148,805 research outputs found

    User-centred design of flexible hypermedia for a mobile guide: Reflections on the hyperaudio experience

    Get PDF
    A user-centred design approach involves end-users from the very beginning. Considering users at the early stages compels designers to think in terms of utility and usability and helps develop the system on what is actually needed. This paper discusses the case of HyperAudio, a context-sensitive adaptive and mobile guide to museums developed in the late 90s. User requirements were collected via a survey to understand visitors’ profiles and visit styles in Natural Science museums. The knowledge acquired supported the specification of system requirements, helping defining user model, data structure and adaptive behaviour of the system. User requirements guided the design decisions on what could be implemented by using simple adaptable triggers and what instead needed more sophisticated adaptive techniques, a fundamental choice when all the computation must be done on a PDA. Graphical and interactive environments for developing and testing complex adaptive systems are discussed as a further step towards an iterative design that considers the user interaction a central point. The paper discusses how such an environment allows designers and developers to experiment with different system’s behaviours and to widely test it under realistic conditions by simulation of the actual context evolving over time. The understanding gained in HyperAudio is then considered in the perspective of the developments that followed that first experience: our findings seem still valid despite the passed time

    Designing Improved Sediment Transport Visualizations

    Get PDF
    Monitoring, or more commonly, modeling of sediment transport in the coastal environment is a critical task with relevance to coastline stability, beach erosion, tracking environmental contaminants, and safety of navigation. Increased intensity and regularity of storms such as Superstorm Sandy heighten the importance of our understanding of sediment transport processes. A weakness of current modeling capabilities is the ability to easily visualize the result in an intuitive manner. Many of the available visualization software packages display only a single variable at once, usually as a two-dimensional, plan-view cross-section. With such limited display capabilities, sophisticated 3D models are undermined in both the interpretation of results and dissemination of information to the public. Here we explore a subset of existing modeling capabilities (specifically, modeling scour around man-made structures) and visualization solutions, examine their shortcomings and present a design for a 4D visualization for sediment transport studies that is based on perceptually-focused data visualization research and recent and ongoing developments in multivariate displays. Vector and scalar fields are co-displayed, yet kept independently identifiable utilizing human perception\u27s separation of color, texture, and motion. Bathymetry, sediment grain-size distribution, and forcing hydrodynamics are a subset of the variables investigated for simultaneous representation. Direct interaction with field data is tested to support rapid validation of sediment transport model results. Our goal is a tight integration of both simulated data and real world observations to support analysis and simulation of the impact of major sediment transport events such as hurricanes. We unite modeled results and field observations within a geodatabase designed as an application schema of the Arc Marine Data Model. Our real-world focus is on the Redbird Artificial Reef Site, roughly 18 nautical miles offshor- Delaware Bay, Delaware, where repeated surveys have identified active scour and bedform migration in 27 m water depth amongst the more than 900 deliberately sunken subway cars and vessels. Coincidently collected high-resolution multibeam bathymetry, backscatter, and side-scan sonar data from surface and autonomous underwater vehicle (AUV) systems along with complementary sub-bottom, grab sample, bottom imagery, and wave and current (via ADCP) datasets provide the basis for analysis. This site is particularly attractive due to overlap with the Delaware Bay Operational Forecast System (DBOFS), a model that provides historical and forecast oceanographic data that can be tested in hindcast against significant changes observed at the site during Superstorm Sandy and in predicting future changes through small-scale modeling around the individual reef objects

