tasks, respectively. Furthermore, a small number of 

long-running tasks consume a large proportion of CPU and memory within a 

server. The approach presented is useful to create the classification of tasks, but 

does not perform an analysis of the characteristics of the formed clusters in order 

to derive a detailed workload model. 

Kuvulya, et al. [107] present a statistical analysis of MapReduce traces. The 

analysis is based on ten months of MapReduce logs from the M45 

supercomputing cluster [108]. Here, the authors present a set of coarse-grain 

statistical characteristics of the data related to resource utilization, job patterns, 

and source of failures. They discovered that users tend to execute the same type 

Table 2.2 Comparison of Cloud Workload Analysis Research 

Author Trace size 
Analysis 
Method 

Analyzed 
Component 

Analyzed 
Parameters 

Workload Model 
& Validation 

Wang [103] 7 Hours Coarse-grain Task 
Task 
duration 

No 

Zhang [105] 
30 Days 
5 day sample 

Coarse-grain Task 
Task 
resource 
usage 

No (parameters 
partially given) 

Mishra 
[106] 

4 Days 
Cluster 
centroids 

Task 
Task 
resource 
usage 

No 

Kavulya 
[107] 

10 Months Coarse-grain Task 
Task 
duration 

Yes (parameters 
given) 

Aggarwal 
[109] 

24 Hours 
Cluster 
centroids 

Task 
Task disk 
usage 

No 
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of job repeatedly, enabling accurate prediction of job completion times. 

Furthermore, 95% of successful jobs completed under 20 minutes and modelled 

using a Lognormal distribution. They compare two algorithms weighted by 

distance and locality, respectively for job prediction completion times. This work 

provides a detailed description of the distributions modelled for job completion 

times, but only provides very general information about the resource 

consumption and user behavioural patterns. Similar to [103], this characteristic 

limits the proposed approach mainly to the study of timing problems.  

Aggarwal, et al. [109] describe an approach to characterize Hadoop jobs. The 

analysis was performed on a dataset spanning 24 hours from a Yahoo! production 

cluster comprised of 11,686 jobs. This dataset features attributes generated by 

the Hadoop framework such as execution time and Disk I/O. The main objective 

of this work is to group jobs with similar characteristics using clustering and then 

analyze the resultant centroids, enabling them to discover eight types of jobs. 

Furthermore, they present a comparison of actual production jobs and 

synthesized GridMix3 jobs. This work only focuses on the usage of the storage 

system, neglecting other critical resources such as CPU and Memory.  

It is clear from the analysis of related work as shown in Table 2.2 that there are 

few production tracelogs available to analyze workload patterns in Cloud 

environments. Previous analyses contain three main gaps that need to be 

addressed in order to achieve greater insight into the impact of Cloud computing 

characteristics on the operational environment, as well as developing more 

realistic workload models. First, the analyzed system must be large-scale, with a 

sufficient operation time period more than a few days; failure to do so neglects 

the study of longer running tasks resulting in misinterpreting workload behaviour. 

Second, analyses need to explore more than coarse-grain statistics and cluster 

centroids; to capture the patterns of clustered tasks it is also necessary to analyze 

the parameters and trends of each respective cluster. Although previous 

approaches offer some insight into workload characteristics, they do not provide 

a structured model which can be used for conducting simulations. Finally, 

workload is always driven by the users, therefore analysis and realistic workload 

models must include user behavioural patterns linked to tasks in order to study 

the impact of user behaviour on the Cloud environment in terms of resource 
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utilization, task submission rates and resources requested. The approaches 

previously described completely focus on tasks, neglecting the impact of user 

behaviour on the overall environment workload. 

Tasks submitted by users are executed on multi-tenant servers, which compose 

the physical infrastructure of the Cloud environment. As a result, another 

important component of Cloud computing is characterizing the physical servers in 

order to understand resource management of tasks and quantify the efficiency of 

resource utilization within a system. 

2.4.6     Servers  

Liu [129] present a technique to measure server CPU utilization and conducted a 

study of CPU utilization from two public Cloud providers; Amazon EC2 [130] and 

GoGrid [131] by submitting VMs into the Cloud environment and probing the 

network to discover whether VMs are scheduled onto the same physical server. 

Their results show that the average CPU utilization across 20 servers running 

m1.small VMs [132] over a week was 7.3%, with an average individual server 

utilization between 3.6% - 16.9%. Servers follow a diurnal pattern, with an average 

utilization between 8.09% and 6.76% between 08:00-20:00 and 20:00-08:00, 

respectively. Furthermore, utilization in "daytime" experiences not just higher 

utilization on average, but also higher utilization peaks compared to "night-time" - 

between 20-30% for short time periods. For computation heavy VMs, the average 

utilization across 10 servers is 7.8%, with individual server utilization between 

4.15% - 16.6%. Finally, the author studied the utilization of servers on GoGrid 

using 10 small VMs across 10 servers, with average server CPU utilization at 2.2 - 

4.5%. Although this work studies the utilization patterns of different VM types  

across two Cloud providers, it is limited to only studying a small number of servers 

which may not accurately represent the larger Cloud environment, composed of 

thousands of servers. Furthermore, while CPU utilization is an important value in 

studying server characteristics as highlighted in the work's thermal modelling, 

other resources such as disk, network and memory are also key parameters when 

characterizing and modelling severs within Cloud datacenters. 

Kuvulya, et al. [107] presents the statistical properties of server utilization for 

MapReduce traces. The analysis is conducted on ten months worth of 

MapReduce logs from the M45 supercomputing cluster [108] composed of 400 
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servers, and includes the study of CPU, network and disk utilization. They 

observed that the average CPU resource utilization of the cluster rose within a 12 

month period from 5-10%, and that network and disk usage increased by a factor 

of three. These changes are postulated to be the result of an upgrade to the map 

outputs of Hadoop, as well as changes from workload submitted by users 

although they observe that the cluster still operated below peak capacity. A 

limitation of this work is that the server utilization characterization and analysis 

does not explore more fine-grained characteristics and the degree of server 

architecture heterogeneity for the M45 cluster is unclear. 

Birke, et al. [146] present the resource utilization statistics of several thousand 

servers from production datacenters between June 2009 - May 2011. These 

datacenters deploy a wide variety of workloads and pursue varying business 

objectives including Cloud platforms, banking and retail. From their analysis, the 

authors observe that enterprises and countries exhibit different utilization levels 

for utilization of CPU, memory, disk and Network, with CPU utilization between 

13-42%, 7.25-24.91% and 12.15-23.77% for Enterprises, Country and physical or 

virtualization, respectively. The results from this analysis are used to explore the 

feasibility of predicting future CPU utilization behaviour within the datacenter. 

Furthermore, the authors demonstrate how CPU resource utilization is affected 

by seasonal patterns. A limitation of this work is that although the authors 

mention that studied datacenters contain varied workload, due to confidentiality 

reasons there is no breakdown between the type of resource different workloads 

leveraged, and whether the application type and user patterns impact resource 

utilization over different time periods. Finally, utilization patterns are taken as an 

aggregation, with little focus concerning the deviation of utilization between 

unique servers. 

These studies are important to characterize utilization patterns of Cloud 

environments. However as discussed above, current work come with a number of 

limitations. Furthermore, Cloud datacenters deviate in terms of users, server 

architectures and resource utilization patterns due to different deployment and 

service models. Therefore, it is highly desirable to continuously characterize and 

analyze server behaviour in large-scale Cloud datacenters from different data 

sources, which is presently limited. 
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Both workload and servers are core components in defining and characterizing a 

physical computing system. As mentioned in Chapter 2.1.1, dependability is a 

fundamental concept of a system. As a result, it is important to study how, when 

and why failures manifest in workload and servers within large-scale Cloud 

computing environments. 

2.4.7     Failure Analysis of Large-Scale Distributed Systems 

Another research domain of interest is the failure characteristics of Cloud 

computing datacenters. Dependability research is greatly enhanced by the 

analysis of failures from real-world systems, as it enables researchers and 

practitioners to develop and tune highly effective dependability mechanisms 

based on realistic empirical data for a given domain. Without such analysis, the 

assumptions of failure characteristics for large-scale Cloud environments may be 

unrealistic, resulting in developed mechanisms to be less effective. 

In order to research and create effective solutions for the problems faced by 

large-scale Cloud computing environments, it is imperative to analyze data from 

real-world sources; for example in the dependability field, a large portion of the 

state-of-the-art relies on statistical properties and accurate modelling of failure 

and repair characteristics. The failure characteristics of such environments are of 

particular concern as failures can result in degradation of Quality of Service (QoS), 

availability, reliability and energy-waste [110] that can ultimately lead to 

economic loss for both Cloud consumers and providers. In addition to facilitating 

research, accurate real-world large-scale failure and repair characteristics allow 

Cloud providers to create concrete failure scenarios to aid in system development 

and decision making. For example, such scenarios can assist in deciding what type 

of dependability mechanisms to use, and when/where to apply them in order to 

enhance system availability, reliability and energy-efficiency. 

Cloud computing systems share a number of characteristics with other large-scale 

distributed paradigms, most notably Grid and HPC systems. As a result, due to the 

limited empirical analysis of Cloud datacenters, studying other distributed 

systems is a way to provide general insight into the failure characteristics of Cloud 

computing. 
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Schroeder, et al. [1] analyzed the failure data of the Los Alamos National 

Laboratory, comprising 22 HPC systems totalling to 4,750 and 24,101 servers and 

processors, respectively over the period of 9 years. They claim that a large body of 

commonly cited studies for failure analysis are taken from the late 80s to early 

90s, and that modern computing systems are significantly different from modern 

systems [111][112][113]. Furthermore, a large body of system traces used in 

failure analysis are not made publically available, limiting their usefulness to other 

researchers. The authors analyzed the statistical properties of the systems for the 

root cause of failures and failure rates. Their results indicate that average failure 

rates vary across systems significantly, ranging from 20 to 1000 failures per year, 

and that the number of failures per system is heavily influenced by the system 

size as opposed to specific server architectures. In addition, they observe that the 

majority of server failures occur within a small proportion of the total server 

population, with 6% of nodes contributing to 20% of total failures. Furthermore, 

the authors present evidence that there exists positive correlation between the 

machine failure rate and workload intensity, and that failure times and repair 

times are well modelled by Weibull and lognormal distributions, respectively. 

Finally, they analyze the Mean Time Between Failure (MTBF) and Mean Time to 

Repair (MTTR) of the systems, and indicated that they are best modelled by  

Gamma or Weibull distributions and lognormal distribution for failure and repair 

times, respectively.  

Liang, et al. [114] present a study of collected RAS (Reliability, Availability and 

Serviceability) events log from IBM's BlueGene/L system comprised of 128,000 

processors over a span of 100 days. The objective is to study and characterize 

temporal and spatial failure events as well as the correlate fatal and non-fatal 

events in order to minimize negative impact on system performance. The authors 

focus on Network failures, application I/O and non-fatal events. They discover 

that different types of workloads exhibit different failure characteristics; network 

and application I/O failures occur in periodic bursts with short MTBF, while 

memory failures appear to be less variable and follows a daily temporal pattern. 

In addition, they observed that the occurrence of non-fatal events can be used to 

predict the occurrence of a fatal event, and three runtime failure prediction 

algorithms were developed and evaluated. However, this work does not explore 
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failures due to CPU, a key component in characterizing computing system 

behaviour and resource utilization. 

Li, et al. [115] analyze job failures in a large-scale data-intensive Grid composed of 

180 active sites and 34,121 servers over three time periods totalling 24 days. The 

objective was to characterize the interval times and life spans of failed jobs 

investigating cross-correlative structures and statistical models to fit the failure 

data and measure its impact on system performance. Their analysis shows that 5-

8% of jobs executing on a server failed, while the majority of failures occurred 

during task scheduling or without commencing execution, ranging from 25-33% 

for all submitted jobs. Virtual Organizations play a substantial role in the 

occurrence of failures, with a minority possessing significant influence on the 

distribution of failures within the systems. The authors also observe that the 

occurrence of failures in job execution is periodic and follows a heavy tail 

distribution, and model failure inter-arrival times and life spans using MMPP4 and 

2-phase hyper-exponential distributions for jobs that fail after execution starts. 

Moreover, the failure analysis was used to propose several failure-aware 

scheduling strategies which leverage the failure models derived from the trace 

analysis. 

Sahoo, et al. [116], present a failure analysis of errors and failures from a cluster 

of 395 heterogeneous servers over a time period of 364 days. Using the failure 

event logs for both non-fatal events and critical events, the results demonstrate 

that failure rates are highly variable. Furthermore, server failure occurrence is 

non-uniform, with 4% of servers experiencing 70% of recorded failures, and the 

majority of failures being temporally correlated to specific time periods within a 

day. They postulate that the reason for this behaviour is due to the nature of the 

executing workload; with a large portion of hardware failures occurring within the 

I/O system and occurring on servers that are executing file/database servers 

[113]. 

Currently, limited work that has been attempted to empirically analyze and model 

Cloud failure characteristics:  

Fiondella, et al. [117] present an empirical analysis of outages and incidents 

reported by Cloud providers and news outlets. The work models the growth of 
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annual incidents occurring in major Cloud datacenter vendors. They observe that 

outages were caused by a wide range of issues ranging from software, hardware, 

human error and power cooling systems. Moreover, the paper outlines that there 

is an urgent need for dependability models in order to quantify the impact of 

observed failures. The paper offers recommendations on how to reduce Cloud 

outages through the effective use of monitoring and analysis, fault diagnoses and 

modelling. While the work provides evidence of increased outages of Cloud  

datacenters, due to the coarse-grain nature of the dataset analyzed, it does not 

provide insight into how failures which do not cause complete system outages  

impact Cloud datacenters. 

Vishwanath, et al. [118] present a failure analysis of hardware in large-scale 

datacenters across an observational period of 14 months. The trace consists of 

several thousand servers and presents the statistical properties and modelling of 

failures in disks, memory modules and RAID controllers. They discover that 78% of 

failures in servers occurred within the hard disk, which was the most commonly 

replaced component. Furthermore, the work presents hardware failure and repair 

patterns, and identifies a strong correlation between repairs frequency and the 

number of disks within a server. 

Kavuyla, et al. [107] present workload failure characteristics from a production 

MapReduce supercomputing cluster, consisting of 171,000 jobs submitted into 

approximately 400 servers and 4000 processors over a time period of 10 months. 

They observe that 2.4% of total jobs fail within the system and that a large 

proportion of jobs fail within 150 seconds after the first task failure. They observe 

that job submission and failure is best modelled by lognormal distribution, 

however admit that the selected Goodness of Fit (GoF) test suggests that the 

distribution selected might not be optimal. Furthermore, the jobs within this 

system are limited to MapReduce type jobs and do not consider workload repair 

or server failure characteristics. 

From studying the above works, it is clear that there exists a substantial gap in 

failure analysis of Cloud computing systems; the most obvious being that there 

are limited failure analysis of actual production Cloud systems. This is critical as 

such systems exhibit different characteristics compared to other distributed 

systems as discussed in Chapter 2.2.11. However, such claims need to be studied 
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and quantified in order to verify the existence and impact of such behaviours. In 

addition, each work focuses on specific objectives, ranging from modelling MTBF 

and MTTR, solely studying servers or workload, or presenting the statistical 

properties of failures. Furthermore, a large body of work fails to present model 

parameters, which are critical for other researchers when building simulators.  

Table 2.3 Comparison of Different Failure Analysis 

Authors 
System and 

trace size 
Analyzed 

Components 
Analysis 

presented 
Failure 

Modelling 

Schroeder [1] 
Analysis failure rates/ root 

cause for failures and 

correlation between servers 

and workload intensity 

HPC,  

9 years 

Server, 

Workload 

Root Cause, 

failure time, 

repair time 

Yes 

Liang [114]  

Characterize temporal and 

spatial failure events; 

correlation of fatal and non-

fatal events on system 

performance impact 

Super 

Computer,  

100 days 

Server, 

workload 

Spatial & 

temporal , non-

fatal events 

No 

Li [115] 

Characterize life spans of 

failed jobs looking for cross-

correlation structures and 

develop failure models to 

measure system 

performance impact. 

Grid,  

24 days 
Workload 

Failure 

modelling 
Yes 

Sahoo [116]  

Temporal and spatial 

analysis of error and failures. 

Cluster,  

364 days 

Workload, 

server 

Hazard rate, 

failure 

distributions. 

Yes  

(No parameters) 

Fiondella [117] 

Analysis of Cloud outages 

reported by vendors and 

news outlets. 

 

Cloud,  

9 years 

High-level 

system 

availability 

Statistical, 

distribution 

modelling 

Yes 

(No parameters) 

Vishwanath [118] 

Analysis of hardware failures 

in Cloud datacenters. 

Cloud,  

14 months 
Servers 

Temporal & 

spatial, failure 

modelling. 

Yes 

Kavuyla [107] 

Workload failure 

characteristics from a 

production MapReduce 

supercomputing cluster 

Cluster, 

10 months 
Workload 

Temporal & 

spatial failure 

modelling. 

Yes 
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As mentioned in Chapter 2.3.3, failures in large-scale systems are now the norm 

rather than the exception. As a result, it is important to study not only how and 

when failures occur within Cloud computing environments, but also quantify their 

impact on system operation and cost in terms of operational waste. 

2.4.8     System Operational Waste 

Before presenting the related works within this area, it is necessary to define the 

key concepts of energy consumption, energy-efficiency and their impact in Cloud 

computing datacenters.  

IT infrastructure and operations consume vast amounts of energy. In this context, 

energy is defined as "the physical currency used for accomplishing a particular 

task" [119]. Energy can be represented in a number of forms, including electrical, 

mechanical, kinetic, etc. Power is defined as the instantaneous rate of energy use. 

The energy used for a task is defined as the average power use and the total time 

taken for its completion, represented as: 

Energy = Average Power x Time 

There is a growing trend for large-scale computing systems to not only improve 

performance and dependability, but also minimize energy requirements for 

computation [110][27][110]. As systems may vary in terms of workload as well as 

the user number and physical system size within its lifespan, such a requirement is 

typically measured in terms of energy-efficiency. Energy-efficiency is defined as 

the amount of energy required in order to produce an amount of work and is 

typically expressed as a ratio [120]. Energy is typically described in terms of 

electrical consumption within the context of computing systems, represented by 

Watt-hours (Wh) and Watts (W) for energy and power, respectively. 

As discussed previously, according to the results reported in the 2012 DCD 

Intelligence Census Report: Energy [25] datacenters consumed 1.8% of the total 

global electricity and it is predicted that by 2020, the IT sector will become the 

world's most energy consuming industry [29]. Furthermore, according to the 

Environment Protection Agency [121], in 2011 the national energy consumption of 

datacenters within the United States consumed approximately 100 billion 

Kilowatt- Hours (KWh), the equivalent of $7.4 billion in its total annual energy bill, 

indicating significant economic cost nationally. 
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Datacenter energy consumption is not limited to just server resource utilization; 

there is a need for additional infrastructure in order to support and sustain the 

physical operational environment including room cooling, lighting and power 

supply systems. Figures 2.18(a) and 2.18(b) depict how energy is consumed within 

a datacenter, extracted from two separate reports [27] and [122]. It can be 

observed that IT equipment (including processors, power supply, other servers, 

networking, storage, etc.) constitute 31% and 52% of the total energy 

consumption, in Figures 2.17(a) and 2.17(b), respectively. Furthermore, it can also 

be observed that cooling systems contribute a significant amount of energy 

consumption at 34% and 38%, respectively. 

As identified in [123], there are a number of causes for  energy waste and 

energy-inefficiency in datacenters, including over-provisioning [124], inefficient 

legacy servers [125] and inefficient cooling [126]. Furthermore, a significant 

amount of energy waste is caused by software and hardware crashes [2][127]. 

These types of failures caused roll-backed computation of tasks, as well as 

additional energy overhead when performing rollback through mechanisms such 

as checkpointing and state recovery. 

Recent theoretical analyses and studies have highlighted failures as a source of 

inefficiencies that increment energy consumption in large-scale datacenters, and 

have proposed a number of mechanisms to reduce energy waste. Furthermore, a 

 

Figure 2.18 Study of datacenter energy usage from (a) DCD Census, (b) Emure Power 
(a)         (b) 
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number of works have identified failures as a significant contributor to datacenter 

energy waste, and have proposed a number of solutions on mitigating their 

impact. 

Ropars, et al. [128] highlight the amount of resources wasted with respect to 

computing power and energy due to computation rolled-back after failure. The 

main objective of this work is the design of hierarchical rollback-recovery 

protocols based on a combination of coordinated checkpointing and message 

logging in order to reduce the waste produced by redundant computation. 

Nguyen, et al. [127] discuss the inefficiencies and increment of energy 

consumption due to failures in large-scale datacenters. The authors approach this 

energy waste problem by proposing a resource selection scheme to reduce the 

number of tasks resubmissions that result from failures during their life cycle.  

Quiane-Ruiz, et al. [3] discusses the wasted resources and performance impact 

caused by task failures in MapReduce environments due to automatic 

rescheduling. The main objective of this work is to reduce the need for re-

executing completed map tasks by re-computing intermediate data processed by 

local reducers and hence do not require migration to another node for processing 

through the use of fast tracking algorithms. 

These works highlight an emerging requirement for Cloud mechanisms to not only 

improve the reliability of systems, but concurrently also minimize the total energy 

waste produced by failures. Unfortunately, all of these developed mechanisms rely 

on analyses that are derived from theoretical data and assumptions which provide 

no insight into the true characteristics and dimensions of energy waste caused by 

failures. It is important to validate these mechanisms in real operational 

environments, as well as identify the amount of energy wasted upon failure. 

Reviewing the current state-of-the-art in Cloud analytics for the four respective 

analysis domains described in the previous subsections, it is clear that there are 

significant gaps that need to be addressed in order to further enhance the 

understanding of Cloud computing and its respective system components. 

