
UNIVERSITÀ DEGLI STUDI DI MILANO
PHD in Computer Science

Department of Computer Science

DOTTORATO DI RICERCA IN INFORMATICA
XXIX Ciclo

ADVANCED SLA MANAGEMENT IN CLOUD
COMPUTING

INF/01 INFORMATICA

DOCTORAL DISSERTATION OF:
Gerson Antunes Soares

SUPERVISOR:
Prof. Vincenzo Piuri

CO-SUPERVISOR:
Prof. Sara Foresti

DIRECTOR OF PHD PROGRAM:
Prof. Paolo Boldi

Academic Year 2015/16

“There is no such thing as a ’self-made’ man.
We are made up of thousands of others.

Everyone who has ever done a kind deed for us, or spoken one word of
encouragement to us, has entered into the make-up of our character

and of our thoughts, as well as our success.”

— George Matthew Adams

A C K N O W L E D G M E N T S

First of all, I want to thank God that blessed every day of my life, to enlighten my path
and gave me the strength to continue on.

I thank Prof. Vincenzo Piuri for the opportunity to have him as my supervisor. I am
very proud to quote him as one of the people responsible for my formation. I thank
him for his trust, for his friendship, for his advice and for his patience. It is an example
of understanding and competence that goes far beyond what is required. Concerned
not only with the work, but mainly with the human being. I want to thank also Prof.
Sara Foresti for her help and support as co-supervisor during the research work.

My wife, Daiana da Silva Dors Soares, and our children (Maria Clara, Ana Carolina
and João Miguel) who often donated and renounced their dreams, so that I could
accomplish mine. I want to say that this achievement is not only mine, but ours. All I
got was only possible thanks to the love, support and dedication they always had for
me.

To my parents, Jurandi and Maria, who have always taught me to act with respect,
simplicity, dignity, honesty and love for others. And thanks to the union of all, the
obstacles were overcome, victories were won and divided joys. Thanks a lot for their
patience and understanding with my absence during this long journey. To my father
and mother in-law, Marcial and Clara, and all the family, who were distant in location
but always near to me, thanks so much.

I would like to thank my friends, with no particular order: Ravi Jhawar, Aleksandar
Rikalovic, Giovanni Livraga, Abhinav Anand, Ala Arman, Ruggero Donida Labati, An-
gelo Genovese, Gianluca Sforza, Enrique Muñoz Ballester, Ebadollah Kheirati Roonizi,
Md. Aktaruzzaman, Massimo Walter Rivolta, Ruby Karmacharya and Tewodros Mu-
lugeta Dagnew, for having made the day-to-day life at the university so enjoyable! It
was extremely enriching to meet and to live with each of them. Thanks for the daily
company, for the friend’s shoulder, for the trust, the trips and the moments that we
spent together.

To all the professors who received me so well. Thanks for the support, encourage-
ment and, above all, the opportunity to learn from people I admire so much. To the
employees of the Department of Computer Science: Claudia, Daniela, Mirko, Mario,
Danio and Davide for constant collaboration and availability. And, in a special way, to
Lorena Sala, for the gratifying coexistence throughout this journey.

III

I would like to thank the referees Vijay Atluri, Sushil Jajodia, and Laurence T. Yang,
for their time spent in reading my thesis and for giving me valuable suggestions for
improving my work.

Lastly, I want to thank the other people who contributed directly or indirectly in the
elaboration of this work or participated in my life, and that, by chance, I have forgotten
to thank.

IV

A B S T R A C T

The advent of high-performance technologies and the increase in volume of data used
by organizations led to the need for migration from an internal structure to Cloud
environment. The continuous development of tools, methods and techniques have ex-
panded the understanding of the various functions, structures and processes related
to Cloud Computing. However, the increase in computing power led to the develop-
ment and use of more complex models, including this scope the complexity of Service
Level Agreements (SLA). The need for understanding at a high level of SLAs estab-
lished between customers and service providers in Cloud led to different studies on
the definition and standardization of these agreements.

Nowadays, cloud computing technologies are becoming more and more popular,
especially with respect to data storage. However, the processes used to determine the
Cloud Service Agreements do not consider the final customer’s needs, considering
only the supply capacity of the service provider. For these reasons, the development of
service agreements that meets the needs of customers should be designed in order to
increase the usability of Cloud environments, and enabling the discovery of new areas
of application in accordance with market demand.

In this context, the use of ontologies that describes the information that composes
each type of service, and thus enable an understanding of the agreements reached, is
configured as an approach to be considered. Moreover, the generalization and abstrac-
tion of information that can be observed in different services allows a broader vision
for managing SLAs.

For these reasons, this thesis aims to find innovative methods for the composition of
Service Level Agreements in Cloud Computing. In particular, the methods presented
allow demonstrate the convergence of several consolidated techniques in research on
Cloud SLA using a new approach that considers new demands on Cloud and allows
control of the established agreements, in addition to effectively ensure the application
of the concept of XaaS (everything as a service). The originality of the approach allows
the registration, search, composition and control of services in Cloud using the same
structure.

The new approach presented in this thesis allows the understanding of the impact
of the new services requested by customers, giving the provider the possibility of sim-
ulating the use of the necessary resources to meet the new services’ requests. From
the presentation of a conceptual framework we can demonstrate the use of our ap-
proach through the examples of different situations presented in the real world and
considering the new market possibilities.

V

C O N T E N T S

abstract . V

list of figures . XI

list of tables . XIII

1 introduction . 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Contributions of the Thesis . 5

1.3.1 Advanced SLA in Cloud Computing 5

1.3.2 Automated Framework to Cloud SLA Management 6

1.3.3 Dynamic SLA Management . 7

1.4 Organization of the Thesis . 8

2 related works . 11

2.1 The SLA in Cloud Computing . 11

2.2 Approaches in SLA Composition . 16

2.3 Frameworks in Cloud Computing . 18

2.3.1 LoM2HIS . 19

2.3.2 DeSVI . 20

2.3.3 SLA-based Resource Virtualization (SRV) 22

2.3.4 SLA for Scientific Research Clouds 23

2.3.5 Comparison of studied frameworks 24

2.4 SLA Monitoring . 26

2.5 Management of Cloud Properties . 29

2.5.1 Metrics in Cloud SLA . 30

2.5.2 Ontologies for Cloud Services . 32

2.6 Chapter Summary . 40

3 advanced sla in cloud computing . 43

3.1 Introduction . 43

3.1.1 Chapter Outline . 44

3.2 Generalized Service Level Agreement . 44

3.2.1 Generic Description . 45

3.2.2 Formal Definition . 47

3.3 Objective of Ontology . 50

VII

VIII contents

3.4 Characteristics of the Ontology . 50

3.4.1 Service Conditions in XML Schema 51

3.4.2 Service Request in XML Schema . 57

3.5 Advanced Issues in a generic SLA . 61

3.5.1 Determining a valid SLA . 63

3.5.2 CSP Formulation . 66

3.6 Shared Liability in Cloud SLA . 68

3.7 Chapter Summary . 70

4 automated framework to cloud sla management : conceptual

model . 71

4.1 Introduction . 71

4.1.1 Chapter Outline . 72

4.2 Objectives . 72

4.3 Framework Structure . 73

4.3.1 The Users Layers . 74

4.3.2 The Framework Layer . 82

4.4 The Framework Operation . 91

4.5 Chapter Summary . 95

5 management of novel properties and values 97

5.1 Introduction . 97

5.1.1 Chapter Outline . 98

5.2 Properties Inventory . 98

5.3 Usage Scenarios . 103

5.3.1 Application example for the scenario S1 103

5.3.2 Application example for the scenario S2 105

5.3.3 Application example for the scenario S3 106

5.3.4 Application example for the scenario S4 108

5.4 Information Clustering . 110

5.5 Chapter Summary . 113

6 use of fuzzy parameters . 115

6.1 Introduction . 115

6.1.1 Chapter Outline . 116

6.2 Fuzzy Logic in Cloud Systems Management 116

6.3 Fuzzy Customer Requirements . 118

6.3.1 Fuzzy Parameters . 118

6.3.2 Fuzzy Concepts . 120

6.4 Fuzzy Concepts and Fuzzy Parameters on the Provider Side 121

6.5 Application of Fuzzy Logic in the Framework Proposed 123

6.6 Chapter Summary . 125

contents IX

7 dynamic resources management . 127

7.1 Introduction . 127

7.1.1 Chapter Outline . 128

7.2 vSLA Monitor Module . 128

7.3 Dynamic Properties . 129

7.3.1 Description of the Available Resources 130

7.3.2 Description of Dynamic Needs of Resources 131

7.3.3 Mapping of Resources and Properties 132

7.4 Context Monitoring . 135

7.5 Prediction System . 137

7.6 Approach Overview . 139

7.7 Chapter Summary . 140

8 conclusion and future works . 143

8.1 Summary of the Contributions . 143

8.2 Future Works . 144

8.3 Closing Remarks . 145

references . 147

a publications . 161

L I S T O F F I G U R E S

Figure 2.1 LoM2HiS Architecture (adapted from [51]) 19

Figure 2.2 DeSVI architecture and interaction between components (adapted
from [52]) . 21

Figure 2.3 SRV Architecture (adapted from [53]) 22

Figure 2.4 Architecture for Research Clouds (adapted from [54]) 23

Figure 2.5 Survey results presented by [80] . 28

Figure 2.6 mOSAIC SLA Ontology (extracted from [142]) 37

Figure 2.7 mOSAIC SLO branch (extracted from [142]) 38

Figure 2.8 Subset of rules in SWRL (extracted from [142]) 39

Figure 2.9 Fragment of User SLA request in WS-Agreement (extracted from
[143]) . 40

Figure 3.1 Cloud Services representation . 45

Figure 3.2 Cloud Services and attributes representation 46

Figure 3.3 Cloud Services, attributes and resources representation 46

Figure 3.4 Properties representation . 46

Figure 3.5 Example of a set of conditions . 48

Figure 3.6 Example of conditions dependencies 49

Figure 3.7 Properties representation in service conditions XML Schema . . . 52

Figure 3.8 Service Conditions representation in XML Schema 53

Figure 3.9 Service Conditions XML Schema 54

Figure 3.10 XML file to a Service Condition . 56

Figure 3.11 Example of a service condition in the ontology 56

Figure 3.12 Properties representation in a service request XML Schema . . . 57

Figure 3.13 Properties representation in a service request XML Schema . . . 58

Figure 3.14 Fragment of XML Schema for a list of established properties . . . 59

Figure 3.15 Fragment of XML Schema for a set of values for the element
"Equal" . 59

Figure 3.16 Properties representation in a XML file of service request 60

Figure 3.17 Ontology proposed in three complementary groups: Service Con-
ditions (a), Request (b) and vSLA (c) 61

Figure 3.18 Graphical representation of Problem 3.1 for our running example 65

Figure 3.19 Color propagation in the hypergraph of Problem 3.1 for our run-
ning example . 66

Figure 4.1 Overview of the Framework Architecture 74

Figure 4.2 Scenario of interaction between the users of framework, repre-
sented in Use Cases. 75

Figure 4.3 Formal representation of a service request 76

Figure 4.4 Formal representation of a service plan 78

XI

XII list of figures

Figure 4.5 Example of a service plan summary 78

Figure 4.6 XML file to service conditions . 81

Figure 4.7 Properties Management module 82

Figure 4.8 Fragment of XML schema with the established properties shown
in the example . 83

Figure 4.9 Integrated Ontology . 84

Figure 4.10 Fragment of XML schema with absolute values for established
properties . 84

Figure 4.11 Lists of services integrated in a public ontology 85

Figure 4.12 SLA Management module . 86

Figure 4.13 Example of inputs and outputs of framework 92

Figure 4.14 Services and framework modules 93

Figure 4.15 Framework Class Diagram . 94

Figure 5.1 Process (simplified) to determine a "Established" property 99

Figure 5.2 Process for requesting established properties 101

Figure 5.3 Fragment of XML schema with the list of established properties . 101

Figure 5.4 Fragment of XML schema with absolute values for property Lo-
cation . 102

Figure 5.5 Process for requesting new properties 102

Figure 5.6 Repositories used by Properties Inventory 106

Figure 5.7 Stages of Text Mining process . 112

Figure 6.1 Element Fuzzy Description in a Service Conditions XML Schema 119

Figure 6.2 Example of fuzzy specification of key length parameter 119

Figure 6.3 Example of fuzzy specification of data security concept 120

Figure 7.1 vSLA Monitor module . 128

Figure 7.2 Fuzzy Inference System with input c7=0.129 like "Low" param-
eter (a) and Fuzzy Inference System with input c7=0.193 like
"Low" parameter (b) . 136

Figure 7.3 Fuzzy Inference System with input c7=0.637 like "Medium" pa-
rameter . 137

Figure 7.4 Fuzzy Inference System to Simulate the Resource Usage 138

Figure 7.5 Approach Overview . 139

L I S T O F TA B L E S

Table 2.1 Comparison of the SLA languages (adapted from [46]) 18

Table 2.2 Comparison of studied frameworks 25

Table 2.3 Comparison features of cloud monitoring platform (adapted from
[46]) . 27

Table 2.4 SLOs or QoS requirements for clouds (adapted from [37]) 30

Table 2.5 Summary of metrics evaluation techniques (adapted from [91]) . 31

Table 2.6 Example of concepts and individuals used in Cloudle (adapted
from [139]) . 36

Table 2.7 Example of triples used in Cloudle (adapted from [139]) 36

Table 3.1 An example of property descriptions 62

Table 3.2 An example of property values . 63

Table 3.3 Requirement, Dependencies, and Conflicts with their CSP for-
mulation . 68

Table 3.4 Properties on Shared Liability Situations 70

Table 4.1 Example of a service request used in the search for properties . . 76

Table 4.2 Example of a service plan . 77

Table 4.3 Example of a list of service plans 78

Table 4.4 Registration of a single property 79

Table 4.5 Records to property c3 . 79

Table 4.6 Example of a list of services . 80

Table 4.7 List of services to the Properties Management Module 83

Table 4.8 Table of Properties . 86

Table 4.9 Preliminary list of selected services 87

Table 4.10 Example of SLA composition by framework 88

Table 4.11 Example of service plans from different providers 89

Table 4.12 Table of service plans . 90

Table 4.13 Services to meet the request by property c12 90

Table 4.14 Characteristics of selected services for property c12 91

Table 5.1 List of compatible services for the property Location 104

Table 5.2 List of compatible services considering the property Encryption . 106

Table 5.3 Example of information maintained by the properties repository 107

Table 5.4 Example of reallocation of property values 108

Table 5.5 Example of reallocation of services 108

Table 5.6 Example of status repository . 109

Table 5.7 Example of status change . 109

Table 5.8 Counter table for new values . 110

Table 5.9 Table of document-term . 113

Table 6.1 Dependence of properties for fuzzy concepts 124

XIII

XIV list of tables

Table 7.1 Information about valid SLAs in the vSLA repository 129

Table 7.2 Mapping between Properties and Resources 133

Table 7.3 Mapping between Service Conditions and Resource Requirements134

Table 7.4 Different Contexts in the vSLA repository 137

1
I N T R O D U C T I O N

The evolution of communication and computing technologies has been increasing the
use of cloud computing in various fields such as industry, health and education. Es-
pecially in the industrial area, the provision of information in the cloud, such as man-
agement indicators, needs to maintain the privacy of the results, the confidentiality of
information and data integrity. In practice, these requirements can be met through the
use of vulnerabilities analysis, strong authentication methods, access control restric-
tions, etc [1].

Taking as example the management of industrial information, which transforms the
data available in high-value information, the availability of this information in a cloud
environment needs to consider a few key points to keep information security (privacy,
confidentiality and integrity). In this sense the Service Level Agreement (SLA) must
also reflect the needs of control of customer.

With Cloud Computing, many user applications as well as their files and data no
longer need to be installed or stored on the computer, getting available in the "cloud".
The application vendor is responsible for all development tasks, storage, maintenance,
upgrade, backup, scheduling, etc. Thus, all materials and documents are available in
any environment regardless of where the application is running. [2] supplemented
with the following advantages: portability of documents, increase the power of appli-
cations, platform independence and ease of abstraction. Besides the advantages men-
tioned, there is the fact of ease of adaptation to different devices that are accessing the
Cloud application.

Since failures in data centers usually occur outside the scope of the client organi-
zation, the perception of the degree of the risks in customer orders also changed [3].
In addition, the traditional ways to achieve fault tolerance require customers to have
a deeper knowledge of the mechanisms used, however the abstraction model and the
cloud computing business do not allow the architectural details of the environment
in Cloud are widely available to customers [3]. This implies that the traditional ser-

1

2 introduction

vice agreements often do not report the cloud computing environment and there is a
growing need to solve the reliability concerns.

When establishing a SLA between a customer and a provider, the process should
culminate in a contract that spells out the obligations and requirements of all play-
ers involved. In Cloud Computing normally this agreement only shows the service
provider’s obligations, while it does not consider all customer requirements. Therefore
is necessary to establish an agreement that allows the customer to retain control (at
least with contractual guarantees) of data and information available in Cloud.

In [4] the authors describe that one of the principles for the development of the Ser-
vice Level Agreement in Cloud Computing should be based on neutral business model
and should not require a specific approach for each concept. Another important aspect
is the continued evolution of Cloud Computing that features a dynamic behavior when
we note the possibility of new markets migrate to this environment.

Also according to [4] Standards and guidelines for cloud SLAs should be able to
meet the needs of both smaller customers and corporate customers. In addition, each
provider uses a different SLA specification language to meet their own Service Level
Objective (SLO) and document their own methods to achieve the SLOs although based
on standard concepts and vocabulary.

In this thesis, we propose a model of advanced SLA management based on customer
requirements, which considers information about their needs and takes a number of sit-
uations, events and information necessary for the correct understanding of the service
agreement. As a result, we created a management model that allows easy implementa-
tion of dynamic control of resources and the determination of new services based on
market demand. In addition to supporting an effective way to establish the construc-
tion of Service Level Agreements through a simplified generic ontology.

1.1 motivation

The popularity of cloud computing has increased considerably compared to traditional
information processing systems [3]. To meet effectively the demand for cloud-based
services, the service providers to increase their capacity building huge data centers
that are spread over several geographical regions (e.g., [5], [6], [7]). As a result of this
growth and the availability of resources, many customers are migrating to cloud-based
services to make their applications and business processes.

In general, the data centers maintained by providers are constructed with hundreds
of thousands of commodity servers. Moreover, virtualization technology is used to
maintain the provision computing resources over the Internet and, often, the delivery
of services follows the pay-per-use business model [5]. According to [3] a single phys-
ical host can be used as a set of multiple virtual hosts by the provider, this benefit
"masks" the perception of customers with relation to the available resources making it
look like an inexhaustible source of computing resources.

Thanks to its elasticity, convenience, and economic advantage, cloud computing is
today one of the reference paradigms for data storage and management and for run-
ning (heavy computational) applications. To fully benefit from the advantages of cloud

1.2 objectives 3

systems, customers need to have sufficient warranties on the overall dependability of
these systems, including the reliability and resilience of cloud architectures, the contin-
uous availability of the services they pay for, the security of the operating environment
and infrastructure, the protection guarantees on data and applications in the whole
operating flow [8].

To ensure full user satisfaction, the customer and the cloud provider need to care-
fully specify and agree upon a comprehensive Service Level Agreement. Such SLA
should define the infrastructure configuration expected by the customer to support its
applications. Conventional approaches to SLA specification (e.g., [9]) allow customers
to define her requirements by choosing the most appropriate values for the parameters
made available by the cloud provider (e.g., the amount of data storage and speed in
data transfer) but it does not guarantee that all customer needs are met. On the ba-
sis of the SLA agreed with the customer, the cloud provider identifies a mapping of
the customers needs (in terms of the minimum resources required by the customers
applications) onto the cloud architecture and services but it does not have the ability
to identify new demands. During operation, possible changes in the cloud infrastruc-
ture (e.g., faults of connections or processing nodes, and security vulnerabilities) may
impair the ability of satisfying customers requirements in the due time or even at all.
Monitoring and possibly dynamically adjusting the resource mapping is therefore de-
sirable to ensure complete dependability of the cloud architecture.

