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Abstract

Demographic changes, urbanization and increasing vehicle ownership at unprecedented rates

put a lot of strain on cities particularly on urban mobility and transportation and overwhelm

transportation network infrastructures and current transportation systems, which are not built to

cope with such a fast increasing demand. Traffic congestion is considered as the most difficult chal-

lenge to tackle for sustainable urban mobility and is aggravated by the increased freight activity

due to e-commerce and on-demand delivery and the explosive growth in transportation network

companies and ride-hailing services. There is a need to implement a combination of policies to

ensure that increased urban traffic congestion does not lower the quality of life and threaten global

climate and human health and to prevent further economic losses. This study aims to contribute

to the United Nations (UN) climate action and sustainable development goals in tackling recurring

traffic congestion problem in urban areas to achieve a sustainable urban mobility in that it offers a

solution methodology for traffic assignment problem. We introduce an exact generalized solution

methodology based on reformulation of existing traffic assignment problems as a second order cone

programming (SOCP) problem and propose column generation (CG) and cutting plane (CP) algo-

rithms to solve the problem effectively for large scale road network instances. We conduct numerical

experiments to test the performance of the proposed algorithms on realistic road networks.

Keywords: Sustainable Development Goals, Traffic Congestion, Traffic Assignment, Column

Generation, Cutting Plane, Second Order Cone Programming

1. Introduction

Demographic changes and urbanization put a lot of strain on cities particularly on urban mobil-

ity and transportation creating many challenges among which traffic congestion is considered as the
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most difficult to tackle (EU, 2020). Traffic congestion is defined as “a condition in transport that

is characterized by slower speeds, longer trip times, and increased vehicular queuing” (Wikipedia,

2022) and occurs as traffic demand approaches or exceeds limited capacity of transportation network

infrastructure.

According to a report by PwC (2019), there are other factors that contribute to traffic conges-

tion such as economic expansion, transportation disruption, e-commerce and on-demand delivery

(Schaller, 2018), underinvestment in infrastructure. These factors and increasing vehicle ownership

at unprecedented rates overwhelm transportation network infrastructures and current transporta-

tion systems, which are not built to cope with such a fast increasing demand (Fleming, 2019) and

due to underinvestment for building extra capacity and for upgrades and maintenance, congestion

becomes inevitable.

Sustainable urban mobility is a challenging future goal US, EU and many other countries

would like to achieve. It is a challenging but an important one as sustainable urban mobility is

linked to social welfare of people, economic growth, and environmental sustainability (Battles, 2007,

Van Essen et al., 2020). The cost of congestion to society is around 270 billion euros (Van Essen

et al., 2020) and 87 billion dollars (Fleming, 2019) per year in EU and in US, respectively. Road

transport (passenger and freight) and high congestion levels account for a considerable amount

of air pollution and greenhouse gas emissions and lead to serious health issues. Around 40% of

transport related CO2 emissions and 70% of other pollutants are due to urban traffic (Savelsbergh

and Van Woensel, 2016). It is reported that around 96% of people living in urban areas in EU

are exposed to high levels of pollution that can cause health problems, the cost of which is about

several hundred billions of euros per year (Van Essen et al., 2020). It is estimated in a report by

World Health Organization (WHO, 2014) that around 7 million of premature deaths are due to air

pollution caused by urban traffic.

There is a need to implement a combination of policies to ensure that increased urban traffic

congestion does not lower the quality of life and threaten global climate and human health and to

prevent further economic losses. These policies are classified as near-term or long-term solutions

and physical, control, pricing and information-based measures, which must address both demand

and supply side of the problem (Jones et al., 2018, PwC, 2019). Experience has shown that some

of these measures such as increasing road network capacity, designating high-occupancy vehicle or
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bus-only lanes may eventually result in higher congestion levels (PwC, 2019, EU, 2020). Likewise,

banning cars from streets or promoting alternative means of transportation does not provide a total

solution to this problem (Busch, 2017). These methods can be applied when necessary and where

appropriate but may have a higher success probability if implemented in coordination with smart

transportation systems and management, which are less costly and quicker to implement (Paniati,

2004).

The cities are becoming increasingly instrumented with an ability to collect real-time data

through the use of intelligent transportation systems (ITS), internet of things (IoT), GPS systems

in mobile telephones, public wireless local area network base stations, sensors, the web, and other

similar data-acquisition systems (Harrison et al., 2010, Schofer and Mahmassani, 2016, Speranza,

2018). Transforming these data into decisions in real-time through advanced data analytics meth-

ods (i.e., machine learning, optimization) is becoming a reality (Holden, 2015). Real-time data

can be used by traffic management authorities to understand the change in demand patterns, to

influence travelers’ behavior and choice (Van Essen et al., 2016) and to reduce congestion by imple-

menting various low-cost and real-time smart traffic control and management mechanisms Woetzel

et al. (2018). After starting to implement a traffic management system having a real-time data

analytics capability, one of the most congested cities in China, Hangzhou, a city with a population

of 23 million, has improved travel times by 11% and response time of emergency vehicles by 50%

(Fleming, 2019).

However, the use of ITS has only partially solved the problem as the information provided to

travelers by these systems is used in a selfish and uncoordinated manner to make their choices and to

minimize their individual travel times. But through coordination and cooperation of the users that

share the road network capacity, it could be possible to distribute traffic across alternative paths

and therefore to bridge the gap between UE and System Optimal (SO) solutions and get closer to

the SO solution in practice, as well. Cooperation and compliance of users with conventional vehicles

to the directions or guidance from a system manager would only be possible if traffic assignment

is fair (Bayram, 2016, Klein et al., 2018, Morandi, 2021). Advance of autonomous and connected

vehicle technology (Fagnant and Kockelman, 2015, Mahmassani, 2016) will allow traffic managers

to achieve even a higher level of coordination between users. Therefore, a traffic management

authority that uses ITS to gather and an analytics capability to analyze data and to guide travelers
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to alternative acceptable routes could achieve a fair and an efficient solution that considers all users’

benefit in the road network and that reduces overall congestion.