However, there are a number of research and technical challenges that need to be 

overcome before this can be made reality. 
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2.5     Challenges in Cloud Analytics 

2.5.1     Confidentiality and Business Concerns 

Presently, there are an extremely limited number of data sources pertaining to 

large-scale production Cloud environments due to the confidentiality and 

business concerns of providers. Furthermore, existing trace logs such as those 

found in [107][146] are predominately released to select research institutions 

and are not publicly available. This in particular is a challenge to academics, who 

rely on selected institutes to perform extensive statistical analysis and modelling 

in order to quantify Cloud computing characteristics to derive realistic 

assumptions for system behaviour. Such assumptions and characteristics are 

critical to support evaluation of Cloud mechanism effectiveness and practicality 

proposed by researchers. Failure to do so can result in unrealistic behaviours and 

assumptions of Cloud system behaviour, leading to increase ineffectiveness of 

proposed mechanisms in real production environments. 

2.5.2     Characterizing System Behaviour 

A critical problem in Cloud analytics is the challenge of comprehensively 

analyzing and modelling Cloud components; production Clouds contain many 

different types of components discussed in Chapter 2.2. A typical Cloud 

datacenter is capable of producing vast quantities of data detailing user requests, 

failure events and server resource utilization. Furthermore, such data is 

composed of multiple attributes detailing different aspects of system operation. 

This results in increased complexity when studying the behaviour of components 

within the Cloud not only due to the volume of trace log data generated, but also 

the number of components and their respective interactions within the system.  

Furthermore, it is necessary to understand the relationships that exist between 

components in order to study key aspects of system behaviour, including 

relationships between user submission patterns and specific types of tasks, 

server resource utilization inefficiencies and task energy waste generated due to 

failures. As a result, there is a requirement for computing infrastructure capable 

of extracting attributes of interest from Cloud trace logs and performing 

processing for statistical analysis in a timely manner. Unfortunately, such 

infrastructure may not be accessible to many academic institutions due to 
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economic cost and lack of sufficient technical knowledge in building large-scale 

analysis infrastructure. 

Comprehensive study and analysis of datacenter trace logs is only feasible 

through deploying a Database environment and data processing to extract data 

from the trace log to perform calculations of interest. However, there are three 

main challenges that cause this process to be more complicated than simply 

uploading the data from the trace log into a database and then performing basic 

analytics to derive coarse-grain statistics of the system.  

First, there is the challenge of identifying and studying attributes of interest 

relevant to the analysis objective. This is due to Cloud computing systems 

containing a large volume of data consisting of many attributes capturing various 

aspects of system operation. Failure to select relevant attributes can result in 

additional complexity in Cloud datacenter modelling and computation time 

required for analysis completion. This is due to increased data volume and more 

importantly, the potential to study irrelevant attributes which may result in 

misinterpretation of key system behaviour [140]. 

The second challenge is identifying and exploiting the relationships that exist 

between Cloud components. Component behaviour is captured through different 

system attributes recorded and distributed across trace logs. Trace logs 

generated by a Cloud datacenter not only contain attributes that capture 

different aspects of system operation, but can also be presented in different 

formats and contain little to no context to component relation. This introduces 

challenges studying system behaviour at a specific time or space (such as a 

specific observation period or server architecture, respectively). As a result, a 

significant amount of time and effort is required to understand how attributes 

relate to each other and the larger system environment. This requires extensive 

understanding of the datacenter operational environment including the lifecycle 

of components within the system and system operation in the event of failures. 

Moreover, it is a requirement that key attributes of interest are identified in 

order to understand and relate attributes recorded which can be used to 

comprehensively and holistically study Cloud system behaviour and quantify the 

relationships between components.  
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The third challenge is the requirement of expert domain knowledge of Cloud 

computing datacenters required to perform comprehensive and non-superficial 

analysis of the system. Although it is possible to extract coarse-grain statistics of 

the Cloud system from a trace log including the number of tasks, users and 

servers, there is a requirement for more complex analysis such as calculating the 

amount of resource utilization wasted per server due to system inefficiencies, 

analyzing task submission patterns and energy usage from different types of 

users, as well identifying the relationships between components. This requires 

not only the necessary technical knowledge of statistical analysis, but more 

importantly expert domain knowledge in the area of Cloud computing 

datacenters which is critical to comprehensively extract, interpret and leverage 

the findings from the analysis. 

2.5.3     Analysis Method Abstraction 

Cloud datacenter environments can be massively heterogeneous from one 

another; not only in terms of different deployment and service models as 

discussed in Chapter 2.2.5-2.2.6, but also in terms of user business objectives, 

infrastructure specification, system size, physical location and network topology. 

As a result, the effectiveness of Cloud analytics is greatly enhanced by the 

inclusion of not just extracting and studying the statistical properties of the 

system and its respective components, but also the development of a detailed 

analytics method with sufficient generality enabling its use for other Cloud trace 

logs agnostically. Failure to do so results in limitations in the practicality of 

research, as researchers are less likely to understand and interpret results, and 

recreate the analysis process for their desired research objectives. 

2.5.4     The Need for Cloud Analytics 

The application of systems analytics is critical in the uptake of Cloud computing. 

A large-portion of existing work within Cloud computing research currently 

leverages system assumptions and model parameters which are not derived 

from empirical analysis of Cloud systems. This consequently results in system 

assumptions which may not be representative of real system behaviour, and 

limits the usefulness and accuracy of modelling Cloud components.  

Currently, empirical study of Cloud datacenters is limited as demonstrated from 

the literature review detailed in Chapters 2.4.5-2.4.8, resulting in a lack of 
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quantification of the inherit characteristics of Cloud computing environments. In 

other words, while it has been identified extensively in the literature that Cloud 

computing exhibit characteristics such as heterogeneity, workload diversity, and 

elasticity discussed Chapter 2.2.2, it is still unknown how these characteristics 

precisely manifest and impact the operational behaviour of the system. As a 

result, it is necessary to analyze real production systems in order to characterize 

Cloud components to measure and study how these characteristics affect the 

system environment in key areas of interest to business, research and 

engineering including resource utilization, consumer behaviour, dependability 

and energy-efficiency.  

Furthermore, in the context of the four analysis domains discussed in Chapters 

2.4.5-2.4.8, there exist specific challenges and gaps within state-of-the-art in 

Cloud analytics that require to be addressed. 

2.5.5     Workload 

As discussed in Chapter 2.4.5, from the existing Cloud workload characterization 

and analysis it is clear that there are few available production tracelogs. 

Furthermore, previous analyses contain gaps that need to be addressed in order 

to develop more realistic workload patterns. It is imperative to analyze large data 

samples as performed by [105][107]; small operational time frames as those used 

in [106][109][103] could lead to unrealistic models which may not reflect realistic 

task behaviour. This is particularly true when considering tasks that execute for 

longer time periods.  

Moreover, analyses need to explore more than coarse-grain statistics and cluster 

centroids. To capture the patterns of workload it is necessary to analyze 

parameters such as resource utilization and execution length as well as study the 

trends of cluster characteristics over different time periods. Although previous 

approaches offer some insight about workload characteristics, they do not provide 

a structured model that can be used for conducting analysis and simulation.  

Finally, as discussed in Chapter 2.2.7, workload is always driven by users, therefore 

realistic workload models must include user behavioural patterns linked to tasks. 

The current state-of-the-art approaches completely focus on tasks, neglecting the 

impact of user behaviour on the overall environment workload.  
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Within the context of classifying Cloud workload using k-means clustering, there 

has been work performed in [106] and [109]. However, a limitation in existing 

approaches is that the number of k clusters selected is based solely on the 

analyst's expertise and qualitative measurements. This is a problem in two 

specific aspects: First, the number of unique clusters may vary temporally at 

different time periods due to changes within the Cloud environment. Second, 

this approach introduces subjectivity when selecting which number of clusters is 

appropriate for the system, a typical challenge in k-means clustering [135]. 

Finally, it limits its applicability to different Cloud datacenters, with each system 

composed to varying behaviour. 

2.5.6     Servers 

In the context of characterizing servers in Cloud computing datacenters, there 

presently exists work that analyzes Cloud servers in terms of resource utilization. 

However, such works include distinct limitations due to the number of servers 

analyzed, omission of crucial resource utilization such as Disk and Memory [129], 

and analysis of coarse-grain statistical properties that do not explore the 

heterogeneity of server architectures [107]. Furthermore, there is a need for 

studying more than aggregated resource utilization of servers at different time 

frames such as those found in [146]. As a result, there is not only a requirement 

for the analysis of large-scale Cloud datacenters to further our understanding of 

system operation, but also studying the characteristics of server operation of 

different server architectures fine-grain detail across a substantial system 

operation time span.  

Finally, for analysis of server characteristics and utilization, there are opportunities 

to perform in-depth analysis of large-scale systems to study temporal and spatial 

characteristics of resource utilization for CPU, Memory, Disk and Network for 

heterogeneous systems. This analysis can be used in order to develop greater 

insights into the Cloud environment operation. Furthermore, in conjunction with 

task behaviour, it is possible to outline server inefficiencies within servers. 

2.5.7     Failures 

Current failure analyses of large-scale systems focus on analyzing failure statistics 

in terms of Time Between Failures [1][116], root cause failure [133][134], and 

performance implications; but have been limited due to confidentiality concerns,  



Chapter 2 63 Cloud Analytics 

  

Furthermore, while these analyses are useful for characterizing failures in large-

scale distributed systems, no analyses exist for in-depth failure characteristics of 

Cloud computing environments.  

Cloud has been stated to contain a number of unique system characteristics, 

however there is an urgent need for quantifying such failure characteristics in 

order to build more realistic research assumptions about the environment. The 

most obvious problem is that there currently exists very limited failure statistics 

and models for Cloud computing. The current state-of-the-art either focuses on a 

specific component [118], application specific [107], or small-scale datasets [116]. 

Furthermore, many models derived from failure analysis of non-Cloud distributed 

systems focus on high-level system behaviour, agnostic of the type of workload 

executing, leading to potentially obfuscating specific failure characteristics of 

different types of workload and server architectures. Such analysis can be used in 

order to validate a number of mechanisms which aim to improve system 

reliability. 

2.5.8     Failure-related Energy  

Important work has been developed in power/energy modelling of large systems 

such as those presented by [124]. Additionally, a significant number of resource 

management techniques such as [54] have been proposed to reduce energy waste 

while maintaining acceptable performance levels. However, these approaches 

have relegated the impact of software and hardware crashes on the energy waste 

of systems. Furthermore, as mentioned in [128][147], another factor that 

increases resource waste in systems is the amount of rolled-back computation 

after the occurrence of a failure. 

There have been recent theoretical analyses and studies which have highlighted 

failures as a source of inefficiencies that increase energy consumption in large-

scale datacenters, and have proposed a number of mechanisms to reduce energy 

waste including resource selection [127], rollback [128] and resource scheduling 

[3]. Unfortunately, all of these analyses are derived from theoretical data and 

provide no real insight into the true characteristics and dimensions of energy 

waste caused by failures.  
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Current failure analyses of large-scale systems discussed in Chapter 2.4.7, limited 

due to confidentiality concerns, focus on analyzing failure statistics in terms of 

Time Between Failures [1][116], root cause failure [133][134] of systems, and 

performance implications. However, all of these practical analyses neglect 

quantifying the impact of failures in terms of energy. The gap between these two 

strands of (theoretical and practical) work emphasizes the urgent need for failure 

analyses that consider the impact of failures on energy consumption. 

From the literature review and the current state-of-the-art, it is observable that 

there is a clear gap between failure analysis approaches and the design of 

mechanisms to reduce the energy waste caused by failures. On the one hand, the 

analyses are completely focused on how the failure characteristics are correlated 

to performance drawbacks and completely neglect the impact of those failures on 

the energy waste. On the other hand, theoretical approaches emphasize the 

importance of reducing the waste produced by failures without providing any 

insight about the characteristics and dimensions of the addressed problem. As a 

result, this creates the requirement for comprehensive failure analyses that also 

include the energy impact in real production environments.   

Analyzing the impact of failures on energy consumption is critical for two main 

reasons. Firstly, it enables researchers and practitioners to understand the 

characteristics and dimensions of the problem in order to create concrete 

scenarios for decision-making. For example, in order to know what dependability 

mechanisms to use and when to apply them effectively, datacenter administrators 

require awareness about the variables and conditions under which waste is 

produced. Secondly, it is important for practitioners (e.g. Cloud service providers) 

to understand the impact that both task and server failures have on datacenter 

energy waste and operational efficiency. 

2.6     Summary 

This chapter has provided a detailed summary of the concepts of Cloud 

computing, dependability, systems analysis and how they can be used to better 

study and quantify systems behaviour in Cloud datacenters in order to enhance 

system dependability and reduce operational waste. 

The abstraction of the software system model has been presented, and the 
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concepts of a system being composed of multiple components which interact with 

each other through the service interface within the system environment have 

been introduced. Furthermore, the evolution of the modern distributed system 

has been discussed, including the formation of different software tiers to facilitate 

changes to computing paradigms, as well as implementations of this abstraction in 

systems such as High-Performance Cluster Computing, Peer-to-Peer systems, 

Service Oriented Architectures and Grid computing. 

The concept and definition of Cloud computing, as well as the key terminology 

and characteristics have been presented. Furthermore,  the components of Cloud 

computing including workload, composed of tasks and users, as well as 

virtualization, QoS and servers have been discussed in detail. 

The concept of dependability, a fundamental aspect of computing systems, has 

been described. Furthermore, the need of such research within the context of 

Cloud computing identified and discussed in detail. Moreover, current Cloud 

computing research in the dependability domain has been presented 

The concept of systems analysis has been presented, and the critical need for 

empirical analysis and modelling of Cloud systems discussed. A literature review of 

the current state-of-the-art of analyzing and characterizing Cloud workloads, 

servers, failures, and failure-related energy has been presented and discussed in 

detail. Finally, current gaps in the state-of-the-art for these four domains as well as 

opportunities where Cloud analytics can be enhanced in order to improve the 

effectiveness and practicality of developed mechanisms has been highlighted. 

The technical and research challenges in Cloud analytics, including confidentiality 

and business constraints of available Cloud trace logs, characterizing and studying 

system behaviour due to large volume of data generated and the inherit 

complexity of Cloud components, discovering meaningful relationships between  

Cloud component data attributes, and the need for analysis methods to be 

sufficiently abstract so that they can be applied generically Cloud datasets. 

Furthermore, we have highlighted the challenges in the current gaps in the state-

of-the-art analysis of Cloud workload, failures, servers and failure-related energy. 

The next chapter presents the case study trace log, analysis infrastructure used for 

data extrapolation, and coarse-grain statistical properties of the case study. 
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3     Cloud Datacenter Case Study 

As discussed in the Chapter 2, there is an urgent requirement for in-depth 

empirical analysis of Cloud datacenters in order to quantify their behavioural 

characteristics,  develop concrete research assumptions and system scenarios, and 

identify operational inefficiencies. This chapter introduces the case study used in 

this thesis: a real-world production Cloud datacenter trace log produced by 

Google. The case study trace log specification, attributes and system component 

lifecycle is presented, and are used to develop a model describing component 

relationships within the datacenter. Furthermore, the analysis infrastructure 

constructed in order to extract the data in a timely manner is presented and 

discussed. Finally, this chapter concludes by analysis of the statistical properties 

and coarse-grain statistics of high level operation of the case study. 

3.1     Case study: Google Cloud Trace Log 

3.1.1     Trace Log Description 

The operational traces are taken from a Cloud datacenter owned by Google 

released in May, 2011 and is publicly available at [155]. This particular dataset 

was selected for a number of reasons: First, it provides a holistic view of data 

operation for the datacenter, including data concerning servers, users, tasks and 

their respective resource utilization and events. Analyzed trace logs described in 

Chapter 2.4.5-2.4.7 currently restrict insight of system behaviour to a limited 

scope, thus the inclusion of operational data of components within the same 

trace log presents the opportunity to study their relationships as well as 

characterize system operation in-depth. Second, the dataset is sufficiently large 

to conduct detailed analysis at different time observation periods; spanning 30 

days of operation and consisting of over 12,500 heterogeneous servers 

interconnected through a high-bandwidth network.  

A server is defined as the hardware and the system software managing the 

hardware (i.e. hypervisor, OS, software supporting communication and 

networking). As described in Chapter 2.2.2, users of Cloud datacenters pursuing 

different business objectives request resources for tasks which are submitted 

and executed within servers. A user can be a human entity, a machine or another 

software program. Within this system environment, a task is the most basic unit 
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of computation of software within a server. Within the context of the case study 

trace log, a task is represented as a Linux container (described in Chapter 2.2.9). 

The trace log contains six data tables that capture different aspects of system 

operation as shown in Table 3.1. Data tables are separated into Comma 

Separated Value (CSV) files and are altogether 500GB in size. The data tables 

capture operational data including task execution constraints, server architecture 

specifications and task resource utilization. In addition, a number of data tables 

record events which occur within the system; an event is defined as an action 

that changes the state of a task or server in a specific time and place. Details 

about each attribute described in the data tables can be found in [156]. 

3.1.2     Server Events 

Attributes recorded for server events include the server identifier, specification 

of the server architecture, the timestamp of event occurrence (recorded in 

microseconds) and the event type. Servers vary in terms of physical capacity of 

Memory and CPU (RAM size and CPU cores, respectively) as well as platform ID, 

which is a combination of micro-architectures and memory technology resulting 

in different clock rates and memory speeds. As a result, the combination of 

unique server CPU capacity, memory capacity and platform ID represents a 

unique server architecture type. 

 

Table 3.1 Description of Google Cloud data tables. 

Component Data table Description 

Server 
Machine events 

Deployment and removal of servers within 
the cluster. 

Machine 
attributes 

Properties of the server including kernel 
version and clock speed. 

Workload 
(Task & 
User) 

Job events 
Event records for job submissions and 
completion. 

Task events 

Records of events within the trace log; 
includes times of submission/completion as 
well as erroneous events. Also includes 
resource estimation by users. 

Task constraints 
Scheduling constraints of tasks due to 
architecture and security requirements. 

Task resource 
usage 

Record of task resource utilization (CPU, 
Memory, Disk, Network, etc.) every 5 
minutes. 
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To further our understanding of system operation, it is advantageous to study 

the lifecycle of a server as shown in Figure 3.1 in order to observe all possible 

states a server can exhibit. Servers are capable of transitioning to different states 

as a result of an event occurrence. There are two possible states for servers; 

legible for task scheduling and executing (available) and disconnected from the 

cluster (unavailable). There are three possible events which will cause the server 

to transition between states: A server is made available to the system 

environment (ADD), the server is disconnected from the cluster due to failure or 

maintenance (REMOVE) and the available resources for a specific server are 

modified (UPDATE). Further details about server attributes can be found in the 

trace log specification [156]. A typical example of a server's lifecycle involves a) 

the server being connected to the Cloud datacenter (Server transitions from 

Unavailable to Available through the ADD event), b) modification of resources 

made available to the server such as CPU and memory (server receives an 

Update event), and c) server removal from the datacenter due to failure, 

maintenance of decommission (Server transitions from Available to Unavailable, 

through the Remove command). 

3.1.3     Tasks Events 

The task events data table contains a shared number of attributes found within 

the server event log. These include the task identifier (a combination of the task 

index and job identifier), timestamp of occurrence, and event type. Additionally, 

there are unique attributes, such as the Server Identifier where the task was 

allocated, the user identifier identifying the task owner, and the amount of CPU, 

Memory and Disk requested by the user.  

Similar to servers, to better understand the role of task events and the possible 

states a task can exhibit within the system environment, it is necessary to study 

the task lifecycle. A task during its lifecycle can transition through a number of 

Unavailable Available

Remove

Update

Add

 

Figure 3.1 Server lifecycle 
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states as depicted Figure 3.2. A task will be assigned Pending status when it is 

waiting to be allocated after being initially submitted by the user or re-submitted 

by the task scheduler. Once the scheduler finds a suitable server to allocate the 

task and it is deployed, the status transitions to Running. When a task successful 

finishes execution, it transitions to Complete status and is subsequently removed 

from the system. A task that is descheduled without successfully completing 

execution transitions to Dead status.  

There are three types of events that alter the state of a task to Dead without 

successful completion, from this point we refer to these events as Termination 

Events (TEs). First, it is possible for a task to be evicted from a server (EVICT) due 

to over commitment of the scheduler; the server on which the task is being 

executed becomes unstable, or the disk holding the data of the task fails. Second, 

it is possible for a task to terminate due to a software crash within the task 

(FAIL). Lastly, a task can be cancelled due to the user, loss of dependencies with 

other tasks, or unknown causes of termination (KILL). If any of the above three 

events occur, the task is resubmitted to the resource scheduler for server 

reallocation. An individual task can only run within a single server at any given 

time and can be allocated to another server upon rescheduling. Attributes such 

as the amount of resource requested by a user can be updated within the 

Pending and Running status. 

To give a practical example, a task is submitted into the Cloud datacenter and is 

scheduled to the resource scheduler for server allocation (Task is assigned 

Pending status through the Submit event), once a suitable server is discovered or 

made available, the task is allocated to that server for execution (Task transitions 

to Running through the Schedule event). Moreover, it is possible within the task's 

Unsubmitted Pending

Running

Dead

Resubmit

Submit

Update

Update

Fail, Kill

Schedule Evict, Fail, Kill

Complete
Finish

 

Figure 3.2 Task lifecycle 
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execution lifetime for the resource amount allocated to be altered (task 

experiences an Update event). In the best case scenario, a task successfully 

completes its execution and is consequently descheduled from a server (Task 

transitions to Complete status through the Finish event); however, it is possible 

for a task to experience a Termination Event resulting in unsuccessful completion 

(Evict, Kill and Fail resulting in Dead state), consequently causing the task to be 

resubmitted to the resource scheduler for server reallocation (Task is 

Resubmitted to Pending status). 

The scheduling policy of the system is predominantly based on task priorities. 

The priority scale for tasks ranges from 0 to 11 to indicate the lowest and highest 

priority, respectively. When required, low-priority tasks are evicted to yield 

resources to higher tasks. According to [157][158], the trace log contains a 

mixture of different types of workload, composed of production tasks (priority 

9), monitoring (10-11),  batch job processing and latency sensitive tasks (2-8) and 

gratis tasks (0-1). Further details concerning task events and the task life cycle 

can be found in [156]. 