It is observed the modern information society uses a very broad set of information
to allow businesses to remain competitive and improve their production processes.
However we see that process automation is reaching its limits. New quality and man-
agement practices require a broad view of processes and their interrelationships, de-
manding of software tools and traditional hardware more than they are able to offer.
The effective and efficient use of dependable cloud infrastructures requires a more
transparent agreement between customers and cloud providers on resources, services,
operating conditions, and features as well as the mapping of customers requirements
onto the cloud architecture.

While generally SLA specifications require the definition of values for configuration
parameters, customers would appreciate the availability of a more flexible way for
expressing their needs, since customers often do not have an exact understanding of the
real requirements of their applications. Also, the management of complex and dynamic
environments would benefit from flexibility in reasoning on the mappings of customers
requirements onto cloud resources. Therefore, the motivation appears to approve and
validate an advanced SLA management model in cloud computing enabling a more
realistic approach to the characteristics and needs of different customers and situations
including the provision of "everything as a service" (XaaS) by providers.

1.2 objectives

Basically we consider three key aspects when designing a solution for the Cloud SLA
Management, these aspects are described briefly below.

4 introduction

• Greater flexibility in SLA trading. The need of creation of a set of features to
include flexibility (adaptation and extension) in Service Level Agreements for
Cloud Computing. The advent of high-performance technologies in Cloud Com-
puting will result in a growth in the volume of data and information that can
migrate to this environment. The continuous development of tools, methods and
techniques have expanded the understanding of the various functions, structures
and processes related to services in Cloud Computing. This increased computa-
tional power leads the development and use of more complex arrangements. The
agreements for this new environment should allow various features presented
at different scales, can be combined, complementing each other and providing a
more accurate view of customer needs. Thus, the use of a conceptual modeling
language which can describe declarative and reusable way the application do-
main, using a shared vocabulary, and development tools so that players can work
with different scenarios, are important requirements for the project a framework
for Advanced SLA Management. In order to use a generic ontology, two impor-
tant issues should be addressed. The first one refers to the representation of on-
tology. Although diagrams, textual description and equations can be used in the
publication of the models, they are subject to typographical errors and the lack
of definition of the initial conditions or boundary to the ontology. The second
issue is related to implementation. The need to apply advanced methods limits
the effective use of the ontology.

• Support for future markets in Cloud Computing. The design of a conceptual frame-
work based on a generic ontology to support adaptable and extensible compo-
nents in Advanced SLA Management. Only the use of an ontology, that allows a
more flexible SLA negotiation, is not enough for the process of creation of new
service agreements because it should provide custom annotation mechanisms to
facilitate the reuse and modification of components. The ontology may be de-
scribed using markup languages and should be validated for syntax errors and
for the adherence to specification. However, semantic issues can not be effectively
treated directly in a relatively simple schema and should be left to the implemen-
tation phase. This implementation phase can be represented through conceptual
frameworks arranged in modules that may implement the execution of usage
scenarios in Cloud environments allowing the creation of new services and the
effective application of the concept of XaaS (everything as a service).

• Description of a set of adaptive methods for Dynamic SLA Management. It is an instan-
tiation process and control of requirements independent of the implementation
technology for the proposed framework. The use of a standardized and recom-
mended format by W3C enables service agreements to be integrable and domain
independent. Any effort to develop advanced management methods to SLAs in
Cloud Computing should consider the cloud services industry capabilities. Af-
ter introducing specific concepts for the definition of an advanced management
for cloud SLAs we need to determine proof points to ensure that the concept is
feasible for both technical perspectives as well as to business prospects.

1.3 contributions of the thesis 5

This thesis focuses on three high-level objectives mentioned above, with the objective
of defining a comprehensive solution for Advanced SLA Management in Cloud Com-
puting. In the rest of the chapter, we discuss in more detail the specific contributions
of this work.

1.3 contributions of the thesis

The wide market acceptance that cloud computing gained, will make the current data
centers work more together, converging into a global architecture of virtual distributed
services - hardware, storage, processing, transformation, etc. - Allowing users to access
and deploy applications on demand, being anywhere in the world and with a propor-
tional cost to the contracted Quality of Service (QoS) parameters [10]. This integration
of services and applications in the cloud, in turn, is also demanding new cloud-based
services, for example, to provide interoperability, coordination and load balancing be-
tween departments or even the discovery of new services and applications. In addition
to requiring more comprehensive service agreements.

This thesis deals with problems related to the availability of data and information in
Cloud Computing when the data owner wants to migrate to this environment while
maintaining effective control over the information. The specific contributions of the
thesis are the aspects of SLA management illustrated above, i.e., a greater flexibility in
SLA trading, the support for future markets in Cloud Computing, and the description
of a set of adaptive methods for dynamic SLA Management. In the rest of this section,
we illustrate these contributions in more detail.

1.3.1 advanced sla in cloud computing

The first contribution of this thesis is related to the determination of Service Level
Agreements that includes the needs of customers, satisfies the service conditions set by
the providers and supports greater flexibility in SLA trading. The contribution of our
work can be summarized as follows.

Problem modeling. The determination of a Service Level Agreements should find a
good balance between the need for control over the information for the customer and
the need to ensure the proper functioning of the cloud environment by providers. The
specification of services in a generic way can effectively meet both the market needs as
the possible operating restrictions brought in new scenarios. In this thesis, we build an
approach for determining SLA that is defined with a generic ontology to describe the
characteristics of different services. The peculiarity of our solution consists of a new
model of SLA composition problem, which explores the representation of services
and restrictions as service conditions and interprets its rules as truth assignments of
Boolean variables and XML schema. This model is the basis for defining an effective
solution to the SLA composition problem.

6 introduction

Efficient modeling. Thanks to the generic definition of the problem, the SLA compo-
sition may consider integrating different services trying to satisfy the market needs.
To this end, we create an ontology which includes the restructured and adapted infor-
mation from other ontologies. This generic ontology is used for interfacing the infor-
mation between players and supporting needs presented by the customers. We take
our modeling based on a generic ontology to formulate efficiently service conditions
considered by providers. In addition, to meet the necessary operations for the SLA
composition, our modeling also provides support for future markets in Cloud comput-
ing.

Freedom of choices. Given a set of needs presented by customers, our goal is to com-
pute a selection of services that can match these needs. The logic is to determine utility
functions that are compatible with the services, presenting an integration of the ser-
vices with same nature and a set of values that can be manipulated by providers.
Therefore, the utility functions of the data presented to end users can be changed ac-
cording to the customer’s preference and their practical needs. For this purpose, we
define a structure that can receive established values from the providers and, new ser-
vices and values from customers.

Shared liability. For the use of new services and values required by customers, con-
sidering their freedom of choice, we must supplement this data with responsibility
information. However, the SLA composition only considers the responsibility of the
providers. In this thesis, we present the concept of shared liability which allows the
determination of different aspects of the services provided, the relevant dependencies
to each one and responsibilities assigned to their values. First, we defined that service
conditions are submitted by providers, considering internal and external dependencies
between different services. Following, we describe an approach to determine how the
responsibility is assigned in a shared way to support the monitoring of SLAs. In doing
so, we provide a general solution, applicable to real-world scenarios to better meet
customer needs services in cloud and not committing a breach of the agreements.

1.3.2 automated framework to cloud sla management

The second contribution of this thesis is the definition of a conceptual framework for
managing the SLA. Since we use an ontology that integrates different characteristics
we define concepts and modules that can handle these information. This framework
considers the registration and research of SLA models and perform the SLA composi-
tion and its control. The contribution our work can be summarized as follows.

Simplified structure. We have identified and modeled the possible scenarios presented
during the process of SLA composition so we could pull a simplified structure that per-
fectly fits the situations presented. We address a general problem, which is the creation
of a SLA, observing the specific characteristics related to each Cloud service provider.
With this approach we noted our concern to enable freedom of choice for the cus-

1.3 contributions of the thesis 7

tomers using a simplified structure at the same time respects the existing ontologies
and taxonomies in the market. Also, it is flexible enough to support new modules and
properties.

Flexibility and adaptability. Based on the metrics identified for each scenario and the
settings formally presented in our concepts we describe the modules of control and
management for the framework. As the internal modules to the framework are based
on a generic concept and a simplified structure is possible to ensure the flexibility to
receive new information from both customers and providers. In addition the structure
of the framework makes possible to adapt to other monitoring and management ser-
vices for example, since their outputs represent information that can be manipulated
by external modules.

1.3.3 dynamic sla management

The third and final contribution of this thesis is a solution for dynamic management
of information in a Service Level Agreement. To monitor the non-violation of adjusted
values between the parties is necessary to observe the dynamic nature of some proper-
ties. Accordingly, our approach is based on the monitoring of different scenarios. The
original contribution of our work can be summarized as follows.

Identification of demand for new services. Once we allow freedom of choice for cus-
tomers, we give the possibility to request non-established services. In this sense we
propitiate the identification of new services through the pooling of information and
the monitoring of its implementation enabling the application of the concept of XaaS.
In our approach, the framework provides a module for inventory of properties that
controls the behavior of services. This enables providers identify new demands and
eventually deploys the services to meet the market.

Use of natural language. Traditional solutions for the SLA composition assume that
the values required for the services to be static and punctual, not considering the needs
or the differences in perceptions between the parties, which implies that a simple dif-
ference of values makes the customer’s request unanswered and that the provider lose
market or have no knowledge of it. Such an assumption may result in a market re-
stricted to the providers. We solved this limitation by proposing an approach using
values described in fuzzy logic, this allows an approximation between the parties since
they can use natural language to describe certain values and allows a greater range of
service opportunities for providers.

Control of dynamic information. Analyzing the characteristics of some services in
Cloud and the set of relationships between their properties is possible to identify dy-
namic aspects that influence the composition of services and consequently determine
some particular situations for Service Level Agreements management. We present an
approach that allows us to consider this behavior and demonstrates how these dynamic

8 introduction

changes can be used to monitor and control cloud services resources and possible vio-
lations of SLAs.

1.4 organization of the thesis

In this chapter, we discuss the motivations behind the work proposed in this thesis,
and illustrate our high-level objectives and main contributions. The remaining chap-
ters are organized as follows.

Chapter 2 presents the state-of-the-art on Service Level Agreements in Cloud comput-
ing environments. It presents the needs of standardization and techniques used for
the composition of SLAs, besides describing some frameworks used in the Cloud SLA
scope also describes the use and representation of different ontologies that describe
the different services in the Cloud.

Chapter 3 illustrates our solution based on the integration and generalization of the
information presented by different services in Cloud, ensuring the necessary flexibility
to ensure freedom of choice for service Cloud customers. In this chapter, we present the
formal definition of our approach and the developed generic ontology that provides
the basis for the solutions presented in the another chapters. This formal definition
refers to conceptual modeling of the information in SLA composition, and represents
values independent of domain.

Chapter 4 provides an overview of the proposed framework in this thesis. The main
elements are discussed and the framework architecture is described.

Chapter 5 focuses on the request for issue of new services that have non-established
values by providers. The chapter illustrates the possible scenarios for the use of the
framework and our model to control and group new information, where sensitive in-
formation is characterized by market demand. Then, it describes how service providers
can use this approach to develop its portfolio of services.

Chapter 6 addresses the problem of interpretation of values in Service Level Agree-
ments. First, it describes how to identify the possibility of using fuzzy logic at different
times in the determination procedure of a SLA. Then, it illustrates our approach to
the use of natural language in the services requirements of customers and how this
approach can also be used on the provider side.

Chapter 7 shows how the framework presented in this work can be used to control the
changes of properties values in the Service Level Agreements. In addition, we describe
how the dynamic behavior of certain services is handled by our approach. The pa-
rameters that must be monitored to ensure the stability of the agreement between the
parties and also how this feature can be used for dynamic prediction and prospecting

1.4 organization of the thesis 9

for new Cloud services.

Chapter 8 provides an overview of our approach and summarizes the contributions of
this thesis provides our concluding remarks and outlines directions for future work.

Appendix A reports a list of publications related to the work shown in this thesis.

2
R E L AT E D W O R K S

To define an advanced SLA management strategy in Cloud environment is necessary
to understand how is the trading and composition of service agreements in different
circumstances and presenting their use and control over various aspects.

This chapter provides considerations about the types of service agreements pre-
sented in Cloud Computing and highlights the problem of non-standardization to
define SLAs, i.e., the lack of an unique and clear model to determine the relation-
ships between different Cloud Computing areas. In addition, we present some con-
siderations regarding frameworks of Cloud Computing and we describe the use and
representation of different ontologies that describe the different services in the Cloud.
Throughout this chapter we also present results of some surveys related to SLA man-
agement in Cloud Computing.

2.1 the sla in cloud computing

A SLA on a Cloud Computing service must be negotiated and agreed with the cus-
tomer to provide the features and requirements necessary to meet the SLO. From the
customer’s point of view an important issue is to have the assurance that all business
requirements are met in the choice of new services.

In [11] the authors state that the parameters of services, metrics and functions should
be included in a SLA and should be precisely specified in order to define the values
of the service properties. In [12] the author points out that, when we have a SLA for
cloud environments, certain topics should be clearly identified, discussed and nego-
tiated in order to ensure the protection of information and business functions. Some
of these aspects are: support for service interruption, security guarantees of informa-
tion, services and systems, procedures for incident response, auditability to implement
security, payment of compensation for losses and reliable certification (among others).

11

12 related works

Although the term "SLA" has become widely known and used, it is common to
find documents related to poorly written agreements with missing information and
confusing definitions. This is not good for the provider, and not good for the customer
as it gives room for discussions that could jeopardize the good relationship between the
parties, and in severe cases even cause a contract termination (in case of external service
providers) or the decision by outsourcing (in the case of domestic service providers).

We need to understand that a Service Level Agreement is much more than a docu-
ment describing service time and problem solving. This is an agreement that should
make clear all the guarantees that the service provider in relation to services that were
hired, and how these service levels will be measured, reported and improved continu-
ously. This requires the understanding of some concepts related to Cloud Computing.

Usually the Cloud structures are explored through a model "pay-per-use" [13] with
guarantees provided by SLAs [14]. According to NIST - National Institute of Stan-
dards and Technology [15], the cloud computing concept is "a model for enabling
network access, convenient, on-demand to a shared pool of computing resources (such
as networks, servers, storage, applications and services) that they can be rapidly pro-
visioned and released with minimal management effort or interaction with the service
provider".

Furthermore, the service models in the Cloud Computing may vary according to
the nature of the technology offered by providers. According to [16] the architectural
models can be commonly referenced by the acronyms "IaaS", "PaaS" and "SaaS". We
can describe these architectures with the following settings:

• IaaS - Infrastructure as a Service It is the model that is the provision processing,
storage, networking and other computer resources that allows the user to exe-
cute and implement any software [15]. The user does not manage or control the
cloud infrastructure where the service is provided, but have control over the op-
erating system, installed applications and limited control over the network com-
ponents. The service provider manages all infrastructures, while the customer is
only responsible for other aspects of system deployment.

• PaaS - Platform as a Service is a service model of Cloud Computing that allows
customers to implement and run infrastructure applications in the Cloud. These
applications can be created using languages, libraries, services and tools sup-
ported by the service provider [15]. The user has no access or control of cloud in-
frastructure including network, servers, operating system or storage. Compared
to traditional environments of application development, the use of PaaS strategy
may result in a reduced development time and offers dozens of tools and services
that allow rapid scalability application [17].

• SaaS - Software as a Service is a model that provides software systems for spe-
cific purposes that are available to users from multiple devices through a client
interface. In the SaaS architecture the users do not manage or control the in-
frastructure they directly access the application [18].The only responsibility of
the users is send and manage the data that the application will process and the

2.1 the sla in cloud computing 13

stages of interaction with the application. Thus, new features can be automati-
cally incorporated into the software systems without users noticing these actions,
making transparent the development and updating of systems. Everything else
is the company’s responsibility that provides the service [19].

The companies began to adopt Cloud Computing when they realized that this shared
infrastructure would reduce costs and make the process more efficient. Since compa-
nies do not need a large investment in equipment, manpower or expensive licenses, it
is more advantageous to buy a custom package and pay only for what is used. The fact
that everything is turning into a "service" is the essence of what is the XaaS (everything
as a service): this concept encompasses all the other concepts and reflects a trend in
IT in recent years that is turning products into services [20]. Although all architectures
generally follow the designs described, it can be said that each service provider has
a number of characteristics which vary from provide or not provide all models, the
supported programming languages and other forms of services.

Analyzing the services offered, we can state that the main providers of commercial
cloud services are Amazon (Amazon Web Services - AWS) [5], Google (Google App
Engine - GAE) [21] and Microsoft (Microsoft Windows Azure) [22]. This statement is
reinforced by name and size of the organizations involved and and by the potential
investment to become the leader in this sector [23]. We describe these three service
provides as follows:

Amazon Web Services - AWS provides the most complete set of support cloud com-
puting services [24], even though commercial platforms are the oldest ones (launched
in 2002). The Amazon Web Services consists of a set of systems, among which we can
highlight processing, storage and monitoring. Amazon AWS can be classified as IaaS.
The used processing service is the Elastic Compute Cloud (EC2) [25]. It is responsible
for the provision and management of virtual server instances on Amazon’s infrastruc-
ture. EC2 allows full control of instances of systems, being able to access and interact
with each one of these, similar to conventional machines [26]. Is possible also choose
the characteristics of each instance, such as operating system, software packages and
configurations of machines, such as CPU, memory and storage.

Microsoft Windows Azure is Microsoft’s proposed computing services in the Cloud.
The service consists of a platform (SaaS) for running applications. The platform is com-
posed essentially of three major components that form the core of the service; they are
the computing units, storage space and the Fabric. The latter is a software responsible
for managing and monitoring all resources of the data center, such as servers, load
balancers, switches, routers. This component is also responsible for the management
process of the application life cycle and maintaining satisfactory levels of services [27].

Google App Engine is the platform (PaaS) development that enables Web applica-
tion being available on Google’s infrastructure. This platform has many features for
developers such as support for Java and Python languages, application models, APIs
for integration with Google features and providing an environment with automatic

14 related works

load balancing and adjustments [28]. Google also offers services ranging from systems
for sending emails and editing images to APIs for authentication using an integrated
account with Google, scheduling functions, cache and a recovery URL.

Several open source technologies are behind the commercial computing cloud ser-
vices [29]. Therefore, there are community efforts to create middleware open source
to cloud platform. These efforts include the softwares Eucalyptus, OpenNebula and
Nimbus.

Eucalyptus: was developed by the University of California. Eucalyptus is an open
source infrastructure that recreates Amazon’s EC2 from the APIs provided by Amazon
service [30]. This allows the customer to have its own structure Cloud (Private Cloud)
and can scale to Amazon’s service during a "peak demand".

A private cloud with Eucalyptus consists of at least one host and one or more clients
or nodes. According to [31] the Eucalyptus architecture consists of four parts. 1) Cloud
Controller (CLC): Top level that controls the cloud as a whole. 2) Storage Controller
(Walrus): Top level that manages data traffic in and out of the cloud. 3) Cluster Con-
troller (CC): intermediate level which is the communication bridge between CLC and
NC. 4) Node Controller (NC): lower level controls instances of virtual machines in the
nodes.

OpenNebula: is a set of open source tools to create private and hybrid clouds [30].
Just as Eucalyptus, it supports Amazon EC2 and elasticity. The OpenNebula is also
modeled in a classic cluster structure [32]. A master node makes the queuing of tasks,
performs scaling and submits jobs to the cluster machines. The work nodes provide
the computational power to process jobs sent by the master node.

