4 research outputs found

    Compromising system and user interests in shelter location and evacuation planning

    Get PDF
    Cataloged from PDF version of article.Traffic management during an evacuation and the decision of where to locate the shelters are of critical importance to the performance of an evacuation plan. From the evacuation management authority’s point of view, the desirable goal is to minimize the total evacuation time by computing a system optimum (SO). However, evacuees may not be willing to take long routes enforced on them by a SO solution; but they may consent to taking routes with lengths not longer than the shortest path to the nearest shelter site by more than a tolerable factor. We develop a model that optimally locates shelters and assigns evacuees to the nearest shelter sites by assigning them to shortest paths, shortest and nearest with a given degree of tolerance, so that the total evacuation time is minimized. As the travel time on a road segment is often modeled as a nonlinear function of the flow on the segment, the resulting model is a nonlinear mixed integer programming model. We develop a solution method that can handle practical size problems using second order cone programming techniques. Using our model, we investigate the importance of the number and locations of shelter sites and the trade-off between efficiency and fairness. 2014 Elsevier Ltd. All rights reserved

    Bridging the user equilibrium and the system optimum in static traffic assignment: a review

    Get PDF
    Solving the road congestion problem is one of the most pressing issues in modern cities since it causes time wasting, pollution, higher industrial costs and huge road maintenance costs. Advances in ITS technologies and the advent of autonomous vehicles are changing mobility dramatically. They enable the implementation of a coordination mechanism, called coordinated traffic assignment, among the sat-nav devices aiming at assigning paths to drivers to eliminate congestion and to reduce the total travel time in traffic networks. Among possible congestion avoidance methods, coordinated traffic assignment is a valuable choice since it does not involve huge investments to expand the road network. Traffic assignments are traditionally devoted to two main perspectives on which the well-known Wardropian principles are inspired: the user equilibrium and the system optimum. User equilibrium is a user-driven traffic assignment in which each user chooses the most convenient path selfishly. It guarantees that fairness among users is respected since, when the equilibrium is reached, all users sharing the same origin and destination will experience the same travel time. The main drawback in a user equilibrium is that the system total travel time is not minimized and, hence, the so-called Price of Anarchy is paid. On the other hand, the system optimum is an efficient system-wide traffic assignment in which drivers are routed on the network in such a way the total travel time is minimized, but users might experience travel times that are higher than the other users travelling from the same origin to the same destination, affecting the compliance. Thus, drawbacks in implementing one of the two assignments can be overcome by hybridizing the two approaches, aiming at bridging users’ fairness to system-wide efficiency. In the last decades, a significant number of attempts have been done to bridge fairness among users and system efficiency in traffic assignments. The survey reviews the state-of-the-art of these trade-off approaches

    An exact second order cone programming approach for traffic assignment problems

    Get PDF
    Demographic changes, urbanization and increasing vehicle ownership at unprecedented rates put a lot of strain on cities particularly on urban mobility and transportation and overwhelm transportation network infrastructures and current transportation systems, which are not built to cope with such a fast increasing demand. Traffic congestion is considered as the most difficult challenge to tackle for sustainable urban mobility and is aggravated by the increased freight activity due to e-commerce and on-demand delivery and the explosive growth in transportation network companies and ride-hailing services. There is a need to implement a combination of policies to ensure that increased urban traffic congestion does not lower the quality of life and threaten global climate and human health and to prevent further economic losses. This study aims to contribute to the United Nations (UN) climate action and sustainable development goals in tackling recurring traffic congestion problem in urban areas to achieve a sustainable urban mobility in that it offers a solution methodology for traffic assignment problem. We introduce an exact generalized solution methodology based on reformulation of existing traffic assignment problems as a second order cone programming (SOCP) problem and propose column generation (CG) and cutting plane (CP) algorithms to solve the problem effectively for large scale road network instances. We conduct numerical experiments to test the performance of the proposed algorithms on realistic road networks

    Compromising system and user interests in shelter location and evacuation planning

    Get PDF
    Traffic management during an evacuation and the decision of where to locate the shelters are of critical importance to the performance of an evacuation plan. From the evacuation management authority's point of view, the desirable goal is to minimize the total evacuation time by computing a system optimum (SO). However, evacuees may not be willing to take long routes enforced on them by a SO solution; but they may consent to taking routes with lengths not longer than the shortest path to the nearest shelter site by more than a tolerable factor. We develop a model that optimally locates shelters and assigns evacuees to the nearest shelter sites by assigning them to shortest paths, shortest and nearest with a given degree of tolerance, so that the total evacuation time is minimized. As the travel time on a road segment is often modeled as a nonlinear function of the flow on the segment, the resulting model is a nonlinear mixed integer programming model. We develop a solution method that can handle practical size problems using second order cone programming techniques. Using our model, we investigate the importance of the number and locations of shelter sites and the trade-off between efficiency and fairness. © 2014 Elsevier Ltd
    corecore