3.1.4     Task Resource Usage 

The trace log also records the resource usage of individual tasks executing on a 

server. Resource usage is expressed as an aggregate utilization value calculated 

over a time frame of 300s (5 minutes). The task resource usage table contains a 

Table 3.2 Attributes of the task resource usage data table 

Identifier Attribute 

Timestamp 
Resource monitoring start time 

Resource monitoring end time 

Task identifier 
Task index 

Jobid 

Server ID Server ID 

CPU 

CPU usage (mean and maximum) 

CPU rate 

Cycles per instruction 

Memory 

Memory usage 

Assigned memory 

Mapped and unmapped page cache 
memory usage 

Disk 
Disk IO time (mean and maximum) 

Local disk spaced used 
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large amount of attributes as shown in Table 3.2, including the task identifier, 

aggregated resource utilization of CPU, Memory and Disk, and server identifier 

where the task HAS executed. Values for resource utilization are normalized 

values ranging between 0-1, where 1 represents the largest capacity of a server 

within the Cloud system. 

3.2     Datacenter Analysis Method 

3.2.1     Datacenter Model 

It is possible to extrapolate the data from datacenter trace logs in order to study 

and understand the relationship and interactions of components (users, tasks, 

and servers) within the Cloud as discussed in Chapter 2.5.2. To facilitate this, it is 

necessary to construct a model of the datacenter environment leveraging 

attributes found within the data tables and the lifecycle of tasks and servers in 

order to define datacenter entities and identify their respective characteristics. 

As shown in Figure 3.3, it is observable that there are a number of attributes 

which relate different entities together across data tables such as jobID, 

taskindex and serverID. Furthermore, we observe that the tables machine 

events, machine attributes, task events and task resource usage all contain the 

time stamp attribute, which can be leveraged when studying temporal behaviour 

over defined observational periods. On the other hand, it is possible to use the 

server ID to study spatial behaviour including task utilization and events that 

occur on specific servers. 

Table 3.3 Summary of Catalogs 

Catalog Attributes of interest 

User Catalog 
Submission rates, resource requested, number of 
tasks submitted 

Task catalog 
Resource utilization, execution length, submission 
time, priority type 

Server catalog 
Resource utilization, useful utilization, wasted 
utilization 

Task failure catalog 
MTBF, MTTR, priority, resource utilization, server ID, 
failure time 

Server failure catalog MTBF, MTTR, tasks failed, failure time 

Energy failure catalog 
Energy waste (server included), energy waste (server 
omitted) 

Platform catalog Server Architecture ID, Machine ID, Platform ID 
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This datacenter model (represented as an Entity Relationship (ER) model [159]) 

can be implemented within a database in order to extract and process data of 

interest. However, in order to perform data extrapolation data in a timely 

manner and to avoid and reduce query complexity and execution requiring 

multiple joins between data tables, it is necessary to create additional data 

tables which group together attributes of interest from the raw data tables for 

specific analysis objectives. These data tables are composed of attributes taken, 

or derived from the raw trace log data tables including data aggregation, 

counting and complex calculations. These created data tables are defined as  

catalogs, and are used to study specific system behaviour as shown in Table 3.3. 

Further details of each catalog, including how synthesized attributes were 

calculated is described in further detail within subsequent sections detailing the 

method of analysis for each Cloud analysis domain (workload, servers, failures, 

and failure-related energy). 

3.2.2     Analysis Infrastructure 

Each catalog and data table was deployed within a database for storage and 

querying. Due to the number of records a data table can contain (for example, 
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Figure 3.3 Entity Relationship Diagram of Google Cloud      
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task resource usage contains over 1.2 billion rows) as well as the number of data 

table joins required for the data extraction and processing, it was discovered that 

deploying the database on a centralised machine was not feasible. Efforts to 

perform a simple join query between task events and task resource usage tables 

resulting in a query execution completion time greater than 160 hours. 

Due to the number of queries required to explore the data as well as extract 

information of interest, it was necessary to develop and deploy a distributed 

analysis infrastructure to complete the analysis in a timely manner. To facilitate 

this, a distributed infrastructure composed of 50 machines (Intel Core 2 Quad 

CPU, 2.83 GHz, 8GB memory and 468 GB memory) was developed to provide the 

computational power and storage capacity required to perform the analysis. The 

cluster used Hadoop MapReduce [160], a programming model developed for 

processing datasets. MapReduce functions by dividing computation into two 

phases: Map and Reduce. The map phase divides a process into smaller sub-

processes and distributes them across nodes. The reduce phase collects the 

output of each map and combines them together and outputs the result. 

Furthermore, the analysis infrastructure uses HIVE [161], a data warehouse 

system for storage and query computation. HIVE is a database management 

system that uses Hive Query Language (HiveQL). HiveQL shares similar 

functionality to SQL and is capable of interfacing with MapReduce and converting 

HiveQL queries automatically into MapReduce processes as shown in Figure 3.4. 

As depicted, a HiveQL query is entered into the HIVE database management 

system, which is automatically translated into a MapReduce process, which then 

calculates the number of Map and Reduce nodes required to successful complete 

query execution. The Map phase is conducted across the nodes within the 

distributed analysis infrastructure, and is then collected and compiled together in 

the Reduce phase within a single node. After the Reduce phase is completed, the 

results of the query are outputted to a CSV file for conducting the desired 

analysis. Using this approach, it was possible to reduce the total execution time 

of queries by orders of magnitude, from 160 hours to approximately 15 minutes. 
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3.2.3     Statistical Analysis Tools 

After extrapolating data of interest for this research, it was necessary to perform 

complex analysis techniques using a suite of statistical software packages. The 

software packages Minitab [162] and R [163] were used for the statistical 

analysis while EasyFit [164], was used for distribution modelling. These software 

suites were selected over other technologies as they contain a large amount of 

functionality that can be exploited to support the analysis of the trace log 

including cluster analysis, sampling, data visualization, distribution modelling, 

general statistical analysis and correlation analysis.  

3.3     Coarse-grain Analysis 

This section presents the statistical properties of high-level operation for the 

Cloud computing datacenter derived from using the analysis infrastructure 
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MapReduce

Database

HQL query
Select a.eventtype, b.cpuestimated from task_events a inner 

join taskresource usage b on (a.taskid = b.taskid);
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Figure 3.4 Analysis Infrastructure Model 
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described in Chapter 3.2. Table 3.4 depicts the general statistical properties of 

the trace log. Workload is created by 930 different users submitting 650,000 

different jobs comprising just over 25 million submitted tasks. In this study, we 

focus on tasks instead of jobs as the vast majority of jobs are composed of a 

single task and to achieve fine granularity of analysis. We observe that there are 

over 47 million tasks scheduled which is due to the possibility that a submitted 

task can be rescheduled multiple times. Furthermore, there are 144,000,000 and 

38,000 recorded events corresponding to tasks and servers, respectively. 

Users have different submission patterns ranging from a single task to 3.5 million 

tasks over the trace log time span. From Figure 3.5(a), it can be seen that almost 

94% of the users submit a small proportion of the total tasks within the Cloud 

environment, whilst the remaining 6% of users submit a large proportion of tasks 

into the system. This is further exemplified in Figure 3.6(a), which demonstrates 

that 1% of total users submit over 53.2% of the total submitted tasks within the 

system. This observation indicates that it is possible for a small number of users 

to have substantial impact on the system operational behaviour and resource 

consumption due to the sheer volume of tasks they submit, as well as the 

composition for the type of workload within the system.  

Figure 3.5(c) depicts the variability of task submissions per day over the trace log 

time period, ranging from 678,929 to 4,940,423 tasks submitted daily. Each 

submitted task consumes CPU, memory and disk space at different amounts. As 

observed in Figure 3.5(b), approximately 98% of tasks incur small to moderate 

resource consumption while the remaining 2% incur large resource demands;  

(b) 

Table 3.4 General Trace Log Statistics.  

Total Users 930 

Total Jobs 650,000 

Submitted Tasks 25,375,377 

Scheduled Tasks 47,351,173 

Task Events 144,010,768 

Server Events 37,780 
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this is reflected by a mean and standard deviation for task execution time of 

1945 seconds and 5751 seconds, respectively. The distribution of task execution 

time is right-skewed as demonstrated in Figure 3.6(b), reflecting similar 

characteristics to resource utilization of tasks; the Cloud datacenter studied 

appears to be composed of a large proportion of tasks with small execution 

times and resource utilization, and a small proportion of tasks which consume a 

large amount of resources and execute for a longer period of time. Such 

behaviour has also been observed in the analysis of other Cloud datacenters such 

as those in [107], which also observe a long-tail in job execution.  

Figure 3.5(d) illustrates the distribution of task priorities in the analyzed 

datacenter, where it can be observed that lower priorities (0-8) represent 99% of 

the total submitted tasks, with task priorities 0 and 4 comprising 24% and 57%, 

respectively. Furthermore, we observe that higher or production task priorities 

315000027000002250000180000013500009000004500000

90

80

70

60

50

40

30

20

10

0

Tasks Submitted per User

P
e

rc
e

n
t

 
0.300.250.200.150.100.050.00

100

80

60

40

20

0

Resource Consumption

P
e

rc
e

n
t

cpu consumption

mem consumption

disk consumption

Variable

 

                      
2928272625242322212019181716151413121110987654321

5000000

4000000

3000000

2000000

1000000

0

Day

T
a

s
k

s

      
11109876543210

60

50

40

30

20

10

0

Priorities

P
e

rc
e

n
t

 

0.50.40.30.20.10.0

100

80

60

40

20

0

Resource Estimation

P
e

rc
e

n
t

CPU estimation

Memory estimation

Disk estimation

Variable

 

Figure 3.5 Coarse-grain analysis of task a) submission proportions, b) resource consumption,  
c) daily submissions, d) priority submissions, e) Resource estimation of users. 
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(9-11) account for the remaining 1% approximately. These results imply that 

different type of users submit tasks of varying priority (as defined in Chapter 

3.1.3), with development and batch-processing jobs within the case study being 

the most frequent. 

Moreover, we observe that there exists a disparity between resource estimation 

patterns and actual resource consumption, as shown in Figures 3.5(e) and Figure 

3.5(b), respectively. This is due to Cloud users typically overestimating the 

amount of resources actually required to provision their desired service [165]. 

Work in [40] discusses the resource disparity between estimation and actual 

utilization in further detail, and observe that users overestimate the 

requirements for resources for acceptable service. We can observe that Disk 

usage is relatively low in comparison to CPU and memory consumption; this is 

 

Figure 3.6 (a) Percentage of tasks submitted per User,  
(b) Histogram of task execution time  
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Table 3.5 Server proportions and submission rates 

Server 

Platform 

Server 

Type 

CPU 

Capacity 

Memory 

Capacity 
Server 

% 

Task 

submission 

% 

A 1 0.25 0.25 1 0.65 

B 
2 1.00 1.00 6.34 6.92 

3 1.00 0.50 0.018 0.00409 

C 

4 0.50 0.25 30.76 25.93 

5 0.50 0.75 7.93 8.36 

6 0.50 0.50 53.46 57.89 

7 0.50 0.97 0.04 0.055 

8 0.50 0.12 0.43 0.19 

9 0.50 0.03 0.024 0.00060 

10 0.50 0.06 0.008 0.00031 
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due to the nature of the workload type executed within the Cloud environment, 

which appear to vary more in terms of CPU and memory consumption. 

Table 3.5 presents the number of servers within the trace log categorized by 

server architecture type. There are a total of 10 unique server architecture types 

(as defined in Chapter 3.1.2), with server architecture 1 constituting 53.46% of 

the total number of servers within the trace log. Furthermore, we observe that 

there exist five server architecture types that represent less than 1% of the 

server population. We postulate that these servers are used for tasks which have 

specific constraints on the type of hardware architecture required for execution. 

We also observe that there exists a strong correlation between server population 

and the number of tasks submitted to a specific server type as shown in Figure 

3.7 (a) and 3.7(b), respectively indicated by a Pearson Correlation Coefficient 

value of 0.994, representing strong correlation. This result presents insight into 

the type of scheduling algorithm deployed within the datacenter, which appears 

to be a type of load balancing of tasks across all servers, given the strong 

correlation between server utilization and number of tasks submitted. 

Even from a coarse-grain analysis of the statistical properties of the case study 

Cloud datacenter, it is observable that there exists a high degree of diversity in 

terms of server heterogeneity, temporal and spatial patterns of user submission 

and resource request patterns, as well as different types of tasks in terms of 

resource utilization for CPU, Disk and Memory, execution time and priority type. 

Such evidence of heterogeneity has been identified individually in previous works 

 

Figure 3.7 Proportions of (a) Server population, (b) Task submissions per server 

(a)        (b) 
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focusing on analysis of specific Cloud components discussed in Chapter 2.4, and 

is for the first time demonstrated holistically at a large-scale across all Cloud 

components in this work. These findings demonstrate that the sum of the diverse 

utilization patterns and user submissions create and provide empirical evidence 

of a highly heterogeneous workload environment submitted onto heterogeneous 

servers architectures typical of multitenant Cloud datacenters that have been 

claimed to exist as discussed in Chapter 2.2.2. 

The coarse-grain analysis is a good technique to provide an overview and insight 

into general system characteristics and behaviour. Attention is now drawn to in-

depth analysis to explore the characteristics and behavioural patterns of 

workload - a key component in Cloud datacenter operation and modelling. 

3.4     Summary 

In this chapter, the case study for this thesis has been presented; a large-scale 

production Cloud environment containing over 12,500 servers spanning 30 days 

of operation. The system specification, the lifecycle of server and tasks, and the 

attributes within the trace log data tables are defined and discussed in detail. 

Furthermore, the process, challenges and solution to developing an analysis 

environment including the modelling the components within the Cloud 

datacenter as well as deploying analysis infrastructure capable of extrapolating 

and processing data within a timely manner has been presented and discussed in 

detail. 

Using the analysis environment, we present coarse-grain statistical properties of 

the Cloud trace log, consisting of high-level information including daily 

submission patterns of users, the type and amount of resource requested and 

consumed, and composition of the server population. We observe and 

demonstrate that there exists a large degree of heterogeneity across the Cloud 

datacenter, with diverse submissions of tasks, different types of user submission 

patterns, resource estimation and utilization of tasks, and server architecture. 

The remainder of this thesis is dedicated to the presentation, discussion and 

evaluation of in-depth analysis of workload, servers, failures and failure-related 

energy in Cloud datacenters, including method of extraction, research 

assumptions, analysis results and  practical application. 
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4     Workload Characterization 

4.1     Overview 

As discussed in Chapter 2.2.7, workload is a core component in Cloud computing, 

comprised of users submitting tasks of heterogeneous execution length and 

resource utilization in order to pursue diverse business objectives. However, 

presently there is a substantial lack of empirical studies comprehensively 

quantifying workload characteristics and behavioural patterns in large-scale 

Cloud computing datacenters. Current work presently focuses entirely on tasks, 

neglecting user behavioural characteristics responsible for task submission 

patterns and the amount of requested resources required. Furthermore, existing 

approaches do not comprehensively study user and task diversity spatially of 

temporally, or provide a detailed method of workload analysis and modelling 

capable of quantifying and extracting empirical findings that is of practical use to 

researchers and Cloud providers. 

This chapter presents the study and analysis of characteristics and behavioural 

patterns of Cloud workload: specifically, this chapter contains the following 

contributions: 

 A reusable method for characterizing and classifying Cloud workload 

based on users and tasks attributes. This approach leverages rigorous 

statistical and modelling techniques to characterize and classify users 

and tasks to support Cloud computing research, providing realistic 

workload characteristics and parameters derived from large-scale 

production environments. The method can be applied to numerous 

Cloud computing trace logs in order to analyze workload behaviour of 

users and tasks. 

 An in-depth empirical analysis to quantify Cloud workload characteristics 

and behavioural patterns. The method described above is applied to a 

production large-scale Cloud datacenter trace log. The analysis 

comprises the study and quantification of statistical and behavioural 

properties of users and tasks both temporally and spatially, as well as a 

study of their impact on the system environment. Furthermore, the 

diversity of workload over the entire trace log timespan and a number of 



Chapter 4 81 Workload Characterization 

  

observational periods is explored to investigate and quantify the degree 

of diversity for user and task behaviour that manifests within the system.  

 An extensive distribution analysis to study the operational behaviour of 

users and tasks, and to extract model parameters for practical usage. An 

extensive study of the internal characteristics of users and tasks is 

presented, and the distribution model parameters extracted and 

presented can be used by providers and researchers to capture Cloud 

environment behaviour to support research assumptions of the 

operational environment. 

The outputs of these contributions can be used to quantify the real-behaviour of 

users and tasks in Clouds and to validate whether Cloud computing 

environments exhibit the characteristics of significant diversity and 

heterogeneity as claimed in Chapter 2.2.2. Specifically, this includes classifying 

the different types of users and tasks, changes in their behavioural patterns at 

different time frames, and the relationship that exists between each other. 

Furthermore, we present model parameters for users and tasks, which can be 

leveraged for practical use by researchers to develop realistic simulation 

environments as well energy-aware resource management mechanisms in the 

domains of overallocation and performance-interference. 

4.2     Workload Characterization Method 

This section presents the method for characterizing workload including the 

workload model, the method of classifying users and tasks, the sampling process 

for selecting the observation periods for analysis, and the assumptions of the 

workload and the system environment for data extraction and processing. 

4.2.1     Workload Model     

The first step of the analysis method is to define the workload model in order to 

conduct the analysis and modelling. In order to achieve this, it is necessary to 

identify the key attributes which are hypothesized to define the characteristics of 

users and tasks, as well significantly impact user and task behaviour when 

altered. 

As described previously in Chapter 2.2.7, users are responsible for driving the 

volume and behaviour of tasks in terms of requested resource and task 
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submission patterns. In the context of the Google Cloud trace log, it is possible to 

identify three attributes that define key characteristics which are fundamental to 

describe user behaviour: the submission rate  , and requested amount of CPU   

and Memory  . The submission rate is defined as the frequency which users 

submit tasks into the Cloud datacenter. Submission rate (presented as task 

submissions per hour) is a quotient and is calculated by the sum of total 

submission events per user, and divided by the number of submissions over the 

trace log time span. Requested CPU and memory represent the amount of 

resources requested by a user upon task submission, and are extracted directly 

from the task event data table from the trace log. 

Tasks are defined by the type and amount of work dictated by users, resulting in 

varying execution length and resource utilization patterns. As a result, attributes 

within the tracelog that define tasks are length    and the average resource 

utilization for CPU   and Memory  . Length is defined as the total amount of 

work to be computed and is calculated based on the task duration and average 

CPU utilization; this is due to task duration (measured is seconds) being 

dependent on the architectural characteristics of the server where the task is 

allocated [167]. As a result, describing the task in terms of length allows us to 

perform an architecture-agnostic workload analysis, and is measured in Millions 

of Instructions (MI). CPU and Memory utilization is the average resource 

utilization of a task and is represented as the mean of all consumption 

measurements recorded in the tracelog for individual tasks. The attribute Disk 

utilization was not included within the workload model, as it was discovered 

from the exploratory analysis in Chapter 3.3 that 98% of disk usage was uniform 

and consumed miniscule amount of resources due to the nature of tasks within 

the studied Cloud environment. As a result, this attribute does not significantly 

impact task behaviour, and was consequently omitted from the task model.  

Cloud workload is a composition of users and tasks and can be defined as a set of 

users with profiles U submitting tasks classified in profiles T, where each user 

profile ui is defined by the probability functions of  ,   and  , and each task 

profile ti by  ,   and  . The expectation E(ui) of a user profile is given by 

probability P(ui), and the expectation E(ti) of a task profile is given by its 
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probability P(ti) conditioned to the probability of P(uj). The model components 

and their relationship are formalized in Equations 1 to 6. 

 

 
 

 

 
 
 
 
 
 

 

The defined workload model and its respective attributes can be leveraged in 

order to comprehensively study and analyze users and tasks within the Cloud 

datacenter. 

4.2.2     Workload Classification 

The second step of the analysis method is to classify tasks and users composed 

by their respective attributes. To facilitate this, k-means clustering was used for 

classification. k-means clustering is a popular data-clustering algorithm to divide 

n observations into k clusters, in which analyzed data sets are partitioned in 

relation to the selected attributes and grouped around cluster centroids [166]. 

One critical factor in the k-means clustering algorithm is determining the optimal 

number of clusters; this challenge in the context of workload characterization is 

highlighted in [145] where the number of k clusters is selected by the analyst 

based solely on visual interpretation and qualitative metrics, introducing 

subjectivity into subsequent analysis. As a result, we use the statistical method 

proposed by Pham, et al [145] which calculates a satisfactory number for k based 

on quantitative metrics, avoiding qualitative techniques that introduce 

subjectivity. This clustering method considers the degree of variability among all 

data points within the derived clusters in relation to the number of analyzed 

attributes. A number of clusters k is suggested when this variability represented 

by function f(k) is lower than or equal to 0.85 according to extensive case studies 

conducted by the authors on a number of datasets. The clustering method is 

shown in Equations 7 and 8: 
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where    is the sum of cluster distortions,    is the number of parameters 

within the population and    is the weight factor based on the previous set of 

clusters.  

For the analysis, the k-means clustering algorithm uses values ranging from 1-10. 

For each value of k we calculate f(k) using Equations 7 and 8. Based on the results 

we were able to statistically determine the number of clusters for   and   

(Equations 1 and 2), respectively. 

4.2.3     Sampling Process 

One of the objectives of this chapter is to quantify the temporal diversity of 

Cloud workload. Specifically, how the characteristics and behavioural patterns of 

users and tasks change over different time periods. Such analysis allows the 

inspection of patterns that exist within the data and the exploration of the 

degree of variance over the system lifespan. As a result, apart from analysing the 

time span of an entire trace log, it is advantageous to study additional 

observation periods in order to study and quantify behavioural patterns at 

different times of operation, as well as create sample populations which can be 

used when validating derived distribution model parameters.   