In OpenNebula it is also possible to add new work nodes and transfer instances of
virtual machines between nodes. The architecture can be divided into three lines. 1)
Tools: developed management tools using the interfaces provided by the OpenNebula
core. 2) Core: contains the main virtual machine, storage, networking for Virtual Ma-
chines (VMs) and hosts management components. And 3) Drivers: drivers for different
VMs, storage drivers and monitoring drivers and cloud services to the core.

In addition to allowing the creation of private and hybrid clouds, OpenNebula al-
lows creating public clouds, where users can access the infrastructure through public
APIs compatible with AWS.

Nimbus: similar to OpenNebula, it implements the AWS APIs. It specifically targets
the scientific community [30]. The Nimbus offers features relevant to the community.
It can be integrated into the Portable Batch System and Sun Grid Engine. Both tools
are widely used by the scientific community to process tasks in large distributed in-
frastructures. The Nimbus offers features such as dynamic creation of virtual machine
clusters [33]. It implements a compliant storage engine with Amazon S3 called Cumu-
lus, designed to be used primarily as a repository of virtual machines; however, it is
also possible to use it independently.

2.1 the sla in cloud computing 15

Considering the Cloud Computing definition in [34], the authors draw attention to
the need to guarantee the supply of services in the cloud using Service Level Agree-
ments (SLA). Cloud Computing gives users less control in the provision of services, so
they need to take precautions in order to not suffer poor performance, long periods
of inactivity or loss of critical data. The SLA becomes therefore an important part of
cloud service delivery model [35].

By definition a SLA is a formal document negotiated between the parties involved
in hiring a service [36]. A SLA aims to specify the minimum acceptable for the pro-
posed service and is essential for managing the quality of services provided. A SLA is
designed for each individual service and is made prior to purchase, before being in-
voked and used. According to [37] a SLA should include a description of the services,
the guarantees given by providers and the actions and penalties to be observed in case
of violation of these guarantees.

Within the SLAs there are SLOs (Service Level Objectives), which describe the actual
topics to be observed and measured in a SLA. A SLO is a requirement that the service
provider must offer. According to [38] the descriptions of SLOs highly depend on the
service architecture to be provided.

Considering the presented concepts and the generalization of service agreements we
can then present the life cycle of a SLA as the steps in [39]:

• Negotiate: An initial SLA is negotiated to document the desired requirements of
the service. The customer and the service provider, which are the parties involved
in the process, must accept the terms of the SLA that links them. They must
also detail the responsibilities of each party and the resulting consequences of
violation of the rules. This negotiation can consume lot of time representing a
long process. In an automated SLA, the availability of an interface where the
parties can discuss conflicting points of SLA can generate a quick agreement,
benefiting more quickly to all;

• Start: The service is configured and started to meet the SLA. When a provider
accepts an agreement, it must put in a queue and use a scheduling policy to set
the order that will meet the services. In addition, the provider must also consider
how to optimize the use of resources and how to preserve the QoS parameters
that are guaranteed by the SLA. In this scenario, it is very important to consider
the possibility of the arrival of new service requests and their priorities, even
being already running other tasks, to meet them with the resources that meet the
requirements as appropriate;

• Evaluate: The executions of services are monitored and evaluated to ensure that
the terms of the SLA will be met. Considering the fact that a provider began
providing access to resources, it should monitor the operation of these resources.
The monitored information can be used to verify that the QoS attributes defined
in the SLA are being fulfilled. Those involved that it should not only be interested
in knowing only if a task is being performed correctly. Other information such

16 related works

as breach of contract or usage statistics are also relevant to the verification of the
SLA.

Based on this we can say that the identification of relevant information is important
to describe faithfully the process. At any time, one of the parties to the contract may
want to change the resource usage policies, typically to comply with some external
demand arising from changes in context. Considering that changes will always exist
while the system is running, it is important to consider this aspect, but despite the
environment subject to change the behavior of processes should remain unchanged.
That is, we need to ensure that after any migration, addition or removal of the system
resources will continue to function properly. The use of resources must obviously gen-
erate a list describing which were used, to what extent and for how long, as well as
relating the values agreed for the use of each of them in accordance with the definitions
set forth in the SLA.

2.2 approaches in sla composition

From the point of view of customers, the existing SLA in commercial clouds like Ama-
zon and Microsoft are simple because they are static and pre-defined by the providers
[40]. The life cycle of the SLA will be described below: The first step performed by the
customer is to find service providers according to their needs. The customers find the
provider by searching the Internet, and then exploit the suppliers web site to collect
more information. Cloud service providers offer static document of SLA. In this case,
the following steps are the selection of monitoring and tracking service that normally
occur with third-party tools [41].

Considering the SLAs in commercial clouds [42] and [6] describes that Amazon
provides its users a SLA related only to availability. Also according to [6] in Windows
Azure from Microsoft, the response time is considered, but this only occurs in some
of the services. Besides not cover all the metrics needed for computing cloud services,
these SLA proposals are just static documents.

In cloud computing middleware Eucalyptus provides a SLA based on regions or
availability zones [31]. Similar to availability zones in Amazon AWS, if a SLA is vio-
lated is possible to migrate the services to other availability zones. However, there is
no integrated monitoring to the SLA and the migration of services is not automatically
triggered. Similarly, monitoring of Cloud Computing middleware only provide infor-
mation on the state of VMs if they are pending, active or off [30]. For more effective
monitoring is necessary to retrieve information directly from hypervisors. These de-
liver information as amount of CPU used, amount of memory available and used, and
network traffic.

It can be observed that the existing solutions of cloud computing provide some level
of SLA and service quality, but do not present dynamics in the negotiation of the SLA.
The solutions of these SLAs are static. Cloud services are subject to load fluctuations
and SLA violations are more likely to happen during these fluctuations. The nature
of these variations are unpredictable and therefore a static SLA to withstand these
conditions will not be efficient.

2.2 approaches in sla composition 17

In the academic community, there are efforts to create protocols to automate the cre-
ation and monitoring of SLAs in Web services. The WSLA (Web Service Level Agree-
ment Language) [43] is a protocol to define SLAs based on Web Services and XML,
where it creates an XML Schema that includes the definition of the parties involved,
the service guarantees and the service description. The WSLA has the following main
components: "Parties", "Service Definition" and "Obligations" [38]. Parties describes
who is involved in the service (client or provider). Service Definition describes the
services connected to the SLA, representing the understanding of both parties on the
parameters of the described service. Finally, Obligations defines the level of service that
must be guaranteed with respect to the parameters defined in the Service Definition.
The WSLA allows management of penalties or compensation when violations occur.
However, it assumes that the SLA is already created and not allow the negotiations to
create the SLA.

In [44] the authors specify an XML-based protocol, the WS-Agreement (Web Services
Agreement Specification), for the establishment of Service Level Agreements and guar-
antees of offers between a provider and a Web service client. In this specification, an
agreement involves multiple services and includes attributes for the parties, to refer
previous agreements, service definitions and terms of warranty [45]. The specification
is divided into three parts which can be used to specify an arrangement, a structure
for specifying a contract template and a set of types of transactions for managing the
agreement life cycle, including the creation, validity and monitoring states.

These protocols generally only handle the negotiation of a simple service with the
basic message exchange. Auto-negotiation of multiple services and multiple steps still
lacks maturity. In addition, both protocols are specific to Web Services and were not
applied to Cloud Computing scenarios [46].

According to [47] most commercial providers offers SLAs for cloud computing ser-
vices only as texts and transfers the activity of monitoring and controlling the SLA for
customers. The authors present a new language for the composition of Service Level
Agreements in Cloud named SLAC and add a comparison between the most known,
which are: 1) SLA* [48] used in general purpose services, 2) SLAng [49], that is a do-
main specific language for IT services, 3) WSLA [43], 4) WSOL [50], an XML notation
compatible with the WSDL (Web Services Description Language), 5) WS-Agreement
[44] and 6) SLAC [47]. In the work presented by [46], the authors propose the Cloud
Service Level Agreement (CSLA) which is based on WSLA and increased the number
of comparison performed by [47]. As a result of this comparisons, the authors present
the following information (Table 2.1):

18 related works

Table 2.1: Comparison of the SLA languages (adapted from [46])

Features WSOL WSLA SLAng WS-A SLA* CSLA SLAC

Cloud Domain - - - - 	 ⊕ ⊕
Cloud Service Models - - - - 	 ⊕ 	
Multi-Party - - - - - ⊕ ⊕
Broker Support - - - - - 	 ⊕
Ease of Use 	 - 	 	 	 ⊕ 	
Business Metrics 	 	 	 	 	 ⊕ ⊕
Price Schemes 	 	 - 	 	 ⊕ ⊕

According to the results presented in [46] and summarized in Table 2.1 we have: ⊕
represents a feature that is covered in the language, 	 is a partially covered feature
and - when no support is provided for the feature.

As we can see by the results shown in Table 2.1, none of the SLA composition lan-
guages meet all the specifications required by the authors, especially with regards to
service models in Cloud, ease of use and support for brokering. This shows that these
languages are not enough to meet the new demands of the market, considering the
transparency between the parties and the control needs of customers.

In addition to these SLA composition languages it is also important to relate the use
of frameworks that seeks to provide SLAs for Cloud Computing services or, failing
that, models that provide SLAs for Web Services.

2.3 frameworks in cloud computing

The frameworks discussed in this thesis were analyzed in relation to hiring interface,
level of expertise of the metrics or SLOs, if has dynamic aspects, it has integrated mon-
itoring and work with multiple metrics. In this sense, scientific proposals were chosen
to have characteristics that somehow meet the requirements, but differ in important
ways to the comparative analysis of the models.

Among the considered works, there are the LoM2HiS (Low Level Metrics to High
Level SLAs) [51], the DeSVi (Architecture for Detecting SLA Violations in Cloud Com-
puting Infrastructures) [52], the SRV (SLA-based Resource Virtualization) [53], and an
approach to a general SaaS architecture for scientific software [54]. Finally, a compari-
son is made between the studied models and we added the results of different surveys
found in the literature.

Some frameworks in the area of Cloud Computing were disregarded as is the case of
CASViD [55] which is a framework that considers only the monitoring and detection
of violations and the framework presented in [56] that only considers security aspects.

2.3 frameworks in cloud computing 19

2.3.1 lom2his

The LoM2HiS [51] allows the hiring of SLA from QoS requirements, also called high-
level requirements, such as response time rather than low-level requirements or in-
frastructure such as amount of CPU or memory. Figure 2.1 shows the architecture
LoM2HiS.

Figure 2.1: LoM2HiS Architecture (adapted from [51])

In Figure 2.1 we have that the service component is the application layer, where ser-
vices are implemented using a Web container and the run-time monitor is a component
designed to monitor the services based on negotiated and agreed SLAs [51]. Following
the steps set out in [51] we have:

Step 1: After agreeing to terms of Agreement the service provider creates mapping
rules for LoM2HiS using Domain Specific Languages (DSLs) that are simple languages
that can be adapted to a particular problem domain;

Step 2: The client requests the delivery of an agreed service;
Step 3: The run-time monitor loads the SLA repository with the SLA agreed;
Step 4: The provision of services is based on the available computing resources. The

metrics of these resources are measured by monitoring agents;
Step 5: The host monitor extracts the metrics and submit to the run-time monitor;
Step 6: The host monitor reports the status of the resource to the enactor component;

20 related works

Step 7: Upon receipt of the metrics, the run-time monitor and the low-level metrics
monitor compares based on pre-defined rules to determine the equivalent SLA. The
result is stored in a mapping store;

Step 8: The run-time monitor uses the values mapped to monitor the status of exe-
cution of the services. If there are threats of future violations of the SLA, the enactor
component is notified for preventive action;

Step 9: The decisions of enactor components run directly on the available resources.

The LoM2HiS not have arrangements for the negotiation of SLA since it assumes that
the negotiation process has been completed and the SLAs already previously agreed
are stored in the service provisioning repository.

2.3.2 desvi

Regarding the violation of SLA, the DesVi framework [52] performs the detection of
SLA violations by monitoring cloud computing infrastructure resources. The DeSVi
allocates the resources needed for the service based on the user’s request and orga-
nizes the implementation thereof within a virtualized environment. Once the level of
service is pre-set, it is possible to detect potential SLA violations. According to [52],
knowledge bases are used to manage the SLA violations and these knowledge bases
are implemented using learning techniques. In [52] the authors also present the exe-
cution results in heterogeneous environment showing that DeSVI is able to monitor
and prevent SLA violations, considering workloads and different measuring ranges.
The service life cycle of DeSVi includes activities such as trading SLA, allocation of
resources, resource monitoring and detection of SLA violation. The DeSVI architecture
is shown in Figure 2.2.

2.3 frameworks in cloud computing 21

Figure 2.2: DeSVI architecture and interaction between components (adapted from [52])

In the Figure 2.2 the top layer is the users who request services to a service provider
and according [52] the interaction can follow the following steps:

Step 1: The user requests service provisioning to the cloud provider;
Step 2: The provider handles user service requests based on the SLA negotiated and

agreed previously. The application allocates the necessary resources for the requested
service and organizes its deployment on VMs;

Step 3: Then it is performed the deployment and configuration of virtual machines;
Step 4: The host monitor notes the resource pool metrics comprising virtual ma-

chines and physical hosts. LoM2HiS manages the relationship between the metrics of
resources and SLAs.

In Figure 2.2, the redundancy in the monitoring mechanism is indicated by failover
arrow [52]. The host monitor uses monitoring agents that are incorporated into the
resources to monitor the metrics. Such agents transmit the monitored values for the
other players on the same set of resources, enabling access to the status of resources
for any service.

The DeSVI has the capacity to carry out the monitoring and detection of SLA viola-
tions with automatic deployer of VMs. However, the DeSVI does not address applica-
tions with large variability of resource consumption [52]. In addition, the DeSVI does
not address monitoring and SLA violation in the level of applications (only infrastruc-
ture).

22 related works

2.3.3 sla-based resource virtualization (srv)

The SRV [53] has three main components: a meta-trading component for the manage-
ment of a generic SLA, an intermediate component to a diversified management and an
automated deployment service that uses virtualization capabilities. Figure 2.3 shows a
service architecture that illustrates these components.

Figure 2.3: SRV Architecture (adapted from [53])

In Figure 2.3 we have "User" that is the person who wants to use a service. "Meta
Negotiator" (MN), a component that manages the level of service. This component
mediates between the user and the Meta-Broker, selects the appropriate protocols for
agreements and negotiating the creation of the SLA and the treatment of violations.
"Meta-Broker" (MB) component that has the function of selecting an agent capable
of deploying a service with the requirements specified by the user. "Broker" (B) that
interacts with the physical and virtual resources and when the service needs to be
deployed it interacts directly with ASD. Auto Service Deployment (ASD) installs the
required service on the selected feature on demand. "Service" (S) is the service that
users want to deploy and/or run. "Resources" (R) are the physical machines into virtual
machines can be deployed/installed.

This architecture shows that the negotiation of the agreement and service deploy-
ment are closely related. The SRV contains a base model for negotiating the SLA,
however, in addition to treating only the negotiation it is generic for virtualized en-
vironments and has not been evaluated for Cloud Computing environments.

2.3 frameworks in cloud computing 23

2.3.4 sla for scientific research clouds

In [54] the authors propose a SLA architecture for SaaS scientific research clouds using
algorithms estimates that are able to assess the viability of the SLA in advance the
use of services. In this work the authors use machine learning principles to create
algorithms that control the provisioning of virtual machines to maintain the SLAs.
Figure 2.4 shows the SLA SaaS architecture for scientific research clouds.

Figure 2.4: Architecture for Research Clouds (adapted from [54])

The cloud infrastructure can be seen at the bottom of the Figure 2.4, where an IaaS
provider offering instances of virtual machines within their data center. Just above, a
layer called cloud API encapsulates access to infrastructure. The storage containing
the data of the applications are located within the cloud. In the next layer, there are
sensors and actuators. The components interact with the cloud and running instances.
Especially sensors are dependent on the application because they are used to control
the state of application. Actuators are used to create, modify, configure and terminate
instances of virtual machines. There is also an agent and a cost estimation module.
The agent handles the service while running and ensures the service agreement. The
cost evaluation module is initially used to check the feasibility of user requests and
estimate costs. On top of the architecture provided a Web Service interface, providing
access from a user interface and used to communicate with the agent and cost estima-
tion module. The estimated costs are presented to the user and the architecture also
provides the allocation of resources in advance. After this, the Agent module invokes
the work. Submission implies that the user and the service provider agree with the

24 related works

SLA. The task of the agents is to enforce compliance with the SLO and minimize the
resources used.

This architecture was designed for scientific research SaaS providers and HPC appli-
cations (High Performance Computing). In this case, a job is not interrupted until it
is completed. Thus, the SLA can only be accepted once and is valid until the end of
execution of the work. There is no dynamic renegotiation of the SLA.

2.3.5 comparison of studied frameworks

Considering the frameworks studied in this section, we highlight some aspects: hir-
ing interface, level of expertise of the metrics, it is dynamicity, integrated monitoring,
which cloud model is served, strengths and weaknesses.

The SLA hiring interface refers to how the user interacts with the model in hiring
the SLA. Requirements or application metrics are usually expressed in low-level or
technical language, such as packets, number of bytes received and sent. Furthermore,
these metrics can be measured using different units of measurement. Since the goal is
to compare how the requirements of customers and providers are negotiated, different
units of measurement and expressed in technical language can hinder this comparison.
In this sense a requirements of speech interface to QoS parameters, also called the
highest level, is expressed in order to be less technical and how it is directed to the
evaluation of quality, allowing comparisons with less complexity. The LoM2HiS and
the SLA for scientific research clouds have high-level hiring interface.

Considering the hiring metrics used, none of the evaluated models have specific
metrics for cloud computing. Furthermore, the models studied using the metrics in
isolation from each other. A qualification system could prioritize actions when there
are violations of specific metrics by assigning different weights, priorities or degree of
importance to a group or type of metrics.

The dynamicity indicates whether the model allows the negotiation and renegotia-
tion of the SLA dynamically, following the elastic behavior of the Cloud. Between the
models studied the DeSVI is the only one that is designed to handle the life cycle of
the SLA, including trading activities, allocation of resources based on monitoring and
forecasting of violations using learning techniques.

Except for the SRV, the studied models perform monitoring of integrated SLA re-
sources. A summary of this evaluation can be seen in Table 2.2, which are also given
the strengths, weaknesses and the cloud model where these frameworks are used.

2.3 frameworks in cloud computing 25

Table 2.2: Comparison of studied frameworks

Framework

In
te

rf
ac

e

M
et

ri
cs

D
yn

am
ic

it
y

M
on

it
or

in
g

St
re

ng
th

s

W
ea

kn
es

se
s

C
lo

ud
M

od
el

LoM2HiS high-level Only
infras-
tructure,
does not
work with
multiple
metrics

Static yes Allows
the SLA
contract
using
higher
level
language

Focus on lan-
guage parser for
the requirements
for the metrics,
does not allow
the negotiation of
the SLA

IaaS

DeSVI low-level Only
infras-
tructure,
does not
work with
multiple
metrics

Dynamic
but not
supports
elasticity

yes Automatic
deploy-
ment of
VMs

Does not address
applications with
large variabil-
ity of resource
consumption,
does not address
monitoring and
SLA violation in
the application
level

IaaS

SRV low-level Generic
for vir-
tualized
environ-
ments,
does not
work with
multiple
metrics

Static not Negotiation It is generic for
virtualized envi-
ronments so it
does not address
cloud specificities

N/A

SLA for scien-
tific research

high-level Does not
allow the
renegoti-
ation of
the SLA,
does not
work with
multiple
metrics

Static yes Cost Esti-
mate

Does not address
dynamic negotia-
tion of SLA

SaaS

It is possible to realize that the framework LoM2HiS [51] allows the transformation
of application requirements (low-level) in quality requirements (high-level) for hiring
the SLA, but does not allow the negotiation of the SLA. The DeSVi [52] allows the
detection of SLA violations through monitoring capabilities, but does not address large
resource consumption variability (elasticity). The framework SRV [53] is a base model
for SLA negotiation, but was not applied to cloud computing. The SLA architecture
for search cloud [54] was designed for SaaS providers of scientific research and HPC
applications (High Performance Computing). In this case a job usually to be started is

26 related works

not interrupted until it is completed. Thus, the SLA can only be accepted once and is
valid until the end of execution of the work.