This study aims to contribute to the United Nations (UN) climate action and sustainable

development goals (UNDESA, 2015, UN, 2015) in tackling recurring traffic congestion problem

in urban areas to achieve a sustainable urban mobility in that it offers a solution methodology

for traffic assignment problem. Our goal is to propose an exact generalized solution methodology

based on reformulation of existing traffic assignment problems as a second order cone programming

(SOCP) problem and a column generation (CG) and cutting plane (CP) algorithm to solve the

problem effectively for large scale road network instances.

The rest of the paper is organized as follows: In Section 2, we cover the literature on traffic

assignment problem and present our contributions. In Section 3, we define the problem setting

and introduce a mathematical formulation for it. In Section 4, we propose an exact solution

methodology based on SOCP and CG/CP. In Section 5, we present results, based on an extensive

computational study. Finally, we conclude in Section 6.

2. Literature Review

Traffic assignment models were first introduced by Wardrop (1952) with two basic principals,

the User Equilibrium (UE, also known as User Optimal or Nash Equilibrium), and the System

Optimal (SO). UE is Wardop’s (Wardrop, 1952) first principle and simply states that the travel

times on the used routes for any origin-destination (o-d) pair is less than or equal to the travel

times on the routes which are not used. Under identical traffic conditions, the experienced travel

time in UE is the same for all users, i.e., no traveler in the road network can improve her/his travel

time by unilaterally changing routes (Sheffi, 1985). In accordance with this principle, travelers

act in a selfish manner to minimize their individual travel times not considering the effect of their

choice on others in the same road network. Although not very realistic (Simon, 1955), it is also

assumed that users have perfect information about the road network structure and the traffic

conditions (congestion information) and they are rational in their choice, i.e., they can optimize

their decisions. With the proliferation of ITS technologies, the perfect information assumption is no

longer unrealistic and urban traffic tends to approach to a state of UE more than ever (Ben-Akiva

et al., 1991, Morandi, 2021). Hence, UE can be defined as the collective outcome of selfish choices
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of fully informed noncooperative travelers in an uncoordinated road network (Klein et al., 2018).

While UE may be the preferred traffic assignment approach by the travelers, and since everyone

acts in her/his own interest, it does not necessarily result in a solution that minimizes the total

travel time of the users in the road network. On the contrary, even with the use of ITS, UE

traffic assignment is likely to generate congested areas in the road network and everyone might

end up with longer travel times. Under fully coordinated and cooperative users assumption, the

goal of a centralized system manager would be to distribute traffic across the network to avoid

creating congestion and to minimize total travel time of every user in the network. Hence rather

than individual benefits, system’s benefit is prioritized. This approach is the second principle of

Wardrop (1952) known as system optimal (SO). In a SO solution, the marginal travel times on

the used paths of a given o-d pair is equal and otherwise marginal travel time of an unused path

is greater than or equal to those of used paths (Sheffi, 1985). Although the resulting solution is

an efficient one with the least amount of possible congestion, it may be unfair to some users by

assigning them to much longer routes compared to the shortest ones (Roughgarden, 2002) and

therefore may not be practical.

Although in theory SO provides the most efficient solution, it may not be possible to achieve

it in practice as it would not be possible to influence all drivers to comply with routing directions

in the road network and to have a fully coordinated and cooperative traffic assignment under

such unfair conditions. However, if individual needs are taken into account, travelers are treated

fairly, and they are motivated by high level incentives (such as reducing CO2 emissions, considering

collective good rather than individual gain), they can be influenced through ITS systems and by

other means to act in a pro-social manner and comply with routing directions. In a research by

Ackermann and Murphy (2019), it is stated that individuals in a social network tend to cooperate if

they know others also cooperate. Further, with the advance of automated and connected vehicles,

it will be easier to enable such coordination between travelers in the road network. A coordinated

traffic assignment approach through a centralized system supported by ITS could provide optimized

efficient and individually tailored, fair solutions to tackle the traffic congestion problem and to

achieve a sustainable urban mobility. Such a centralized traffic assignment approach is called

Constrained System Optimal (CSO) or Bounded Rational User Equilibrium (BRUE) and provides

a compromise between SO and UE approaches and helps bridge the gap between total travel time
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in UE and SO. In the remainder of the Literature Review Section, we will focus on studies related

to BRUE and CSO traffic assignment approaches. For further details on static and dynamic traffic

assignment models, we refer the reader to Bayram (2016), Morandi (2021) and for a comprehensive

review on the use of information systems to influence behavior/choice of travelers to Van Essen

et al. (2016).

2.1. Bounded Rational User Equilibrium

BRUE (also referred to as length constrained user equilibrium), first introduced in the seminal

work by Simon (1955) and adapted to transportation systems by Mahmassani and Chang (1987), is

a relaxation of UE in that it assumes that users are willing to take an acceptable route rather than

an optimal one, where acceptable is defined based on the length of the shortest route for a given

o-d pair and a threshold value or aspiration/indifference level that reflects users’ behavior. Under

BRUE, no user can improve her/his travel time by switching routes by more than a prespecified

threshold value (Lou et al., 2010). Following the work of Mahmassani and Chang (1987), various

studies (Chen et al., 1997, Mahmassani and Liu, 1999, Szeto and Lo, 2006, Lou et al., 2010, Zhou

and Li, 2012) explored and extended BRUE.