    Adaptive hypermedia for education and training

    Get PDF
    Adaptive hypermedia (AH) is an alternative to the traditional, one-size-fits-all approach in the development of hypermedia systems. AH systems build a model of the goals, preferences, and knowledge of each individual user; this model is used throughout the interaction with the user to adapt to the needs of that particular user (Brusilovsky, 1996b). For example, a student in an adaptive educational hypermedia system will be given a presentation that is adapted specifically to his or her knowledge of the subject (De Bra & Calvi, 1998; Hothi, Hall, & Sly, 2000) as well as a suggested set of the most relevant links to proceed further (Brusilovsky, Eklund, & Schwarz, 1998; Kavcic, 2004). An adaptive electronic encyclopedia will personalize the content of an article to augment the user's existing knowledge and interests (Bontcheva & Wilks, 2005; Milosavljevic, 1997). A museum guide will adapt the presentation about every visited object to the user's individual path through the museum (Oberlander et al., 1998; Stock et al., 2007). Adaptive hypermedia belongs to the class of user-adaptive systems (Schneider-Hufschmidt, KĂĽhme, & Malinowski, 1993). A distinctive feature of an adaptive system is an explicit user model that represents user knowledge, goals, and interests, as well as other features that enable the system to adapt to different users with their own specific set of goals. An adaptive system collects data for the user model from various sources that can include implicitly observing user interaction and explicitly requesting direct input from the user. The user model is applied to provide an adaptation effect, that is, tailor interaction to different users in the same context. In different kinds of adaptive systems, adaptation effects could vary greatly. In AH systems, it is limited to three major adaptation technologies: adaptive content selection, adaptive navigation support, and adaptive presentation. The first of these three technologies comes from the fields of adaptive information retrieval (IR) and intelligent tutoring systems (ITS). When the user searches for information, the system adaptively selects and prioritizes the most relevant items (Brajnik, Guida, & Tasso, 1987; Brusilovsky, 1992b)

    Accessible user profile modeling for academic services based on MOOCs

    Get PDF
    MOOCs are examples of the evolution of eLearning environments, it is a fact that the flexibility of the learning services allows students to learn at their own time, place and pace, enhances continuous communication and interaction between all participants in knowledge and community building, benefits people with disabilities and therefore can improve their level of employability and social inclusion. MOOCs are leading a revolutionary computer and mobile-based scenario along with social technologies that will emergence new kinds of learning applications that enhance communication and collaboration processes, for that reason a strategy of the use of metadata regarding the achievement of accessibility from content to user preferences is presented in this paper, in order to achieve a better accessibility level while designing new learning services for people with functional diversity based upon MOOCs

    Supporting teachers in collaborative student modeling: a framework and an implementation

    Get PDF
    Collaborative student modeling in adaptive learning environments allows the learners to inspect and modify their own student models. It is often considered as a collaboration between students and the system to promote learners’ reflection and to collaboratively assess the course. When adaptive learning environments are used in the classroom, teachers act as a guide through the learning process. Thus, they need to monitor students’ interactions in order to understand and evaluate their activities. Although, the knowledge gained through this monitorization can be extremely useful to student modeling, collaboration between teachers and the system to achieve this goal has not been considered in the literature. In this paper we present a framework to support teachers in this task. In order to prove the usefulness of this framework we have implemented and evaluated it in an adaptive web-based educational system called PDinamet.Postprint (author's final draft

    The Music Streaming Sessions Dataset

    Full text link
    At the core of many important machine learning problems faced by online streaming services is a need to model how users interact with the content. These problems can often be reduced to a combination of 1) sequentially recommending items to the user, and 2) exploiting the user's interactions with the items as feedback for the machine learning model. Unfortunately, there are no public datasets currently available that enable researchers to explore this topic. In order to spur that research, we release the Music Streaming Sessions Dataset (MSSD), which consists of approximately 150 million listening sessions and associated user actions. Furthermore, we provide audio features and metadata for the approximately 3.7 million unique tracks referred to in the logs. This is the largest collection of such track metadata currently available to the public. This dataset enables research on important problems including how to model user listening and interaction behaviour in streaming, as well as Music Information Retrieval (MIR), and session-based sequential recommendations.Comment: 3 pages, introducing a new large scale datase

    Adaptive visualization of research communities

    Get PDF
    Adaptive visualization approaches attempt to tune the content and the topology of information visualization to various user characteristics. While adapting visualization to user cognitive traits, goals, or knowledge has been relatively well explored, some other user characteristics have received no attention. This paper presents a methodology to adapt a traditional cluster-based visualization of communities to user individual model of community organization. This class of user-adapted visualization is not only achievable, but expected due to real world situation where users cannot be segmented into heterogeneous communities since many users have affinity to more than one group. An interactive clustering and visualization approach presented in the paper allows the user communicate their personal mental models of overlapping communities to the clustering algorithm itself and obtain a community visualization image that more realistically fits their prospects
    • …
    corecore