In the context of the Google Cloud trace log, three additional observational 

periods each spanning 24 hours have been selected in order to observe system 

operation at different time periods. We define the month observational period 

between time stamps 0 and 2505600000000 (representing 29 days in 

microseconds) within the trace log. Any records recorded after the latter 

timestamp were omitted from the analysis, as it only includes several hours of 

 
 

(7) 

(8) 























6

1

4

3
1

1
1

k
k

d

k

N























1

1

)(
1kk

k

S

S
kf



   If k= 1 

If Sk-1 ≠0,  k > 1 

If Sk-1 =0,  k > 1 

  If k= 2 and Nd > 1 

  If k> 2 and Nd > 1 



Chapter 4 85 Workload Characterization 

  

additional recorded operation, which would result in misinterpretation of the 

results when analyzing daily behaviour. The four observational periods selected 

consist of the entire month trace, Day 2, Day 18 and Day 26. The latter three 

observational periods were selected for two reasons: First, they represent 

observational periods of low task length, high submission rate and an average of 

these two attributes, respectively. Secondly, the periods are temporally spread 

across the trace log period, and provide insight into system operation at different 

time periods. 

4.2.4     Workload Analysis Assumptions   

In order to produce a fair and comprehensive analysis to effectively characterize 

workload, it is necessary to define realistic assumptions about system operation. 

These assumptions are as follows: 

 A task is considered the basic element that consumes resources. As the 

resource consumption is logged by tasks, and the majority of jobs are 

comprised of a single task, the analysis focuses on tasks for studying fine-

grain behaviour while jobs are considered as the grouping element. 

 The task duration is considered from the timestamp of the latest 

submission event to successful completion. This is due to the possibility of 

total task execution time being affected by system events such as 

resubmission caused by Termination Events. Analysis of Termination 

Event impact on the system is discussed in detail within Chapter 6. 

 Task length is calculated based on duration execution and average CPU 

utilization and is measured in Millions of Instructions (MI). Duration is 

dependent on the specific architectural characteristics of the server 

where the task is allocated for execution [167]; as a result, describing the 

task in terms of length in MI allows us to perform workload analysis 

agnostic of architecture, as well as apply the model to datacenters of 

different server specifications.  

 Tasks that start before or finish after the tracelog time frame are not 

considered in the analysis, as it is impossible to derive the length 

attribute for tasks which operate outside the trace log observational 

period. 
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 Monitoring tasks are omitted from the analysis. Task priorities 10-11 are 

responsible for monitoring the system to produce the trace log data, and 

are not consumers within the Cloud datacenter. Coupling this with the 

fact that they make up less than 1% of the total task population and have 

uniform resource consumption and behaviour, such tasks have been 

omitted from any subsequent analysis. 

Furthermore, there is also a requirement to define explicit assumptions for the 

case study trace log when considering the task and server life cycle described in 

Chapter 3.1: 

 Every time a task terminates it is assumed that it restarts from the 

beginning of execution. This is supported by the fact that a task failure is 

an interruption on a running task, requiring the system to re-execute the 

interrupted task [3][160]. Such behaviour and events are discussed in 

further detail within Chapter 6. 

 Server specification of the trace log is derived from empirical and widely 

used server benchmarks. The server specification of different server 

architectures within the trace log are obfuscated due to confidentiality 

and business concerns. Consequently, server specifications are 

presented as Platform IDs and proportions of CPU and Memory as 

described in Chapter 3.3. As a result, we map servers to the specification 

of real physical servers taken from the SpecPower Benchmark 2008 

[182]. The server Primergy RX200 S7 architecture was selected for server 

architecture 2, representing the largest capacity within the trace log. 

Consequently, resource capacity of CPU and Memory of the remaining 

server architectures are based on proportions of this server architecture. 

The processing power of this server was selected to calculate the length 

of tasks within the system. 

 Disk usage is not considered in task characterization due to uniform 

usage patterns. This is due to 98% of tasks within the system share disk 

usage patterns as presented in Chapter 3.3 and confirmed in [158] 

resulting in this attribute to be unsuitable for classification and clustering 

purposes.  
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4.2.5     Analysis Method 

The workload analysis is divided into two primary sections; cluster analysis and 

distribution analysis. The objective of the cluster analysis is to classify users and 

tasks, quantify their respective statistical properties, and study their temporal 

and spatial behavioural patterns across the entire system timespan as well as 

selected time observation periods as discussed in Chapter 3.3. Specifically, the 

cluster analysis studies the characteristics and behaviour of the created clusters 

and the statistical properties of each identified attribute within the workload 

model, including the Mean, Standard Deviation and Coefficient of Variation (Cv). 

In the context of the Google trace log, we investigate the variance of task and 

user clusters and their respective attributes over three additional observational 

periods of Day 2, Day 18 and Day 26 in order to inspect patterns that exist within 

the Cloud and to explore the variability and dynamicity over the system lifespan. 

The objective of the distribution analysis is to study the internal data 

distributions of attributes in each task and user cluster in order to better 

understand intra-cluster behaviour and diversity, as well extract model 

parameters of practical use for researchers. This requires fitting the data to the 

closest theoretical distribution using a GoF test to obtain the parameters of their 

Probabilistic Distribution Functions (PDF). The data of each cluster is fitted to a 

parametric distribution by using the Anderson-Darling (AD) GoF statistical test, 

with the theoretical distribution with the lowest AD-value selected to represent 

the data distribution of each cluster attribute. The parameters of the PDFs for 

each workload model attribute described in Equations 3 and 4 are extracted and 

can be by other researchers in evaluating energy-efficient mechanisms and 

developing realistic simulation environments. 

Now that the method for workload analysis and characterization and how it is 

applied to the Google trace log has been defined and discussed in detail, the 

remainder of this chapter is dedicated to the study and analysis of workload 

characteristics and behavioural patterns within the case study trace log. 
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4.3     Cluster analysis 

4.3.1     Users 

Figure 4.1 illustrates k-clusters partitioning that satisfies f(k) < 0.85 for users 

across the observational periods of the entire month, Day 2, Day 18 and Day 26. 

From Figure 4.1(a), which visualizes the cluster composition of users across the 

entire 29 trace log time span, we observe that the majority of users request 

similar portions of CPU and memory, and exhibit similar submission rates. 

Moreover, there exist three specific users whom exhibit a substantially high 

submission rate and request larger amounts of CPU and memory within clusters 

2 (U2) and 3 (U3), respectively. When omitting these three users from the cluster 

analysis as depicted in Figure 4.1(b) it is clearer to observe that cluster 

 

 

   

 

 

 

Figure 4.1 Clusterisation for users (a) Entire month, (b) Entire month (omitting 
outliers), (c) Day 2,  (d) Day 18, (e) Day 26. 

(a) (b) 

(c) (d) 

(e) 
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characteristics exhibit similar patterns across observational periods Day 2, 18 and 

26 as demonstrated in Figure 4.1(c-e), respectively.  

This is further exemplified in Table 4.1, which presents the statistical properties 

of all users for each time observational period. It is observable that parameters 

CPU and Memory requested exhibit similar values between approximately 0.030 

- 0.036 and 0.19 - 0.26, respectively. Furthermore, we observe that task 

submission rates across different time periods are highly variable, with the 

standard deviation ranging from 59 - 262. 

Table 4.2 shows the statistical properties of cluster attributes for the entire 

tracelog period. It is observable that users follow different resource utilization 

and submission patterns. For example, U2 contains 0.71% of the total user 

population and has the highest submission rate at 2498 submissions per hour 

and relatively low CPU and memory requested compared to other clusters. In 

comparison U3, composing 6.37% of total users has a substantially high 

requested CPU and memory between 0.135 - 0.094, respectively, however 

exhibits the lowest submission rate, indicating this type of user infrequently 

submits more resource intensive tasks. U1 which comprises the larger cluster 

with 37.03% of the population, submit tasks with low amount of resources 

requested at 0.01 and 0.016 for CPU and memory, respectively. 

Table 4.2 Statistical Properties of User Clusters for Entire System. 

 
 

Requested CPU Requested Memory Submission Rate(Hourly) 

Cluster User% Mean Stdev Cv Mean Stdev Cv Mean Stdev Cv 

U1 37.03 0.01 0.004 0.388 0.016 0.013 0.854 34.94 94 2.691 

U2 0.71 0.016 0.011 0.689 0.019 0.013 0.658 2498 2034.6 0.814 

U3 6.37 0.135 0.048 0.358 0.094 0.136 1.453 4.71 10.82 2.295 

U4 6.37 0.025 0.018 0.718 0.092 0.031 0.342 13.49 19.47 1.444 

U5 22.63 0.063 0.011 0.168 0.03 0.02 0.648 73.4 170.44 2.322 

U6 26.89 0.032 0.006 0.197 0.014 0.01 0.752 43.63 105.18 2.411 
 

Table 4.1 Statistical properties of users for different time periods  

Time 
period 

Requested CPU Requested Memory Submission Rate 

Mean Stdev Cv Mean Stdev Cv Mean Stdev Cv 

Month 0.036 0.031 0.862 0.026 0.027 1.043 59.63 272.3 4.566 

2 0.030 0.000 0.000 0.019 0.021 1.127 262.20 996.5 3.801 

18 0.032 0.025 0.788 0.020 0.022 1.090 231.90 755.2 3.257 

26 0.031 0.026 0.843 0.023 0.029 1.256 7.64 23.22 3.039 
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We observe that requested CPU and memory across most clusters exhibits low 

variance, with an average Cv of 0.42 and 0.79, respectively (U3 requested 

memory appears to have higher variance due to the strong influence of the three 

specific users requesting massive amounts of resources discussed above). The 

attribute submission rate exhibits highly variant behaviour across all user 

clusters, with an average Cv of 1.97. U2 is the only user cluster whose Cv 

submission rate is less than 1, which is likely due to a small cluster population 

size of 3. 

There are several reasons for the above observations. First, a key characteristic 

of Cloud computing is the ability for users to pursue diverse business objectives 

as discussed in Chapter 2.2.2. The results presented in this section substantiate 

this claim and demonstrate that user behavioural patterns not only vary by the 

number created clusters and statistical properties of their respective attributes, 

it also exemplifies that different types of users interact with the Cloud 

datacenter at different time periods. Second, the submission rate is outside the 

boundaries of the system and is entirely driven by user demands; such behaviour 

is reflective of the identified characteristics of Cloud computing, which provides 

the illusion of infinite resource to users [43] allowing them to submit as many 

tasks as required without conscious thought concerning system limitations. This 

is exemplified by Cv > 1 for clusters for the entire system as well as significant 

differences in submission rates across different observation periods as 

demonstrated in Tables 4.2 and 4.1, respectively. Users that interact with the 

system at different time periods will produce different volume of tasks in order 

to satisfy their business needs, while on the other hand due to constraints on 

physical resources consumed per task, requested resource of CPU and memory 

appears to be more stable reflected by a Cv =< 1 for the majority of clusters, as 

well as users in an observation period. 

Table 4.3 Proportion of Task Clusters Population % 

Cluster Month Day 2 Day 18 Day 26 

T1 25.04 15.82 25.61 22.07 

T2 1.38 1.8 1.84 1.99 

T3 73.59 82.38 72.55 75.94 
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4.3.2     Tasks 

Figure 4.2(a-d) presents the k-clusters for tasks across all observational periods. 

In contrast to users, it is observable that the cluster shapes are visually similar 

across all observational periods and demonstrate that it is possible to define 

three clusters for all observational periods where f(k) < 0.85. This similarity in 

cluster shapes is further exemplified when considering Cluster 2 (T2) introduces 

the largest variability to the overall cluster shape yet composes less than 2% of 

the total task population in comparison to T3 which contains over 70% of the 

task population across all time periods as shown in Table 4.3. From Table 4.3, we 

can also observe that the proportion of tasks within the clusters stay relatively 

constant across the observational periods in comparison to user clusters, ranging 

between 15-25%, 1.3-2% and 72-74% for T1, T2 and T3, respectively. 

Table 4.4 presents the statistical properties of the attributes length, CPU and 

memory utilization for all clusters across the four observational periods. It is 

possible to make a more balanced comparison of tasks over different time 

periods in contrast to users due to the same number of clusters identified across 

all time periods for the latter; T3 contains the lowest values for CPU, memory 

and length while T2 contains the highest values while exhibiting more variant 

behaviour. 

 

Figure 4.2 Clusterisation of tasks (a) Entire Month, (b) Day 2, (c) Day 18, (d) Day 26. 

                   (a)                 (b) 

                   (c)                 (d) 
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Similar to submission rates of users, we observe that task length is highly 

heterogeneous across all clusters and observational periods with an average Cv 

of 2.36, indicating high variation between values. This is due to similar reasons  

user submission rates variability; task length is an attribute that has less 

dependence on the Cloud infrastructure and exists outside the boundaries of the 

system environment, and is entirely dependent on the demands of the user (i.e. 

users execute tasks of different execution length in order to meet their QoS 

demands). In addition, similar to user resource estimation, CPU and memory 

utilization are less variable due to application domain constraints imposed by the 

system environment, reflected by an average Cv value of 0.93 and 0.83 for CPU 

and memory utilization, respectively. 

 

Table 4.4 Statistical Properties of Task Clusters 

  

Month Day 2 

Parameter Cluster Mean Stdev. Cv Mean Stdev. Cv 

CPU 

T1 0.029 0.028 0.966 0.029 0.025 0.862 

T2 0.095 0.088 0.926 0.071 0.071 1 

T3 0.006 0.012 2 0.007 0.012 1.714 

Memory 

T1 0.011 0.01 0.909 0.013 0.01 0.769 

T2 0.049 0.031 0.633 0.047 0.021 0.447 

T3 0.002 0.003 1.5 0.003 0.003 1 

Length 

T1 16,605,683 32,753,760 1.972 9,787,032 1,551,9963 1.586 

T2 123,974,450 250,146,799 2.018 30,932,490 40,683,248 1.315 

T3 739,117 4,056,404 5.488 245,445 655,190 2.669 

 

Day 18 Day 26 

 
 Mean Stdev. Cv Mean Stdev. Cv 

CPU 
T1 0.028 0.014 0.492 0.006 0.006 1 
T2 0.076 0.051 0.667 0.065 0.04 0.615 
T3 0.005 0.005 0.984 0.026 0.012 0.462 

Memory 
T1 0.009 0.006 0.632 0.001 0.001 1 
T2 0.040 0.017 0.428 0.031 0.018 0.581 
T3 0.001 0.001 1.075 0.009 0.004 0.444 

Length 
T1 41,329,800 103,613,335 2.507 13,669,736 16,538,165 1.21 
T2 117,493,568 388,077,476 3.303 82300581 54,360,253 0.661 
T3 7,658,844 25,068,810 3.273 613,803 1,450,884 2.364 
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4.4     Distribution Analysis 

4.4.1     Users 

Figures 4.3, 4.4 and 4.5 present the Cumulative Distribution Function (CDF) for 

U1, U5 and U6, respectively to demonstrate the similarity between the 

theoretical distribution and the empirical data using the fitting process and AD 

test detailed in Chapter 4.2.5. The best fit distribution for each attribute within a 

user cluster, their corresponding AD as well as the distribution parameters which 

define the distribution shape are presented in Table 4.5. 

Inspecting the different types of distributions and their respective parameter 

values, we observe further statistical evidence of inherit diversity of user 

behaviour. From Table 4.5, it is observable that the best-fit distribution for 

requested CPU varies between Logistic, 3-Parameter Weibull and Loglogistic and 

Wakeby. Memory is equally heterogeneous, ranging from 3-Parameter 

Lognormal, 3-Parameter Loglogistic and Weibull. Such results present insight into 

the nature of how different types of users request resources based on their 

business objectives and technical requirements. For example, the Wakeby 

distribution used for U3 and U5 (displayed in Figure 4.4(a)) demonstrates that a 

 

 

Figure 4.3 CDF of U1 parameters (a) CPU requested,                                                                                      
(b) Memory requested, (c) Submission Rate. 
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large portion of requested CPU is homogenous across these specific types of 

users. On the other hand, requested CPU and memory of U4 is represented as 3-

Parameter Weibull, signifying that a large portion of users in the analyzed 

 

Figure 4.4 CDF of U5 parameters (a) CPU requested,                                                                                       
(b) Memory requested, (c) Submission Rate. 
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Figure 4.5 CDF of U6 parameters (a) CPU requested,                                                                              
(b) Memory requested, (c) Submission Rate. 
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environment request smaller portions of CPU and memory with a small 

proportion of users requesting larger amounts.   

The best-fit distributions for submission rates of user clusters predominantly 

follow 3-Parameter Weibull and 3-Parameter Lognormal. In conjunction with the 

parameter values, we observe that this data distribution is right-skewed as 

depicted in Figure 4.3(c) and 4.5(c), indicating that the Cloud environment is 

composed by the majority of users submitting small numbers of tasks, and a 

minority of users submitting a large proportion of tasks (for example, there exists 

one user that submits approximately 16% of the total tasks shown in Figure 3.3 

within Chapter 3.3). 

4.4.2     Tasks 

Figures 4.6-4.8 and Table 4.6 present the CDF and statistical properties of the 

distributions for tasks clusters across the entire trace log period, respectively. We 

observe that CPU and memory utilization across the three clusters follows a 

number of distributions including General Extreme Value, Weibull, 3-Parameter 

Table 4.5 Best Fit Distribution Parameters of User Clusters for Entire System 

 
Distribution 
(AD Value) 

Parameters 
Distribution 
(AD Value) 

Parameters 
Distribution 
(AD Value) 

Parameters 

Cluster Requested CPU Requested Memory Submission Rate (Hourly) 

U1 
Logistic 
(1.911) 

  = 0.0103 
  = 0.00216 

3P 
Lognormal 

(0.875) 

  = -4.355 
  = 0.802 

  = -1.60E-3 

3P Weibull 
(0.278) 

  = 0.372 
  = 0.0024 
  = 3.86E-7 

U2 
Normal 
(0.431) 

  = 0.016 
   = 0.0109 

Normal 
(0.191) 

  = 0.01916 
  = 0.01261 

Lognormal 
(0.471) 

  = -0.5679 
  = 0.7496 

U3 
Wakeby 
(5.620) 

  = 41.734 
  = 334.62 
  = 0.973 
  = 0.00 

  = 0.0003 

3P Loglogistic 
(0.876) 

   = 2.156 
  = 0.06334 
  = -6.1E-3 

3P Weibull 
(1.591) 

  = 0.2546 
  = 7.798E-4 
  = 3.95E-7 

U4 
3P Weibull 

(0.742) 

k = 1.190 
λ = 0.02372 
T = 2.903E-3 

3P Weibull 
(0.342) 

k = 1.095 
λ = 0.0392 
T = 0.0541 

3P 
Lognormal 

(0.577) 

  = -6.757 
  = 1.779 

 = -1.32E-4 

U5 
Wakeby 
(4.212) 

  = 0.22515 
  = 11.859 
  = 0.00383 
  = 0.38933 
  = 0.0395 

Weibull 
(0.629) 

  = 1.570 
  = 0.03392 

3P Weibull 
(0.367) 

  = 0.338 
  = 0.0043 
  = 3.6E-7 

U6 
3P 

Loglogistic 
(2.171) 

  = 5.4452 
  = 0.01896 
  = 0.01256 

3P Weibull 
(0.563) 

  = 1.186 
  = 0.0132 
  = 1.20E-3 

3P Weibull 
(0.523) 

  = 0.034 
  = 0.0026 
  = 3.86E-7 
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Weibull and 3-Parameter Lognormal, indicating that a high proportion of tasks 

consume machine resources at lower rates as shown in Figure 4.8(a) and 4.6(b) 

for CPU and memory, respectively. Task length shares similar behaviour to user 

submission rates indicated by right-skewed values, signifying that most tasks 

exhibit short to medium execution duration as depicted in Figure 4.6-4.8(c). 

Moreover, we present a comparison of distributions for each cluster across the 

four selected time observational periods, as shown in Table 4.7; this is made 

feasible as every observational period is capable of producing three task clusters 

which satisfies f(k) < 0.85. An observation of interest is that individual time 

periods exhibit different best fit different distributions within that time frame. 

For example, Day 18 is composed of Loglogistic and Lognormal distributions for 

all parameters, while Day 26 is predominantly composed of 3-Parameter 

Lognormal and Gamma distributions. Moreover, we observe that task length 

appears to exhibit the most consistent distributions characteristics within 

selected time observations, predominately following Lognormal and 3-Parameter 

Lognormal. Furthermore, there exists homogeneity of distribution characteristics 

for task length across different observational periods, with time periods 

following the same distribution family (Lognormal and 3-Parameter Lognormal). 

 

 

Figure 4.6 CDF of T1 parameters (a) CPU, (b), Memory, (c) Length 

(a)                              (b) 

(c) 
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When a task is executing within a server, it is possible to utilize no resources for a 

period of time due to the nature of its application. As a result, it is important to 

model the probability of no utilization for CPU or Memory utilization within the 

system. From the analysis, there exists a probability of 6-32% and 7-46% for CPU 

      

  

Figure 4.7 CDF of T2 parameters (a) CPU, (b), Memory, (c) Length 

 

(a)                                  (b)  

(c) 

 

  

 

Figure 4.8 CDF of T3 parameters (a) CPU, (b), Memory, (c) Length 
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and memory, respectively to utilize no resources as shown in Table 4.8. We 

observe that there is a relationship between the probability of zero utilization 

and the cluster type; T3 are characterized as small, low utilization tasks and 

exhibit a higher probability of zero utilization between 32-42% while T2, 

characterized as high utilization and execution length tasks have a probability of 

6-7% zero utilization.  