Mahmassani and Chang (1987) investigate the existence, uniqueness, and where applicable the

stability of BRUE in an idealized transportation system. Chen et al. (1997) propose a model-

ing framework for bounded rational interactive decision making, where users follow probabilistic

choices using the logit model of discrete choice theory. Mahmassani and Liu (1999) incorporate

departure time and routing decisions of travelers made at several decision points at the origin and

en-route, using a behavioral (multinomial probit) model framework. Szeto and Lo (2006) extend

BRUE to a dynamic setting and introduce bounded rational dynamic user equilibrium (BRDUE)

principle. A route swapping heuristic algorithm is presented to solve the BRDUE problem. Lou

et al. (2010) introduce path-based and link-based representations of BRUE and a formulation with

complementarity constraints. They solve the problem using a heuristic algorithm based on penal-

ization and a cutting-plane scheme. Zhou and Li (2012) show that the problem can be stated as a

convex optimization problem and propose a path-based formulation and column generation based

solution methodology combined with the Frank-Wolfe algorithm (Frank and Wolfe, 1956). They

use a constrained shortest path problem to solve a pricing problem to generate new columns.

We refer the reader to Di and Liu (2016), Ye and Yang (2017) and Szeto et al. (2015), Morandi
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(2021) for a comprehensive review on the applications of BRUE, behavioral studies considering

BRUE in a traffic assignment setting, and review of BRDUE models, respectively.

2.2. Constrained System Optimal

Although BRUE is one of the two alternatives that is used to bridge the gap between UE and

SO solutions, the main disadvantage of BRUE compared to CSO is that it just aims to reach an

equilibrium state and does not try to minimize total travel time (Morandi, 2021). CSO traffic

assignment approach aims to minimize total travel time while honoring individual preferences of

users by enforcing additional constraints to assign them to acceptable routes only (Jahn et al.,

2005). The first attempt to apply the idea of finding efficient and fair solutions to traffic assignment

problem was made by Jahn et al. (2000), was extended to a more general setting by Jahn et al.

(2005) and was followed by further studies (Schulz and Stier-Moses, 2006, Li and Zhao, 2008,

Bayram et al., 2015, Angelelli et al., 2016, Bayram and Yaman, 2018b,a, Angelelli et al., 2018,

2021, Morandi, 2021). The quality of such a solution is evaluated based on its efficiency (total

travel time) for the centralized system manager (traffic management authority) and its fairness for

the users.

Jahn et al. (2000) and Jahn et al. (2005) introduce CSO traffic assignment approach and propose

a nonlinear (convex) mathematical formulation for it that aims to achieve fair and efficient solutions

by minimizing total travel time. They define a measure of unfairness, which is the ratio of the travel

time of the recommended route to that of the shortest possible route a user could have taken. Jahn

et al. (2005) define the normal length of a route which does not depend on the amount of traffic

flow and which can be its free flow travel time, geographical distance or travel time in a UE

solution. At an optimal solution of a CSO traffic assignment problem, no route carrying a positive

flow between an o-d pair is allowed to deviate from the normal length of the route by more than

threshold value. They employ a column generation methodology in combination with a modified

version of Frank and Wolfe algorithm (Frank and Wolfe, 1956) to solve the problem. Schulz and

Stier-Moses (2006) study the problem from a theoretical perspective and propose a modified price

of anarchy to evaluate efficiency of a given solution by comparing the worst case ratio of the total

travel time of a UE to that of a CSO. Li and Zhao (2008) propose a game theoretic approach

and an integrated equilibrium model with satisfactory degree having two objective functions, that

is UE and SO objective functions with user constraints. They solve the problem in an iterative
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manner using pregenerated alternative paths and Frank and Wolfe algorithm (Frank and Wolfe,

1956). An application of CSO traffic assignment approach to evacuation planning is presented by

Bayram et al. (2015), Bayram and Yaman (2018b), and Bayram and Yaman (2018a). Aiming to

minimize the maximum arc utilization (congestion) in the road network and the weighted average

experienced travel inconvenience, Angelelli et al. (2016) propose a linear programming model and

a hierarchical solution methodology. They use a metaheuristic to generate acceptable routes and

a commercial solver to solve the problem. Angelelli et al. (2018) extend this study by proposing

a heuristic algorithm that generates a subset of feasible paths rather than the complete set to

enhance the computational efficiency of the solution methodology. Angelelli et al. (2020) and

Angelelli et al. (2021) solve the nonlinear CSO traffic assignment problem by using a piecewise

linear approximation of the travel time function and employ a matheuristic algorithm to identify

promising routes.

Please see Morandi (2021) for a comprehensive literature review on studies related to the theory

and applications of CSO traffic assignment approach. Due to the nonlinear nature of the BRUE

and CSO problems, majority of the proposed solution methodologies that solve them are heuristics

or require approximations. Unlike these studies, we do not use approximations and propose exact

solution methodologies that can solve CSO traffic assignment problems.

2.3. Our Contributions

� We propose a generalized solution methodology that can be used to solve SO, UE, and CSO

traffic assignment problems.

� Unlike most of the studies in the literature, we do not use approximations of the original prob-

lem or use heuristic methodologies to solve it. We transform the nonlinear traffic assignment

formulations into SOCP formulations and solve the problem exactly by using column gener-

ation and cutting plane methodologies that employ SOCP duality results. The generality of

solution methodology allows for the seamless application of a similar SOCP transformation

to a broad spectrum of alternative convex travel time functions.