2.4 sla monitoring

To ensure the life cycle of the SLA, it needs to be checked periodically [57]. For this
it must be monitored to ensure it is still valid and feasible. The result of monitoring
will inform the SLA may be terminated or renegotiated. This feature should lead to
optimization of the execution of an instance of an application, task or service based on
SLA parameters in order to maximize the likelihood of SLA satisfaction. The requests
submitted to a SLA, are processed to select the best host among all available. The best
setting for a host depends on the state of a number of variables in the system, such as
available resources, the resources that are needed to meet the SLA requirements and
further optimization goals.

Some goals are directly related to the knowledge of the requirements of a SLA,
such as reducing the completion time, minimizing costs, maximizing the probability
of success [58]. While other objectives are related to the system status, for example
the workload balancing. The monitoring process of running an instance of a service,
related to the definitions of a SLA, is meant to verify whether the contract is being
fulfilled or not. During execution, if any parameter associated with the SLOs, which
are effectively the topics to be measured within the SLA, reaches a threshold value,
identifies the threat and recovery actions can be activated in order to preserve the SLA
or even minimize the consequences of an effective breach of contract.

An interesting option for monitoring is to send threat alerts to the provider enabling
him to take steps to try to prevent the violation. Another option for this feature is the
ability to provide information to the user who signed the SLA, informing it about the
current status of the SLA, making the process more transparent.

To demonstrate these features we present a survey on Cloud monitoring that was
carried out in [59] where the authors made comparisons between commercial monitor-
ing platforms and open source monitoring platform. To perform these comparisons the
authors found features that must be submitted by monitoring platforms. According to
[59] these features are:

• Scalability: A monitoring system is scalable if it can cope with a large number of
probes (according to [60]);

• Elasticity: A monitoring system is elastic if it can cope with dynamic changes of
monitored entities [60];

• Adaptability: In [60] the authors states that a monitoring system is adaptable if it
can adapt to varying computational and network loads;

• Timeliness: A monitoring system is timely if detected events are available on time
for their intended use [61];

• Autonomicity: According to [62] an autonomic monitoring system is able to self-
manage its distributed resources by automatically reacting to unpredictable changes;

2.4 sla monitoring 27

• Comprehensiveness: A monitoring system is comprehensive if it supports different
types of resources, several kinds of monitoring data, and multiple tenants [63];

• Extensibility: It is extensible if such support can easily be extended [64];

• Resilience: According to [65] monitoring system is resilient when the persistence
of service delivery can justifiably be trusted when facing changes;

• Reliability: A monitoring system is reliable when it can perform a required func-
tion under stated conditions for a specified period of time [66];

• Availability: According to [66] a monitoring system is available if it provides ser-
vices according to the system design whenever users request them;

• Accuracy: A monitoring system is accurate when the measures it provides are as
close as possible to the real value to be measured [59].

The result of the comparison of these features are presented in Table 2.3.

Table 2.3: Comparison features of cloud monitoring platform (adapted from [46])

Platform

Sc
al

ab
il

it
y

El
as

ti
ci

ty

A
da

pt
ab

il
it

y

Ti
m

el
in

es
s

A
ut

on
om

ic
it

y

C
om

pr
eh

en
si

ve
ne

ss

Ex
te

ns
ib

il
it

y

R
es

il
ie

nc
e

R
el

ia
bi

li
ty

A
va

il
ab

il
it

y

A
cc

ur
ac

y

CloudWatch [67] ⊕ ⊕ ⊕
AzureWatch [68] ⊕ ⊕ ⊕ ⊕
Monitis [69] ⊕
LogicMonitor [70] ⊕ ⊕ ⊕
Aneka [71] ⊕ ⊕
GroundWork [72] ⊕
Nagios [73] ⊕
OpenNebula [74] ⊕ ⊕
Nimbus [75] ⊕
PCMONS [76] ⊕
DARGOS [77] ⊕ ⊕
Hyperic-HQ [78] ⊕ ⊕
Sensu [79] ⊕ ⊕

The symbol ⊕ represents a feature covered by the monitoring platforms, as we can
see from the results shown in Table 2.3, none of the monitoring platforms meet all

28 related works

established features. A complementary work to this is presented by [80]. Figure 2.5
shows ipsis litteris the results presented by [80] once identified the realization of com-
prehensive surveys in the area of Cloud Computing (this is not the scope of this thesis).
These results provide the basis for the identification of gaps in SLAs management in
Cloud.

Figure 2.5: Survey results presented by [80]

As we can see in Figure 2.5 in this work the authors added more characteristics, such
as: "Shared Resource Monitoring", "Service KPI Monitoring", "Service Dependency"
among others. In addition to performing the comparison, they added other monitoring
tools and compared with a cloud resource ontology, i.e., mOSAIC [81] [82].

Despite the research carried out yet they are perceived gaps in relation to the life cy-
cle of a SLA especially when they are considered different metrics. This can be further
strengthened by the lack of standardization in the sense that each type of service in
Cloud has its peculiarities. So we must understand the market demands and the clever
use of any available resource in the cloud environment.

2.5 management of cloud properties 29

2.5 management of cloud properties

The increasing need for flexibility and scalability in the use of computing resources
considering attractive costs and independence of devices results in the search for the
adoption of Cloud Computing environments in several areas [3]. Although the benefits
envisioned for this migration can be huge, this computing paradigm still presents a
large number of uncertainties regarding system faults and their management. As a
results of these uncertainties, there is a considerable concern raised by customers [83],
especially when it dealing with the reliability and availability of services in Cloud
Computing [84].

Some studies reported in the literature, such as [85] and [86] also identifies that
the use of commodity components can expose the hardware used in Cloud environ-
ments to conditions that were not originally designed. Furthermore, due to the highly
complex nature presented in an infrastructure of this type, many data centers, even if
carefully manipulated, managed and protected are subject to a large number of fail-
ures. [87]. Of course, the occurrence of these failures reduces the overall reliability and
availability of the service. As a result, fault tolerance techniques become very impor-
tant for customers and service providers to ensure proper and continuous operation of
the system.

According to [16] Cloud Computing architecture comprises four distinct layers, that
are:

1. Physical resources, like most computing architectures are considered the lowest
layer of the stack, on it are embedded virtualization tools to form the layer of
Infrastructure-as-a-Service (IaaS);

2. The IaaS layer typically uses virtualization technology to maximize the use of
physical resources and ensure the quality of services;

3. The layer above the IaaS connecting all the user-level middleware tools is known
as Platform-as-a-Service (PaaS);

4. Applications at the user level that are built and hosted on the PaaS layer comprise
the Software-as-Service layer (SaaS).

The failure occurrence in a particular layer causes impacts on the services offered
by the layers above it [87]. For example, if faults occur in the physical hardware or
virtualized structure of the IaaS layer, these failures will affect the majority of services
in PaaS and SaaS layers. Similarly, a failure in a middleware in the PaaS layer can
produce errors in the instantiated software services in the SaaS layer.

As these layers are interdependent, it is necessary that they are linked between each
other as well. To do so, in this section, we present some approaches related to metrics
in Cloud SLA and the basic concepts relating to its modeling, are also discussed the
levels at which the semantics can be express and made a description of ontologies that
describe the different services available in Cloud.

30 related works

2.5.1 metrics in cloud sla

As seen earlier in cloud computing there are three levels of service, IaaS, PaaS and
SaaS. In [37] the authors list the specific and most important metrics for a cloud com-
puting scenario. As can be seen in Table 2.4, a model of SLA needs to consider these
metrics and the terms of each level of service showing a list of requirements that can
be comparable in terms of SLA.

Table 2.4: SLOs or QoS requirements for clouds (adapted from [37])

Cloud Model Metrics

IaaS CPU quantity, memory size, bandwidth, boot time, stor-
age capacity, maximum and minimum number of servers
per user, time to increase and decrease the number of
servers

PaaS Integration with other platforms services, scalability, cost,
versions of servers and browsers, simultaneous number
of developers

SaaS Usability, customization for different types of user, time
available services, capacity for a large number of users

General Availability, performance, reliability, monitoring meth-
ods, service cost and how is it calculated, encryption,
security, communication (flow, load balancing) support
methods to services, privacy, location and legislation

It should be noted that when dealing with XaaS we will have infinite possibilities. In
many works, terms typically treat the IaaS model. However, it notes that the terms of
the SLA to PaaS and SaaS Clouds are not widely treated. This is because these specific
metrics are qualitative, such as the "reliability" and "usability" and therefore difficult
to compare.

Another problem encountered in the treatment of multiple metrics concerning how
to quantify the relative importance of each of them, plus the fact that they possess dif-
ferent degrees of importance. Although it is not possible to assert that there is a com-
monly accepted method for setting weights, there are several proposals in the literature
for these procedures. Generally the techniques for comparing metrics in Cloud Com-
puting are used for selection of Cloud services based on QoS requirements. Among
these techniques we can mention the order of the metrics with the scale and distribu-
tion of points [88], the fuzzy logic [89] and the procedures based on pairwise compar-
ison with technique Analytic Hierarchy Process (AHP) [90]. These techniques aim to
facilitate the solution of decision-making related to complex problems. Through them,
weights and priorities are derived from a set of subjective judgments made by evalua-
tors or participants involved in the selection of services.

In [91] the authors present a survey with the evaluation of different techniques used
in the selection of Cloud Services based on metrics of QoS. The results of this work are
summarized in Table 2.5.

2.5 management of cloud properties 31

Table 2.5: Summary of metrics evaluation techniques (adapted from [91])

Evaluated Techniques Limitation

Ranking of Cloud Services using AHP [92] All QoS requirements are not implemented

An approximate Markov chain model [93] Not suitable for burst arrivals

Cloud Monitoring System for QoS [94] Failed to calculate communication cost

Optimal resource allocation replica for maximiz-
ing revenue [95]

Not suitable for sensitive QoS applications

Generic QoS framework for Cloud workflow sys-
tems [96]

Complex problems such as monitoring and viola-
tion handling occurs

Personalized QoS ranking prediction [97] Accuracy of ranking method has to be considered

AHP based ranking mechanism [98] Non quantifiable QoS attributes are not used

Cloud Monitoring System for Virtualization [99] Single QoS Parameter is considered

Software agent based automated service negotia-
tion [100]

Multiple interactions are not possible

A Queueing network model with infinite queue
[101]

Only response time is considered as a major factor

Algorithm for resource allocation [102] Security problems occurs

A scheduling heuristic with multiple parameters
[103]

Response time and performance parameters are
not used

QoS-aware service selection algorithms [99] Service Provisioning problems are not overcomed

Profit Balancing and pricing model for QoS [104] Utilization is not considered for computational
cost

Multi-Constraints Path problem [105] NP-Hard problem occurs

Delay Constrained Least Cost (DCLC) [106] QoS constraints are not used

AHP hierarchy using SMI architecture [107] Ranking Algorithms can be deployed to rank in-
frastructures

A framework for performance monitoring and
analysis tools [108]

After analyzing the services can be ranked

A framework to compare the performance of dif-
ferent Cloud services [109]

Authors must deployed more constraints for com-
parison

AHP hierarchy for web services [110] VM capacity parameter is not used

Energy efficient resource allocation and schedul-
ing algorithms [111]

QoS parameters are not considered as a major con-
straints

Business Rules for maximise the revenue of
Providers [112]

Customers are not satisfied without QoS Require-
ments

Admission Control and Scheduling algorithm
[113]

Only fewer QoS constraints are considered

Other methods to define weights in comparing metrics are also cited in the literature,
such as decision trees [114], artificial neural networks [115] and genetic algorithms
[116], but these represent enormous complexity for the treatment of multiple metrics.
Decision trees, for example, become more complex as the number of factors increase.
As regards the assessment of weights, whenever necessary to express the priorities of
a particular group of metrics or criteria, the pairwise comparison method is strongly
recommended [117].

32 related works

Considering the qualitative aspects presented by different metrics and that the termi-
nology of cloud service measurements is not well defined, [118] introduces the concept
of abstract metric in combination with the concept of concrete metric. According to def-
initions presented in [118] an abstract metric is "a collection of elements that defines
the expression of a specific metric for a given metric category" and a concrete metric
is "a collection of elements that complete an abstract metric definition by linking the
metric to its primary abstract metric and assigning specific values to the rule(s) and
parameter(s) defined in the abstract metric definition".

Besides this, [118] also presents the context definition in Cloud Computing as "the
circumstances that form the setting for an event, statement, or idea, in which the mean-
ing of a metric can be fully understood and assessed".

2.5.2 ontologies for cloud services

In order to understand the relationships between the various metrics presented on a
Cloud SLA it is necessary to understand how these metrics can be modeled conceptu-
ally and how they are described in different ontologies presented in the area. Accord-
ing to [119], conceptual modeling has been characterized in several ways. However, an
important definition that we consider in this thesis is offered by [120], which presents
the conceptual modeling as a process to formulate and collect conceptual knowledge
about an Universe of Discurse and document the results in the form of a conceptual
scheme. The Universe of Discourse refers to the set of all entities of interest being
modeled and its use is common in logic and mathematics.

This conceptualization process, promoted by modeling, aims to describe a domain
(or universe of discourse) through the entities that compose the relationships between
these entities. In [121] the process of modeling is presented in detail, including ques-
tions relating to the representation of semantic models.

A model is an abstraction of something that omits details that are not essential and
able to deal with complex situations and objects [122]. Through abstraction, some real-
world aspects are removed or simplified. The emphasis is placed on essential features,
creating a vision, that is naturally incomplete or partial, of the environment or modeled
context. Normally the modeling is done through an analysis process in which the
whole is reduced into component parts that can be addressed separately, in a simpler
way.

The conceptual modeling is the process in which knowledge of a domain is orga-
nized into levels of abstraction in order to gain a better understanding of the domain,
encapsulating details. Thus, the description of an object X in a N1 abstraction level con-
tains more details than the description of the same object X in a N2 level of abstraction,
if N2 is at a level higher than N1.

The models, being an abstract representation, require some representation made by
signals - such as icons, images, objects, symbols and tokens. In the context of a particu-
lar model, these signals have a form and an associated meaning. The semantics studies
the aspects of meaning, while the syntax is related to the form. The representation of a
model, therefore, is made using a modeling language, in turn, has an associated syntax

2.5 management of cloud properties 33

and semantics. A metamodel is a model that establishes the grammar of the language
used to build other models.

From the construction of a model, we can get information that is of interest, for
example, for the determination of an agreement between the parties that considers in-
formations relevant to the domain. Information is an informal abstraction [123] that
represents something significant in a certain context. The information may be repre-
sented by data. At a higher level of abstraction there is the knowledge. Knowledge can
be characterized as information combined with experience, context, interpretation and
reflection [124]. According to [125] there are basically two types of knowledge: tacit
and explicit. Tacit knowledge is that available to people and that is not formalized in
practical ways. The explicit knowledge is that which can be stored, for example, in
documents, manuals, databases or in other media.

With regard to models, formal models are constructed with formal languages, or
languages that have strict rules for its construction and interpretation. The rules for the
construction define the syntax of the language, while the rules for the interpretation
define its semantics.

The syntax works with the formal and structural relations between signs or tokens,
as well as the production of new signals or tokens [126]. The syntax of a language
involves the definition of the set of reserved words, their parameters and the correct
order in which the words are used in an expression. An XML file, for example, used
for interoperability and integration between systems, must have a precise syntax. If
syntactical rules are not observed, the file can not be processed.

The semantics studies the relationships between the system of signs and its meaning
[127]. The goal of semantics is totally different of syntax. This works with the formal
structure in which something can be expressed while the semantics is concerned with
what something means. One aspect about the semantics, computationally, is to define
a formal representation language to capture the semantics in a way processable by
machines, achieving a consistent interpretation.

According to [127] and [126] a model that has some form of formal semantics is more
expressive than one featuring only implicit semantics. One way to add some semantics
to the models is through metadata.

Metadata may exist in different levels. These levels are not mutually exclusive and
include information on the content, structure and semantics of the data. Syntactical
metadata describe no contextual information about the content, usually providing gen-
eral information (e.g., document size, creation date, etc.). Structural metadata on the
other hand, provide information about the structure of data, independent of the con-
tent. They describe how items are arranged in the document and the rules for this
organization. An XML schema, for example, shows the structural metadata of an XML
document. Metadata add semantic rules, relationships and restrictions on syntactic and
structural metadata.

Metadata describe semantic information about the data that are important in a given
context or domain, allowing a certain interpretation. Semantic data enable a way to
high precision research and allows interoperability between systems or source of het-
erogeneous data. These data are used to provide the meaning of the elements de-

34 related works

scribed by syntactic or structural metadata. An important aspect in creating a semantic
meta-model for the data, is the possibility of using the inference capability for logical
conclusions based on the meta-model, according to the semantic level adopted [126].

[126] points out that: "depending on the approach, models and methods used to
add semantic metadata four representations can be used to organize the concepts that
semantically describe the terms: controlled vocabularies, taxonomies, thesaurus and
ontologies". In this thesis we discuss the characteristics presented by ontologies, since
we use this type of representation to describe our approach to the determination of
Cloud Service Level Agreements.

In the area of computer science, an ontology defines a formal and explicit specifica-
tion of the terms of a domain and the relationships between them [128] [129] [130]. An
ontology provides a mechanism to capture the common understanding of objects and
their relationships in a certain area of interest, and provides a formal and manipulable
model of a domain. The formal specification of the meaning of the terms used enables
the creation of new terms by combining existing and allows integration with other
ontologies.

The study and the use of ontologies in software were popularized with the semantic
web idea introduced in [131]. In this article the authors present the semantic web vi-
sion "as an extension of the current web in which information is given a well-defined
meaning, enabling the cooperative work of computers and people". In this context, the
most common type of ontology consists of a taxonomy and a set of inference rules,
which allow to capture the knowledge that is not explicit in the taxonomy.

The ontologies can extend the hierarchical relationships of taxonomies, allowing hor-
izontal relationships between terms in a structure type graph. Thus, the ontology fa-
cilitates the modeling of typical data requirements of the real world. According [132]
different formalisms for knowledge representation exist for implementation of ontolo-
gies. Although components of each are different, a minimum set is common to all:

• Classes: represent domain concepts; They are defined by terms generally orga-
nized in a taxonomy.

• Relations: represent a kind of association between classes. Generally associations
are binary, with the first argument being called domain and the second argu-
ment being the limit (range). The relationships are instantiated according to the
available knowledge about the domain. The binary relationships are also used to
express attributes or properties of classes. Attributes are different relationships,
because they are limited to one type of data (not a class).

• Instances: represent elements or individuals in an ontology.

An important property of ontologies is that their representation allows the computer
to process similar, being based on logical languages, which allows the formal defini-
tion of semantic concepts. In this thesis we present two of the most commonly logics
languages to represent ontologies, they are OWL (Web Ontology Language) and SWRL
(Semantic Web Rule Language).

