4 research outputs found

    Automation of The SLA Life Cycle in Cloud Computing

    Get PDF
    Cloud computing has become a prominent paradigm to offer on-demand services for softwares, infrastructures and platforms. Cloud services are contracted by a service level agreement (SLA) between a cloud service provider (CSP) and a cloud service user (CSU) which contains service definitions, quality of service (QoS) parameters, guarantees and obligations. Cloud service providers mostly offer SLAs in descriptive format which is not directly consumable by a machine or a system. The SLA written in natural language may impede the utility of rapid elasticity in a cloud service. Manual management of SLAs with growing usage of cloud services can be a challenging, erroneous and tedious task especially for the CSUs acquiring multiple cloud services. The necessity of automating the complete SLA life cycle (which includes SLA description in machine readable format, negotiation, monitoring and management) becomes imminent due to complex requirements for the precise measurement of QoS parameters. Current approaches toward automating the complete SLA life cycle, lack in standardization, completeness and applicability to cloud services. Automation of different phases of the SLA life cycle (e.g. negotiation, monitoring and management) is dependent on the availability of a machine readable SLA. In this work, a structural specification for the SLAs in cloud computing (S3LACC in short) is presented which is designed specifically for cloud services, covers complete SLA life cycle and conforms with the available standards. A time efficient SLA negotiation technique is accomplished (based on the S3LACC) for concurrently negotiating with multiple CSPs. After successful negotiation process, next leading task in the SLA life cycle is to monitor the cloud services for ensuring the quality of service according to the agreed SLA. A distributed monitoring approach for the cloud SLAs is presented, in this work, which is suitable for services being used at single or multiple locations. The proposed approach reduces the number of communications of SLA violations to a monitoring coordinator by eliminating the unnecessary communications. The presented work on the complete SLA life cycle automation is evaluated and validated with the help of use cases, experiments and simulations

    ADVANCED SLA MANAGEMENT IN CLOUD COMPUTING

    Get PDF
    The advent of high-performance technologies and the increase in volume of data used by organizations led to the need for migration from an internal structure to Cloud environment. The continuous development of tools, methods and techniques have expanded the understanding of the various functions, structures and processes related to Cloud Computing. However, the increase in computing power led to the development and use of more complex models, including this scope the complexity of Service Level Agreements (SLA). The need for understanding at a high level of SLAs established between customers and service providers in Cloud led to different studies on the definition and standardization of these agreements. Nowadays, cloud computing technologies are becoming more and more popular, especially with respect to data storage. However, the processes used to determine the Cloud Service Agreements do not consider the final customer\u2019s needs, considering only the supply capacity of the service provider. For these reasons, the development of service agreements that meets the needs of customers should be designed in order to increase the usability of Cloud environments, and enabling the discovery of new areas of application in accordance with market demand. In this context, the use of ontologies that describes the information that composes each type of service, and thus enable an understanding of the agreements reached, is configured as an approach to be considered. Moreover, the generalization and abstraction of information that can be observed in different services allows a broader vision for managing SLAs. For these reasons, this thesis aims to find innovative methods for the composition of Service Level Agreements in Cloud Computing. In particular, the methods presented allow demonstrate the convergence of several consolidated techniques in research on Cloud SLA using a new approach that considers new demands on Cloud and allows control of the established agreements, in addition to effectively ensure the application of the concept of XaaS (everything as a service). The originality of the approach allows the registration, search, composition and control of services in Cloud using the same structure. The new approach presented in this thesis allows the understanding of the impact of the new services requested by customers, giving the provider the possibility of simulating the use of the necessary resources to meet the new services\u2019 requests. From the presentation of a conceptual framework we can demonstrate the use of our approach through the examples of different situations presented in the real world and considering the new market possibilities

    User Centric Service Level Management in mOSAIC Applications

    No full text
    ""\\"Service Level Agreements (SLAs) aims at offering a simple and clear way to build up an agreement between the final users and the service provider in order to establish what is effectively granted by the cloud providers. In this paper we will show the SLA-related activities in mOSAIC, an european funded project that aims at exploiting a new programming model, which fully acquires the flexibility and dynamicity of the cloud environment, in order to build up a dedicated solution for SLA management. The key idea of SLA management in mOSAIC is that it is impossible to offer a single, static general purpose solution for SLA management of any kind of applications, but it is possible to offer a set of micro-functionalities that can be easily integrated among them in order to build up a dedicated solution for the application developer problem. Due to the mOSAIC API approach (which enable easy interoperability among moSAIC components) it will be possible to build up applications enriching them with user-oriented SLA management, from the very early development stages.\\""
    corecore