� Finally, we conduct numerical experiments on realistic large scale road networks to test the

effectiveness of our algorithm.
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Next, we define the problem and its nonlinear formulation and propose a transformation of the

formulation into a SOCP formulation.

3. Problem Statement and Model Development

The mathematical models proposed for UE and SO traffic assignment approaches are first

presented by Beckmann et al. (1956). In these formulations, positive and increasing convex travel

time functions (also referred to as latency or link performance functions) are used, under the

assumption that travel time on a segment is only a function of the flow on that road segment only

(Sheffi, 1985). In this section we define our problem and present UE, SO and CSO optimal traffic

assignment models and transform their corresponding nonlinear formulations into a SOCP one.

Consider a directed network G = (N,A), where N is the set of nodes and A is the set of arcs

in the network. Each arc a is associated with a convex travel time function ta. We employ the

Bureau of Public Roads (BPR) function (TAM, 1964) to model travel time, where a road segment

a ∈ A is characterized by the parameters α ≥ 0 and β ≥ 0, which are taken as 0.15 and 4 by the

US Department of Commerce Bureau of Public Roads, respectively, its capacity ca and free flow

travel time t0a. The set of origin (demand) nodes from where the travelers start their journey and

the set of destination nodes for travelers are denoted by O and D, respectively. Let Pod be the set

of alternative routes from origin o ∈ O to destination d ∈ D. We define decision variable vp as the

fraction of an o-d pair’s demand that uses path p ∈ P λ
od from origin o ∈ O to destination d ∈ D

and xa as the amount of traffic flow on road segment a ∈ A.

The SO traffic assignment formulation is presented below:

(SO)



min
∑
a∈A

t0a

(
1 + α

(
xa
ca

)β
)
xa (1)

s.t. ∑
p∈Pod

vp = 1, ∀o ∈ O, d ∈ D, (2)

xa =
∑
O∈O

∑
d∈D

∑
p∈Pod:a∈p

wodvp, ∀a ∈ A, (3)

vp ≥ 0, ∀p ∈ Pod, o ∈ O, d ∈ D, (4)

xa ≥ 0, ∀a ∈ A. (5)

The objective function (1) minimizes total travel time in the road network. Constraints (2) are

traffic assignment constraints and ensure that every user is assigned to a path for every o-d pair.
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Constraints (3) simply compute the amount of traffic flow on road segment a ∈ A. And finally

constraints (4) and (5) define variable domains. Next, we present UE formulation.

(UE)



min
∑
a∈A

∫ xa

0 t0a

(
1 + α

(
τa
ca

)β
)
dτa (6)

s.t. ∑
p∈Pod

vp = 1, ∀o ∈ O, d ∈ D, (7)

xa =
∑
O∈O

∑
d∈D

∑
p∈Pod:a∈p

wodvp, ∀a ∈ A, (8)

vp ≥ 0, ∀p ∈ Pod, o ∈ O, d ∈ D, (9)

xa ≥ 0, ∀a ∈ A. (10)

The only difference between UE and SO traffic assignment formulations is the objective function.

The objective function (6) of UE is the sum of the integrals of the travel time functions. The

constraints of the UE formulation are defined in the same manner as those of SO.

For CSO traffic assignment setting only, a fairness/tolerance level λ is imposed on the normal

length of the routes a traveler can be assigned. Based on this tolerance level, a central traffic

management authority guarantees for every o-d pair to assign a traveler to a route whose normal

length is not more than (1 + λ) times the normal length of a shortest route connecting the o-d

pair. We define P λ
od = {p ∈ Pod : ℓp ≤ (1 + λ)ℓ∗od} as the set of acceptable routes from origin o to

destination d of fairness level λ. In this definition, ℓp is the length of route p and ℓ∗od is the length

of a shortest route from o to d. Please see Table 1 for the notation used to define the problem.

Below is the CSO traffic assignment formulation:

(CSO)



min
∑
a∈A

t0a

(
1 + α

(
xa
ca

)β
)
xa (11)

s.t. ∑
p∈Pλ

od

vp = 1, ∀o ∈ O, d ∈ D, (12)

xa =
∑
O∈O

∑
d∈D

∑
p∈Pλ

od:a∈p
wodvp, ∀a ∈ A, (13)

vp ≥ 0, ∀p ∈ P λ
od, o ∈ O, d ∈ D, (14)

xa ≥ 0, ∀a ∈ A. (15)

The CSO traffic assignment formulation differs from SO traffic assignment formulation in con-

straints (12). These constraints assign traffic demand for every o-d pair to acceptable set of paths
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Table 1: Description of the notation used

Sets

G = (N,A) Traffic network
N Set of nodes in the network
A Set of arcs in the network
O Set of origin nodes
D Set of destination nodes
Pod Set of alternative routes from origin o ∈ O to destination d ∈ D
Pλ
od Set of acceptable routes from origin o to destination d of fairness level λ

Parameters

ta(xa) Travel time on arc a ∈ A as a function of traffic flow xa
t0a Free flow travel time on arc a ∈ A
α Road characteristic parameter
β Road characteristic parameter
λ Fairness/tolerance level
ℓp Length of route p
ℓ∗od Length of a shortest route from origin o to destination d

Variables

vp Fraction of an o-d pair’s demand that uses path p ∈ Pλ
od from origin o ∈ O to destination d ∈ D

xa Amount of traffic flow on road segment a ∈ A

P λ
od only. The CSO traffic assignment approach generalizes both the SO and the UE traffic assign-

ment approaches, if UE travel times are used as the normal length. When λ = 0, the CSO model is

the same as the UE traffic assignment model, whereas when λ = ∞, SO traffic assignment model

is obtained.