2.5 management of cloud properties 35

OWL
According to [131], a language for representing ontologies must have a well-defined
syntax and semantics, have supported the inference, be efficient and expressive. In 2004

the W3C (World Wide Web Consortium) presented the OWL (Web Ontology Language)
[133], an ontology language for the Web, based on description logic. OWL is designed
to meet the needs of an ontology language for the Web, as the languages that preceded
it have some limitations. XML provides a syntax for semi-structured documents [134],
but does not associate semantics to the markers. RDF (Resource Description Frame-
work) [135] standardizes the definition and use of metadata, but has a very simple
data model, based on triple (subject, predicate, object), to represent the relationship
between resources. The RDF Schema provides a type system for RDF, which allows
users to define resources with classes, properties and values. However, some features
such as cardinality constraint, class disjunction and local scope properties can not be
expressed in RDF Schema.

The objective of OWL is to provide an ontology language that can be used to describe,
in a natural way, classes and relationships among classes of documents and Web ap-
plications. The terms used in an ontology must be written so that they can be used
by different software. According to [121] OWL distinguishes between constructors and
axioms. OWL constructors are primitive used to specify new classes and axioms are
the primitives to make additional statements about classes and properties. The OWL
dialects provide builders based classes in descriptive logic. These builders use the data
types defined in XML Schema.

As it is based on descriptive logic, OWL enables the use of inference engines allow
explicit knowledge that are implicit in a knowledge base. As a result, an OWL docu-
ment should not be considered only from the point of view of its syntax, but also of
their semantics. This means that two superficially different documents in syntactical
terms can express the same knowledge if they legitimize the same inferences.

SWRL
Considering the number and variety of existing systems, SWRL (Semantic Web Rule
Language) [136] is a proposal for standardization of language rules, aimed at inter-
operability between these various systems. The SWRL is based on a combination of
two sub-languages OWL (OWL Lite and OWL DL) with a RuleML sub-language (Rule
Markup Language) [137]. The rules written by users using SWRL can be used to infer
new knowledge based on prior knowledge expressed in OWL. Besides this the terms
of OWL concepts can be written in HLR (Horn-like rules) [138].

According to [136] SWRL rules are written in antecedent-consequent pair. In this
terminology, the antecedent is the body of rule, while the consequent is the head of the
rule. The body and the head consist of a combination of one or more atoms. In the
proposal submitted to the W3C [136] "SWRL does not support more complex logical
combinations of atoms".

The rules SWRL perform inference about OWL individuals in terms of classes and
properties. OWL can also refer explicitly OWL individuals. SWRL also supports the
concepts of same-as and different-from also supports the use of several prebuilt predi-

36 related works

cates (built-in), which expands its power of expression.

Based on these languages some initiatives are presented in order to create ontologies
that can be applied in Cloud Computing. Among them we can mention a search en-
gine called Cloudle [139], the mOSAIC ontology (Open-Source API and Platform for
Multiple Clouds) [81] and an ontology-based resource management presented in [140].

In [139] the authors present a services search engine in Cloud Computing based on
an Cloud ontology. This ontology contains a set of cloud concepts, the individuals of
these concepts, and the relationships between these individuals. In addition to service
Cloud models presented previously (IaaS, PaaS and SaaS) in Cloudle the authors add
the concepts of CaaS and DaaS where CaaS is an outsourcing model for business
communication and DaaS is a data storage service. The applied ontology using the
OWL language and is based on the similarity of properties to find compatible service.
To determine this similarity the authors present the ontology in the form of a triple
containing a subject, a predicate and a datatype value.

Considering this triple an example for an individual "Provider1" with a predicate
"hasMemory" and value "4000" would be expressed as follows: (Provider1, hasMemory,
4000). Table 2.6 shows some examples of concepts and their individuals presented in
[139]:

Table 2.6: Example of concepts and individuals used in Cloudle (adapted from [139])

Concept Individual

PaaS Provider1

IaaS Provider2

IntelCPU CPU1

AMDCPU CPU2

FileSystem NTFS

Based on the concepts presented, the authors create the triples to be used in the
calculation of similarity. These triples may be exemplified as shown in Table 2.7:

Table 2.7: Example of triples used in Cloudle (adapted from [139])

Individual Property Name (Type) Value

Provider1 hasCPU (Object) CPU1

Provider1 hasMemory (Datatype) 4000

Provider1 hasFileSystem (Object) NTFS

Provider2 hasCPU (Object) CPU2

Provider2 hasMemory (Datatype) 2000

CPU2 hasSpeed (Datatype) 3.4

Using the triple shown in Table 2.7 the calculation of similarity is performed by
joining common objects between the providers, such as: U={(CPU1,CPU2),(4000,2000)}.

2.5 management of cloud properties 37

We do not show how this calculation is performed because this is not the scope of this
thesis, but we point out some observations of how the ontology is applied.

For example we can observe the information given in the Tables 2.6 and 2.7 that
some individuals can also be expressed as values for other individuals, as is the case
of the individual "CPU2" which also serves as a value for the individual "Provider2".
Therefore, there exists freedom to express values for Individuals at the same time we
observe a strong dependence to express service models, as the ontology only considers
the five models presented in this approach (IaaS, PaaS, SaaS, CaaS and DaaS) It is
necessary one prior and thorough knowledge about these structures and not allowing
the creation of new models, or by the providers or by the customers, who do not have
the option to request new services. Another observation is that this ontology treats
only aspects related to functional requirements.

In the approach by [82] the authors present the mOSAIC project that also consid-
ers non-functional aspects of the services on Cloud. According to the authors, the
main non-functional properties used by Cloud components are: "Scalability; Auton-
omy; Availability, QoS, Performance, Consistency, Security and Reliability" [82]. Al-
though these non-functional characteristics are mentioned, the authors describe some
limitations of the approach. According to the authors these limitations are: 1) the intel-
ligent discovery of services, 2) the composition of services and 3) the SLA management
[82]. These items are considered limited since the ontology partially solves these chal-
lenges.

mOSAIC uses OWL language and often describes his ontology using hierarchical
information. The Figures 2.6 and 2.7 shows two fragments of the mOSAIC ontology
using an ontology editor [141]. The Figure 2.6 exemplifies items that composes a SLA
contract according to the authors.

Figure 2.6: mOSAIC SLA Ontology (extracted from [142])

The Figure 2.7 shows the Service Level Objective considering quantitative and quali-
tative aspects.

38 related works

Figure 2.7: mOSAIC SLO branch (extracted from [142])

In the Figure 2.7 we can see the hierarchy of items displayed in each type of ser-
vice, such as the parameters "Latency" and "Bandwitch" belonging to "NetworkPerfor-
mance" which in turn is a "Quantitative" parameter. These figures were extracted from
the work presented in [142]. In this work, the authors introduced a new parameter that
can quantitatively measure the idea of "Metric". It contains four properties: "hasUnit",
"hasValue", "specifiesCompareFunction" and "isMeasuredByThirdParty" [142]. Besides that
use SWRL language to set rules for the request of individuals. An example of these
rules is presented in Figure 2.8.

2.5 management of cloud properties 39

Figure 2.8: Subset of rules in SWRL (extracted from [142])

It is important to note that, the use of these rules in the ontology has a certain level
of difficulty, being not trivial its implementation. Besides that this approach applies
only to quantitative parameters and beyond to consider service models IaaS, PaaS and
SaaS also adds BPaaS model (Business Process as a Service).

According to the authors, the main problem in the definition of ontology is the het-
erogeneity by different terms used by service providers as well as the lack of standard-
ization identified in standards that have different terminology for services on Cloud
[82].

Another approach that shows the utilization of the mOSAIC is demonstrated in [143]
in this work the authors present the utilization of WS-Agreement language to represent
a service request, as shown in Figure 2.9.

40 related works

Figure 2.9: Fragment of User SLA request in WS-Agreement (extracted from [143])

The use of WS-Agreement language proves the flexibility of ontology allowing the
creation of specific solutions for each service model. Similarly this approach proves
that the SLA management using the mOSAIC ontology does not offer a single general-
purpose solution that can ensure the SLA management for any type of Cloud service.
Since both SWRL and WS-Agreement needs an exact determination of the parameters
to be used, it does not allow the addition of new services in a more simplified form.

In addition to the approaches presented in this chapter we also present the results
of a survey conducted by [84]. In this work, the authors showed the results related
to Service Level Agreements in Cloud Computing, among the research explored in
[84] include: Cloud4SOA [144], OPTIMIS [145], RESERVOIR [146], 4CaaSt [147], CON-
TRAIL [148], IRMOS [149], SLA@SOI [150], ETICS [151], GEYSERS [152], VISION [153]
and CumuloNimbo [154].

As a synthesis of the results shown by [84] we can extract some interesting aspects:
"Service Level Agreements are increasingly becoming the key criterion for service selec-
tion. Users are now demanding agreements with clear attainable terms, services with
guaranteed quality levels, offerings that meet specific legal and protection terms, accu-
rate reporting on the service usage and runtime adaptation for evolving requirements".
In fact, considering on the approaches presented, we can claim that the main problem
in cloud computing is the lack of unified standards.

2.6 chapter summary

The need for a management model that showcases the flexibility and control of the
information contained in Service Level Agreements in Cloud Computing has been rec-

2.6 chapter summary 41

ognized by the research community. Many studies try to present different models and
techniques to ensure consistent management with market needs. In this chapter, we
illustrate some of the known approaches, as well as the results of surveys carried out
in the scope of Cloud SLA. We focus on approaches to SLA composition focusing on
languages of agreements specification and we describe some frameworks used to sup-
port its management, we also describe some metrics used in Cloud SLA and ontologies
that use these metrics, highlighting the gaps shown in the different approaches. In the
rest of this thesis, we propose a new ontology considering the lack of standardization
in the terminology used in Cloud Computing and also to support new services, thus
illustrating a possible way to improve the usefulness of the agreements in an advanced
management process. We will also present a conceptual framework to support this
new ontology, considering aspects of composition, monitoring and resource allocation.
Finally, we will present the overview of our approach.

3
A D VA N C E D S L A I N C L O U D C O M P U T I N G

Efforts to standardize the representation of Service Levels Agreements generated dif-
ferent languages, as seen in the previous chapter, while identifying the need for greater
clarity to agreements between customers and service providers. Both technical ap-
proaches and the search for standardization advocated by international entities such
as ISO/IEC for example, provide a formal representation of the main components of
Cloud Computing for each type of Cloud service: However, on the other hand, these
approaches do not specifically aim the generic modeling task of a SLA, limited to the
specificities of each business model.

This chapter proposes the use of an ontology applied to SLA representation creating
a set of resources to include adaptation and extension of business models allowing
greater flexibility in SLA negotiation. The use of an expressive logical language to
represent different services in Cloud allows enrich them through the application of
inference mechanisms and the definition of semantic rules.

3.1 introduction

Along with the processing capacity, generation capacity and data storage are also grow-
ing in similar proportions. This evolution can be seen by the way the man stored and
passed through ideas of the times, from the paintings on the walls made by our ances-
tors, through the invention of writing, the role and the Gutenberg printing machine,
until we reach the current medias of storage. Currently, we are used to deal with huge
amounts of data and information in our lives. Government and commercial agencies
devoted enormous resources to collect and store information. Systems of automation
and information are becoming common in most companies. The science also has be-
come another major producer of data.

Although methodological advances in data analysis are necessary to transform the
experimental techniques in information and knowledge, the problems in the era of

43

44 advanced sla in cloud computing

Cloud Computing are not just experimental or technical but also conceptual. Accord-
ing to [155], conceptual modeling has been characterized in several ways. However,
an important setting for this thesis is offered by [156], which presents the conceptual
modeling as a process to formulate and collect conceptual knowledge about a universe
of discourse and documents the results in the form of a conceptual scheme. This con-
ceptualization process, promoted by modeling, aims to describe a domain through the
entities that compose it and the relationships between those entities.

Clearly, a model that has some formal semantics is more expressive than one featur-
ing only implicit semantics. One way to add some semantics to the models is through
metadata. Metadata may be defined as "data about data" [157] and the goal of adding
metadata models and data sources is to allow the user to find relevant items according
to the context. The use of metadata is influenced by the structure of the data. The data
can be unstructured, structured or semi-structured. Unstructured data can be of any
kind and do not necessarily follow any format, rule or order. Semi-structured data have
some structure, but this is not rigid. Structured data have a rigid structure, describing
the objects through strongly typed attributes.

3.1.1 chapter outline

Throughout this chapter we highlight the way in which resources are available in the
advanced SLA management in Cloud Computing and a generic ontology is defined
to support different services, and clarifies its relations, that is, regardless of the appli-
cation domain. Objectives, characteristics and an ontology overview with a detailed
description of its elements are presented. Initially we present the terminology and ex-
plain the concepts and then present the formal specification of the terms that will be
used in the proposed generic ontology. It is noted that while many of the examples
used in this chapter are related to existing areas in Cloud Computing, the proposed
approach can also be used for new services, such as Internet of Things (IoT) environ-
ments. The main contribution of the Chapter is the presentation of a generic ontology
that allows freedom of choice of services to customers and introduces the concept of
shared responsibility.

3.2 generalized service level agreement

The interaction between a Cloud Provider (CP), offering a service, and the customers
to which the service is delivered is usually based on SLAs. A SLA represents a contract
between the Cloud Provider and the customers on different functional/nonfunctional
properties of the provided service. However, relying on predefined SLAs might repre-
sent a limitation in the context of the customers needs, due to the richness and diversity
of collected data, and the heterogeneity of the applicative scenarios. For instance, differ-
ently from traditional outsourcing scenarios in which oftentimes a bulk data collection
is entirely transmitted to the provider at outsourcing time, an IoT application for pollu-
tant monitoring, for example, might require timely transmission to the Cloud Provider
of each measurement as soon as it is captured by a sensor.

3.2 generalized service level agreement 45

The SLA between the customer and the Cloud Provider, rather than being based
on a pre-defined model produced by the CP, can therefore be established by taking
into consideration all specific requirements characterizing the application. This prob-
lem can however be complicated by the fact that the satisfaction of some requirements
might depend on the satisfaction of other requirements, of which the subject might be
unaware. For instance, to ensure a response time less than a given threshold, due to its
hardware and software configurations, a CP might not be able to provide other features
(e.g., the encryption of the communication with the data sources). Our solution over-
comes this problem by taking into consideration dependencies among requirements in
the establishment of the SLA.

Building on these observations, in this section we aim at bridging the gap between
customers and Cloud Providers by proposing an approach for supporting specific ser-
vice requirements in the definition of a generalized SLA.

3.2.1 generic description

To create a consistent SLA between the customer and the Cloud Provider we must
present it into three complementary scenarios:

1. The enforceability of services by the provider: To define the services that are made
available by the provider we introduce the following description: S = {s1,..., sn}
where S is the set of the end services provided by the provider and s1 to sn rep-
resents each service separately. For example: S = {Storage, Security, Availability,
etc.} as in Figure 3.1.

Figure 3.1: Cloud Services representation

2. The necessary attributes for each service or resource: Each service or resource may
depend on other attributes that are not classified as service or even as a resource.
These attributes are described as follows: A = {a1,..., an} where A is the set of
attributes and a1 to an represent each attribute. For example: A = {Location, Key
Length, Time of Service, etc.} as in Figure 3.2.

46 advanced sla in cloud computing

Figure 3.2: Cloud Services and attributes representation

3. The resources used by the services: The third part relates to the resources prop-
erly used for the performance of services and assumes the following description:
R = {r1,..., rn} where R is the set of required features and r1 to rn represent each
resource. For example: R = {Number of Replicas, Number of Virtual Machines,
CPU usage, etc.} as in Figure 3.3.

Figure 3.3: Cloud Services, attributes and resources representation

As these three scenarios may be represented in the same way and are complemen-
tary to them, we can use a single representation to incorporate the three characteristics.
We called this representation "property". A property is a single description that repre-
sents each service, resource or attribute available. To define how the provider offers its
properties and how the customer holds the request we use this description: P = {p1,...,
pn} where P represents the set of all possible properties of being set in a SLA and p1 to
pn represents each property separately. For example: P = {Storage, Location, Security,
Key Length, Number of Replicas,..., CPU usage, etc.} as in Figure 3.4.

Figure 3.4: Properties representation

3.2 generalized service level agreement 47

Each property is then meant as a generalization of different scenarios in Cloud en-
vironments, where we describe the integration of different services highlighting its
special features and a simpler way for the customer.

With the use of properties (P) the customer can order end services (S) with attributes
(A) of some services or specific resources (R) according to the user’s needs. Each prop-
erty has its value assigned by the provider according to the conditions in which they
are available. On the other hand each property has the value requested by the cus-
tomer according to their needs. This approach allows the establishment of a model
that considers aspects recognized by both parties through the service conditions and
the customer requests.

Through a request, a customer can order any property it deems relevant to the ser-
vice agreement, keeping track of what it is negotiated. And the provider can provide
all the properties that it considers to be necessary to settle the agreement. Then the
service requirements are formulated as Boolean formulas over conditions defined on
properties that represent (functional or non-functional) properties characterizing the
cloud services and are taken from a common/shared ontology.

3.2.2 formal definition

The following properties: srv_loc, resp_time, encr, sec_audit, and access_log are examples
of properties (modeling the physical location of a server, the response time of the
service, the encryption algorithm adopted by the provider, the auditing frequency, and
whether accesses are logged respectively) that can be used to define conditions on the
required service. Let P be the set of properties. Each property p ∈ P takes values from
its domain dom(p). For instance, dom(srv_loc)={USA, France}, dom(resp_time)={10, 20, 50},
dom(encr)={AES, DES, no}, dom(sec_audit)={weekly, monthly, no}, dom(access_log)={yes,
no}, etc. A condition defined over a property restricts the values that the property can
assume in the provision of the service. A condition is formally defined as follows.

Definition 3.1 (Condition). Given a set P of properties, a property p ∈ P with domain dom(p),
and a value val ∈ dom(p), a condition c over p is a term of the form c : (p op val), with
op ∈ {=, 6=,<,6,>,>} a comparison operator.

The Figure 3.5 illustrates a set of conditions for an example in Cloud environment.
For instance, c5: (resp_time < 10) and c10: (srv_loc = USA) model two conditions demand-
ing that the service exhibits a response time less than 10 milliseconds (c5) and uses a
storage server being located in USA (c10). Service requirements can be composed of
different conditions over different properties. More precisely, by interpreting each con-
dition c as a Boolean variable, a service requirement can be naturally expressed as a
Boolean formula over such variables.

48 advanced sla in cloud computing

c1: (proc_num > 2) c5: (resp_time < 10) c9: (backup = daily)

c2: (encr = AES) c6: (sec_audit = weekly) c10: (srv_loc = USA)

c3: (encr = no) c7: (access_log = yes) c11: (storage < 100TB)

c4: (req_rate < 1/min) c8: (backup = no) c12: (storage > 100TB)

Figure 3.5: Example of a set of conditions

For simplicity but without loss of generality, we assume requirements to be in dis-
junctive normal form (DNF). A service requirement is defined as follows.

Definition 3.2 (Service requirement). Given a set C = {c1,..., cn} of conditions over a set P of
properties, a service requirement R over C is a formula of the form ∨mi=1(∧

k(i)
j=1 cij), with k(i)

the number of conditions of the ith clause, and cij ∈ C.

For instance, considering the conditions in Figure 3.5, the service requirement can be
formulated as R : (c5 ∧ c10)∨ (c5 ∧ c2)∨ (c5 ∧ c6). Intuitively, R states that to satisfy the
requirements, the cloud service should exhibit a response time less than 10 millisec-
onds (c5) and use a storage server located in USA (c10), or exhibit a response time less
than 10 milliseconds (c5) and use AES for encryption (c2), or exhibit a response time
less than 10 milliseconds (c5) and weekly execute security auditing (c6).

