14,929 research outputs found

    Evaluation of Using Semi-Autonomy Features in Mobile Robotic Telepresence Systems

    Get PDF
    Mobile robotic telepresence systems used for social interaction scenarios require that users steer robots in a remote environment. As a consequence, a heavy workload can be put on users if they are unfamiliar with using robotic telepresence units. One way to lessen this workload is to automate certain operations performed during a telepresence session in order to assist remote drivers in navigating the robot in new environments. Such operations include autonomous robot localization and navigation to certain points in the home and automatic docking of the robot to the charging station. In this paper we describe the implementation of such autonomous features along with user evaluation study. The evaluation scenario is focused on the first experience on using the system by novice users. Importantly, that the scenario taken in this study assumed that participants have as little as possible prior information about the system. Four different use-cases were identified from the user behaviour analysis.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech. Plan Nacional de InvestigaciĂłn, proyecto DPI2011-25483

    A Data-driven Approach Towards Human-robot Collaborative Problem Solving in a Shared Space

    Full text link
    We are developing a system for human-robot communication that enables people to communicate with robots in a natural way and is focused on solving problems in a shared space. Our strategy for developing this system is fundamentally data-driven: we use data from multiple input sources and train key components with various machine learning techniques. We developed a web application that is collecting data on how two humans communicate to accomplish a task, as well as a mobile laboratory that is instrumented to collect data on how two humans communicate to accomplish a task in a physically shared space. The data from these systems will be used to train and fine-tune the second stage of our system, in which the robot will be simulated through software. A physical robot will be used in the final stage of our project. We describe these instruments, a test-suite and performance metrics designed to evaluate and automate the data gathering process as well as evaluate an initial data set.Comment: 2017 AAAI Fall Symposium on Natural Communication for Human-Robot Collaboratio

    Natural User Interface for Education in Virtual Environments

    Get PDF
    Education and self-improvement are key features of human behavior. However, learning in the physical world is not always desirable or achievable. That is how simulators came to be. There are domains where purely virtual simulators can be created in contrast to physical ones. In this research we present a novel environment for learning, using a natural user interface. We, humans, are not designed to operate and manipulate objects via keyboard, mouse or a controller. The natural way of interaction and communication is achieved through our actuators (hands and feet) and our sensors (hearing, vision, touch, smell and taste). That is the reason why it makes more sense to use sensors that can track our skeletal movements, are able to estimate our pose, and interpret our gestures. After acquiring and processing the desired – natural input, a system can analyze and translate those gestures into movement signals

    Towards a human eye behavior model by applying Data Mining Techniques on Gaze Information from IEC

    Get PDF
    In this paper, we firstly present what is Interactive Evolutionary Computation (IEC) and rapidly how we have combined this artificial intelligence technique with an eye-tracker for visual optimization. Next, in order to correctly parameterize our application, we present results from applying data mining techniques on gaze information coming from experiments conducted on about 80 human individuals

    A Customizable Camera-based Human Computer Interaction System Allowing People With Disabilities Autonomous Hands Free Navigation of Multiple Computing Task

    Full text link
    Many people suffer from conditions that lead to deterioration of motor control and makes access to the computer using traditional input devices difficult. In particular, they may loose control of hand movement to the extent that the standard mouse cannot be used as a pointing device. Most current alternatives use markers or specialized hardware to track and translate a user's movement to pointer movement. These approaches may be perceived as intrusive, for example, wearable devices. Camera-based assistive systems that use visual tracking of features on the user's body often require cumbersome manual adjustment. This paper introduces an enhanced computer vision based strategy where features, for example on a user's face, viewed through an inexpensive USB camera, are tracked and translated to pointer movement. The main contributions of this paper are (1) enhancing a video based interface with a mechanism for mapping feature movement to pointer movement, which allows users to navigate to all areas of the screen even with very limited physical movement, and (2) providing a customizable, hierarchical navigation framework for human computer interaction (HCI). This framework provides effective use of the vision-based interface system for accessing multiple applications in an autonomous setting. Experiments with several users show the effectiveness of the mapping strategy and its usage within the application framework as a practical tool for desktop users with disabilities.National Science Foundation (IIS-0093367, IIS-0329009, 0202067
    • 

    corecore