The formulations presented for UE, SO, and CSO traffic assignment problems are nonlinear due

to convex travel time functions used in the objective function. Next, we present a tranformation

of these formulations into a SOCP formulation.

4. Reformulation of the Problem as a Second Order Cone Programming Problem

Advances in interior point methodologies have allowed to solve second order cone programming

problems almost as efficiently as solving linear programming problems (Ben-Tal and Nemirovski,

2001). Due to that, SOCP has been successfully applied to a wide range of convex optimiza-

tion problems such as portfolio optimization (Bonami and Lejeune, 2009), machine-job assignment

(Aktürk et al., 2009), power distribution system reconfiguration (Taylor and Hover, 2012), stochas-

tic joint location inventory (Atamtürk et al., 2012), routing/location in telecommunication/hub-

spoke networks (Hijazi et al., 2013, Bayram et al., 2023), variable selection in linear regression

(Miyashiro and Takano, 2015), planning for plug-in electric vehicle fast-charging stations (Zhang
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et al., 2017), two-player zero sum games (Singh and Lisser, 2019), and UAV collision avoidance

(Zhang and Liu, 2022). We refer the reader to Lobo et al. (1998), Ben-Tal and Nemirovski (2001),

Alizadeh and Goldfarb (2003) and Benson and Sağlam (2013) for an introduction and for more

details on the applications on SOCP problems.

In this section, we reformulate UE, SO, and CSO traffic assignment problems as SOCP problems

by transferring the nonlinearity in the objective function into the constraint set in the form of

quadratic cone constraints. To achieve this, we first reorganize the objective functions of the

formulations (SO), (UE), and (CSO) as follows:

(SO)


min

∑
a∈A

(
t0axa +

t0aα

cβa
xβ+1
a

)
(16)

s.t.

(2) - (5)

(UE)


min

∑
a∈A

(
t0axa +

t0aα

(β+1)cβa
xβ+1
a

)
(17)

s.t.

(7) - (10)

(CSO)


min

∑
a∈A

(
t0axa +

t0aα

cβa
xβ+1
a

)
(18)

s.t.

(12) - (15)

We take β = 4 and define auxiliary variables µa for each and add the constraints x5a ≤ µa, for

each arc a ∈ A. We represent x5a ≤ µa with hyperbolic inequalities of the form,

x2a ≤ θah, ∀a ∈ A, (19)

θ2a ≤ uaxa, ∀a ∈ A, (20)

u2a ≤ µaxa, ∀a ∈ A, (21)

h = 1, θa, ua, µa ≥ 0, ∀a ∈ A. (22)

where h, θa, ua, µa are auxiliary variables that are used to define hyperbolic inequalities. These
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hyperbolic inequalities are represented by their respective quadratic cone constraints:

||2xa, θa − 1|| ≤ θa + 1, ∀a ∈ A, (23)

||2θa, ua − xa|| ≤ ua + xa, ∀a ∈ A, (24)

||2ua, µa − xa|| ≤ µa + xa, ∀a ∈ A, (25)

µa, θa, ua ≥ 0 ∀a ∈ A, (26)

(5).

The resulting second order cone programming problem formulations are given below:

(SO SOCP )


min

∑
a∈A

(
t0axa +

t0aα

cβa
µa

)
(27)

s.t.

(2) - (5), (23) - (26).

(UE SOCP )


min

∑
a∈A

(
t0axa +

t0aα

(β+1)cβa
µa

)
(28)

s.t.

(7) - (10), (23) - (26).

(CSO SOCP )


min

∑
a∈A

(
t0axa +

t0aα

cβa
µa

)
(29)

s.t.

(12) - (15), (23) - (26).

Note that, our SOCP transformation is generalized in that it can be applied to any convex

travel time function. In the following section, we describe how we generate new paths in an

iterative manner using column generation or cutting planes since it may not be possible and not

efficient to pregenerate all possible paths.

5. A Column Generation / Cutting Plane Approach

The formulations (SO SOCP) (27), (2) - (5), (23) - (26), (UE SOCP) (28), (7) - (10), (23) -

(26), and (CSO SOCP) (29), (12) - (15), (23) - (26) assume that the complete set of candidate

paths for each o-d pair, i.e. Pod (P λ
od for CSO SOCP), is provided. However, it is impractical to
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generate and include all possible paths in the problem. In such cases, a column generation (CG)

or a cutting plane (CP) approach for the dual of the problem can be used to prevent enumerating

all possibilities.

Column generation is a methodology used to solve large scale combinatorial optimization prob-

lems. It relies on the Dantzig–Wolfe decomposition (Dantzig and Wolfe, 1960) of the problem into

two problems, namely the master problem and the subproblem. Master problem, which is the orig-

inal problem, is also called the restricted master problem (RMP) as it only contains a meaningful

subset of columns that provides a starting feasible solution. The dual information obtained through

the solution of the RMP is used to solve a pricing subproblem to detect any pricing columns (non-

basic variables with eligible reduced costs) or any violated constraints (if the dual of the RMP is

solved) and to add them to RMP. This procedure is continued in an iterative manner until the

current basic feasible solution of the RMP is optimal, i.e, no columns price out (no violation of

corresponding dual constraints). We refer the reader to Barnhart et al. (1998) and Desaulniers

et al. (2005) for further information on CG and its applications.

