345 research outputs found

    Head to head: Semantic similarity of multi-word terms

    Get PDF
    Terms are linguistic signifiers of domain–specific concepts. Semantic similarity between terms refers to the corresponding distance in the conceptual space. In this study, we use lexico–syntactic information to define a vector space representation in which cosine similarity closely approximates semantic similarity between the corresponding terms. Given a multi–word term, each word is weighed in terms of its defining properties. In this context, the head noun is given the highest weight. Other words are weighed depending on their relations to the head noun. We formalized the problem as that of determining a topological ordering of a direct acyclic graph, which is based on constituency and dependency relations within a noun phrase. To counteract the errors associated with automatically inferred constituency and dependency relations, we implemented a heuristic approach to approximating the topological ordering. Different weights are assigned to different words based on their positions. Clustering experiments performed on such a vector space representation showed considerable improvement over the conventional bag–of–word representation. Specifically, it more consistently reflected semantic similarity between the terms. This was established by analyzing the differences between automatically generated dendrograms and manually constructed taxonomies. In conclusion, our method can be used to semi–automate taxonomy construction

    Meeting Medical Terminology Needs: The Ontology-enhanced Medical Concept Mapper

    Get PDF
    This paper describes the development and testing of the Medical Concept Mapper, a tool designed to facilitate access to online medical information sources by providing users with appropriate medical search terms for their personal queries. Our system is valuable for patients whose knowledge of medical vocabularies is inadequate to find the desired information, and for medical experts who search for information outside their field of expertise. The Medical Concept Mapper maps synonyms and semantically related concepts to a user\u27s query. The system is unique because it integrates our natural language processing tool, i.e., the Arizona (AZ) Noun Phraser, with human-created ontologies, the Unified Medical Language System (UMLS) and WordNet, and our computer generated Concept Space, into one system. Our unique contribution results from combining the UMLS Semantic Net with Concept Space in our deep semantic parsing (DSP) algorithm. This algorithm establishes a medical query context based on the UMLS Semantic Net, which allows Concept Space terms to be filtered so as to isolate related terms relevant to the query. We performed two user studies in which Medical Concept Mapper terms were compared against human experts\u27 terms. We conclude that the AZ Noun Phraser is well suited to extract medical phrases from user queries, that WordNet is not well suited to provide strictly medical synonyms, that the UMLS Metathesaurus is well suited to provide medical synonyms, and that Concept Space is well suited to provide related medical s, especially when these terms are limited by our DSP algorithm

    A Core Reference Hierarchical Primitive Ontology for Electronic Medical Records Semantics Interoperability

    Get PDF
    Currently, electronic medical records (EMR) cannot be exchanged among hospitals, clinics, laboratories, pharmacies, and insurance providers or made available to patients outside of local networks. Hospital, laboratory, pharmacy, and insurance provider legacy databases can share medical data within a respective network and limited data with patients. The lack of interoperability has its roots in the historical development of electronic medical records. Two issues contribute to interoperability failure. The first is that legacy medical record databases and expert systems were designed with semantics that support only internal information exchange. The second is ontological commitment to the semantics of a particular knowledge representation language formalism. This research seeks to address these interoperability failures through demonstration of the capability of a core reference, hierarchical primitive ontological architecture with concept primitive attributes definitions to integrate and resolve non-interoperable semantics among and extend coverage across existing clinical, drug, and hospital ontologies and terminologies

    Semi-automated Ontology Generation for Biocuration and Semantic Search

    Get PDF
    Background: In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed. Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing. Motivation: The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences. Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods. Results: The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and ProtĂ©gĂ©, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results. To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org

    An ontology for formal representation of medication adherence-related knowledge : case study in breast cancer