4.5     Impact of Workload Behaviour on Cloud Environment 

These results highlight a number of important findings about the nature of Cloud 

workload in large-scale production systems and are summarised as follows:  

Table 4.7 Best Fit Distribution Comparison for Task Clusters  

Parameter Cluster Month Day 2 Day 18 Day 26 

CPU 

T1 Gen. Extr. Value Normal Loglogistic 3P Lognormal 

T2 Weibull Weibull Lognormal Lognormal 

T3 3P Lognormal Lognormal Lognormal Gamma 

Memory 

T1 3P Lognormal Lognormal Lognormal Gamma 

T2 3P Weibull Normal Loglogistic 3P Gamma 

T3 3P Lognormal Lognormal Loglogistic 3P Lognormal 

Length 

T1 Lognormal Lognormal Loglogistic 3P Lognormal 

T2 3P Loglogistic Lognormal Lognormal 3P Lognormal 

T3 3P Lognormal Lognormal Lognormal 3P Lognormal 

 

Table 4.8 Best Fit Distribution Parameters of Task Clusters for Entire System   

Cluster 
Distribution 
(AD Value) 

Parameters 
Distribution 
(AD Value) 

Parameters 
Distribution 
(AD Value) 

Parameters 

 
CPU Memory Length 

T1 

General 
Extreme 

Value 
(5.323) 

  = -0.016 
  = 0.02098 
  = 0.01954 

3P 
Lognormal 

(6.946) 

  = -4.342 
  = 0.569 

  = -2.39E-4 

Lognormal 
(12.048) 

  = 15.83 
  = 1.240 

T2 
Weibull 
(16.934) 

  = 0.9594 
  = 0.09795 

3P Weibull 
(3.203) 

  = 2.528 
  = 0.0703 
  = -9.29E-3 

3P 
Loglogistic 
(10.692) 

  = 17.70 
  =  0.640 

T3 
3P 

Lognormal 
(15.934) 

  = -6.120 
  = 1.897 
  = 6.41E-6 

3P 
Lognormal 

(2.756) 

  = -5.907 
  = 0.877 

  = -2.20E-4 

3P 
Lognormal 

(8.045) 

  = 11.87 
  = 1.855 
  = -255.9 

 

Table 4.6 Probability of 0 for Task Resource Utilization 

Cluster CPU p(0) Memory p(0) 

T1 0.121 0.156 

T2 0.069 0.073 

T3 0.322 0.460 
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Workload in Cloud computing datacenters are quantifiably heterogeneous and 

diverse. The results of the cluster and distribution analysis demonstrate 

statistical evidence of significant heterogeneity of Cloud workload in terms of 

resource estimation and submission patterns for users, and resource utilization 

and execution length for tasks. This heterogeneity does not only include different 

types of classifications of users and tasks with their own defined submission and 

utilization patterns, but also includes diversity of users and task behavioural 

patterns temporally across different time observational periods.  

Users exhibit substantially more heterogeneous behaviour than tasks. From 

studying the characteristics of the clusters describing user behaviour across 

different time periods as well as their respective statistical and distribution 

properties, it is observable that users are more heterogeneous than tasks. This is 

represented by variance of the number of k clusters, as well as the distribution 

and statistical properties of attributes across different observation periods in 

comparison to tasks. As users are responsible for the characteristics of tasks, 

such findings signify that predicting future behaviour of workload requires not 

only the analysis and modelling of task behaviour, but must also include user 

submission and resource request patterns which currently are neglected in the 

current state-of-the-art. 

Workload attributes which are defined outside the boundaries of the system 

environment introduce the highest level of heterogeneity. This is demonstrated 

by the attributes user submission rate and task execution length attributes 

exhibiting highly variant behaviour statistically in comparison to CPU and 

memory requested and utilization for users and tasks, respectively. The diversity 

of workload imposed by these two attributes introduces potential challenges in 

workload prediction which rely on the use of historical data, as the expiration 

time of the representativeness and accuracy of historical data is reduced. 

Therefore, the use of other techniques such as neural networks [174] that are 

capable of adapting to significant changes and evolution of Cloud workload 

behaviour may be more effective.  

There exists two distinct types of task characteristics within clusters. From the 

intra-cluster analysis and studying the internal characteristics of the attributes 

within each task cluster, we observe that there predominantly exist two types of 
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tasks; A large proportion of tasks with small resource utilization and execution 

length, and a small proportion of tasks which utilize large amount of resources 

have larger execution lengths.  

4.6     Results Validation  

In order to characterize and analyze the performance of similar large-scale Cloud 

datacenters under a projected set of operating conditions, Solis Moreno [173]  

implemented the task and user model parameters derived from the analysis 

presented in this chapter as an extension to the CloudSim framework [168] 

[170][171]. CloudSim is a Java based framework that enables the simulation of 

complete Cloud Computing environments [169], providing abstraction for all the 

components within the Cloud computing model and their interactions. As 

discussed in Chapter 2.4.1, the quality and accuracy of simulation results are 

entirely dependent on how accurately the introduced parameters reflect the 

analyzed system in reality. 

4.6.1     Simulation Validation 

Model validation is defined as the "substantiation that a computerized model 

with its domain of applicability possesses a satisfactory range of accuracy 

consistent with the intended application of the model" [102]. In the situation 

where the analyst does not have access to the real system or to a different 

dataset sample from the same system, a common validation technique is to use a 

portion of the available data to construct a model and then use the remaining 

data to determine and validate whether the model behaves in the same manner 

as the real system. This is typically addressed by sampling the analyzed tracelog 

where both the input and the actual system response are collected from the 

same period of time [172].  According to Sargent, et al. [102], there are two 

approaches to compare the simulation model to the behaviour of the real 

system; the first is to use graphs to empirically evaluate the outputs while the 

second involves the application of statistical hypothesis tests to make an 

objective decision.  
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The modelled parameters for users and tasks attributes derived from the analysis 

use both techniques. Furthermore, the proportion of the number of tasks, users, 

server population and task priorities within the trace log were also simulated and 

compared against the empirical data using the absolute error between the 

average output of the simulations and the empirical data. 

The results from the simulation experiments which can be found in [173] 

demonstrate the accuracy of the models derived from the analysis and represent 

the operational characteristics of workload within the Cloud computing 

datacenter. Figure 4.9 illustrates the proportions of Cloud components (users, 

tasks and servers) generated by the simulator contrasted against the empirical 

data from the trace log. By comparing the average simulation outputs, we 

observe that the simulated proportions of Cloud components consistently match 

those from the trace log. Comparing the average simulation outputs with the real 

values, it is possible to observe that simulated proportions of components 

consistently match the proportions of the components in the actual system. 

Furthermore, Table 4.9 presents statistically generated proportions where it can 

be observed that for the generation of users, the average absolute error is 

calculated at 0.39% while for tasks and servers is calculated as 0.62% and 0.04%, 

Table 4.9 Simulation Results for Proportions of Cloud Datacenter Components. 

Component 
Mean 
Sim. 

Std 
Dev. 

Cv 95% CI 
Avg. 
Error 

U1 36.981 2.943 7.958 (34.40,39.56) 0.047 

U2 0.472 0.167 35.355 (0.32,0.61) 0.236 

U3 5.613 0.840 14.974 (4.87,6.34) 0.755 

U4 6.226 1.186 19.053 (5.18,7.26) 0.142 

U5 23.538 1.086 4.614 (22.58,24.49) 0.896 

U6 27.170 3.574 13.156 (24.04,30.30) 0.238 

T1 24.127 1.159 4.803 (23.11,25.14) 0.909 

T2 1.355 0.067 4.945 (1.29,1.41) 0.021 

T3 74.518 1.120 1.503 (73.53,75.50) 0.930 

S1 1.063 0.078 7.364 (0.99,1.13) 0.062 

S2 6.312 0.310 4.912 (6.04,6.58) 0.006 

S3 0.023 0.007 29.881 (0.01,0.03) 0.001 

S4 30.502 0.199 0.651 (30.32,30.6) 0.198 

S5 7.998 0.150 1.872 (7.86,8.12) 0.043 

S6 53.553 0.282 0.527 (53.30,53.8) 0.053 

S7 0.047 0.021 44.821 (0.02,0.06) 0.007 

S8 0.455 0.021 4.597 (0.43,0.47) 0.042 

S9 0.042 0.017 40.000 (0.02,0.05) 0.002 

S10 0.005 0.007 149.071 (0.00,0.01) 0.003 
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respectively. It is also observable that in all the cases the difference between the 

simulated and real system proportions is lower than 1%. 

Furthermore, it is possible to compare simulated and real user and task patterns  

by using the empirical CDF of the real data for each cluster parameter compared 

against the empirical CDF of their simulated outputs. These distributions are 

 

 

Figure 4.9 CDF of task patterns between real and simulated data of task                                                    
execution time (seconds) for (a) CPU (s), (b) memory, (c) length.  
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Figure 4.10 Comparison of proportions of real and simulated data for 
(a) users, (b) tasks, (c) task priority, (d) servers.  
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exemplified in Figures 4.10 and 4.11 with the parameters of U1 and T3, 

respectively representing the largest populations for each element in the trace 

log.  From these figures, it is observable that simulated component patterns are 

consistent with those observed within the real data.  

As discussed in [173], further rigorous statistical testing on the statistical 

significance of the simulation outputs were performed using the p-Value test 

[178] and Mann Whitney [177] in order to compare two non-parametric 

populations and to verify whether the rejections are statistically significant given 

the variances reported, respectively. 

4.6.2 Improvement of CPU Consumption Patterns 

As observed from the distribution analysis discussed in Chapter 4.4.2, there are 

potential disparities between the empirical data and the theoretical 

distributions. This is most observable for Requested CPU and CPU utilization for 

U1 and T1, respectively as shown in Figures 4.3(a) and 4.7(a), potentially leading 

to inaccuracies in simulating system behaviour. This is due to the nature of the 

real operational system behaviour of the system in the event of challenges fitting 

probability distributions of parameters sufficiently using the GoF test. The 

inaccuracies in the CPU utilization patterns observed in T2 and T3 are the result 

 

 

Figure 4.11 CDF of user patterns between real and simulated data for U5                                                 
(a) Requested CPU, (b) Requested memory, (c) Submission rate. 
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of multimodal data distributions. Consequently, this makes fitting such datasets 

to a single theoretical distribution unsuitable and results in a significant gap 

between values found in simulated and real data as observed in Figure 4.10(b). 

To improve the accuracy of our model, we applied “multi-peak histogram 

analysis for region splitting” [181] and fitted the derived dataset sub-regions to 

new parametrical distributions. This is achieved by splitting the data based on 

the lowest points of the different valleys observed within a histogram of the 

parameter of interest. To identify the peaks and valleys of a multimodal dataset 

observed within a histogram, it is smoothed by applying the LOWESS [180] 

(Locally-Weighted Scatterplot Smoother) technique. The derived sub-regions are 

then fitted to new parametrical distributions following the same method 

described in Chapter 4.2.  

Consequently, the CPU utilization patterns of affected clusters are comprised of a 

combination of different distribution families which are sampled by the model 

Table 4.10 Sub-regions distribution fitting to improve CPU utilization for T2 and T3 

Cluster Distributions Parameters Region Proportion 

T2 

Gen. Extreme Value 
 = 0.00593,  =0.00583, 

 = -0.01822c 
22.90% 

3-Parameter 
Lognormal 

  =-2.9072,   =0.20621, 
  =-0.00888 

32.44% 

Gen. Extreme Value 
  = 0.11193,   =0.0242, 

 = -0.20605 
16.10% 

3-Parameter Weibull 
 =1.3318,  =0.05718, 

 =0.16661 
28.56% 

T3 

3-Parameter 
Lognormal 

  =-7.7268,   =0.64993, 
  =-4.9626E-5 

45.34% 

3-Parameter Weibull 
  =0.89629,   =0.00364, 

 =0.00136 
28.21% 

3-Parameter Weibull 
  =1.1097,   =0.0152, 

 =0.01314 
26.45% 

 

 

Figure 4.12 CPU utilization pattern improvement for (a)T2 and (b)T3 
 

(a)            (b) 
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simulator based on the proportional size of the derived sub-regions. The 

distribution parameters as well as the size of the obtained sub-regions are 

presented in Table 4.10. 

The results of this method are illustrated in Figure 4.12 where it is observable 

that split distributions improve the fitting between the simulated and real 

datasets, with the error for execution time reduced from 8.07% to 0.42% and 

from 5.91% to 0.13% for T2 and T3, respectively.  

4.7     Application of Work 

The proposed workload characterization model, analysis results and modelling of 

users and tasks presented in this paper can be used in a number of practical 

scenarios. First, the workload model described in Equations 1 and 2 can be 

extended to include any number of attributes of interest for the research 

objective without alterations to the analysis and modelling presented in Chapter 

4.2. For example, attributes which identify the type of application executed 

(Database, video streaming, storage, etc.), security constraints of task placement 

and execution, and disk and network utilization of a task. Furthermore, the 

proposed method of workload characterization contains a sufficient level of 

generality that it can be applied to Cloud datacenter tracelogs of different 

specifications, as long as the system environment is understood sufficiently to 

create assumptions concerning workload identification. 

Second, the derived validated models can be used by researchers to simulate 

request and consumption patterns considering attributes and patterns 

statistically close to those observed from a production environment. This is 

critical in order to improve resources utilization, reduce energy waste and in 

general terms support the design of accurate forecast mechanisms under 

dynamic conditions to improve the QoS provisioned to users. Two practical 

examples are outlined which use the results derived in this chapter to support 

the design and evaluation of two energy-aware mechanisms for Cloud computing 

environments.  

The first is a resource overallocation mechanism that measures the user resource 

request patterns and the actual resource utilization of tasks submitted by users. 

Taking into account the attributes of requested and utilized resources it is 
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possible to estimate the resource overestimation patterns. From this, it is 

possible to exploit the resource overestimation patterns of each user type in 

order to smartly overallocate resources to the physical servers. This reduces the 

waste produced by frequent overestimations and increases datacenter 

availability and consequently allowing additional VMs in the same computing 

infrastructure, improving its energy-efficiency [174]. 

The second mechanism considers the relationship between VM Interference due 

to contention for resources and energy-efficiency of a server. The proposed 

model reduces the energy waste by exploiting the workload heterogeneity that 

exists in Cloud environments; different types of workload are co-allocated within 

a server based on the level of interference created when deployed together in 

order to improve the energy-efficiency of the datacenter. By considering the 

resource consumption patterns of different types of tasks, we estimate the level 

of interference and decrement in energy-efficiency when tasks are co-located 

within the same physical server. Tasks are characterized by their resource usage 

patterns leveraged from the findings of the analysis presented in this chapter, 

and the current servers’ performance interference level [175]. Using the findings 

of realistic workload characteristics within this chapter, the proposed mechanism 

reduces VM interferences by 27.5% and increases energy-efficiency up to 15% in 

contrast to current state-of-the-art workload allocation mechanisms.  

Both of these above mechanisms leverage the proposed workload model as well 

as the statistical properties and derived models for tasks and user behaviour 

from the presented analysis in order to emulate the user and tasks patterns. For 

the overallocation mechanism, the model integrates the relationship between 

user demand and the actual resource usage - essential in both scenarios where 

the aim is to achieve a balance between resource request and utilization in order 

to reduce resource waste. For the performance-interference, workload 

utilization patterns are exploited when calculating the performance-interference 

between co-located tasks within a physical server, as well as task submission 

rates into the system. 

Another important benefit of our approach is that values of user and task 

attributes are represented as proportions of resources requested or consumed,  

agnostic of underlying hardware characteristics. As a result, the proposed model 
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can be used to evaluate the performance of different datacenter configurations 

in terms of number of servers and their respective specification under the same 

workload conditions.  

Furthermore, the comprehensive analysis at cluster and intra-cluster level, the 

workload model that integrates user and tasks patterns, and the applicability of 

the model independently of the hardware characteristics represent unique 

advances in comparison with the related work previously discussed in Chapter 2. 

In particular, the introduction of user behavioural patterns as well as extensively 

modelling attributes to be used by other researchers. Additionally, the proposed 

model supports the assessment of resource management mechanisms such as 

those recently presented in [176] and [179] with parameters from a large-scale 

production Cloud environment.    

4.8     Summary 

In this chapter, we have presented an in-depth analysis of workload 

characteristics and behavioural patterns within Cloud computing datacenters. 

The method of workload characterization defining key attributes that identify 

and affect user and task behaviour, as well as the clustering used for 

classification is presented. The analysis results are divided into two main 

sections: cluster and intra-cluster analysis. The cluster analysis enable the study 

and characterisation of users and tasks over different observation periods, while 

the intra-cluster analysis allows modelling of users and tasks which can be 

leveraged for practical usage in Cloud research. The results from the cluster and 

intra-cluster analysis quantify the inherit diversity and heterogeneity of workload 

in Cloud computing datacenters, primarily driven by users submitting tasks to 

fulfil different business objectives as hypothesized and stated in Chapter 2.2.2.  

Finally, the results are validated and several practical usages of these results are 

discussed.  

The workload model defines the relationship between users and tasks formally, 

and includes the identified key attributes which have substantial impact on Cloud 

workload behaviour. Furthermore, the method of classification for users and 

tasks using k-means clustering is explained in detail, where the number of k 

clusters is formally determined through their respective attributes in order to 

avoid subjectivity in selecting an optimal number for k. Finally, the sampling 
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process of the trace log, including the selection of additional time periods of 

observation and the assumptions of workload behaviour are explained and 

justified in detail.  

The cluster analysis of classified users and tasks is presented and discussed in 

detail, including the statistical properties and cluster shapes of users and tasks 

across different observational periods. From the analysis it is observable that the 

Cloud computing environment exhibits quantifiably diverse and heterogeneous 

behaviour in terms of user and task characteristics, represented by the variability 

of the number of clusters created and statistical properties that vary temporally 

and spatially over different observation periods. 

The intra-cluster analysis studies and models the internal characteristics and 

distributions of attributes for each defined user and task cluster. These 

distributions are discussed in detail and their respective parameters are 

presented so they can be leveraged by other researchers for evaluation 

mechanisms under realistic Cloud computing environment conditions and 

simulation purposes. This analysis demonstrates further evidence on quantifiable 

heterogeneity of workload within the Cloud, as well as defines the characteristics 

of tasks, which is primarily divided into two types: A large proportion of tasks 

consuming small amount of resources, and a small number of tasks utilization 

large amount of resources. 

An extension to CloudSim is developed to execute a simulation environment that 

uses the models and statistical properties derived from the analysis in order to 

validate their accuracy in comparison to the analyzed trace-log. This validation 

includes the use of a number of techniques include p-value test and Mann-

Whitney which are described in further detail in [173]. Finally, a solution to 

accurately simulation attributes for users and tasks which contain multimodal 

distributions is presented.  

Finally, practical applications of the derived analysis results are described, 

including developing realistic simulation environments of Cloud computing 

datacenters as well as describing two energy-aware resource management 

mechanisms that leverage the results of this work in the domains of 

overallocation and performance interference. 
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5     Server Characteristics  

5.1     Overview      

This chapter presents the method and empirical analysis of server characteristics, 

utilization patterns and resource inefficiencies within a large-scale Cloud 

computing datacenter. The method of extracting and parameterizing the 

resource utilization and inefficiency for servers and the system assumptions 

made when applying the method to the case study trace log are described in 

detail. 

Next, the analysis of resource utilization for servers is presented, in terms of 

different server architecture types and different time periods, respectively. 

Furthermore, we quantify and analyze the resource utilization wasted due to 

Termination Events in order to identify operational inefficiencies within the 

Cloud datacenter. Finally, we discuss the meaning of the results extracted, and 

how they  can be used practically by other researchers. 

5.2     Methodology 

5.2.1     Utilization method 

Resource utilization of individual servers can be calculated by extracting data 

attributes recorded within the trace log related to resource utilization such as 

those presented in Table 3.3 within Chapter 3.2.1. The resource utilization of a 

server can be understood and measured in terms of CPU, memory, disk and 

network usage. For the purpose of the analysis presented, this chapter focuses 

on CPU and memory utilization as a result of data availability discussed in 

Chapter 3.3. 

In the best case scenario, the resource utilization of a server can be extrapolated 

by studying the recorded resource utilization for individual servers over a 

specified time frame, and is represented as the sum of resource utilization 

divided by a defined time frame for individual servers. However, in some 

scenarios, such as the Google Cloud case study, such data may be omitted from 

the trace log. As a result, although some traces may not explicitly provide 

resource utilization of servers, it is possible to calculate the resource utilization 

of servers from the recorded utilization of individual tasks residing within a 
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server in a defined time frame. In other words, the CPU and memory utilization 

of a server can be expressed as the sum of the resource utilization of tasks 

executing within a specific server within a defined time frame.  

Within the context of the Google Cloud trace log, such data are available through 

the use of the "task resource usage" data table presented in Table 3.2 within 

Chapter 3.1.4 and includes recorded timestamps and  resource utilization values 

every 5 minutes. As a result, it is possible to calculate the sum and average 

utilization of specific servers within a defined time frame. Furthermore, due to 

the normalized values of server capacities described in Chapter 3.3, utilization 

values for servers are adjusted in accordance to the proportion to its maximum 

CPU and memory capacity (i.e. a server exhibiting 30% CPU with server capacity 

0.5 is represented as 60% CPU utilization). 

Another aspect of importance of understanding system operation and areas of 

operational inefficiency is quantifying the amount of resource utilization wasted 

per individual servers and server architecture types within Cloud datacenters. 

5.2.2     Resource Utilization Wasted 

Within a Cloud datacenter, it is possible for a task to experience Termination 

Events which result in unsuccessful completion of task execution within a server. 

Such behaviour is explicitly described in the context of the case study trace log 

described in Chapter 3.1.3. This consequently results in work performed by the 

task to be lost, and consequently waste in terms of server resource utilization. A 

Termination Event results in a task to be resubmitted onto a server as shown in 

Figure 3.3 in Chapter 3.1.3. As a result, it is possible to quantify the resource 

utilization of useful work performed by a task to successfully complete, 

contrasted against the total resource utilization to complete a task including 

wasted work due to termination events. In other words, it is possible to quantify 

Task submitted
to server

Wasted work

Termination Event

Full Task

Completed Task

 

 

Useful work

Successful task
completion

 

 

Figure 5.1 Depiction of Full and Completed task within the Cloud datacenter. 
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and compare the total resource utilization of completed tasks and full tasks as 

depicted in Figure 5.1. A completed task is defined as the task duration and 

resource utilization between the most recent task submission event and 

successful execution completion. A full task is defined as the total task duration 

and resource utilization from the first submission of the task into the system until 

successful task completion, inclusive of work performed prior to Termination 

Events.  

Resource utilization waste can be extracted in a number of techniques as long as 

resource utilization of servers, Termination Events and appropriate time stamps 

of events are recorded within a Cloud trace log. Within the context of the Google 

Cloud case study, server utilization waste for CPU and memory is calculated as 

the sum of total computation of completed tasks subtracted from the sum of full 

task computation within a server in a defined time period.  

5.2.3     Research Assumptions for Case Study 

In order to conduct the analysis of the Google trace log, it is necessary to make 

the following assumptions and decisions: 

 Server architectures 2,4,5, and 6 were the focus of the analysis as they 

represent over 98% of the total server population within the trace log 

as shown in Figure 3.8 in Chapter 3.3. Moreover, within these four 

architectures there exist 0.2% of servers which exhibit no task 

resource utilization, which are omitted from the analysis. 