To obtain dual information and the dual problem, we transform quadratic cone constraints (23)

- (26) into the following structure:

q21a + q22a ≤ q23a, ∀a ∈ A, (30)

q24a + q25a ≤ q26a, ∀a ∈ A, (31)

q27a + q28a ≤ q29a, ∀a ∈ A, (32)

− q1a + 2xa = 0, ∀a ∈ A, (33)

− q2a + θa = 1, ∀a ∈ A, (34)

− q3a + θa = −1, ∀a ∈ A, (35)

− q4a + 2θa = 0, ∀a ∈ A, (36)

− q5a + ua − xa = 0, ∀a ∈ A, (37)

− q6a + ua + xa = 0, ∀a ∈ A, (38)

− q7a + 2ua = 0, ∀a ∈ A, (39)

− q8a − xa + µa = 0, ∀a ∈ A, (40)

− q9a + µa + xa = 0, ∀a ∈ A, (41)
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q1a, q3a, q4a, q6a, q7a, q9a, θa, ua, µa ≥ 0, ∀a ∈ A. (42)

Constraints (30)-(32) define the three second order quadratic cones. And constraints (33)-

(41) are generated by replacing each term of SOCP constraints (23)-(25) by a single auxiliary

variable to help derive the reduced costs for path variables in the primal formulations and the

duals of (SO SOCP), (UE SOCP), and (CSO SOCP) formulations. Constraints (42) represent

variable restrictions. The resulting primal formulations for SO SOCP, UE SOCP, CSO SOCP are

as follows:

(SO SOCP )


min

∑
a∈A

(
t0axa +

t0aα

cβa
µa

)
(43)

s.t.

(2) - (5), (30) - (42).

(UE SOCP )


min

∑
a∈A

(
t0axa +

t0aα

(β+1)cβa
µa

)
(44)

s.t.

(7) - (10), (30) - (42).

(CSO SOCP )


min

∑
a∈A

(
t0axa +

t0aα

cβa
µa

)
(45)

s.t.

(12) - (15), (30) - (42).

We associate the dual variables zod, ψa with constraints (2)-(3), (7)-(8), and (12)-(13), and

κ1a, κ2a, κ3a, κ4a, κ5a, κ6a, κ7a, κ8a, κ9a for constraints (33)-(41) for (SO SOCP), (UE SOCP, and

CSO SOCP) respectively. And the resulting dual formulations for SO, UE, and CSO are as follows:

Dual Constrained System Optimal (DCSO)

max
∑
o∈O

∑
d∈D

zod +
∑
a∈A

κ2a −
∑
a∈A

κ3a (46)

s.t. zod −
∑

a∈A:a∈p
wodψa ≤ 0, ∀o ∈ O, d ∈ D, p ∈ P λ

od, (47)

ψa + 2κ1a − κ5a + κ6a − κ8a + κ9a ≤ t0a, ∀a ∈ A, (48)
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κ8a + κ9a ≤ t0aα

cβa
, ∀a ∈ A, (49)

κ2a + κ3a + 2κ4a ≤ 0, ∀a ∈ A, (50)

κ5a + κ6a + 2κ7a ≤ 0, ∀a ∈ A, (51)

κ21a + κ22a ≤ κ23a, ∀a ∈ A, (52)

κ24a + κ25a ≤ κ26a, ∀a ∈ A, (53)

κ27a + κ28a ≤ κ29a, ∀a ∈ A, (54)

κ3a, κ6a, κ9a ≥ 0, ∀a ∈ A. (55)

The duals of (SO SOCP) (DSO) and (UE SOCP) (DUE) are identically the same as (DCSO)

except that constraints (47) are updated in (DSO) and (DUE) as:

zod −
∑

a∈A:a∈p
wodψa ≤ 0, ∀o ∈ O, d ∈ D, p ∈ Pod,

and constraints (49) are updated in DUE as:

κ8a + κ9a ≤ t0aα

(β + 1)cβa
, ∀a ∈ A.

The (DCSO), (DSO), and (DUE) are also second order cone programming problems. Note that

strong duality between (SO SOCP) - (DSO), (UE SOCP) - (DUE), and (CSO SOCP) - (DCSO)

problem pairs hold since we can find strictly feasible points for the primal and dual problems, which

are also bounded (Ben-Tal and Nemirovski, 2001), and they attain the same optimal values. This

allows us to use both primal and dual versions of the problem.

In order to solve (SO SOCP), (UE SOCP), and (CSO SOCP) by CG and CP, we start with a

small set P̄od ⊂ Pod (P̄ λ
od for (CSO SOCP)) for each o− d pair, o ∈ O, d ∈ D by using a k-shortest

path algorithm. A new path p ∈ Pod (p ∈ P λ
od for (CSO SOCP)) for an o−d pair, o ∈ O, d ∈ D can

be added to the current RMP if it has negative reduced cost. The reduced cost of a path variable

vp, p ∈ Pod (p ∈ P λ
od for (CSO SOCP)), denoted by rp, is calculated as in (56).

rodp =
∑

a∈A:a∈p
wodψa − zod. (56)

To price out candidate paths, a pricing subproblem (PP) is defined and solved for each o − d

pair, o ∈ O, d ∈ D. The PP for an o − d pair seeks a path p from o to d with the most negative
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rodp on the subgraph God = (N,Aod) of G, which contains o, d, and all nodes in N and having arc

costs wodψa. For the origin o the pricing graph contains only its outgoing arcs from the original

graph, and for the destination d the pricing graph contains only the incoming arcs. Then, PP

translates into solving a resource constrained shortest path problem on God for CSO, where the

length of the path is the resource bounded by (1+λ)r∗od. PP is a shortest path problem for SO and

UE. Observe that, the cost of path p ∈ Pod (p ∈ P λ
od for (CSO SOCP)) in the pricing graph God is

equal to
∑

a∈A:a∈pwodψa. Then the reduced cost of path variable vp from origin o to destination

d is
∑

a∈pwodψa − zod. Therefore, in a column generation iteration there exists a path variable

with negative reduced cost if and only if the cost of the shortest (cheapest) path having a length

(resource) less than or equal to (1 + λ)r∗od in the pricing graph God minus the value of the dual

variable zod is negative.