A SLA should also consider possible dependencies related to the conditions included
in R. Dependencies capture generic relationships among properties, implying that the
enforcement of a condition over a property depends on the enforcement of another
condition over another property. For instance, with reference to our running example,
properties resp_time and req_rate are linked by a dependency. If R includes a condition
over resp_time, then a valid SLA should also include a condition over req_rate.

While property dependencies can be considered to always hold (e.g., the respon-
siveness of a service is always impacted by rate of requests it receives), the specific
conditions holding for the properties involved in a dependency can vary depending
on the CP (e.g., a CP with a set of servers running in parallel might accept more re-
quests per time unit than another CP with a single server). Upon receiving a service
requirement R from the customer, the CP must verify whether the conditions in R
imply other conditions due to the presence of dependencies. Note that dependencies
can model both incompatibilities among conditions (i.e., enforcing a condition over ai

does not allow to enforce another condition over aj) and implications among them (i.e.,
enforcing a condition over ai requires the enforcement of another condition over aj).
Building on our interpretation of conditions as Boolean variables, a condition depen-
dency, meaning a property dependency instantiated with conditions over its attributes,
is defined as follows.

Definition 3.3 (Condition dependency). Given a set C = {c1,..., cn} of conditions over a set P, a
condition dependency d over C is defined as d : ch (∨mi=1(∧

k(i)
j=1 cij)), with k(i) the number

of conditions of the ith clause, and ch,cij ∈ C.

3.2 generalized service level agreement 49

A dependency d : ch (∨mi=1(∧
k(i)
j=1 cij)) can be interpreted as a material implication:

if condition ch is satisfied, then also ∨mi=1(∧
k(i)
j=1 cij) must be satisfied.

The Figure 3.6 illustrates five condition dependencies defined over the set of condi-
tions shown in Figure 3.5.

d1: (serv_loc = USA) (storage < 100TB)

d2: (resp_time < 10) (backup = no) ∧ (req_rate < 1/min) ∧ (encr = no)

d3: (encr = AES) (proc_num > 2)

d4: (backup = daily) (storage > 100TB)

d5: (sec_audit = weekly) (access_log = yes)

Figure 3.6: Example of conditions dependencies

The dependency d1 states that providing a server located in USA implies a maximum
storage capacity of 100TB. Dependency d2 states that a response time less than 10ms
is incompatible with the execution of backups and of encryption operations (incom-
patibilities), and imposes a maximum rate of requests of 1 per minute. Dependency d3

states that to provide AES encryption, the server must have at least two processors. De-
pendency d4 states that a daily backup requires a storage capacity greater or equal to
100TB. Dependency d5 states that to ensure a weekly auditing process, accesses should
be logged. Conditions in a dependency can involve properties under the control of
either the CP (e.g., storage < 100TB in d1) or the customers (e.g., req_rate < 1/min in d2,
being the request rate dependent on the operations of the customers).

In our scenario, given a set C = {c1,..., cn} of conditions, a SLA is naturally represented
as a set {c1,..., ck} ⊆ C of conditions, whose enforcement is guaranteed by the CP in the
service provision. Note that a SLA should include at most one condition over each
property p ∈ P (as otherwise they would be in conflict).

We refer to a set of conditions satisfying this property as well-formed, as follows.

Definition 3.4 (Well-formed set of conditions). Given a set C of conditions over a set P of
properties, C is said to be well-formed iff ∀c ∈ C,∀p ∈ P, |Cp|6 1, with Cp ⊆ C the conditions
over property p.

For instance, with reference to the conditions in Figure 3.5, the set {c2, c11, c12} is not
well-formed as c11 and c12 are defined over the same property storage.

Given a set C = {c1,..., cn} of conditions, a service requirement R over C, and a set D
= {d1,..., dl} of dependencies over C, our goal is to find a subset of conditions in C that
forms a valid SLA, meaning that the SLA is well-formed and satisfies both R and D.
Following our logical modeling where conditions are interpreted as Boolean variables,
service requirements as Boolean formulas, and dependencies as material implications,
we introduce an assignment function f : C → {0,1} assigning to each condition in C a
value from the set {0,1}. With a slight abuse of notation, we use f to denote also the
list of values assigned by f to the conditions in C. Therefore, given a requirement R
over C, f(R) will denote the result of the evaluation of R with respect to the values in f.

50 advanced sla in cloud computing

Since R must be satisfied when assigning values to C to compute a SLA, f is a correct
assignment w.r.t. a requirement R iff f(R) = 1. Similarly, a dependency ch P(ci,..., cj)
is satisfied provided that, if f(ch) = 1, then f(P(ci,..., cj)) = 1. Therefore, f is a correct
assignment w.r.t. a set D of dependencies iff f(d) = 1,∀d ∈ D.

A SLA is then interpreted as a complete value assignment over the conditions in C,
where the conditions included in the SLA are those assigned value 1 by f. Based on the
presented formal concepts began the description of the generic proposal ontology.

3.3 objective of ontology

According to [158], one of the main objectives of development ontology is to provide
interfaces between the human, that understands the concepts, and the machine, which
provides accurate, consistent and unambiguous representations of the models. The
specific objectives of the construction and application of generic ontology proposal
are:

1. To represent a model for the description of Service Levels Agreements with a
logical language, with inference capability and usage rules.

2. Represent the adaptation of the existing models, described in Chapter 2, with
annotations semantics in order to overcome the limitations described. This im-
plies explicitly represent knowledge that is implicit in the various services by
associating semantics to the components and variables.

3. Allow the creation of agreements to which the variables are defined from its
meaning and not just syntactically.

4. Allow the creation of a repository of templates that can be searched semantically,
either directly through the web, or through a database capable of inference.

5. To promote the reuse of existing agreements, by the possibility of automatic or
semi-automatic composition of complex models from simpler existing models.

These objectives determine the fundamental characteristics to our ontology, other
relevant aspects considered in this work are: the representation of classes as property
values, the modeling of the whole-part type relationships, the definition of n-ary rela-
tionships and representation of values through set of values.

3.4 characteristics of the ontology

The language chosen for the representation of service agreements was XML, this lan-
guage is based on Description Logics, being expressive enough to represent the compo-
nents and services properties, while allowing the use of inference mechanisms and the
definition of semantic rules. A description of XML can be found in [134]. Considering
the applicability of ontology for the description and simulation of service agreements
in Cloud Computing, the existence and availability of various services and various

3.4 characteristics of the ontology 51

tools that work with the language, the project of ontology sought to reflect a structure
of a general service agreement and dynamic to facilitate the use of existing designs.

The simplification and integration of the proposal ontology, with ontology defined
for various services, allows the create of tools to integrate existing templates, so that
the user work has a high level of abstraction.

Another important issue is associated with the service request validations. Since it
is based on XML, the validation is merely syntactic. Through the use of Schemes, the
request can be validated for syntax errors and for the adherence to service conditions
determined by the CP. Semantic questions can be effectively treated (e.g. prevent a
property "response time" contains a value like "USA") or are left to the implementation
phase (e.g. compliance in the use of different measurement units for the variables, as
"second" and "milliseconds").

Since it is based on XML, the ontology can specify elements that can be used to rep-
resent service agreements formally, unambiguous, human readable and processable
by machines. Metadata of each agreement can be stored together with the own agree-
ment. The controls of the properties may be represented independently of a specific
implementation. The ontology can be used to represent, store and share agreements,
increasing their availability and facilitating the use and validation by customers.

Basically the elements in our approach are used to describe properties, values and
units. These elements are grouped to represent service conditions and service requests.

3.4.1 service conditions in xml schema

As seen in subsection 3.2.2 a condition c over p is a term of the form c : (p op val), with
op ∈ {=, 6=,<,6,>,>} a comparison operator. This definition should be represented
in our XML Schema. To enable the desired generalization we must also introduce the
definition of dependency in the same schema.

The Figure 3.7 shows a diagram of the elements that make up a property to a ser-
vice condition. The following will be described the main elements that composes this
Schema.

52 advanced sla in cloud computing

Figure 3.7: Properties representation in service conditions XML Schema

Since a property set is represented as P = {p1,..., pn} then we define a Group of prop-
erties containing one or many properties Elements. Each element property contains
his "name", "value" and "unit." We added the concept of "dependency" that allows a
property to be dependent on other properties. In addition to a "identifier" element and
a "responsible" element for the property, which will be detailed later. We also add the
element "FuzzyDescription" which will be explained in the Chapter 6.

The element "name" is actually the name of the property and is used to identify the
different services, attributes and resources sold by CP.

According to the Definition 3.1 the element "value" takes on the different possibil-
ities according to the property in question, i.e., Range (<,6,>,>) to properties that
have values expressed in minimum, minimum inclusive, maximum or maximum in-
clusive (or two of these situations), Equal (=) to properties that express exact values
and NotEqual (6=) to determine values not required or not supported by the provider.

The element "unit" to determine the unit of measurement or identification of a prop-
erty as second, millisecond, country, etc.

The element "dependency" that enables mapping a property that depends on the
value of another property or set of properties.

The Figure 3.8 shows the XML schema representation of a service condition, and
as a set of properties is arranged, besides the elements already described, we add
the "provider" attribute to identify the service provider and a "ServiceID" attribute as
identifier.

3.4 characteristics of the ontology 53

Figure 3.8: Service Conditions representation in XML Schema

The Figure 3.9 shows the code to the XML Schema used in the creation of a service
condition, note that the "responsible" element have three possible values: Provider,
Customer and Both Parts. Since the ontology presented is generic, it can be used to
describe any type of service agreement, including Master Service Agreements and
Contracts. Then we can show who is responsible for certain property.

This approach facilitates the registration and storage of templates for services of any
kind, both Cloud and for other environments.

The dependencies are used in the ontology with the basic purpose of inferring knowl-
edge that is implicit in existing models, converted to the ontology; This is done by asso-
ciating the properties defined in the ontology, from the details obtained from existing
template (e.g., from the name of the property), also considering the already established
knowledge (e.g., resource values that can be associated with end services).

The dependencies can also be used to validate semantically the agreement regard-
ing their consistency and completeness; a validation example is to check whether the
composition of the properties is in line with the service hierarchy.

54 advanced sla in cloud computing

Figure 3.9: Service Conditions XML Schema

Since XML allows the sharing of information independent of the type of application
used to view, it is necessary to identify the structure of the XML document. That is,
an XML Schema allows the definition of the structure, content and semantics of a
document. In the XML schema shown in figure 3.9 we define a group of elements

3.4 characteristics of the ontology 55

called Properties (<xs:group name="Properties">) this allows elements to be specified
within other elements and obeys an order or specific choice through connectors.

Then we use the connector "sequence" that is specified for all elements of each prop-
erty appear in the correct order. The first statement in the sequence creates an element
called "Property", which may appear at least one (1) time and no maximum limit.
Within each "Property" element we have a "complexType" with a new connector "se-
quence". The first element of this sequence is the "responsible" which is optional and
when used presents one of three restricted values (Provider, Customer or Both Parts).
Following the sequence we have the elements "ID" as a type positive integer, element
"Name" as a type string and the element "Value".

The element "Value" has another complex type with a connector "choice" that is
mandatory. If the choice is the element "Range" we have another complex type with
another connector "choice". In this case the choice can be for only one alternative and
at most two alternatives. All elements in this code fragment are of type string and the
alternatives are "Minimum", "minInclusive", "Maximum" and "maxInclusive". If the
choice is not the element "Range" then the choice should be between the other two
elements of type string: "Equal" and "NotEqual". Following the sequence we have the
element "FuzzyDescription" of type string and is optional, the element "Unit" of type
string and mandatory and the element "Dependency" which is optional and makes
reference to the group of elements "Properties".

The element "ServiceConditions" has the group of elements "Properties" as described,
plus two attributes of string type and binding. The first is the attribute "Provider" and
second attribute is the "ServiceID".

This XML Schema can be used as follows: for example if the provider Amazon
want to register an audit service and, for this, access should be logged, as shown in
dependency: d5: (sec_audit = weekly) (access_log = yes) an XML file in accordance
with the proposed Schema would be presented as in Figure 3.10.

56 advanced sla in cloud computing

Figure 3.10: XML file to a Service Condition

In this way, a service provider can register and post their service plans more simply
adding all the properties related to each service/plan, including contractual properties
such as price, time of contract, among others.

Complementing the example of service condition in Figure 3.10 we can add more
information to the service with the following properties and dependencies: C: {d1:
(serv_loc = USA) (storage < 100TB), d2: (resp_time < 10) (backup = no) ∧ (req_rate <
1/min) ∧ (encr = no), d3: (sec_audit = weekly) (access_log = yes), c1: (price = 100)} as
shown in Figure 3.11.

Figure 3.11: Example of a service condition in the ontology

3.4 characteristics of the ontology 57

The Figure 3.11 illustrates the dependencies between the properties as: Service Lo-
cation in USA depends on a smaller storage capacity than 100 TB; A response time
smaller than 10 ms depends on a request rate lower than 1 per minute and that does
not have backup or encryption and a weekly audit frequency since access logging is
performed.

These dependencies are optionally indicated by the provider to make strong and
transparent the agreement between the parties, in addition to determining the respon-
sible for each property at the time of service registration. Dependencies are important
for the CP to determine how the services can be composed. At the same time they are
not used by customers in their requests as they are not necessary at this time.

3.4.2 service request in xml schema

As shown in subsection 3.2.2 a service requirement is also based on properties and their
values, thus proving that the proposal ontology is common for all parties involved in
the elaboration of service agreements.

As one of the main objectives pursued in this thesis is to give greater freedom to
service customers in the preparation of agreements we should describe a specific XML
Schema for service requests, which contains elements that allow this freedom.

The Figure 3.12 shows how XML elements are arranged in a service request.

Figure 3.12: Properties representation in a service request XML Schema

According to the Definition 3.2 a Service Request can be represented as: R : (p1 ∧ pn).
To simplify the procedure for service request by the customer we can infer that a
request can also be represented as follows: R: (p1,..., pn).

In this way, we can use the same property record format used in the service condi-
tions, adding the peculiarities inherent to the desired freedom.

58 advanced sla in cloud computing

In the Service Request of the XML Schema, the elements "Name", "Value" and "Unit"
has the same function presented in XML Schema Service Conditions.

The element "Name", that in the service condition was simply a type string, now
shows two other elements: "Established" and "New". The element "Established" has
the properties already registered and recognized by service providers. This approach
should be used by a Broker service this element takes the list of all properties available
for all providers. If a service desired by the customer is not yet established, it can
request through the element "New".

The same procedure occurs with the elements "Equal" and "NotEqual". If the value
is already evaluated and recorded by the provider this amount is listed in the element
"set" if the value still does not exist may be asked by the element "New" of the absolute
values.

Once a property is new, the customer has the option to describe the desired charac-
teristics in the element "Description" that will be later used by the properties repository.

The Figure 3.13 shows the XML schema representation of a Service Request, besides
the elements already described, we add the attribute "Customer" to identify the client
requesting the service. This then enables the elaboration of the agreement between the
parties.

Figure 3.13: Properties representation in a service request XML Schema

The use of the element "Established" allows the customer to search for services al-
ready registered by the providers according to the ontology proposed as well as allow-
ing the insertion of new properties according to the real needs of the customer. The
same also happens to property values already listed by the provider. If the customer
does not locate the desired value it has the possibility to ask the provider.

3.4 characteristics of the ontology 59

The Figures 3.14 and 3.15 shows two XML schema fragments used for the composi-
tion of a service request. The Figure 3.14 exemplifies a list of established properties by
providers.

Figure 3.14: Fragment of XML Schema for a list of established properties

The Figure 3.15 shows an example of values assumed in the properties, here we can
also take the choice between some previously setted value or the insertion of a new
value.

Figure 3.15: Fragment of XML Schema for a set of values for the element "Equal"

In the Figure 3.15 the element "Equal" has a complex type with a connector "choice",
this connector allows the choice between an element "Set" and an element "New". If the

60 advanced sla in cloud computing

choice is the element "Set" the customer can choose between the values presented, if
the choice is the element "New" the customers can customize the solicitation according
to their needs.

To illustrate the use of this XML Schema we demonstrate how a service request can
be submitted by a customer (Figure 3.16).

Figure 3.16: Properties representation in a XML file of service request

In this example, the customer ABC needs a video streaming service with 720p of
resolution on servers located in France, so he order a service with two properties. The
property "Location" (p1) that is established by providers and a new property called
"Video Streaming" (p2). The property "Location" do not have the country France on
her list of values, then the customer can request a new value to this information. For
the new property "Video Streaming" in addition to the procedure to request the new
property and its value the customer can also give a generic description for the service
thus aiding the understanding of its needs by the provider.

Based on pre-defined conditions of service and the customer requirement we can
then define all service concepts at a higher level needed for use in a real agreement.
Thus determining the creation of a SLA that can be generalized to suit any customiza-
tion required by the customer and ensuring the effective implementation of the concept
of XaaS (everything as a service).

3.5 advanced issues in a generic sla 61

3.5 advanced issues in a generic sla

One of the initial tasks carried out in the research for this study was the identification
of requirements that must be met to establish a Service Level Agreement. As seen until
the moment these requirements were divided into three groups: service conditions
(given by the CP), service request (given by customer) and valid SLA (goal of our
approach).

The ontology used for a valid SLA (vSLA) is defined through the integration of
the two ontologies presented previously (ServiceConditions and Request) as shown in
Figure 3.17.

(a) (b)

(c)

Figure 3.17: Ontology proposed in three complementary groups: Service Conditions (a), Re-
quest (b) and vSLA (c)

62 advanced sla in cloud computing

This approach meets one of the ontology proposed objectives which is to allow the
creation of agreements to which the variables are defined from its meaning and not
just syntactically.

Furthermore we can use patterns already established in the market, as in [4] to estab-
lish a repository of description of properties to be used by providers in the enforcement
of their services and to facilitate the search for services by customers.

From the customer’s point of view a service request R to determine a vSLA should
consider two important aspects:

1) Knowledge and understanding of the required properties: Once the goal is to es-
tablish a high level of freedom for the customer we must use the definition of property
in a way that both parties can understand their meaning. For this we use the property
descriptions to determine a common sense for each property. As in Table 3.1.

Table 3.1: An example of property descriptions

Property Name Description

Authentication Specifies the available authentication mechanisms
supported by the CP on its offered cloud services.

Availability The property of being accessible and usable upon de-
mand by an authorized entity.

Response Time Time interval between a cloud service customer ini-
tiated event (stimulus) and a cloud service provider
initiated event in response to that stimulus.

Service Reliability Describes the ability of the cloud service to perform
its function correctly and without failure over some
specified period.

These descriptions were taken from [4]. However, our approach allows some generic
description, such as response time to be edited and present a more specialized descrip-
tion, e.g., determining which stimulus starts the event.

The response time is a measure related to the overall performance of the system
and not of either component. The response time is defined as the difference between
the time that the customer has initiated a request or question and the time that the
system presented to the customer her answer. For example, the time interval between
the request for an account balance in a bank terminal and the presentation in the
video response (the account balance). Or we can determine that the response time is
the time the CP has met the request to perform a particular task. Such as performing
mathematical calculations and presentation of results.

So we may have different properties "Response Time" characterized by their descrip-
tion and with different names such as: "Response Time for bank account balance" and
"Response Time for mathematical calculations" each one with its respective description.

2) Determining the values of the required properties: Freedom in the composition of
a SLA also must allow the customer to request new values for the required properties.
For this, the values of each property are shown as in Table 3.2.

3.5 advanced issues in a generic sla 63

Table 3.2: An example of property values

Established Property Set of Absolute Values

Location

=USA

=Italy

=Brazil

6=North Korea

Encryption

=no

=Triple DES

=RSA

=Blowfish

=Twofish

=AES

Auditing Frequency
=weekly

=monthly

This common nomenclature allows the creation of a repository of templates that can
be searched semantically, either directly through the web, either through a database
capable of inference. Besides to represent a model for the description of Service Levels
Agreements with a logical language, with inference capability and usage rules. The
vSLA is then interpreted as an assignment of values on properties P, where the condi-
tions included in the SLA are those value 1 assigned by the service conditions C.