 Due to the uniform usage of Disk for tasks within the trace log 

discussed in Chapter 3.3, the analysis of server resource utilization and 

characteristics is focused on CPU and Memory. 

 Tasks which do not start or finish execution within the trace log 

observation period are not considered, as it is not possible to 

characterize the behaviour of a task without both these values. 

 Four observational periods were selected for the analysis of the trace 

log population, and were selected for a number of reasons. First, it is 

important to analyze system behaviour at different time periods in 

order to identify and investigate behavioural patterns within the 

system. Second, from the coarse-grain analysis discussed in Chapter 

3.3, different days exhibit heterogeneous system behaviour in terms 
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of number of tasks and utilization. As a result, Days 2, 13, 14 and 28 

were selected for analysis. Days 2 and 18 consist of high task 

submission rates and low and average task length, respectively, while 

Days 13 and 14 contain low task submission rates and average task 

length, respectively.  

The remaining sections of this chapter present the analysis results of resource 

utilization and waste of CPU and memory for servers within the Google trace log. 

The method of extracting the statistical parameters and models of the analysis 

presented within this thesis follows the same technique and use of tools as 

discussed in Chapter 3.2.1. 

5.3     Analysis Results 

5.3.1     Resource Utilization 

Figure 5.2 (a-d) and Figure 5.3 (a-d) present the distribution of server CPU and 

memory utilization for servers across four time periods, respectively. It is 

observable that the mean utilization of CPU and memory within the four time 

periods is between approximately 25-45% and around 50% for CPU and memory, 

respectively reflecting similar numbers reported in [157]. This level of server 

utilization could be seen as highly efficient in comparison to other Cloud 

datacenters, which report lower average utilization as discussed in Chapter 2.4.6. 
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Figure 5.2. Distribution of server CPU utilization (a) Day 2, (b) Day 13,                                                    
(c) Day 14, (d) Day 18. 
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The statistical properties of CPU and memory utilization for each server 

architecture type is shown Table 5.1 and depicted in Figures 5.4 and 5.5, 

respectively. From Table 5.1 we can observe a range of average utilization 

patterns across different architecture types, ranging from 28.34 - 55.66% for CPU 

and 31.51 - 50.83% for memory, respectively. Architecture 5, the third largest 

server population within the datacenter, exhibits the highest CPU utilization and 

lowest memory utilization on average across the sampled days, while 

 

Figure 5.3 Memory Utilization of Server Architecture Types 
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Figure 5.4 Distribution of server memory utilization (a) Day 2, (b) Day 13,                                            
(c) Day 14, (d) Day 18.  
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Architecture 4, representing the second largest server population, contains the 

lowest CPU and memory utilization.  Furthermore, we observe that the average 

utilization for architectures 6 and 5 in Days 13 and 14 is approximately 7% and 

12% lower, respectively for CPU compared to Days 2 and 18, while the CPU 

utilization of architectures 4 and 2 remains relatively stable across all time 

periods. This is a result of interest when considering the rates of task 

submissions; Days 2 and 18 contain 2.8 times the amount of tasks submitted in 

comparison to Days 13 and 14, indicating a stronger correlation between task 

submission rate and server utilization for architectures 6 and 5 in comparison to 

architectures 4 and 2. This indicates that within the system, CPU utilization of 

server architectures are strongly influenced by the behaviour of users within the 

Cloud environment presented in Chapter 3.3 and Chapter 4.3.1. In comparison, 

memory utilization for server architectures remains relatively stable for 

architectures across all observation periods, suggesting a loose correlation 

between workload behaviour and memory utilization (as discussed in Chapter 

3.3). This is worth noting, as it is intuitive to assume that all types of resource 

utilization within a server would be strongly correlated to the workload 

environment. 

There are a number of reasons postulated for the above observed and analyzed 

behaviour. First, the utilization levels between 40-60% for servers across the 

system indicate the Cloud environment studied deploys a load balancing 

technique to keep resource utilization levels of servers balanced regardless of 

the behaviour of the Cloud workload submitting into the system environment. 

Second, while tasks may contain constraints which dictate the server 

Table 5.1 Server Architecture Resource Utilization 

Server Arch. 

 

Day 2 Day 13 Day 14 Day 18 Mean St.Dev 

Arch. 2 
CPU 29.18 30.57 31.26 37.52 32.13 3.69 

Memory 32.86 29.49 28.34 35.84 31.63 3.4 

Arch. 4 
CPU 32.86 29.49 28.34 35.84 31.63 3.4 

Memory 50.83 49.31 48.85 50.85 49.96 1.03 

Arch. 5 
CPU 55.66 41.34 41.46 52.9 47.84 7.52 

Memory 39.11 31.55 31.51 34.96 34.28 3.6 

Arch. 6 
CPU 41.55 35.74 35.08 43.94 39.08 4.35 

Memory 49.86 47.05 47.21 49.24 48.34 1.42 
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architecture type required for execution, from our analysis only 5% of tasks 

possess one or more constraints for server architecture allocation. 

5.3.2     Waste resource 

The method described in Chapter 5.2 can be used to allow the identification and 

quantification of computation waste and inefficiency of servers in Cloud 

datacenters. Attention is now drawn to presenting examples of how this method 

can be applied to production systems by using the Google as the case study. 

Figures 5.6(a) and 5.7(a) presents the memory utilization disparity between full 

tasks and completed task utilization for all server architectures 4 and 2 in Day 2, 

respectively. Furthermore, Figure 5.6(b) and 5.7(b) present the utilization 

disparity for CPU within the same server architectures and time frame. It is 

observable that there exists a substantial level of resource utilization disparity 

between full tasks and completed tasks, and that different architecture types 

within the same time frame exhibit different levels of disparity as seen in Table 

5.2. There is a 4.53 - 14.22% and 1.29 - 7.61% resource disparity between full and 

completed tasks for CPU and memory utilization, respectively for different server 

architectures. Furthermore, from these results we can observe that CPU waste 

appears to be more variant compared to memory utilization.  

 

Figure 5.5 CPU Utilization of Server Architecture Types 
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There are two reasons postulated for this resource disparity within the Google 

Cloud. The first is due to the nature of the Cloud scheduler; it is possible for tasks 

currently executing within a server to be evicted due to insufficient server 

capacity or higher priority tasks being scheduled to the server resulting in lower 

priority tasks being evicted. In each of these cases, the eviction of a task results 

 

 

Figure 5.6. Comparison of full and completed tasks in Day 2 for                                                      
(a) Architecture 4 memory, (b) Architecture 4 CPU. 
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Table 5.2 Summary of Day 2 Wasted Resource Utilization  

  
Full Task % Completed Task % Resource 

Disparity 
%  

Server 
Architecture 

Average St. Dev Average St. Dev 

CPU 

2 39.12 8.44 31.26 7.79 7.86 

4 32.86 12.38 28.33 12.49 4.53 

5 55.66 17.24 41.44 15.06 14.22 

6 41.55 14.16 35.08 13.77 6.46 

Memory 

2 51.32 13.39 50.03 13.54 1.29 

4 50.83 13.01 48.84 14.7 1.99 

5 39.11 13.71 31.51 15.13 7.61 

6 49.86 15.71 47.21 17.54 2.66 
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in loss of computation and consequently resource utilization. The second reason 

postulated is the result of the Cloud workload environment being driven by user 

behaviour. Specifically, the characteristics of submission patterns of users can 

have a substantial impact on the type of tasks submitted into the system, which 

influences the resource utilization and subsequently inefficiency. An example of 

such behaviour can be observed as described in Chapters 3.3 and 4.3.1-4.3.2, 

respectively; which shows that specific users can have a strong influence on the 

workload characteristics within the Cloud datacenter, resulting in increased 

evictions and computation wasted. 

5.4     Impact of Server Characteristics and Server Inefficiencies 

 The results presented by using the method described in this chapter exemplify 

and quantify two specific findings which are of importance to the Cloud 

computing research community. The first is the quantification of server 

architecture heterogeneity and resource utilization of a large-scale production 

 
 

 

Figure 5.7 Comparison of full and completed tasks in Day 2 for                                                        
(a) Architecture 2 memory utilization, (b) Architecture 2 CPU utilization  
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Cloud datacenter: It is observable when contrasting the related work in Chapter 

2.4.6 that the average resource utilization of the case study trace log exhibits an 

efficient resource utilization of 40-60% indicating high average utilization for 

servers. Furthermore, it is observable that different server architectures exhibit 

heterogeneous resource utilization patterns due to server capacity and task 

constraints, and that there exists a correlation between resource utilization and 

the number of task submissions. The results presented in this chapter further our 

understanding of server characteristics within Cloud datacenter environments. 

The second and more important finding is that the results presented in this 

chapter offer empirical evidence and quantification of resource inefficiency in 

servers within a Cloud datacenter. Resource utilization waste per server of 4.54% 

- 14.22% and 1.29 - 7.61% per server for CPU and memory, respectively should 

not be overlooked as an insubstantial amount when considering that there are 

potentially thousands of servers exhibiting similar levels of waste. This waste of 

resources translates into economic loss for providers in the form of energy 

consumption, as well as reduced availability of servers. Furthermore, these 

results provides Cloud providers a baseline in order to better understand how 

resources are being utilized by servers, as well as identify the cause of 

operational inefficiency hotspots within servers so they can be corrected. 

5.5     Summary 

This chapter has provided an analysis of server characteristics and resource 

utilization and inefficiency within a production Cloud datacenter. 

The method of calculating resource utilization for individual servers has been 

described in detail and includes the calculation and quantification of server 

computation waste. Finally, the assumptions of the analysis when applying the 

method to the  Google Cloud case study has been discussed. 

The resource utilization analysis is presented and discussed in detail, including 

temporal and spatial analysis of CPU and memory utilization of individual servers 

and server architecture types within the case study trace log. From the analysis, 

it is observable that utilization patterns of server varies between 40-60% by 

server architecture type as well as time frame, and that there exists a correlation 

between the task submissions and server utilization. 
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The analysis of resource inefficiency within Cloud datacenters is presented and 

discussed with results demonstrating that 4.54% - 14.22% and 1.29 - 7.61% of 

CPU and memory, respectively is wasted per individual servers, and that this 

inefficiency varies by server architecture type. Reasons for this behaviour are 

postulated, including behaviour of the resource scheduler, and the workload 

submitted into the system. 

From the analysis of server operational inefficiency, a baseline has been provided 

that demonstrates that it is possible to quantify computation waste within 

servers. The work has shown that it is necessary to investigate and quantify in 

more detail not only focusing on the sources of operational inefficiency within 

Cloud datacenters in terms of resource efficiency, but also failure characteristics 

and energy waste. 
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6 Failure and Failure-related                               

Energy Waste Analysis 

6.1     Overview 

Following the identification of resource inefficiency within servers, this chapter 

presents a more comprehensive study and analysis of the failure characteristics 

and failure-related energy waste of tasks and servers within a large-scale Cloud 

environment. Specifically, this chapter contains two core contributions: 

The first holistic empirical failure analysis of tasks and servers in a Cloud 

datacenter. This includes the temporal and spatial analysis of Termination 

Events, as well as failures and repair characteristics of tasks and servers within 

Cloud datacenters. Moreover, the statistical properties and probability 

distribution of failures are presented and discussed in detail and can be used by 

other researchers to build more realistic assumptions for Cloud system 

operation. 

The first empirical quantification and analysis of energy waste produced by 

failures and Termination Events within Cloud datacenters. This work for the first 

time identifies and quantifies the cause and amount of energy waste produced 

by failures in tasks and servers, as well as analyzes their respective temporal and 

spatial properties of operational waste.  

This chapter also identifies the key parameters of failure and repair times for 

tasks and servers which can be used by other researchers to simulate realistic 

workload and system behaviour. This chapter closes with discussion of the 

practical applications of the findings in this work. 

6.2     Failure Analysis Method 

The method used to extrapolate failures from a trace log can be divided into 

three main steps: event sampling, failure event identification, and failure-energy 

impact analysis. This was done in order to comprehensively conduct the failure-

analysis and quantify failure-related energy waste. 



Chapter 6 121 Failures and  Energy Waste 

  

6.2.1     Event Sampling 

As discussed in Chapter 3.1.1, events recorded in the Google trace log used as 

our case study describe state transition for components within the system. 

Termination Events are used to identify unsuccessful task execution, and are 

composed of three unique events: EVICT (disk failure or scheduler eviction), KILL 

(user or task specified termination) and FAIL (task failure). In the context of 

servers, the REMOVE event indicates when a server has been removed from the 

cluster due to a failure or planned maintenance.  

Events logs are divided into two different failure catalogs; tasks and servers. For 

the analysis it is necessary to calculate the elapsed time between termination 

and time to recovery for both tasks and servers. Elapsed termination time is 

calculated as the time between scheduling and Termination Event occurrence, 

and the elapsed time between ADD and REMOVE events for tasks and servers, 

respectively. Repair time is calculated by the elapsed time between a 

Termination Event and rescheduling, and the elapsed time between REMOVE 

and ADD events for tasks and servers, respectively. These elapsed times are 

calculated based on the timestamps recorded within the event logs, as discussed 

in Chapter 3.1.2 and 3.1.3. 

This study does not consider task terminations and server failures that occur 

outside the trace log observational period, as it is not possible to characterize 

failure and repair times accurately without knowledge of both scheduling and 

termination time for tasks and servers. Inclusion of such data would be likely to 

skew results and modelling of failures. In the context of the Google Cloud trace 

log, this condition predominately excludes task monitoring servers running 

within the Cloud (task priorities 10 and 11) as discussed in Chapter 4.2.4. With 

this assumption, the task catalog consists of over 13,562,457 events, 

representing just over 98% of FAIL events recorded within the trace log. 

6.2.2 Failure Event Identification 

Not all task Termination Events that occur are due to task or server failures. For 

example, EVICT events can be a result of the scheduling policy of the system, 

representing typical system behaviour, or the result of a server hard disk failure. 

Due to this ambiguity, it is not possible to identify task failures solely from the 

previous derived failure catalog. Therefore, it is necessary to define a set of 
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assumptions - supported by observations of system behaviour within the trace 

log, as well as relevant literature - to identify task failure events separate from 

Termination Events. 

Using this approach it was possible to identify two types of failures with occur 

within the system: Server failures and task failures. These failures and their 

respective assumptions derived from the literature and dataset observation are 

shown in Table 6.1. 

Server failures are characterized as software or hardware crash failure; based on 

observations from the data. When a failure occurs, all tasks currently executing 

on the server are subsequently terminated with either the KILL or EVICT event. 

As stated in [157], the server REMOVE event is the result of a server failure, or 

planned maintenance. As a result, it is not possible to distinguish between the 

two. However, from analysis of the Google trace log data the vast majority of 

server REMOVE events occur while there are tasks executing on the server. As a 

result, we classify all REMOVE events as server failures (agnostic of 

maintenance), as the event causes tasks to deviate from correct service. 

Task failures are defined as software crash failures, and are identified and 

filtered from the task event log by tasks which experience a FAIL event. In [157], 

FAIL events have been explicitly defined as the result of a software crash of the 

task. 

Furthermore, it is also possible to identify terminated tasks which are the result 

of server failures. These failures were identified by tasks that were terminated by 

KILL, EVICT or FAIL events whose timestamp occurred within the time period 

between a server REMOVE and ADD event. 

It has been well understood that the root causes of task and server failures might 

be physical, design (typically software), human-machine interaction faults, or 

even malicious attacks, or a combination of each [188]. In reality, transient 

hardware faults, hardware design faults and software bugs often cause similar 

system behaviour [189]. It was decided not to distinguish the root cause of a 

failure for servers due to ambiguities within the case study trace log as discussed 

in this section. However, we are able to filter tasks failures that are resultant of 

hardware or software crashes within servers and software crashes within a task. 
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It must be emphasized that each failure event for servers and tasks may not 

necessarily correspond to a unique failure, and that failure events that are 

temporally close together may be caused by the same failure. This vagueness is a 

result of the lack of precise data concerning failures, even after filtering failure 

events apart from Termination Events. However as stated in previous works 

[113][114][133], it is extremely difficult to identify the root cause as well as the 

duration of a failure. 

6.2.3     Failure Analysis 

The failure analysis presented follows a similar method described in Chapter 

4.2.5, and includes the statistical properties for failure and repair times, including 

the Mean (μ), Standard Deviation (σ) and Squared Coefficient of Variance (Cv). 

Furthermore, we match the closest theoretical distributions applying AD GoF 

tests to obtain the statistical parameters of Mean Time Between Failure (MTBF) 

and Mean Time to Repair (MTTR). To deal with the large amount of records 

Table 6.1 Failure Assumptions 

Failure 
Observation 

Server Failure Task Failure 

Actors Server and Task Task 

Description 
Server experiences a software or 
hardware crash failure. 

Task experiences a software 
crash failure. 

Precondition 

1. Server is operational. 

2. Tasks are eligible for submission 
or currently being executed on 
the server. 

1. Task is currently executing 
on a server 

Post 
Condition 

1. Server event REMOVE occurs. 

2. Tasks currently scheduled on the 
server result in either event 
EVICT or KILL. 

1. Task event FAIL occurs. 

2. Server continues 
operating. 

Dataset 
Observation 

1. After a server experiences a 
REMOVE event, all tasks that 
were scheduled onto the server 
subsequently experience KILL or 
EVICT events microseconds apart 
from each other. 

2. No further tasks are scheduled 
onto the server until it recovers 
and rejoins the system where 
possible. 

1. A portion of tasks within 
the trace log experience a 
FAIL event. 

2. After a finite amount of 
time, the task recovers and 
is rescheduled back onto a 
server. 
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present after extrapolating the data using the analysis infrastructure, Minitab is 

used to efficiently perform a large portion of the analysis.  

In addition, we have evaluated the data against a number of distributions 

including Weibull, Gamma, Loglogistic, Exponential and Lognormal. Lastly, we 

have presented a fit comparison in the form of Empirical Cumulative Distribution 

Functions (CDFs) between the overall system where applicable and priority 9 

tasks, as the latter represent production tasks within the Cloud environment. We 

believe that these tasks are of high relevance and importance to the Cloud 

research community in providing good representations of the distribution of data 

for further research. 

6.2.4     Energy Analysis 

Energy waste is calculated by the energy consumed by a task prior to 

Termination Event occurrence, which is based on the power profile of the server 

where the task executes, and the average CPU load imposed by the task on the 

server. As shown in Table 6.2, and discussed in detail in Chapter 3.3, servers 

within the trace log are heterogeneous in nature and have been grouped into 3 

platforms, each containing different a combination of chipset versions, CPU 

capacity and micro-architecture. Each platform contains one or more 

configurations that vary in memory capacity. 

Table 6.2 Server Mapping from Trace log to Real Systems 

Trace log SpecPower2008 

Server 
Platform 

Server 
Type 

CPU 
Capacity 

Memory 
Capacity 

Server 
Platform 

Server 
Type 

CPU 
Capacity 
(ssjops) 

Memory 
Capacity 
(GB) 

A 1 0.25 0.25 
ProLiant 
DL365 G5 

1 337,543 8 

B 
2 1.00 1.00 PRIMERGY 

RX200 S7 
2 1,338,554 32 

3 1.00 0.50 3 1,338,554 16 

C 

4 0.50 0.25 

1022G-
NTF 

4 793,535 8 

5 0.50 0.75 5 793,535 24 

6 0.50 0.50 6 793,535 16 

7 0.50 0.97 7 793,535 32 

8 0.50 0.12 8 793,535 4 

9 0.50 0.03 9 793,535 1 

10 0.50 0.06 10 793,535 2 
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As discussed in Chapter 4.2.4, the actual characteristics and power profiles of the 

servers under consideration are obfuscated, therefore the best assumption that 

can be made is to match the profiles and characteristics of real datacenter 

servers based on the CPU and memory capacity within the trace log. These 

profiles are considered from the results of the SpecPower2008 Benchmark [182]. 

The profiles presented by SpecPower2008 are preferred over other available 

server benchmarks as the results are obtained following a strict methodology of 

experimentation and monitoring, presented in [182]. Specifically, the selection of 

specific profiles is based on the proportional similarity between obfuscated 

server capacities of CPU and memory, and the specific server configuration 

provided in SpecPower2008 results. This allows us to perform energy calculations 

proportionally similar to those that could be measured directly from the actual 

Cloud datacenters shown in Table 6.2. For example, the ProLiant platform has 

approximately 25% of the CPU and memory capacity of the PRIMERGY platform 

which is proportionally equivalent to Platform A, which has 25% of CPU and 

memory capacity compared to Platform B within the trace log. This 

proportionality of matching server profiles is the same when comparing the 

1002G-NTF and PRIMERGY platforms to platforms B and C.  

According to [183][185], CPU consumes the largest amount of total power 

demand in physical servers in comparison to other resources. Therefore, it is 

assumed that servers which share the same platform exhibit the same power 

profiles, due to sharing identical micro-architecture and CPU capacity. Each 

platform contains a unique power profile which is parameterized using 10 

measurements between 0% and 100% for system utilization, with increments of 

10% and their respective power consumption. Moreover, as stated in [182], 

system utilization is measured by Server Side Java Operations (ssjops), and power 

is measured in watts. The power models of the three platforms described are 

presented in Figure 6.1. 

The described model that connect servers identified in the trace log to specific 

server platforms in accordance with the SpecPower2008 benchmark allows the 

approximation of energy E consumed by specific tasks considering their power 

usage during time execution period t (measured as elapsed time). Power usage P 

and CPU consumption u of a task is estimated by applying linear interpolation 
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between measurements   and    where   is the lowest measurement of 

utilization    and power consumption      , while    and       represents the 

highest measurement of utilization power consumption, respectively. An 

example of this would be to determine the power consumption of a system load 

at 32% between 30-35% for a server platform. The formalization of these 

concepts is presented in Equations 6.1 to 6.3. 