When using the (DCSO), (DSO), and (DUE) formulations, we employ a cutting plane algorithm

and use a separation problem to check whether constraints (47) are violated in a similar iterative

manner we employ we CG. Please see below the pricing/separation problem for (CSO SOCP) /

(DCSO):

(PP CSO):

rodp = min
∑

a∈Aod

wodπaχa − zod (57)

s.t.
∑

a∈δ+(i)

χa −
∑

a∈δ−(i)

χa =


1 i = o

0 ∀i ∈ N \ (o, d)

−1, i = d

(58)

∑
a∈Aod

laχa ≤ (1 + λ)r∗od, (59)

χa ∈ {0, 1} ∀a ∈ Aod, (60)

The pricing problem is a resource constrained shortest path problem (also named as elementary

shortest path problem with resource constraints) and it is NP-Hard (Dror, 1994). Therefore it is

not reasonable to solve (PP CSO) at every iteration of the CG/CP algorithm. Instead, we first

use a k-shortest path algorithm and check whether these k paths price out as candidate columns in

CG or violate constraints (47) in CP algorithm. If no eligible pricing/violating paths are detected,

then we employ the pulse algorithm proposed by Lozano et al. (2016) to solve (PP CSO).
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6. Computational Study

In this section, we report the results of extensive computational experiments conducted to test

the effectiveness of the proposed SOCP reformulation and CG and CP algorithms using large scale

realistic instances from the online library Transportation Networks for Research (Stabler et al.,

2022). We perform tests with small, medium and large scale transportation networks, i.e., Sioux

Falls, Anaheim, and Chicago Sketch (see Table 2). We use geographical distances as the normal

length of arcs. For the k-shortest path algorithm that we employ at the initial phase and during

the CG and CP iterations, we take k = 4 after some tuning. We perform our computational tests

on a notebook with Intel(R) Xeon(R) E-2186M CPU 2.90GHz Processor, 6 Core(s), 12 Logical

Processor(s) and 128 GB RAM by using Java ILOG CPLEX version 12.20.1.

Table 2: Transportation Networks Used in Computational Study

Network # Nodes # Arcs # Trips # o-d pairs

Sioux Falls 24 76 360,600 576
Anaheim 416 914 104,694 1,444
Chicago Sketch 933 2,950 1,260,907 149,769

In Tables 3, 4, and 5 and in Figures 1, 2, and 3 we compare the computational efficiencies of

the CG and CP algorithms for different values of λ for CSO, and for SO, UE traffic assignment

problems. For each instance, we report the optimal value, number of columns/cutting planes

generated, number of iterations performed and solution times in seconds for CG and CP algorithms,

respectively when the problem is solved to optimality. For Sioux Falls and Anaheim networks, the

algorithm performs very effectively. While majority of Sioux Falls instances are solved in less than

a second, Anaheim instances are solved in around two minutes or less. Chicago Sketch network is

relatively much larger compared to Sioux Falls and Anaheim networks. The number of o-d pairs

has a significant effect on the performance of the algorithm as it is related to number of times

pricing/separation problems will be solved in a single iteration of CG or CP algorithm. That

number for Chicago Sketch network is more than 100 times bigger than that of Anaheim and

around 300 times bigger than that of Sioux Falls networks. Further, the number of trips (total

demand for all o-d pairs) is way larger than other networks, which has a complicating effect on

the problem due to increasing level of congestion in the network and the difficulty of distributing

congested traffic across alternative acceptable paths. As λ grows larger, solution times increase, as
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well. Although the effect of that increase is mild for Sioux Falls and Anaheim networks, it is much

bigger for Chicago Sketch network. Solving SO and UE problems is generally more difficult than

solving CSO, as a larger number of paths (columns/cuts) need to be generated in a bigger number

of iterations. However, the pricing problem (shortest path problem) for SO and UE is much easier

than the pricing problem of CSO (resource constrained shortest path problem). Hence at some

point, the solution times for CSO becomes worse than those of SO and UE.

Although there is no significant difference regarding performance of the CG and CP algorithms,

they outperform each other for different instances. In 9 of 11 Sioux Falls instances and 7 of

11 Chicago Sketch instances, CP algorithm has a smaller solution time and in 8 of 11 Anaheim

instances CG performs better. The number of iterations performed has a direct effect on the total

solution time, specifically for large size networks with a big number of o-d pairs, as each iteration

takes considerable amount of time to finalize. Overall, in 19 of 33 instances CP outperforms CG

in terms of the number of iterations. On average, CP algorithm has smaller solution times, adds

slightly less number of cutting planes (compared to number of columns in CG), and terminates in

a smaller number of iterations. We also observe that the number of columns/cutting planes added

is not necessarily the same for CG and CP algorithms. The primal and dual versions of the same

problem may end up with different alternative solutions and hence different dual values. This may

result in different (number of) paths being eligible to enter in the primal or dual restricted master

problems.