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Medication non-adherence is a major healthcare problem that negatively impacts the health and productivity of individuals and society as a whole. Reasons for medication non-adherence are multi-faced, with no clear-cut solution. Adherence to medication remains a difficult area to study, due to inconsistencies in representing medicationadherence behavior data that poses a challenge to humans and today’s computer technology related to interpreting and synthesizing such complex information. Developing a consistent conceptual framework to medication adherence is needed to facilitate domain understanding, sharing, and communicating, as well as enabling researchers to formally compare the findings of studies in systematic reviews. The goal of this research is to create a common language that bridges human and computer technology by developing a controlled structured vocabulary of medication adherence behavior—“Medication Adherence Behavior Ontology” (MAB-Ontology) using breast cancer as a case study to inform and evaluate the proposed ontology and demonstrating its application to real-world situation. The intention is for MAB-Ontology to be developed against the background of a philosophical analysis of terms, such as belief, and desire to be human, computer-understandable, and interoperable with other systems that support scientific research. The design process for MAB-Ontology carried out using the METHONTOLOGY method incorporated with the Basic Formal Ontology (BFO) principles of best practice. This approach introduces a novel knowledge acquisition step that guides capturing medication-adherence-related data from different knowledge sources, including adherence assessment, adherence determinants, adherence theories, adherence taxonomies, and tacit knowledge source types. These sources were analyzed using a systematic approach that involved some questions applied to all source types to guide data extraction and inform domain conceptualization. A set of intermediate representations involving tables and graphs was used to allow for domain evaluation before implementation. The resulting ontology included 629 classes, 529 individuals, 51 object property, and 2 data property. The intermediate representation was formalized into OWL using ProtĂ©gĂ©. The MAB-Ontology was evaluated through competency questions, use-case scenario, face validity and was found to satisfy the requirement specification. This study provides a unified method for developing a computerized-based adherence model that can be applied among various disease groups and different drug categories

    Finding answers to questions, in text collections or web, in open domain or specialty domains

    Get PDF
    International audienceThis chapter is dedicated to factual question answering, i.e. extracting precise and exact answers to question given in natural language from texts. A question in natural language gives more information than a bag of word query (i.e. a query made of a list of words), and provides clues for finding precise answers. We will first focus on the presentation of the underlying problems mainly due to the existence of linguistic variations between questions and their answerable pieces of texts for selecting relevant passages and extracting reliable answers. We will first present how to answer factual question in open domain. We will also present answering questions in specialty domain as it requires dealing with semi-structured knowledge and specialized terminologies, and can lead to different applications, as information management in corporations for example. Searching answers on the Web constitutes another application frame and introduces specificities linked to Web redundancy or collaborative usage. Besides, the Web is also multilingual, and a challenging problem consists in searching answers in target language documents other than the source language of the question. For all these topics, we present main approaches and the remaining problems

    Semantic Approaches for Knowledge Discovery and Retrieval in Biomedicine

    Get PDF

    Foreword

    Get PDF
    The aim of this Workshop is to focus on building and evaluating resources used to facilitate biomedical text mining, including their design, update, delivery, quality assessment, evaluation and dissemination. Key resources of interest are lexical and knowledge repositories (controlled vocabularies, terminologies, thesauri, ontologies) and annotated corpora, including both task-specific resources and repositories reengineered from biomedical or general language resources. Of particular interest is the process of building annotated resources, including designing guidelines and annotation schemas (aiming at both syntactic and semantic interoperability) and relying on language engineering standards. Challenging aspects are updates and evolution management of resources, as well as their documentation, dissemination and evaluation

    From narrative descriptions to MedDRA: automagically encoding adverse drug reactions

    Get PDF
    The collection of narrative spontaneous reports is an irreplaceable source for the prompt detection of suspected adverse drug reactions (ADRs). In such task qualified domain experts manually revise a huge amount of narrative descriptions and then encode texts according to MedDRA standard terminology. The manual annotation of narrative documents with medical terminology is a subtle and expensive task, since the number of reports is growing up day-by-day. Natural Language Processing (NLP) applications can support the work of people responsible for pharmacovigilance. Our objective is to develop NLP algorithms and tools for the detection of ADR clinical terminology. Efficient applications can concretely improve the quality of the experts\u2019 revisions. NLP software can quickly analyze narrative texts and offer an encoding (i.e., a list of MedDRA terms) that the expert has to revise and validate. MagiCoder, an NLP algorithm, is proposed for the automatic encoding of free-text descriptions into MedDRA terms. MagiCoder procedure is efficient in terms of computational complexity. We tested MagiCoder through several experiments. In the first one, we tested it on a large dataset of about 4500 manually revised reports, by performing an automated comparison between human and MagiCoder encoding. Moreover, we tested MagiCoder on a set of about 1800 reports, manually revised ex novo by some experts of the domain, who also compared automatic solutions with the gold reference standard. We also provide two initial experiments with reports written in English, giving a first evidence of the robustness of MagiCoder w.r.t. the change of the language. For the current base version of MagiCoder, we measured an average recall and precision of and , respectively. From a practical point of view, MagiCoder reduces the time required for encoding ADR reports. Pharmacologists have only to review and validate the MedDRA terms proposed by the application, instead of choosing the right terms among the 70\u202fK low level terms of MedDRA. Such improvement in the efficiency of pharmacologists\u2019 work has a relevant impact also on the quality of the subsequent data analysis. We developed MagiCoder for the Italian pharmacovigilance language. However, our proposal is based on a general approach, not depending on the considered language nor the term dictionary
    • 

    corecore