3.5.1 determining a valid sla

Our problem of determining vSLA given an service request R and a set D of depen-
dencies over a set C of conditions can therefore be interpreted as finding a value as-
signment f being correct w.r.t. R and D, and such that the set of conditions assigned
value 1 by f be well-formed, as formally defined as follows.

Problem 3.1 (vSLA). Given a set C = {c1,..., cn} a service request R over C, and a set D =
{d1,..., dl} of dependencies over C, determine (if it exists) a value assignment f to the conditions
in C s.t.:

1. f(R) = 1 (requirement satisfaction);

2. f(d) = 1, ∀d ∈ D (dependence satisfaction);

3. {ci ∈ C : f(ci) = 1} is well-formed according to Definition 3.4 (conflict satisfaction).

To demonstrate the generality of our approach, we refer our examples to a munic-
ipality owning a sensor network to measure air pollutants in its area. Each sensor
measures specific pollutants at regular time intervals, and the recorded measurements

64 advanced sla in cloud computing

need to be collected and analyzed to set appropriate countermeasures (e.g., restrict-
ing vehicles circulation) when needed. Since sensors have limited storage capacity, the
municipality aims at relying on an external CP to store and manage the collected data.

Outsourced measurements need to be retrieved by the municipality health office
whenever needed and, since timely retrieval is a critical factor for fast air quality anal-
ysis, the municipality wishes the CP to ensure a maximum response time to requests.
Since the outsourced measurements are considered sensitive information (the existence
of correlations between high levels of air pollutants in a certain area and respiratory
diseases of citizens living nearby is well known), the municipality wishes also that data
be either: i) physically stored in a chosen trusted country, or ii) physically stored at a
CP audited for security every week; or iii) encrypted by the CP (since measurements
cannot be encrypted before storage, we assume for the sake of the example the mu-
nicipality to choose a CP among those considered trusted for accessing plain text data,
hence confidentiality is required against intruders/unauthorized third parties). These
requirements set the parameters of the service that the CP provides to the municipality
and are part of the SLA between the CP and the municipality (hereinafter, the customer
of the service).

The SLA establishment starts with the communication to the CP of the requirements
imposing arbitrary conditions on functional/nonfunctional properties to be satisfied
in the service provision. For instance, in our running example the municipality appli-
cation requirements comprise a condition restricting the response time to a maximum
value. Upon receiving the request, the CP can check whether it can satisfy them and, if
this is the case, the conditions in the request are inserted into a SLA on which both the
CP and the requesting party can agree. If the CP cannot satisfy the given conditions, a
SLA cannot be established.

The process of checking whether the request can be fulfilled can be complicated
by the possibility that the enforcement of a condition might be possible only provided
that other conditions be also enforced. For instance, to ensure a response time less than
a given threshold, a CP might be able to accept only a limited number of requests per
time unit. This is due to the fact that the response time of a system is not an isolated
property: on the contrary, it is linked to other properties by a dependence (such as the
rate of requests, which have a clear impact on the responsiveness of a system).

We note that dependencies cannot be assumed to be known by IoT infrastructure
authorities, and taken into account before formulating their application requirements.
In fact, they can be provider-dependent, meaning that some dependencies might hold
for a given CP while not holding for other ones. While dependencies must therefore
be transparent for the customers, each CP knows the specific dependencies that hold
for its services. To build a vSLA starting from application requirements, the CP must
then check such requirements against possible dependencies.

It is easy to see that the consideration of both requests and dependencies in the
establishment of a SLA can result in different outcomes: i) the service conditions can
be satisfied as they are (i.e., no dependency is involved) and can be put into a vSLA;
ii) the conditions cannot be satisfied (e.g., the CP does not have resources to fulfill
them), and a vSLA cannot be created; and iii) some conditions involve dependencies

3.5 advanced issues in a generic sla 65

that require the enforcement of further conditions, which then also need to be inserted
into a vSLA.

Our problem can be naturally represented through a mixed and colored hypergraph
representing the input of Problem 3.1. And then we can present a solution based on
a translation of the problem as a Constraint Satisfaction Problem (CSP) [159]. Such
mixed hypergraph G (V, E, Eu), with V the set of vertices and E (Eu, resp.) the set of
directed (undirected, resp.) hyperedges, is defined as follows.

• Each condition appearing in R and in the set D = {d1,..., dl} of dependencies
holding for the CP, as well as the request R, correspond to a vertex v ∈ V;

• Each dependency d : ch P(ci,..., cj) where P(ci,..., cj) is composed of m OR-
ed terms is translated into m directed hyperedges in E where the ith hyperedge
connects ch to all conditions of the ith term, i = {1,..., m};

• The request R, composed of m OR-ed terms, is translated into m directed hyper-
edges in E where the ith hyperedge connects vertex R to all conditions of the ith

term, i = {1,..., m};

• For each property p appearing in the conditions in the graph, the set Cp of condi-
tions defined over the same property p is translated in an undirected hyperedge
in Eu connecting all conditions in Cp.

The Figure 3.18 illustrates the hypergraph modeling our running example, where
hyperedges in E (Eu, resp.) are represented as arrows (dotted boxes, resp.) linking
(surrounding, resp.) the involved conditions. The computation of a solution to Problem
3.1 can be interpreted as a coloring of the vertices of the hypergraph, starting from
the vertex representing R and recursively propagating the color through the directed
hyperedges in E.

Figure 3.18: Graphical representation of Problem 3.1 for our running example

Note that, when more than one hyperedge originates from the same vertex v ∈ V, it
is sufficient to propagate the color through one hyperedge (recall that m hyperedges
correspond to m OR-ed terms). Such color propagation through directed hyperedges
guarantees that the colored vertices represent a set of conditions satisfying the first two

66 advanced sla in cloud computing

conditions in Problem 3.1. In fact, directed hyperedges link all conditions included in
the OR-ed terms in R, and also conditions in the OR-ed terms in the dependencies
enabled by the coloring of a term in R.

The Figure 3.19 illustrates the hypergraph of Figure 3.18 after the color propagation
from R through the hyperedge representing R : (c5 ∧ c10).

Figure 3.19: Color propagation in the hypergraph of Problem 3.1 for our running example

Once color has propagated through directed hyperedges in E, undirected hyper-
edges in Eu can be exploited to check the satisfaction of the conflict condition (Condi-
tion 3) in Problem 3.1. By restricting G (V, E, Eu) to G’(V, Eu), such condition is satisfied
iff the colored vertices represent an independent set for G’. In fact, since all conditions
defined over the same property are connected through an undirected hyperedge, if for
every hyperedge [vi,..., vj] in Eu, at most one vertex vx ∈ {vi, ..., vj} is colored, then the
set of colored vertices in G’ includes at most one condition for every property. Figure
3.19 shows that the set of colored vertices form an independent set for G’(V, Eu). To find
a solution to our problem, we represent it as a CSP [159], which can then be solved
with CSP solvers [160].

3.5.2 csp formulation

According to [160] a Constraint Satisfaction Problem can be formulated as follows:
given a triple (X, D, K), with X a set of variables, D the domain of variables in X,
and K a set of constraints over X, find an assignment w : X → D that satisfies all the
constraints in K. Our translation interprets:

• All conditions appearing in R and in the set D of dependencies as the set X of
variables;

• The set of integers {1, 0} as the domain D of the variables in X;

• The requirement R, the set D of dependencies, and the conflicts among conditions
as the set K of constraints.

A solution to the problem so defined corresponds to a value assignment w(c) to all
conditions in C such that w satisfies all the constraints in K. With reference to our

3.5 advanced issues in a generic sla 67

hypergraph, X corresponds to the set V of vertices excluding R, D corresponds to the
domain of colors (1 translates to gray), K corresponds to R and the dependencies and
conflicts modeled through hyperedges, and w corresponds to the coloring function.

We now illustrate how the requests, dependencies, and conflicts can be translated
into equivalent CSP constraints.

1. Requests: Given a service request

R : ∨mi=1(∧
k(i)
j=1 cij)

Composed of m OR-ed terms, then all conditions in at least one of these terms
must be included in a vSLA. In terms of the CSP assignment function w, at
least one of the m terms must be assigned value 1. Formally, a requirement R is
interpreted as

m∨
i=1

(ci1 = ... = cik(i) = 1)

2. Dependencies: Given a dependence

d : ch P(ci, ..., cj)

With P(ci, ..., cj) = ∨mi=1(∧
k(i)
j=1 cij), then all conditions in at least one of the m OR-

ed terms must be included in a vSLA if ch is also included. In terms of the CSP
assignment function w, at least one of the m terms must be assigned value 1, if
also ch is assigned value 1. Formally, a dependency ch P(ci,..., cj) is interpreted
as

(ch = 0)∨

(
m∨
i=1

(cij = ... = cik(i) = 1)

)

3. Conflicts: Given the set Cp of conditions over property p, then at most one condi-
tion c ∈ Cp can be included in a vSLA. In terms of the CSP assignment function
w, at most one condition c ∈ Cp must be assigned value 1. Formally, a set Cp =
{c1, ..., ck} is interpreted as

(c1 = ... = ck = 0)∨

(
k∨
i=1

(
ci = 1∧ (cjl = ... = cjk=1 = 0)

))
, cjl ∈ {c1, ..., ck} \ {ci}

Note that CSP constraints correspond to the conditions of Problem 3.1, and a
function w satisfying them corresponds to a correct value assignment f of Prob-
lem 3.1.

The Table 3.3 illustrates the CSP constraints for our running example. A vSLA will
include all conditions assigned value 1 by the assignment function w.

68 advanced sla in cloud computing

Table 3.3: Requirement, Dependencies, and Conflicts with their CSP formulation

Input CSP formulation

Requirements (c5 ∧ c10)∨ (c5 ∧ c2)∨ (c5 ∧ c6
) (c5 = c10 = 1)∨ (c5 = c2 = 1)∨ (c5 = c

6
= 1)

Dependencies

c5 c
8
∧ c4 ∧ c3 (c5 = 0)∨ (c

8
= c4 = c3 = 1)

c10 c11 (c10 = 0)∨ (c11 = 1)

c2 c1 (c2 = 0)∨ (c1 = 1)

c9 c12 (c9 = 0)∨ (c12 = 1)

c
6
 c7 (c

6
= 0)∨ (c7 = 1)

Conflicts
Cstorage = {c11, c12} (c11 = 0∧ c12 = 1)∨ (c12 = 0)

Cbackup = {c9, c
8
} (c

8
= 0∧ c9 = 1)∨ (c9 = 0)

Cencr = {c2, c3} (c3 = 0∧ c2 = 1)∨ (c2 = 0)

The CSP translation illustrated in Table 3.3 can be solved by adopting any CSP solver
and obtains a result assigning value 1 to the colored vertices in Figure 3.19, correspond-
ing to a vSLA (i.e., a solution to Problem 3.1). With the determination of a vSLA we
can then consider the responsibilities assigned to each property.

3.6 shared liability in cloud sla

In order to create a vSLA where the customer has the control over some aspects of
the service, also the customer must give mechanisms that support this feature. In this
sense our approach applies the use of shared liability and policies to establish a certain
level of freedom for the negotiation.

Usually the QoS parameters are used by companies to check their technical per-
formance and to check customer satisfaction with its services. Quality monitoring of
services provided to companies in SLAs gives to provider the opportunity to support
new services and applications, building a strong reputation based on stable relation-
ships and brand image, allowing maintenance and increasing its market share. Based
on this premise we can infer that the same monitoring of internal QoS can be extended
to the monitoring of external metrics to CP.

So that the provider can support new services it is necessary to establish a context
for the use of agreed resources. The challenge, then, is based on creating an enabling
environment to meet different customer needs, balancing issues of control and trans-
parency, and at the same time can be monitored through the contextual information
provided by the shared liability relationship.

In our approach we assume that any property required by customer can have many
assumptions for its smooth functioning. And these dependencies must be mapped
and used in accordance with shared information, both internal and external to the
provider. In this case we use the NIST definitions given in [118] which defines abstract
and concrete metrics.

Thus we adopt the definition of abstract metrics to provide the customer a choice
of parameters it needs, regardless of the resources provided by the provider, i.e., in-
dependent of the list of services provided by each provider, the customer can request

3.6 shared liability in cloud sla 69

a particular property based on their needs and control of services thus enabling the
usage control over their information. In this way we ensure that any property can be
requested by the customer.

But for the management of these abstract metrics (and consequently, the control of
concrete metrics) is important define the behavior of the same. Moreover, using this
approach, we can define the use of dynamic and static properties, which could be
considered both to ensure a certain level of service by the supplier as to require a
certain level of use by the customer.

If a metric is static the property takes a value that is unchanging in time. But if
the metric is dynamic, i.e., the property value has changes over time, then it is neces-
sary to establish the relationship of responsibility between the entity that controls and
controlled property.

The determination of responsibility for each property is defined by the cloud provider
in the service conditions. By default each property is the provider’s responsibility but
if we have a dependence on external properties such as inherent to the customer prop-
erties, this relationship can be considered as a dependence to the shared responsibility.
By definition our approach on shared liability presents the following situations:

• No Liability Statement: A service condition may have a property that does not
have a direct responsible, for example, a condition of incompatibility where a
property can not assume certain value such as "Location 6= North Korea", in this
case the provider can inform that do not performs services in a particular location
or the customer requests a service indicating an undesired location. Therefore we
have no direct responsible for this condition;

• Provider’s Liability: When a property has values or conditions that are uniquely
provider responsibility, such as "Backup Frequency = weekly", where the provider
assumes that backs up the information according to the established period or "Lo-
cation = USA", when the provider ensures that where the information is stored
will be the same as described in the agreement;

• Customer’s Liability: Once we present properties that depend on other proper-
ties some of them may be different responsibility of the service provider, for
example "Request Rate < 1/min" that determines the rate of requests made by
the customer;

• Liability of Both Parties: Some properties may have shared liability itself, i.e., the
two entities present in the agreement (provider and customer) are responsible for
maintaining the property value, such as: "Contract Time = 1 year".

We then briefly describe these situations in the Table 3.4:

70 advanced sla in cloud computing

Table 3.4: Properties on Shared Liability Situations

Property
Liability

No Provider Customer Both Parties

Location 6= North Korea = USA

Backup Frequency = weekly

Request Rate < 1/min

Contract Time = 1 year

Note that with this approach, we can clearly identify the entities responsible for
each property thus facilitating the monitoring of dependencies and we can say that
any change in the dynamic value of a property may indicate violations in the SLA
between the parties.

3.7 chapter summary

In this chapter, we address the problem of creating a Service Level Agreement that
meets the customization needs of customers ensuring control over the process of mi-
grating to a Cloud environment. The proposed solution is based on a modeling based
on a generic ontology that takes advantage of an approach based on XML Schema
representing the relationships between different services in Cloud Computing. The
problem constraints observed in some types of service is then reformulated in terms
of dependencies modeling the fragments which satisfy the constraints and incompati-
bilities. The set of services and attributes is treated generically as properties and each
property is represented in tuples of service conditions which carry the necessary in-
formation for the correct formulation of a valid Service Level Agreement. We present
the characteristics of ontology, describing the XML Schemes for both the definition of
service conditions and the definition of requests and an approach to the treatment of
new properties and values to solve the problem of customization and generalization.
We also present an approach for managing and monitoring external properties to the
Cloud Provider, based on shared liability. First, we describe how the properties should
be treated and defined by providers and then present an approach to support the set-
ting using colored hypergraph to represent the problem of definition of a valid SLA
beyond to demonstrate how we can solve the problem through Constraint Satisfaction
Problem formulation.

4
A U T O M AT E D F R A M E W O R K T O C L O U D S L A

M A N A G E M E N T: C O N C E P T U A L M O D E L

In the previous chapter we have detailed important aspects of the creation of a generic
ontology, fundamental to the development of the framework proposed in this thesis,
which are: the different definitions of services and the consequent variety of ontologies
and present a generic definition to support the dynamic nature of cloud environments.

The approach proposed in this work, in addition to use of techniques of Multi-
Criteria Decision Making (MCDM), is the creation of a conceptual framework for anal-
ysis of models of Service Level Agreements. The most general objective of the proposal
is to develop a conceptual tool that facilitates the work of the cloud-services providers,
enabling efficient analysis on market needs and to allow the negotiation of service
agreements that keep track of the needs of users as well as keeping transparency. This
tool is based on a generic ontology to support adaptable and extensible components
in Advanced SLA Management and allows support for future markets in Cloud Com-
puting.

Since the creation of a generic ontology is not enough to achieve our goal of SLAs
customization it is important to create mechanisms that can support this approach,
in this sense we present a conceptual framework designed specifically to meet the
particularities of our ontology.

4.1 introduction

The generic ontology presented is part of a broader context that is the conceptual
specification of an infrastructure for utilization in Service Level Agreements, whose
objective is to support the potential services in Cloud Computing and provide greater
control and freedom to customers to determine their needs. This infrastructure aims to
support the search and discovery of cloud services that are independent by the domain.

71

72 automated framework to cloud sla management : conceptual model

The ontology is then used as the basis for research and composition of Service Level
Agreements in the framework.

The conceptual framework proposed in this thesis is based on the rules and formal-
ities of object orientation and represented in the notation of the UML class diagram
methodology. The purpose of a conceptual framework is to provide a class diagram
that can be used as a basis for modeling of the application domain classes. A concep-
tual framework does not necessarily imply a finished and executable product, but in
a conceptual data schema that subsequently must be translated into a specific data
schema.

The framework for advanced management of SLA has been proposed with the aim
of easing the process of creation and use of services based on Cloud. The main con-
cern of the research reported in this thesis was, from its inception, the search for an
approach to determining SLA for Cloud-based services, and provide freedom to cus-
tomers to order services based on their needs, could facilitate the task of adaptation
and extension of new properties in an organized manner for the services providers.

The challenge to be overcome is the existence of a lot of services in Cloud, which cre-
ates a difficulty to be exposed to their target audience and applied more consistently.
Aiming to overcome this challenge, this thesis proposes the use of an infrastructure
approach that enables the documentation, storage and dissemination of the different
Cloud services through a repository of properties, documented from a metadata pro-
file, manageable and accessible via Web services.

4.1.1 chapter outline

This chapter describes the objectives of the framework and the proposed architecture
for its effective implementation. It shows the scenario of using the framework based
on established properties and values determined by providers beyond the conceptual
description of the framework operation. The main contribution of the Chapter is the
presentation of a conceptual framework that enables the use of our generic ontology
through a simplified structure allowing flexibility and adaptability in the composition
of Service Level Agreements.

4.2 objectives

The framework proposed in this thesis uses the concepts of template repository and
semantic web services. The objective of this framework is to provide an infrastructure
for registration, search, composition and simulation of components used in SLAs in
Cloud Services. Specifically, the framework should allow:

1. Registration and storage of semantic models for representing templates for Ser-
vice Levels Agreements and service composition in cloud computing.

2. Searches based on the semantics expressed in models with recovery templates as
a generic ontology.

4.3 framework structure 73

3. Composition of SLA models to generate more complex templates that can be
stored and used as MSA.

4. Control and monitoring of valid SLAs, i.e. the submission of models for tools
that allow the simulation model and the return of the results generated.

The semantic description of properties allows the composition with other properties,
while referring to models that can be simulated in established tools (or building such
models, if necessary), it provides great flexibility to the process of creation of SLAs,
common in the Cloud Computing environment.

This framework can serve as a basis for the development of new components and
to explore other areas of research in cloud computing, hypercloud or also in Internet
of Things, providing a modular architecture for its own expansion. Each component is
also encapsulated in web services that may be run remotely (either independently or
with other compound components).