7. Conclusion

Traffic congestion is considered to be among the most difficult problems to cope with to achieve

a sustainable urban mobility. Among the policies that can be used to ensure that increased urban

traffic congestion does not lower the quality of life and threaten global climate and human health

and to prevent further economic losses, coordinated and cooperative traffic assignment optimized

by a central traffic management authority supported by ITS systems and a data analytics capability

is the most promising one. Such a traffic assignment approach could achieve a fair and an efficient

solution that considers all users’ benefit in the road network and that reduces overall congestion.

In this paper, we introduced models and solution methodologies to solve traffic assignment

problems exactly. We have introduced a method for transforming nonlinear problems into a SOCP
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Table 3: Performance of the Proposed Column Generation and Cutting Plane Algorithms, Sioux Falls Network
Instances

TA λ Opt. Val.
Column Generation Cutting Planes

#Cols #Iters Time
(sec)

#Cuts #Iters Time
(sec)

SO ∞ 71,939.62 712 6 0.87 712 6 1.02
UE ∞ 42,313.89 454 4 0.56 454 4 0.66
CSO 0 618,958.58 22 2 0.96 22 2 0.92
CSO 0.01 618,958.58 22 2 0.96 22 2 0.90
CSO 0.02 618,958.58 22 2 0.95 22 2 0.89
CSO 0.03 618,958.58 22 2 0.95 22 2 0.91
CSO 0.04 618,958.58 22 2 0.94 22 2 0.91
CSO 0.05 615,192.56 28 2 0.98 28 2 0.93
CSO 0.1 388,201.91 99 2 0.95 99 2 0.90
CSO 0.15 219,159.31 167 3 1.18 167 3 1.17
CSO 0.2 135,873.96 255 4 1.26 255 4 1.25

Average 165.91 2.82 0.96 165.91 2.82 0.95
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Figure 1: The effect of λ on solution time and # of iterations, Sioux Falls Network
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Table 4: Performance of the Proposed Column Generation and Cutting Plane Algorithms, Anaheim Network Instances

TA λ Opt. Val.
Column Generation Cutting Planes

#Cols #Iters Time
(sec)

#Cuts #Iters Time
(sec)

SO ∞ 21,779.75 1,644 6 95.54 1,636 6 109.01
UE ∞ 20,149.99 1,307 5 74.39 1,304 5 89.19
CSO 0 40,547.55 210 3 85.44 210 3 92.06
CSO 0.01 36,823.19 488 4 108.04 488 4 103.41
CSO 0.02 30,210.77 677 7 122.52 677 7 131.99
CSO 0.03 26,438.97 889 6 126.68 889 6 132.22
CSO 0.04 23,999.69 1,031 6 128.47 1,030 6 127.32
CSO 0.05 23,827.69 1,127 8 158.97 1,126 8 168.33
CSO 0.1 22,186.58 1,476 7 124.80 1,475 7 128.35
CSO 0.15 21,881.02 1,617 8 140.58 1,610 7 134.37
CSO 0.2 21,794.01 1,719 8 125.35 1,717 7 128.09

Average 1,107.73 6.18 117.35 1,105.64 6.00 122.21
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Figure 2: The effect of λ on solution time and # of iterations, Anaheim Network
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Table 5: Performance of the Proposed Column Generation and Cutting Plane Algorithms, Chicago Sketch Network
Instances

TA λ Opt. Val.
Column Generation Cutting Planes

#Cols #Iters Time
(sec)

#Cuts #Iters Time
(sec)

SO ∞ 301,827.97 38,439 6 31,825.99 38,451 7 36,995.59
UE ∞ 281,991.69 21,867 5 26,622.11 21,867 5 26,089.12
CSO 0 4,107,544.61 542 3 16,507.15 542 3 16,027.56
CSO 0.01 2,418,388.55 11,098 4 22,306.79 11,097 4 21,432.32
CSO 0.02 2,188,396.11 16,784 4 22,071.15 16,781 4 21,632.71
CSO 0.03 1,797,199.83 20,992 6 32,361.89 20,993 6 32,694.30
CSO 0.04 1,719,550.73 23,895 6 32,832.27 23,885 5 27,897.45
CSO 0.05 1,643,808.68 25,796 6 33,160.87 25,793 6 34,100.05
CSO 0.1 881,531.69 30,455 6 32,707.26 30,449 6 35,316.64
CSO 0.15 730,749.98 32,417 6 32,481.47 32,415 5 28,123.85
CSO 0.2 422,788.14 33,620 6 33,232.17 33,622 6 32,340.05

Average 23,264.09 5.27 28,737.19 23,263.18 5.18 28,422.69
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Figure 3: The effect of λ on solution time and # of iterations, Chicago Sketch Network
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formulation by leveraging the BPR travel time functions, which are convex. The proposed solution

methodologies involve using column generation or cutting planes based on SOCP duality results

and employ an efficient pulse algorithm to solve the constrained shortest path problem to generate

new paths and can be used to solve SO, UE, CSO, and BRUE traffic assignment problems. The

approach we propose, along with the solution methodology we employ, possesses a high degree of

generality. Specifically, this methodology is applicable to traffic assignment problems with a wide

range of convex travel time functions, enabling the utilization of a similar transformation process

for such functions. We further conducted extensive numerical experiments to test the performance

of the proposed algorithms.

The problem setting can be extended in a variety of ways. In this study, we assumed a determin-

istic traffic demand between o-d pairs, road network capacity and traveler behavior. However, there

is significant uncertainty that should be taken into account, which can be accommodated with a

scenario based two/multi-stage stochastic programming approach. Also, other supply and demand

management strategies, use of autonomous vehicles and traveler behavior can be incorporated in

the mathematical formulation.
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