            (9) 

  (10) 

          (11) 

  

Using our scheme, it is possible to calculate the total energy waste calculated for 

tasks and servers. However such energy waste can potentially be reduced when 

considering checkpointing of tasks. However, when consulting the supporting 

literature of the trace log, as well as analyzing and characterizing task and 

resource utilization, we found no evidence of tasks exhibiting the behaviour of 

checkpointing. In addition, Termination Events result in the work performed 

prior to termination to be lost; this behaviour in a subset of tasks is supported in 

[3][160] which states that "a task failure is an interruption on a running task, 

requiring the system to re-execute the interrupted task", indicating that a failure 

results in a task being restarted from the beginning of execution. It is possible to 

assign theoretical checkpointing frequency and overhead time arbitrarily to tasks 
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Figure 6.1  Power models of the selected platforms 
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within the system, however such an approach introduces subjectivity and 

distorts the behaviour of tasks actually observed within the system. 

Furthermore, checkpoint mechanisms themselves consume considerable 

amounts of energy such as memory and HDD logging [186][187]. 

6.3     Failure Analysis  

6.3.1     Termination Events Analysis 

Applying the method described in Chapter 6.2.2 to the Google Cloud trace log, a 

total of 25,927,826 Termination Events are identified, with 52%, 22% and 26% 

corresponding to FAIL, EVICT and KILL events, respectively as depicted in Figure 

6.3(a). It can be observed that the volume and proportion of Termination Events 

occurring varies temporally as shown in Figure 6.2(a), with Days 2 and 10 

experiencing a substantially large volume of Termination Events. The reason for 

this behaviour is postulated in [157] due to a phenomena known as "crash-

loops", caused by tasks deterministically failing shortly after beginning execution, 

yet are subsequently configured to restart shortly after that failure. In addition, a 

 

 

 

 
 

Figure 6.2 Daily Termination Event (a) Occurrence, (b) Energy Waste 
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substantial portion of task failures which occur within these two time periods are 

due to tasks failing and being rescheduled multiple times, resulting in significant 

increase in the amount of work the scheduler performs. 

When contrasting the proportion of energy waste generated by Termination 

Events, FAIL events only contribute 13% in comparison to 48% and 39% for KILL 

and EVICT, respectively as illustrated in Figure 6.3(b). This disparity between 

Termination Events and energy waste indicate two system properties. First, task 

FAIL events mostly occur at a very early stage during execution, reducing overall 

elapsed time and subsequently energy waste. The second is that KILL and EVICT 

events affect more long running tasks, as indicated by a larger proportion of 

energy waste in proportion to the number of Termination Events. As 

demonstrated in Figure 6.2(b), it is observable that daily energy waste generated 

by task failures is more variable compared to KILL and EVICT events, indicating 

that the majority of these events are due to typical scheduler operational 

behaviour, while FAIL events are the result of abnormal system behaviour. 

Table 6.3 General Failure Statistics. 

Total Server Failures 8954 

Number of Servers Failed 5056 

Task Failures 13,572,457 

Unique tasks failed 829,738 

 

 

Figure 6.3 Proportion of Termination Event (a) Occurrence, (b) Energy waste 

(a) (b) 
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Table 6.3 depicts general statistics of failure events within the trace log after 

applying the filtering method described in Chapter 6.2.2. It is observable that 

3.26% of tasks experience one or more failures; this indicates that a relatively 

small amount of unique tasks (3.26% of total tasks) are responsible for a 

significant amount (52%) of failures which occur. This percentage of failure is 

comparable to other distributed systems studied in [115] and [107], where 5-8% 

and 2.4% of jobs failed after an undefined period of execution, respectively. 

6.3.2     Servers 

There are a total of 8,954 server failures which occurred within 5,056 servers as 

depicted in Figure 6.4, and an average of 308 servers failing daily with a standard 

deviation of 101 as depicted in Figure 6.5. It is observable from Figure 6.6 that a 

small proportion of servers experience a high occurrence of failures, and the rest 

experiencing substantially less events in similar proportions. Furthermore, from 

Figure 6.5 we can observe that the proportion of failures be server architecture 

type stays relatively stable agnostic by the number of server failure events daily. 

The statistical properties and probability distributions of the MTBF for server 

architecture populations greater than 1% (representing 99.56% of the total 

server population) are shown in Table 6.4. It is observable that server 

architecture types exhibit similar MTBF between 12.2  - 13.04 days, exhibiting 

low variance reflected by C2 values between 0.24 - 0.44. Furthermore, it is  

noticeable that the best fit distribution for all server architectures is Weibull, 

 

Figure 6.4 Server failures within the observational period 
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depicted in Figure 6.7, conforming to previous analysis findings of server failure 

characteristics [1]. 59,583 tasks failed due to server failures, corresponding to 

21% and 79% for KILL and EVICT events, respectively. These failures represent 

0.44% of the total task failures within the trace log. 

Table 6.5 presents the statistical properties and probability distribution 

characteristics for server repair time. It is observable that the median repair time  

is substantially lower than that of the MTTR, ranging from 0.15-0.28 hours and 

1.48-9.17 hours, respectively. Server repair time was best fit by Lognormal and 

Loglogistic distributions for server architectures across the entire system as 

Table 6.4 Statistical Properties and Model Parameters of Server MTBF 

 
Failure 

Server 
Architecture 

Best Fit 
Distribution 

Parameters 
μ 

(Days) 
σ 

(Days) 
Cv 

1 Weibull 
k = 2.191 

12.239 5.952 0.237 
λ = 12.80 

3 Weibull 
k = 1.463 

12.55 8.28 0.435 
λ = 13.79 

5 Weibull 
k = 1.516 

12.489 7.79 0.389 
λ = 14.01 

7 Weibull 
k = 1.540 

12.71 8.057 0.402 
λ = 13.77 

10 Weibull 
k = 1.641 

13.046 7.784 0.356 
λ = 14.50 

 

 

Figure 6.5 Daily server failures within the observational period 
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depicted in Figure 6.8. From the statistical properties and empirical CDF, it is 

demonstrable that a large quantity of repair time spans a relatively short amount 

of time of under 30 minutes. There are two reasons for this characteristic; Firstly, 

as stated in [157], a portion of REMOVE events are due to maintenance. 

Secondly, we postulate that a large portion of server failures are corrected by 

simply restarting the server. Moreover, it is observable that a small proportion of 

servers require an extended period of time to be repaired, spanning several days. 

This is an indication that the failure within the server is more complicated and is 

not corrected by simply restarting the server, requiring several days for repair.  

Such behaviour is indicated by the high variability of server repair times, 

demonstrated by the long-tail of the CDF as well as the Cv value between 2.28 - 

36.89. 

               Table 6.5 Statistical Properties and Model Parameters of Server MTTR.             

 
Repair 

Server 
Architecture 

Best Fit 
Distribution 

Parameters 
Median 
(Hours) 

μ 
(Hours) 

σ 
(Hours) 

Cv 

1 Lognormal 
μ = -1.620 

0.28 9.17 28.8 9.86 
  = 2.964 

3 Loglogistic 
α = -1.661 

0.24 1.48 8.99 36.89 
β = 0.7326 

5 Loglogistic 
α = -1.249 

0.27 4.81 13.32 7.67 
β = 1.075 

7 Lognormal 
μ = -1.529 

0.19 4.17 17.22 17.05 
  = 2.156 

10 Lognormal 
μ = -1.152 

0.15 8.17 12.33 2.28 
  = 2.125 

 

 
Figure 6.6 Number of failures per server. 
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6.3.3     Tasks 

As per our discussion in Chapter 2.4.7, failure analysis of tasks is crucial in 

characterizing realistic task behaviour. From our analysis, we have discovered the 

following properties: Table 6.6 presents the statistical properties of task failures 

due to software crashes, as well as the best fit probability distribution classified 

by task priority. An attempt was made to fit a theoretical probability distribution 

to task MTBF agnostic of priority, however it was discovered that due to the 

different failure patterns of tasks with different priorities (represented by a Cv 

values of 46, indicating significant variability), it was not possible to feasibly fit 

the data to a distribution visually or by using a GoF test. The reason for this high 

 

Figure 6.7 Empirical CDF of time between failures for server architectures.  

 

Figure 6.8 Empirical CDF of server repair times. 
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variability is the result of the substantially different failure characteristics of tasks 

with different priorities, reflected by a substantially different mean and standard 

deviation for MTBF. When studying the MTBF of each task priority, it can be 

observed that the Cv value is considerably lower than the task MTBF obtained for 

the complete set of tasks, and consequently makes it impossible to successfully 

fit the data to a single probability distribution. It was discovered that different 

task priorities best fit a number of distribution types, ranging from Lognormal, 

Loglogistic and Weibull distribution, that are all right-skewed as shown in Figure 

6.9. Such behaviour further reinforces the observed characteristics of crash-loops 

discussed in Chapter 6.3.1.  

Table 6.6 Statistical Properties and Model Parameters of Task MTBF 

 Failure 

Priority 
Best Fit 

Distribution 
Parameters μ (Hours) σ (Hours) Cv 

0 Weibull 
k = 0.5107 
λ = 0.3342 

1.063 4.925 4.63 

1 Lognormal 
μ = -1.638 
σ = 1.665 

1.694 8.083 4.77 

2 Lognormal 
μ = -0.3489 
σ = 2.152 

3.825 11.836 3.09 

4 Lognormal 
μ = -1.921 
σ = 1.763 

1.019 4.967 4.87 

6 Loglogistic 
α = -3.073 
β = 0.3129 

0.062 0.093 1.50 

8 Loglogistic 
α = -0.2421 
β = 2.154 

48.53 64.190 1.32 

9 Gamma 
k = 0.2215 
λ = 265.1 

58.72 95.030 1.62 

 

 

Figure 6.9 Empirical CDF of time between failure for production tasks. 
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Furthermore, priority 9 tasks, which represent production tasks within the Cloud 

datacenter, exhibit a high MTBF of 59.72 hours and 95.03 hours for mean and 

standard deviation, respectively and consequently a Cv value of 1.61; 

considerably lower in comparison to other task priorities. We observe that 

production tasks best fit a Gamma distribution (Shape parameter 0.22) as 

depicted in Figure 6.10. From the empirical CDF it is observable that there exist 

two types of failure characteristics for tasks; tasks that fail near the beginning of 

execution, and tasks that fail far into their lifespan. For example, Figure 6.10 

demonstrates that out of the 3.26% of tasks which fail within the Cloud 

datacenter, approximately 70% of these tasks fail within the first hour of 

execution, while the remaining 30% of task MTBF ranges between over an hour 

to up to 300 hours, reflected by a larger mean and right-skew within the 

empirical CDF. One of the reasons for this phenomena is user behaviour; there 

exists a single user within the system which submits 65% of total production 

tasks that fail, all of which occur within Day 3 as depicted in Figure 6.2(b), and fail 

just under a minute of execution. Such behaviour is worth highlighting, as Cloud 

environments are driven by user behaviour with varying QoS demands as 

discussed in Chapter 2.2.2 which empirically analyzes user characteristics. As a 

result, there is potential concern in large-scale systems that such user behaviour, 

with correlation between workload, type, system size and complexity, can cause 

failure characteristics within the system and affect other users. 

 

Figure 6.10 Empirical CDF of time between failure for production tasks. 
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Table 6.7 presents the statistical properties of repair times for tasks; there were 

similar challenges in fitting the empirical data to a theoretical distribution both 

visually and using GoF tests holistically over the system. This is due to similar 

challenges as with modelling task MTBF; significant variability of recovery times 

within the system. This is particularly noticeable within lower priority tasks, 

which exhibit Cv values between 112 - 1976. Repair time for higher priority tasks 

(6-9) is more stable, indicated by the lower Cv values, as well as closer median 

and mean values. From Table 6.7 it is observable that similar to task failure 

times, repair times are also heterogeneous, ranging from under 3 seconds to 123 

seconds indicating that restarting tasks appears to correct a large proportion of 

faults. Furthermore, there exists a correlation between the task priority level and 

repair time, indicted by lower priority tasks exhibiting a longer repair time in 

comparison to higher priority tasks. The reason for this is due to the nature of 

the scheduler and the task's function: Lower priority tasks are more likely to be 

delayed for high priority tasks to be allocated to a server within the system. It is 

Table 6.7 Statistical Properties and Model Parameters of Task MTTR. 

 
Repair 

Priority 
Best Fit 

Distribution 
Parameters 

Median 
(Hours) 

μ 
(Seconds) 

σ 
(Seconds) 

Cv 

0 
3-Param 

Loglogistic 

α = 0.9497 
β = 1.115 

T = 0.9822 
2.9 122.9 1472.2 143.5 

1 
3-Param 

Lognormal 

μ = 1.206  
σ = 1.758 
T = 1.049 

4 161 7157 1976 

2 Lognormal 
μ = 1.216 
σ = 1.227 

2 28.7 182.1 40.26 

4 
3-Param 

Loglogistic 

α = 0.0067 
β = 0.6553 
T = 0.9737 

1.91 16.32 173.36 112.8 

6 
3-Param 

Loglogistic 

α =-0.529 β 
= 0.5227 
T = 1.089 

1.67 2.67 4.06 2.31 

8 
3-Param 

Lognormal 

μ = 0.2871 
σ = 2.083 
T = 1.317 

2.44 8.37 14.52 3 

9 
3-Param 

Lognormal 

μ = 0.4904 
σ = 1.274 
T = 1.031 

2.43 4.75 5.77 1.48 
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also assumed that there exists a correlation between the task priority level and 

task criticality from discussion in [156][161], which states that lower priority 

tasks are less developmentally mature, consequently resulting in more frequent 

failure and longer repair times. Lastly, the existence of crash-loops also plays a 

considerable factor in data skewness for repair times within the trace log, 

represented by a low median and a higher mean and standard deviation. 

Figure 6.11(a) and Figure 6.11(b) present the empirical CDF for task repair time 

for all tasks and production tasks within the trace log, respectively. It is 

observable that the Lognormal distribution is the best fit distribution for repair 

times; such findings align to failure-analysis of past distributed systems [1]. In the 

case of Figure 6.11(a) however, this distribution can be misleading due to the AD 

value calculated for the GoF test being unacceptable high, signifying that the 

empirical data significantly deviates from the theoretical distribution. In contrast, 

the AD value calculated for Figure 6.11(b) is hundreds of time lower than that of 

the entire trace, and fits to a 3-Parameter Lognormal distribution that both 

 

 

Figure 6.11 Empirical CDF of repair times for a) All tasks, b) Production tasks 

(a) 

(b) 
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Figure 6.12 Task energy waste per priority. 

visually fits and satisfies GoF tests. In comparison, the distributions Gamma and 

Weibull are poorer fits for system wide and task priority agonist repair times.  

As observed from the analysis, it is demonstrable that tasks and servers exhibit 

diverse failure and repair characteristics which are capable of being modelled. 

Attention is now drawn to their impact on the energy waste of the system due to 

these failure characteristics. 

6.4     Failure-related Energy 

6.4.1     Task Failure Energy Waste 

Figure 6.12 presents a comparison of the number of failure events per task 

priority and their respective energy waste. It is noticeable that although priority 

0 task failures occur in 80% of cases and produce just under 50% of the total 

energy waste within the system, there is a weak correlation between the number 

of failure occurrences and waste produced represented as 0.412 on the Pearson 

scale. This is the result of the significant variability in the MTBF of tasks: as 

discussed previously, the vast majority of tasks fail near the start of their 

execution while a few larger tasks fail much later into their lifecycle; generating 

small and large amounts of energy waste, respectively.  

Furthermore, it is observable that priority 8 and 9 tasks proportionally waste a 

large amount of energy in comparison to the number of task failures. This is a 

result of the failure characteristics of these tasks, which exhibit a large MTBF as 
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shown in Figure 6.10, resulting in a large amount of energy waste due to 

computation lost upon failure. 

In terms of task-user ownership, it was discovered that 10 users within the trace 

log constitute to 91% of the total task failures within the system and are the 

prime contributors to the crash-loops generated on Days 2 and 10 as depicted in 

Figure 6.13. It is interesting to note that while User 1 is responsible for the 

largest number of task failures at 42%, this only translates into approximately 2% 

total energy waste. This is in contrast to User 2, where 37% of task failures occur 

resulting in 47% of the energy waste. The reason for this large disparity between 

the characteristics of these two users is due to the nature of the tasks each user 

submits; User 2 submits tasks of higher priority which execute for longer periods 

of time across the system, while User 1 predominately submits priority 0 tasks 

within the crash-loop time periods. Furthermore we observe that there is a 

strong correlation between the number of failure events and energy wasted, 

measured at 0.645 on the Pearson scale.  

6.4.2 Server Failure Energy Waste 

As discussed in Chapter 6.3.1, server failures resulted in 59,583 task failures, with 

21% and 79% of the events corresponding to KILL and EVICT, respectively. This 

has a considerable impact on the energy waste proportionally when filtered from 

the total proportion of system energy waste presented in Figure 6.3 as displayed 

in Table 6.8. 

 

Figure 6.13 Task energy waste per user. 
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As observed in Table 6.8, although the number of task failures due to server 

failure represent less than 1% of the total number of EVICT and KILL events 

within the system, they proportionally produce significant amount of energy 

wasted in matters of 10.90% and 6.58% for EVICT and KILL, respectively. 

Additionally, Figure 6.14(a) presents a temporal analysis of daily energy waste 

produced by server failures within the Cloud datacenter, where it can be 

observed that although the energy waste produced by server failures varies 

considerably, the proportion of EVICT and KILL events remains stable at 

approximately 60% and 40%. Furthermore, it is noticeable that there is an 

incremental tendency of energy-waste across the days, suggesting that server 

failures affect a large number of long duration tasks. Therefore, the longer a task 

has been running, the greater the impact that an eviction or killing has in terms 

of energy waste.  

Furthermore, there is a weak positive correlation between the number of server 

failures and total energy waste (measure as 0.579 on the Pearson scale). There 

also appears to be a visual correlation between these two variables when 

examining the proportion of server architecture types as shown in Figures 6.5 

and 6.14(b). Statistically, server types 1, 7 and 10 exhibit a stronger correlation  

between 0.702 - 0.922 while server types 3 and 5 range between 0.268 - 0.431.  

 

 

Figure 6.14 Energy waste due to server failure  a) Events, b) Server architecture. 

(a) 

(b) 



Chapter 6 140 Failures and  Energy Waste 

  

Figure 6.15 depicts the number of task termination events which occur upon 

server failure compared with the total energy wasted within the trace log. Here it 

is observable that up to 27% of failed tasks correspond to priority 9, 

characterized as long running production tasks, which are responsible for a 

significant amount of energy waste produced by servers (up to 65%). 

 From these observations, a strong correlation between server failures and the 

termination of priority 9 tasks, causing increased energy waste across the 

analyzed days in the trace log, can be depicted. This is also indicated by a 

Pearson scale value of 0.92. 

 

Figure 6.15 Energy waste due to server failure per priority. 

Table 6.8 Server Failure Energy Waste 

 
Number of 

Events 
Event 

Proportion % 

Energy 
Wasted 
KWatts - 

Hours 

Energy 
Proportion % 

Total EVICT 5,711,417 100.00 355,047 100.00 

EVICT by 
Server 
Failures 

47,234 0.82 38,700 10.90 

EVICT by 
scheduling 

5,664,183 99.18 415,991 89.10 

Total KILL 6,608,916 100.00 427,476 100.00 

KILL by Server 
Failures 

12,349 0.19 28,190 6.58 

KILL by user 6,596,567 99.81 399,072 93.42 
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Within their lifecycle, individual servers experience an average 1.63 failures with 

a standard deviation of 2.68, which is an indication that the majority of servers 

share similar probability of failure occurring over their lifetimes. Moreover, there 

are a minority of servers which experience 10 or more failures, with a maximum 

value of 165. In broader terms, the top 10 servers (representing 0.2% of the 

failed server population) contribute 7.17% of the total server failures, and 

consequently are responsible for 5% of total task failures due to server failures. 

This behaviour contrasts with work reported in [14], which observed that a small 

minority of servers incurred a larger proportion of failures at 70%. Figure 6.16(a) 

and 6.16(b) show the 3006 tasks that failed due to server failures in the nine 

servers which experienced the most failures, and their corresponding energy 

waste, respectively. It is observable that server 7, which experiences 13 failures, 

contained the lowest proportion of energy waste. We postulate the reason for 

this result is that although the server is logged by the system as recovered, it 

continues to exhibit incorrect service. While this behaviour reduces the 

 

 

Figure 6.16 Top nine failed nodes (a) Failed tasks, (b) Energy waste. 

 

(a) 

(b) 
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availability of the system, it does not result in a significant negative impact of 

energy waste within the system.  

In contrast, server 2 experienced 23 failures and a significantly larger proportion 

of energy wasted of up to 32 KWatts-Hours. This is a result of the larger temporal 

distance between server failures, allowing tasks to execute more work prior to 

failures. This is particularly noticeable for tasks with longer execution times - 

priority 9 tasks which are production tasks that only compose a small proportion 

of the total scheduled tasks as shown in Figure 3.6 in Chapter 3.3, but represent 

a significant proportion of the total energy wasted due to server failures. We can 

observe from this behaviour that a small proportion of tasks with high priority 

result in a proportionally higher waste of energy consumption due to server 

failures.  

6.5 Energy Waste Impact on the System  

Figures 6.17(a) and 6.17(b) depict the number of failure events and the energy 

waste due to task failures over the trace log time span, respectively. It is 

observable that up to 80% of failures are priority 0 task failures. This is inflated 

by a number of days that experience a substantial number of FAIL events. Such 

behaviour is clearly produced by the activity of specific users presented in Figure 

6.13 that not only submit a large number of tasks, but also introduce a large 

number of task resubmissions which fail repeatedly resulting in crash-loops. 

When omitting the influence of these users, the number of events and their 

respective energy waste produced by failures on Priority 0 tasks is very similar to 

other days, even lower than Priority 9 which produces proportionally more 

energy waste. 

By filtering the energy waste produced by EVICT and KILL events due to server 

failures from energy waste produced by all task FAIL events, tasks and servers 

contribute 13% and 8% of the total Termination Event energy waste, respectively 

as shown in Figure 6.18. This translates to 9.91% and 6.10% in the context of the 

total energy consumption of the datacenter, which includes energy consumption 

of server operation and successful task execution. This represents a significant 

amount of energy waste within a Cloud datacenter and identifies an important 

point of improvement that can lead to reducing operational costs while 



Chapter 6 143 Failures and  Energy Waste 

  

maintaining provisioned QoS. For example, by minimizing the impact of server 

failures on long running tasks it is possible to reduce energy waste by up to 8%. 

