10 research outputs found

    Grammatical evolution to design fractal curves with a given dimension

    Full text link
    Original paper in http://ieeexplore.ieee.org/Lindenmayer grammars have frequently been applied to represent fractal curves. In this work, the ideas behind grammar evolution are used to automatically generate and evolve Lindenmayer grammars which represent fractal curves with a fractal dimension that approximates a predefined required value. For many dimensions, this is a nontrivial task to be performed manually. The procedure we propose closely parallels biological evolution because it acts through three different levels: a genotype (a vector of integers), a protein-like intermediate level (the Lindenmayer grammar), and a phenotype (the fractal curve). Variation acts at the genotype level, while selection is performed at the phenotype level (by comparing the dimensions of the fractal curves to the desired value).This paper has been sponsored by the Spanish Ministry of Science and Technology (MCYT), project numbers TIC2002-01948 and TIC2001-0685-C02-01

    Evolving an ecology of mathematical expressions with grammatical evolution

    Full text link
    This is the author’s version of a work that was accepted for publication in Biosystems. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Biosystems, 111, 2, (2013) DOI: 10.1016/j.biosystems.2012.12.004This paper describes the use of grammatical evolution to obtain an ecology of artificial beings associated with mathematical functions, whose fitness is also defined mathematically. The system allows “parasite” species and “parasites of parasites” to develop, and supports the simultaneous evolution of several ecological niches. The use of standard measurements makes it possible to explore the influence of the number of niches or the presence of parasites on “biological” diversity and similar functions. Our results suggest that some of the features of biological evolution depend more on the genetic substrate and natural selection than on the actual phenotypic expression of that substrate

    Evolving a predator-prey ecosystem of mathematical expressions with grammatical evolution

    Get PDF
    This is the accepted version of the following article: Alfonseca, M. and Soler Gil, F. J. (2015), Evolving a predator–prey ecosystem of mathematical expressions with grammatical evolution. Complexity, 20: 66–83, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/cplx.21507/abstractThis article describes the use of grammatical evolution to obtain a predator–prey ecosystem of artificial beings associated with mathematical functions, whose fitness is also defined mathematically. The system supports the simultaneous evolution of several ecological niches and through the use of standard measurements, makes it possible to explore the influence of the number of niches and the values of several parameters on “biological” diversity and similar functions. Sensitivity analysis tests have been made to find the effect of assigning different constant values to the genetic parameters that rule the evolution of the system and the predator–prey interaction or of replacing them by functions of time. One of the parameters (predator efficiency) was found to have a critical range, outside which the ecologies are unstable; two others (genetic shortening rate and predator–prey fitness comparison logistic amplitude) are critical just at one side of the range), the others are not critical. The system seems quite robust, even when one or more parameters are made variable during a single experiment, without leaving their critical ranges. Our results also suggest that some of the features of biological evolution depend more on the genetic substrate and natural selection than on the actual phenotypic expression of that substrat

    Genetic evolution and equivalence of some complex systems: fractals, cellular automata and lindenmayer systems

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid. Escuela Politécnica Superior, Departamento de Ingeniería informática.26-04-200

    Digital Alchemy: Matter and Metamorphosis in Contemporary Digital Animation and Interface Design

    Get PDF
    The recent proliferation of special effects in Hollywood film has ushered in an era of digital transformation. Among scholars, digital technology is hailed as a revolutionary moment in the history of communication and representation. Nevertheless, media scholars and cultural historians have difficulty finding a language adequate to theorizing digital artifacts because they are not just texts to be deciphered. Rather, digital media artifacts also invite critiques about the status of reality because they resurrect ancient problems of embodiment and transcendence.In contrast to scholarly approaches to digital technology, computer engineers, interface designers, and special effects producers have invented a robust set of terms and phrases to describe the practice of digital animation. In order to address this disconnect between producers of new media and scholars of new media, I argue that the process of digital animation borrows extensively from a set of preexisting terms describing materiality that were prominent for centuries prior to the scientific revolution. Specifically, digital animators and interface designers make use of the ancient science, art, and technological craft of alchemy. Both alchemy and digital animation share several fundamental elements: both boast the power of being able to transform one material, substance, or thing into a different material, substance, or thing. Both seek to transcend the body and materiality but in the process, find that this elusive goal (realism and gold) is forever receding onto the horizon.The introduction begins with a literature review of the field of digital media studies. It identifies a gap in the field concerning disparate arguments about new media technology. On the one hand, scholars argue that new technologies like cyberspace and digital technology enable radical new forms of engagement with media on individual, social, and economic levels. At the same time that media scholars assert that our current epoch is marked by a historical rupture, many other researchers claim that new media are increasingly characterized by ancient metaphysical problems like embodiment and transcendence. In subsequent chapters I investigate this disparity

    Using APL2 to Compute the Dimension of a Fractal Represented as a Grammar

    No full text
    In this paper we describe the use of APL2 to implement and depict the equivalence between the mathematical field of fractal curves and the linguistic field of parallel derivation grammars, by tackling the problem of determining the dimension of a fractal from its representation as a grammar. APL2 makes the required computation quite easy. Fractals Mandelbrot [1] introduced the concept of fractal for a certain set of monstrous curves, defined by mathematicians at the end of the nineteenth century. These curves exhibit some curious properties, such as self-similarity (the same patterns repeat at different levels of detail), underivability at every point, infinite length while limited to a finite section of space, and so forth. The introduction of fractals generated an interesting discussion on the proper definition of the word dimension. Geometrical dimension is an ancient concept, apparently trivial in its application to the real world around us. We live in a space with three dimensi..
    corecore