Within this context, the application of mechanisms such as those presented in [2] 

for checkpointing can be applied in order to maintain the progress of long 

running tasks and reduce the amount of repeated computation. 

However, in the case of task FAIL events, the use of checkpointing may by an 

ineffective measure and in some cases increase the amount of energy waste due 

to the high frequency of failure occurrence in lower priority tasks. In this case, 

improved policies to avoid highly recurrent resubmissions such as those 

described in [123] could reduce the proportion of Termination Event energy 

waste by up to 13%. 

From the analysis, there are two well defined scenarios where system failures 

result in a substantial negative impact on the system environment. The first is 

task failures that affect low priority tasks in 80% of cases, with a MTBF of 

approximately 0.97 hours; this is predominately driven by 10 users whose tasks 

 

 

 

Figure 6.17 Daily task failure (a) Number of events (b) Energy Waste. 

 

(a) 

(b) 
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represent 90% of the total FAIL events in the environment due to crash-loops, 

which occur during days 2 and 10. The second involves task termination due to 

server failures, affecting 30% of tasks with high priority and a MTBF of 58.72 

hours. This scenario is driven by hardware and software failures of servers 

uniformly distributed according to the size of their population. This indicates that 

not one of the server types within the trace log fails more frequently than the 

others in proportion to their respective population. 

6.6.      Summary and Application of Analysis 

Although the results obtained in this analysis using the method described in 

Chapter 6.2 are specific to the studied environment, the findings of this work can 

be used as a baseline for analysis of similar practical systems. Researchers and 

practitioners can use the derived observations and conclusions to develop, 

       

 

Figure 6.18 Energy waste of trace log (a) TEs, (b) TEs and failure events breakdown. 

(a) 

(b) 
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enhance and evaluate energy-aware dependable mechanisms as well as identify 

specific scenarios when and where failures have a significant impact on the 

energy waste within the system. The results of this analysis and how they can be 

applied are stated in the following paragraphs: 

Provide failure and repair model parameters derived from empirical data to 

understand realistic system operation. The results presented can be used by 

other researchers to support realistic assumptions for failures within large-scale 

Cloud datacenters. Furthermore, the statistical properties and model parameters 

for failure and repair times can be leveraged to develop simulation environments 

that reflect realistic operational conditions, which can greatly assist in simulating 

realistic behaviour of Cloud workload by either introducing failure parameters or 

enhancing Cloud workload behaviour that currently depend on theoretical 

parameters and assumptions for failure characteristics. 

Improve the effectiveness of developing and evaluating energy-aware 

dependable mechanisms. To give a practical example, failure-aware scheduling 

[96][107] focuses on developing more effective resource management in order 

to increase task reliability and system availability. Current mechanisms focus on 

improving the availability, reliability and performance of the system and do not 

consider energy-efficiency; an increasingly important factor in large-scale 

systems. As demonstrated in the analysis, unique server platforms exhibit 

different energy profiles at the same system load, which may result in a failure-

aware scheduler to place tasks onto a server with lower capacity but is more 

energy-inefficient. As a result, it is possible to develop a failure-aware scheduling 

algorithm that selects servers for task allocation which provides a balance 

between optimal server reliability and energy-efficiency task execution. The work 

presented within this study can be leveraged in order to evaluate the 

effectiveness of such a mechanism and quantify the improvements in energy-

efficiency based on empirical data as opposed to relying on theoretical values for 

energy-waste of software and hardware in large-scale systems. 

 In addition, the findings presented in this work can be applied in the following 

ways: 
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To support and adjust the claims of failure energy-aware mechanisms according 

to the characteristics of a real environment. Although existing theoretical 

analyses remark that significant energy waste is produced by failures, and 

propose elaborated mechanisms to address this problem, they do not present or 

discuss any insight into the actual amount of energy waste based on empirical 

findings. In fact, the claimed improvements against quantified waste in real 

operational scenarios when deploying energy-aware mechanisms are never 

contrasted, limiting their effectiveness. 

Assist practitioners from similar system environments to decide the appropriate 

dependability mechanisms and when to apply them in order to maximize 

effectiveness. As discussed in Chapter 2.3.3, failures within large-scale systems 

are the norm rather than the exception, resulting in Cloud providers needing to 

decide what type of faults they should invest time and resources in correcting 

when considering their impact on system dependability, provisioned QoS, energy 

waste and development cost. For example, the work in [190] states that there 

are a number of limitations in applying fault-tolerant run-time techniques such as 

checkpointing, due to their potential to not only introduce high overhead, but 

more importantly difficulty in deciding when and where to apply such 

mechanisms effectively. The results presented in this work provide quantified 

dimensions for Cloud failures and energy waste which can be leveraged when 

making decisions to deploy a mechanism such as checkpointing, as well as 

deciding what type of workload to apply checkpointing. 

To delimitate the energy waste produced by the “normal” operational 

inefficiencies and those introduced by task and server failures. Understanding the 

causes and characteristics of these inefficiencies can assist in identifying the 

most effective course of action to reduce their negative impact on the system.  

Understanding the sources and dimensions of these inefficiencies helps to identify 

the most effective courses of action to reduce their negative impact. From the 

studied environment it is noticeable that although failures introduce close to 

21% of the total energy waste, 79% of energy waste is introduced by scheduling 

operations such as KILL and EVICT. Such findings are critical in future research 

areas which aim to realistically model large-scale system environments [191]. 
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6.7     Summary 

This chapter has presented an in-depth failure analysis and failure related energy 

of a large-scale production Cloud computing datacenter. As outlined in the 

overview, this has provided: 

 The first holistic empirical failure analysis of tasks and servers in Cloud 

datacenters. 

 The first empirical quantification and analysis of energy waste produced 

by failures and termination events within Cloud datacenters. 

The method of filtering and identifying failures for both tasks and servers based 

on supporting relevant literature and data observations from the trace log has 

been presented and discussed in detail. Furthermore, the energy profiles for 

unique server platforms at different levels of resource utilized are discussed. The 

analysis has been primarily divided into two sections: failure analysis and failure-

related analysis. 

The failure analysis focuses on coarse-grain statistics of Termination Events 

within the system, as well as analyzing the statistical properties and probability 

distribution modelling of task and server MTBF and MTTR both temporally and 

spatially. From the analysis it is observable that tasks and servers exhibit varying 

degrees of failure characteristics by task priority and server architecture type, 

respectively. Furthermore, there are predominantly two specific types of failure 

characteristics identified: tasks of low priority which fail early into their lifespan 

and are repeatedly rescheduled forming crash-loops, and higher priority tasks 

which fail later into their lifespan. 

The failure-related energy analysis focuses presents the temporal and spatial 

properties of energy waste generated by server and task failures. This specifically 

includes the analysis of the temporal and spatial characteristics of energy waste 

due to server and tasks failures. This analysis demonstrates that there are two 

specific scenarios for energy waste within the Cloud datacenter; frequent task 

failures in low priority tasks and server failures affecting longer running 

production tasks resulting in 13% and 8% energy waste, respectively. 

Furthermore, it demonstrates that energy waste can be produced under a 
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number of different conditions and scenarios including user behaviour, server 

architecture and task priority type. 

Finally, this chapter has discussed the application of the work. Specifically, how 

the findings in this chapter can be leveraged by researchers in order to enhance 

understanding inefficiencies in system operation, developing realistic Cloud 

environment simulation and improving energy-aware dependable resource 

management. 

The final chapter of this thesis presents the conclusions of this research and 

discusses future work directions. 
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7    Conclusion and Future Work 

7.1     Summary 

The work in this thesis presents the empirical analysis and characterization of a 

large-scale Cloud computing datacenter. The need for analytics of large-scale 

Cloud systems, and their benefits for enhancing research and technical operation 

within the Cloud computing domain are discussed in detail. Specifically, this work 

for the first time presents a holistic analysis and method to characterise 

components within the Cloud computing environment including users, tasks, 

servers, failures and its respective energy waste. These analyses are leveraged 

for practical usage, including providing distribution parameters for accurate 

simulation of Cloud environments, quantifiable impact of operational inefficiency 

within production systems, and have been used to enhance energy-efficient 

resource management mechanisms. 

Chapter 2 introduces the concept of the system environment and its respective 

components, as well as the evolution of the modern distributed system to Cloud 

computing. The concept and taxonomy of Cloud computing is presented in detail, 

including identified characteristics, actors, deployment models and service 

models. The concept of dependability, and how it can be used to enhance Cloud 

computing research is explored and discussed in detail. It is shown that while 

Cloud fault-tolerance is an active research area, there is a challenge in evaluating 

its effectiveness as current Cloud datacenter assumptions rely on theoretical, 

small-scale or non-Cloud systems for experiment parameters. 

Next, the concept of system analytics and how it can be used to enhance Cloud 

computing research is demonstrated. The current state-of-the-art in analytics for 

Cloud components are presented and discussed in detail, and current gaps in the 

literature are identified. Finally, the importance and applicability of Cloud 

analytics is presented, including a discussion on how it can be used to enhance 

Cloud technical and commercial operation. From this chapter it is demonstrated 

that there exist a number of gaps within holistic Cloud datacenter analytics, 

including lack of user characterization in workload models, large-scale empirical 

failure analysis and quantifying the impact of failures on energy waste. 
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Chapter 3 presents the case study trace log of a production Cloud datacenter. 

This chapter includes the description of the system, the life cycle of tasks and 

servers, and attributes including resource utilization, and events of Cloud 

components within the system. Additionally the analysis infrastructure - 

composed of a cluster of machines running Apache MapReduce and HIVE - used 

to extract the large volume of data in a timely manner is presented and detailed. 

This chapter concludes by presenting and discussing the statistical properties and 

coarse-grain statistics of high level operation of the Cloud datacenter; presenting 

an overview of provisional evidence of heterogeneity in terms of users, tasks and 

server behaviour and characteristics. 

Chapter 4 presents a method and in-depth analysis of workload behavioural 

patterns and characteristics within Cloud computing datacenters. The workload 

model which defines the relationship between users and tasks, and their 

respective key attributes are defined and explained in detail. The subsequent 

empirical analysis when applying the method to the Cloud datacenter case study 

quantifies the large degree of heterogeneity in user and task behaviour spatially 

and temporally. This heterogeneity is quantified in terms of resource estimation 

and submission patterns, as well as resource utilization and execution length for 

users and tasks, respectively. Furthermore, this chapter presents detailed 

probability distribution analysis of users and tasks, and extracts their respective 

parameters for other researchers to leverage in their own experiments. These 

distribution models are implemented in CloudSim, a popular Cloud computing 

simulation framework, in order to statistically validate their accuracy compared 

to the empirical data. Finally, this chapter discusses practical uses of the analysis 

presented in this chapter, presenting two concrete mechanisms within the 

domain of energy-efficient resource management - overallocation and 

performance interference. 

Chapter 5 presents an empirical analysis of server characteristics within the 

Cloud datacenter case study, including resource utilization and inefficiency 

patterns. The method of extracting resource utilization per server, as well as 

quantifying the amount of resource utilization wasted due to Termination Events 

is detailed. Results indicate server resource utilization is between approximately 

25% - 45% and 50% for CPU and memory, respectively: with this utilization 
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varying by server architecture type, as well as temporal patterns due to user 

submission patterns discussed in Chapters 2 and 4. Furthermore, our analysis 

results demonstrate that 4.54% - 14.22% and 1.29% - 7.61% of CPU and memory, 

respectively is wasted per individual server, with this inefficiency varying by 

server architecture type. The reasons for this behaviour are postulated to be due 

to the behaviour of the resource scheduler, as well as the type of the workload 

submitted into the system. 

Chapter 6 presents an empirical analysis of failure and failure-related energy 

waste within a large-scale Cloud production environment. The method of 

identifying and filtering failures of tasks and servers is detailed, supported by the 

relevant literature and data observations from the case study trace log and past 

failure analysis of distributed systems. Furthermore, the profiles of server 

architectures and their respective energy profiles are defined and discussed in 

detail in order to quantify the total energy waste generated due to failures and 

Termination Events within the Cloud datacenter. Analysis results demonstrate 

that the failure and repair characteristics of tasks and servers can manifest in a 

number of conditions, and that the failure characteristics of tasks can be 

identified: tasks of low priority fail early within their lifespan due to repeating 

failure loops, and higher running tasks fail later in their lifespan. Furthermore, 

our analysis results show that energy waste is generated from two concrete 

conditions: frequent task failure of low priority tasks, and server failures affecting 

higher priority tasks which run for longer, resulting in 13% and 8% energy waste, 

respectively. Finally, this chapter discusses the application of this work, including 

the significance of these results and its potential for enhancing energy-aware 

dependable resource mechanisms. 

7.2     Research Contributions 

The identification of in-depth analysis of operational traces from Cloud 

computing datacenters as an effective means to comprehensively understand 

system behaviour and enhance system assumptions of Cloud research. There is a 

critical need for comprehensive and holistic analysis of Cloud computing 

datacenters in order to enhance our understanding of system characteristics and 

behaviour, as well as to validate and provide realistic system assumptions for 

Cloud datacenter environments. A large body of Cloud computing research 
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currently depend on theoretical values, non-Cloud systems or test beds for 

constructing research assumptions which may not accurately reflect realistic 

operation behaviour and characteristics. This thesis provides a detailed 

discussion of why analytics are a critical requirement in Cloud computing 

research, and presents the practical advantages of such results for research and 

commercial problems. 

A solution to the challenges of analyzing large-scale Cloud environments to 

obtain meaningful results and identify relationships between components within 

the system. Analysing large-scale Cloud environment is challenging due to the 

volume of data generated by the system, complex relationships and interactions 

between these components, and the requirement of expert domain knowledge 

of Cloud computing and datacenter operation. The work within this thesis 

provides a framework for comprehensively models the relationship and 

interactions of Cloud components as well as the life cycle of servers and tasks 

within the datacenter. 

An empirical analysis of Cloud datasets to study and model realistic user 

behaviour, task classification, Cloud utilization models and failure characteristics 

and models. There is a critical need to empirically study real Cloud computing 

datacenters in order to quantify system behaviour, as well as provide parameters 

which can be used practically by researchers and Cloud providers. This thesis 

comprehensively analyzes and model key Cloud components of workload, 

servers, failures and their respective energy waste. From the results it is possible 

to observe that there exists substantially heterogeneous behaviour and 

characteristics in terms of user submission and resource estimation patterns, 

task execution length and resource utilization, and task MTBF and MTTR. 

Additionally, this thesis provides the distribution parameters of workload and 

failures to be used for the construction of realistic simulation environments, and 

can be applied to enhance the practicality of energy-efficiency resource 

management techniques. 

The study and quantification of operational inefficiencies within Cloud 

environment. This work for the first time quantifies the amount of resource and 

energy wasted due to Termination Events and failures within a large-scale 

production Cloud computing datacenter. Our results demonstrate that the 
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resource inefficiency of individual server varies per server architecture type, 

ranging between 4.54 - 14.22% and 1.29 - 7.61% for CPU and memory, 

respectively due to the behaviour of the resource scheduler and task failures. 

Furthermore, the analysis demonstrates two scenarios for energy waste; 

frequent task failures in low priority tasks and server failures affecting longer 

running tasks resulting in energy waste of 13% and 8%, respectively. These 

results demonstrate that inefficiencies can be produced under a number of 

conditions due to user, server and task behaviour, and highlight well defined 

areas of improvement for Cloud datacenters. 

7.3     Overall Research Evaluation 

The four research objectives of this thesis are discussed in Chapter 1. The success 

criteria of this research in relation to achieving the proposed research objectives 

are listed as follows: 

i) To enable a more thorough understanding of the issues in accurately 

modelling Cloud computing environments and comprehensively study 

how Cloud behavioural characteristics impact the system. This thesis has 

explored and discussed the challenges in accurately characterizing and 

modelling the Cloud environment, and has quantified the key 

characteristics which impact the system environment.  Chapter 4 has 

demonstrating that tasks exhibit a large degree of heterogeneity in terms 

of resource utilization and execution length due to the behavioural 

patterns of different user types, and that it is possible to model and 

simulate their behaviour. Chapters 5 and 6 has identified and quantified 

the scenarios where server resource inefficiency and failure-related 

energy waste primarily occur within a Cloud datacenter, respectively. 

ii) To provide an in-depth method of holistic analysis for real Cloud datasets 

to study and model Cloud behaviour. This thesis presents a detailed 

method of analysis for each of the key components within Cloud 

datacenters for workload characterization, quantification of server 

utilization and inefficiencies, failure identification and the quantification 

of failure-related energy waste. The derived methods have been 

abstracted to a level where they can be applied to a numerous Cloud 

datacenter trace logs, agnostic of its schema and format. 
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iii) Empirical analysis and modelling of large-scale Cloud computing 

behavioural patterns and characteristics. This thesis has presented a 

comprehensive empirical analysis of a Cloud datacenter, including the 

quantification and modelling of its respective components including 

workload, servers, failures and failure-related energy waste. The 

practical uses of the analysis results and modelling have been provided 

and discussed, and realistic simulation models and enhanced energy-

efficiency resource management mechanisms are demonstrated. 

iv) To identify and quantify operational inefficiency in terms of wasted 

resource utilization and energy waste due to failures within large-scale 

Cloud environments. Through the use of the developed analysis method 

detailed in this thesis, it is possible to quantify operational waste within 

Cloud datacenters in terms of resource utilization and energy waste due 

to failures. Furthermore, the analysis has identified the causes and 

scenarios where operation waste is generated, providing datacenter 

providers and researchers empirical and quantifiable points of 

improvement when applying resource management mechanisms. 

In summary, it can be observed that all four main research objectives have been 

successfully completed. 

7.4     Future Work 

There are a several ways that the work presented in this thesis could be 

enhanced as well as number of future research areas of opportunity which build 

upon the foundation of this research. They are summarized as follows:  

7.4.1     Dataset 

Analysis of additional Cloud datacenter trace logs. Although the selected case 

study trace log for applying the analysis methods provides an extensive system-

scale and time frame in comparison to current state-of-the-art Cloud 

datacenters, there are limitations in abstracting the findings of the system to the 

general behaviour of Cloud datacenters. This is particularly true when 

quantifying specific elements such as total energy consumption, number of 

users, types of applications, etc. Future work should include applying the 
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methods described in this thesis with a number of different Cloud datacenter 

trace logs, in order to validate a more generic model of Cloud datacenters. 

Analysis of non-obfuscated server attributes for Cloud datacenter trace logs. A 

number of strong assumptions were made within the thesis due to the 

obfuscation of attributes within the case study trace log, predominantly focused 

on the physical characteristics of servers which are represented as normalized 

resource capacities and obfuscated platform architecture as discussed in 

Chapters 3.3. While it was possible to take values from the SpecPower 

Benchmark and match similar servers based on the similarities of characteristics, 

it would be much more effective to work with the direct type of servers within 

the case study trace log. This will result in deriving more accurate energy models 

and resource utilization of servers and tasks within the Cloud datacenter. 

More detailed failure logs of Cloud datacenter trace logs. Due to the nature of 

the case study trace log, it was necessary to identify task and server failures by 

using the failure identification method presented in Chapter 6.2. Unfortunately, 

there is a lack of detailed information pertaining to diagnosing the cause of 

failures within tasks or servers, which are only represented at a coarse-grain level 

as discussed in Chapter 3.1. Future analysis of trace logs which include failure 

logs that provide detail of the specific component which has failed would greatly 

enhance diagnosing the cause of failures within Cloud datacenters. 

7.4.2     Analysis Extension 

The analysis presented within this thesis could be extended to explore a number 

of additional system characteristics. 

Extension of workload models inclusive of job behaviour, and inclusion of task 

constraints based on server characteristics. As stated in Chapter 4.2.4, analyzing 

tasks instead of job behaviour was selected due to tasks representing the most 

fine grained characteristic of workload. It is possible for tasks to be grouped 

together within a single job belonging to a user; as a result, future work involves 

applying the described workload analysis method to study job characteristics and 

behaviour when contrasted against tasks. Furthermore, the workload model 

does not include the scheduling constraints of tasks onto servers, which can also 

be included to study their behaviour in comparison to non-constrained tasks. 
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Analysis of failure correlation within Cloud datacenters. As described in Chapter 

2.3.1, it is possible for failures to be correlated, and to cause a fault-error-failure 

chain which cascades through the system environment. In this work, an 

assumption was made that all failures are unique and there is no explicit 

correlation between components as described in Chapter 6.2.2. This is due to the 

challenges identified in the current failure analysis literature when identifying 

failures which are temporally close together, as well as lacking sufficient time 

and resources to comprehensively explore failure correlation events. As a result, 

future work within this area should include dedicating more time to attempting 

to identify unique failure events and correlations and their consequent impact on 

failure-related energy waste. 

7.4.3     Development of Cloud Mechanisms 

This results presented within this thesis have already been implemented in a 

number of mechanisms including simulation environments and energy-efficient 

resource management mechanisms discussed in Chapter 4.7. However, there are 

a number of opportunities to further validate the effectiveness of the derived 

results by the following: 

Actual physical prototyping and experimentation of the described fault-tolerant 

mechanisms. Chapter 6.6 describes how the results of the failure and failure-

related energy analysis can be used in order to create checkpointing and failure-

aware scheduling mechanisms. The next step of this research would be to 

develop an implementation to be deployed within real systems for 

experimentation to study their effectiveness when compared against the current 

state-of-the-art. A practical example is the work in [47] which injects faults into 

two physical Cloud systems in order to evaluate their tolerance to Byzantine 

faults; such work would be greatly enhanced by using the results extrapolated in 

this thesis when calculating the MTBF and MTTR of the Cloud components within 

each system. 

Integrate all derived simulation parameters into a holistic Cloud simulation 

framework. Chapter 4.6 described the results of the integration of workload and 

server parameters into the CloudSim framework. However, in order to build 

more realistic and holistic Cloud simulations, it is necessary to include additional 

behavioural characteristics of workloads and servers, including simulation MTBF 
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and MTTR, as well as quantifying the energy consumption of system operation. 

This would allow further realism of simulating Cloud datacenters, as well as 

studying the impact of applying developed mechanisms on the system 

environment in terms of performance, energy and dependability. 
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