4.3 framework structure

In essence, a data repository is a computing environment, usually a Web site capable
of storing data and metadata , i.e., resource, about a particular subject. The interested
community can access to the resource at any time, being available for indefinite period
of time by the repository. An overview of the framework architecture for this repository
is shown in Figure 4.1. The framework implement concepts of SOA and considers two
distinct layers, as shown:

• Advanced SLA Framework: is the framework itself. It is implemented as a web
service, and is independent of the interface that accesses their services, facilitating
integration with existing tools.

• Customer/Provider: It is the interface for interacting with users of the framework
and can be developed in any language with access to web services. This layer
considers two types of users for the framework: customers and providers.

74 automated framework to cloud sla management : conceptual model

Figure 4.1: Overview of the Framework Architecture

The interface layer for customers users is responsible for receiving service requests
from clients, while the interface for providers users is responsible for receiving the list
of established properties and the conditions of these services.

4.3.1 the users layers

Usually when working with frameworks, it is necessary to develop class libraries and
their subroutines. This way of setting up and running components shows quite cum-
bersome and unintuitive process that implies the use of documentation understand the
interfaces and write the code to be able to use the libraries.

The idea of creating a framework based on XML Services allows for easy composi-
tion of the components by utilizing any graphical interface. This allows the framework
a dual role serving for two types of users:

Providers can use the framework to register their services and check for new market
demands in addition to being able to use the framework as an aid mechanism for mon-
itoring their own agreements.

Customers who use the framework to search for available service environments in the
Cloud and can make the composition of services based on their needs, besides the
possibility of adding new services by solicitation.

To build a framework without worrying too much about the interaction with the user,
it is necessary to define interfaces independent from implementation. With respect to
this premise, efficient access to already implemented object classes is facilitated with

4.3 framework structure 75

the use of generic ontology, allowing its easy extension since new components also
follow the same format.

The usual form of object orientation is often based on domain analysis, which leads
to the development of specialized and specific interfaces for each domain. Usually
most of the software interfaces are not adequate to fulfill the needs of customization
and interoperability.

When these subsystems are considered as part of a large class of subsystems, it is
possible to define new interfaces that are applied to the entire system, and not only
to a single instance. If there are multiple subsystems on the same system, it can be
categorized in the same way then there are immediate benefits for interoperation.

As we have different services that can be made available in Cloud Computing and
since each user interface can be developed independently of the internal implementa-
tions of the framework, it is possible to carry out changes in the independent interfaces
without an impact on the system as a whole.

The internal and external interfaces of the framework define the static structures of
the proposed approach. This approach allows customers to be protected from frame-
work components, thereby reducing the number of objects to be used by the user,
making it easier to use the framework. For this to be possible we need an efficient
mechanism for storing and retrieving the properties and templates.

In this sense the properties can be grouped into service conditions according to
each description and the short hierarchical structure, the modularity and the need
for extension of service agreements can be described using the XML representations
presented in the previous chapter.

The Figure 4.2 presents a diagram of Use Cases that demonstrate the interaction
between the users of the framework.

Figure 4.2: Scenario of interaction between the users of framework, represented in Use Cases.

Focused on customer problem, which is the search for cloud services that meet their
needs and maintain their control documented in the contract, and provided with a list
of services and conditions offered by the provider; it is the framework that reconciles
the information to perform analysis considering the scenarios that might solve the
problem.

76 automated framework to cloud sla management : conceptual model

As exemplified by the Use Case in Figure 4.2 and using the generic representation
services through the properties a customer can search services using only properties
and values as the example shown in the Table 4.1.

Table 4.1: Example of a service request used in the search for properties

Customer Response
Time

Service
Location

Storage
Capacity

Encryption
Algorithm

Price

ABC < 30 (ms) = Uruguay
(country)

= 100 (TB) = AES
(name)

< 350

(US$/year)

Translating the information presented in Table 4.1 to our definition of property, we
have the following request service: R = {resp_time <30, location = Uruguay, storage = 100,
encryption = AES, price < 350}. Based on the definitions provided in chapter 3 we can
represent the example of Table 4.1 as follows in Figure 4.3:

p1: resp_time < 30 (ms)

p2: location = Uruguay (country)

p3: storage = 100 (TB)

p4: encryption = AES (name)

p5: price < 350 (US$/year)

Figure 4.3: Formal representation of a service request

In this chapter we treat this search based only on values and properties previously
established by providers, so the property names and values must be already present
in the list of available services.

The list of services maintained by the framework is a simple list of all services
and possible values submitted by all providers, such as: resp_time={10, 20, 30}, loca-
tion={USA, Uruguay, France}, storage={100, 500}, encryption={AES, DES, no}, etc. In this
way our approach is shown to be compatible with existing market approaches facilitat-
ing its extension and utilization.

Therefore any provider can register their services. The services registration, besides
being based on the lists of properties and values, it is also based on service conditions
and can occur in two ways:

1. Registration of service plans: Where the properties are grouped into distinct services
plans.

2. Registration of single properties: Each property and its dependencies are recorded
separately.

In the first case the properties are registered in service plans that represent the
provider implementation possibilities. Where the provider can register each set of prop-
erties and dependencies combinations as a single block of service conditions. As in the
example shown in Table 4.2.

4.3 framework structure 77

Table 4.2: Example of a service plan

Service ID: 15225

Provider Properties

Amazon

Resp. ID Name Value Unit Dep.

Provider 01 Storage
Range

TB 02Min. Max.

100

Resp. ID Name Value Unit Dep.

Provider 02 Location
Equal

country
USA

Resp. ID Name Value Unit Dep.

Provider 03 Response Time
Range

ms
04

05

06

Min. Max.

30

Resp. ID Name Value Unit Dep.

04 Backup
Equal

response
no

Resp. ID Name Value Unit Dep.

Customer 05 Request Rate
Range

Req./min.Min. Max.

1

Resp. ID Name Value Unit Dep.

06 Encryption
Equal

response
no

Resp. ID Name Value Unit Dep.

07 Price
Equal

US$/m.
100

In this example the provider Amazon offers a service plan with a stated maximum
data storage capacity of 100 TB which is located in the USA, adding a service of re-
sponse time less than 30 ms, backup is not allowed, none use of encryption and the
request rate should be less than 1 per minute, the provider also determines that the
price for this plan is US $ 100 per month.

Using our definitions we can represent the example of Table 4.2 as follows in Figure
4.4:

78 automated framework to cloud sla management : conceptual model

c1: storage < 100 (TB)

c2: location = USA (country)

c3: resp_time < 30 (ms)

c4: backup = no (response)

c5: req_rate < 1 (req./min.)

c6: encryption = no (response)

c7: price = 100 (US$/m.)

Figure 4.4: Formal representation of a service plan

Considering the service conditions and the dependencies presented for the proper-
ties c1 and c3 we can summarize the service plan as shown in Figure 4.5.

15225: c1 c2; c3 c4 ∧ c5 ∧ c6; c7

Figure 4.5: Example of a service plan summary

This allows the provider to present their service plans in accordance with the com-
binations it considers appropriate. Thus each provider can present its list of service
plans (as shown in Table 4.3) which will be used later as input to MCDM techniques
to determine the best choice for the customer.

Table 4.3: Example of a list of service plans

Service ID Service Conditions

15222 c2; c5; c
6
; c7

15225 c1 c2; c3 c4 ∧ c5 ∧ c
6
; c7

15226 c
8
 c9 ∧ c13; c10 c

6
; c11

15227 c9; c10 c
6
; c13

15230 c
8
 c9 ∧ c13; c15

15232 c4; c12; c
16

15233 c3 c4 ∧ c5 ∧ c
6

As can be seen each service plan allows the sale of a set of properties. Consider-
ing, for example, the service plan 15222, we can see four properties (c2, c5, c6 and c7),
whereas the price of the service plan is also a property, our approach allows us to state
a services plan available in the framework is self sufficient and can be used to form the
SLA.

But let us say that a customer only needs the property c2, that obliges the customer
to purchase a plan with more properties. So we must ensure that the framework can
support any form of service delivery. This is possible through the registration of single
property.

As an example of this situation we present the Table 4.4.

4.3 framework structure 79

Table 4.4: Registration of a single property

Service ID: 15233

Provider Properties

Amazon

Resp. ID Name Value Unit Dep.

Provider 03 Response Time
Range

ms
04

05

06

Min. Max.

30

Resp. ID Name Value Unit Dep.

04 Backup
Equal

response
no

Resp. ID Name Value Unit Dep.

Customer 05 Request Rate
Range

Req./min.Min. Max.

1

Resp. ID Name Value Unit Dep.

06 Encryption
Equal

response
no

In this example the provider Amazon is only providing the response time service (c3),
the other properties (backup-c4, request rate-c5 and encryption-c6) are the dependencies
to ensure the service.

Considering the property c3 we have then two occurrences, as shown in Table 4.5.

Table 4.5: Records to property c3

Service ID Service Conditions

15225 c1 c2; c3 c4 ∧ c5 ∧ c
6
; c7

15233 c3 c4 ∧ c5 ∧ c
6

The first occurrence (the Service ID 15225) refers to a services plan that provides, in
addition to the property c3, also the property c1 with its dependencies and the price for
the service plan (property c7). The second occurrence (Service ID 15233) refers to record
only the property c3 (and its dependencies). This gives the freedom to the provider that
can create SLA templates based on their ability.

Given a list of services and values determined by the provider we can take an exam-
ple as demonstrated in Table 4.6.

80 automated framework to cloud sla management : conceptual model

Table 4.6: Example of a list of services

Services Values

Number of Processors
=1

=2

=3

Encryption
=AES

=no

Response Time <10 ms

Auditing Frequency =weekly

Backup
=no

=daily

Location
=USA

=Italy

=France

Storage
<100 TB

>100 TB to 6200 TB

Price
=50 US$/m.

=100 US$/m.

=150 US$/m.

In the example shown in Table 4.6 is presented a list of different services converted
into properties that can be grouped to SLA composition. Once the user interfaces of
the framework are based on XML files, both service requests, as the service conditions,
can be presented in a format that can be easily handled by the framework. In the case
of services, a provider can provide both service plans as single properties using XML
files that meet the given XML schema for the service conditions, as shown in Figure
4.6.

4.3 framework structure 81

Figure 4.6: XML file to service conditions

As we can see by the example, the XML file shown in Figure 4.6 is exactly the
information in Table 4.4. This proves that the framework is sufficiently flexible enough
to support any composition determined by the provider and any request from the
customer.

82 automated framework to cloud sla management : conceptual model

4.3.2 the framework layer

Focusing on information available and after receiving the customer’s request, the
framework should look for alternative solutions to meet the required needs. For this
the framework services are divided into three management modules:

1. Properties Management: Responsible for properties storage and integration of on-
tologies in the database, as well as to the inventory of properties for the service
providers.

2. SLA Management: Responsible for interaction with users of the framework. Its
purpose is to suggest the templates list to the service selection and later the SLA
composition.

3. vSLA Monitor: Responsible for controlling the SLAs and monitoring the change
of scenarios and possible violations.

In this chapter we present some aspects related to modules 1 (Properties Manage-
ment) and 2 (SLA Management). Module 3 (vSLA Monitor) will be described in Chap-
ter 7.

The Properties Management module must consider the structure shown in Figure
4.7.

Figure 4.7: Properties Management module

This module receives the different lists of established properties from providers and
integrates the generic ontology in addition to performing the inventory of properties
(that will be explained in the next chapter of this thesis). The example in Table 4.7 al-
lows us to understand a practical real case application, involving services provided by
three providers. In this example, we have considered three lists of different providers,
each one containing the relation of available services and values that each property can
take according to the provider.

4.3 framework structure 83

Table 4.7: List of services to the Properties Management Module

Services Values of Provider A Values of Provider B Values of Provider C

Encryption
=AES =RSA

=no =AES

=no

Location

=USA =Uruguay =USA

=Italy =Brazil =Italy

=France =Argentina =Brazil

6=North Korea

Storage
<100 TB <100000 GB <100 TB

>100 TB to 6200 TB >100 TB to 6200 TB

>200 TB

In the example presented in Table 4.7 the provider A provides a list of services
containing encryption, location and storage with the respective values for the properties;
the provider B offers the same services with different values for the properties and the
provider C offers a list containing only 2 services (location and storage) and their values.

These services are considered established properties by the framework and a frag-
ment of XML schema that represents this is shown in Figure 5.3.

Figure 4.8: Fragment of XML schema with the established properties shown in the example

The list of absolute values present in the list of services is used as a set of values that
can be assumed by the properties in the XML schema provided by the framework. As
these lists are independent, the framework needs groups them in a integrated ontology
that can be presented as in Figure 4.9.

84 automated framework to cloud sla management : conceptual model

Figure 4.9: Integrated Ontology

Note that the integrated ontology does not present the values for the property storage,
this is because these values are not absolute but ranges of values. This ontology is then
published and serves as the basis for the absolute values used in the XML schema. An
example of how these absolute values are used by XML Schema is shown in Figure
4.10.

Figure 4.10: Fragment of XML schema with absolute values for established properties

4.3 framework structure 85

These absolute values represent the alternative choice that customers have to request
in a Service Level Agreement. According to our approach, the XML schema used does
not use namespaces just to provide the necessary freedom for the customer to select
their properties according to their needs. For this reason it is important that the on-
tology is published for those developers who need to use the XML schema in their
interfaces not commit syntax errors.

Briefly this approach integrates the lists of services from different providers and
presents a public ontology that determines the XML schema, this ontology allows cus-
tomers to use the listed absolute values and the established properties as demonstrated
in Figure 4.11.

Figure 4.11: Lists of services integrated in a public ontology

The integration of the list of services in a public ontology has great advantages such
as standardization and code reuse, and especially the possibility of variation in the
construction of specific Service Level Agreements to different fields in Cloud. Thus,

86 automated framework to cloud sla management : conceptual model

features such as aggregation capability of new services, clarity and overall vision was
fulfilled in the best possible way in our approach once the conceptual framework pro-
posed in this work keeps entirely free the possibility of variation for the determination
of SLAs.

Another issue to be addressed by the framework is that some values for the same
property can be displayed at different scales, the framework needs to determine a com-
mon scale so that the values are understood in the same way by the customer. Taking
as an example the property storage offering values in GB and TB, the framework needs
transforms all values on a same basis to be used in the service selection. Therefore, in
this case, the value "100000 GB" is converted into "100 TB".

After scaling transformation the list of properties and values can be then translated
into a table of properties as shown in Table 4.8.

Table 4.8: Table of Properties

Services Service ID A Properties A Service ID B Properties B Service ID C Properties C

Encryption
11212 c2 12125 c1

11213 c3 12126 c2

12127 c3

Location

11214 c4 12128 c7 13401 c4

11215 c5 12129 c
8

13402 c5

11216 c
6

12130 c9 13403 c
8

13404 c10

Storage
11217 c11 12131 c11 13405 c11

11218 c12 13406 c12

13407 c13

This table of properties is used internally by the framework to determine the service
selection, thus the framework has a list of established properties and default values
arranged in a generic ontology to manage the properties, so the next step is to de-
termine the SLA composition, this is accomplished by the SLA Management module.
This module is represented by the structure presented in Figure 4.12.

Figure 4.12: SLA Management module

4.3 framework structure 87

This module receives the provider service conditions and stores them in a reposi-
tory which is used to compare with the requests of customers, determining thus the
selection of services that can matches and consequently creates the SLA composition.
Considering the proposed example we assume that, at first, there are no conditions for
the execution of the listed services and the customer X requests the following services
regardless of price: R= {Storage=80 TB, Location=Italy, Encryption=AES}. As the request
for the property Storage is equal to 80 TB the framework can assume that the request
is for a value less than 100 TB what formally means the property c11 and the request
may be represented as: R= {c11, c5, c2}.

Based on this information the framework selects the services and returns a list of
possibilities that can be used by external MCDM modules to determine the best choice
for the customer considering their priorities. For this example, a selected service list
can be presented as in Table 4.9.

Table 4.9: Preliminary list of selected services

Provider Service ID Properties

A
11217 c11

11215 c5

11212 c2

B
12131 c11

12126 c2

C
13405 c11

13402 c5

In this case the only one provider that has services that match the customer’s request
is the provider A with the services {11217, 11215, 11212}={c11, c5, c2}.

After the framework performs the selection of services that matches the customer re-
quest, it is necessary that the service is accepted by the customer to be possible to make
the SLA composition. Since most of the necessary information for the composition of
a SLA can be manipulated as properties, and the structure of the ontology presented
in our approach enables the identification of other information, the framework can
establish that the SLA made for our example can be presented as in Table 4.10.

88 automated framework to cloud sla management : conceptual model

Table 4.10: Example of SLA composition by framework

Customer: X

Provider: A

Service ID: 11217

Properties

Resp. ID Name Value Unit Dep.

Both Parties 11 Storage
Range

TBMin. Max.

100

Service ID: 11215

Properties

Resp. ID Name Value Unit Dep.

Provider 5 Location
Equal

country
Italy

Service ID: 11212

Properties

Resp. ID Name Value Unit Dep.

Provider 2 Encryption
Equal

name
AES

In the example shown in Table 4.10 we can see the customer’s identification, the
provider’s identification and the services compatible with the request, besides the re-
sponsible for the maintenance of each value.

Still considering the SLA management module, in another example we assume that
these same properties can be grouped into services plans with their prices as shown in
Table 4.11.

4.3 framework structure 89

Table 4.11: Example of service plans from different providers

Provider Service ID Location Storage Encryption Contract
Time

Price

A 11219 =USA <100 TB =AES =7.9 US$/m.

A 11220 =USA <100 TB =no =4.9 US$/m.

A 11221 =USA >100 TB to 6200 TB =AES =9.9 US$/m.

A 11222 =USA >100 TB to 6200 TB =AES >1 year =8.5 US$/m.

A 11223 =Italy <100 TB =AES =7.9 US$/m.

A 11224 =Italy <100 TB =no =4.9 US$/m.

A 11225 =France <100 TB =AES =7.9 US$/m.

A 11226 =France <100 TB =no =4.9 US$/m.

B 12132 =Uruguay <1000000 GB =RSA =80 US$/y.

B 12133 =Uruguay <1000000 GB =AES =59.99 US$/y.

B 12134 =Uruguay <1000000 GB =no =24.99 US$/y.

B 12135 =Brazil <1000000 GB =RSA =80 US$/y.

B 12136 =Brazil <1000000 GB =AES =59.99 US$/y.

B 12137 =Brazil <1000000 GB =no =24.99 US$/y.

B 12138 =Argentina <1000000 GB =RSA =80 US$/y.

B 12139 =Argentina <1000000 GB =AES =59.99 US$/y.

B 12140 =Argentina <1000000 GB =no =24.99 US$/y.

C 13408 6=North Korea <100 TB =24.99 US$/y.

C 13409 =USA >100 TB to 6200 TB =59.99 US$/y.

C 13410 =USA >200 TB =80 US$/y.

C 13411 =Italy >100 TB to 6200 TB =59.99 US$/y.

C 13412 =Brazil >100 TB to 6200 TB =59.99 US$/y.

This table is a summary of the service conditions made by each provider separately.
Each of these service conditions is received by the framework that performs the equiv-
alences and stores them in one same place to be consulted at the time of service selec-
tion.

In this example we demonstrate the occurrence of two dependencies on service con-
ditions. The first is shown in the service 11222 of provider A, where the price of US$
8.5/m. only will be charged if the contract time is longer than one year, the second oc-
currence is perceived in the service 13408 of provider C which determines the storage
capacity less than 100 TB in places that are different from North Korea.

Considering the equivalence between prices with annual values and monthly values
and storage in gigabytes and terabytes we can translate the Table 4.11 as shown in
Table 4.12.

90 automated framework to cloud sla management : conceptual model

Table 4.12: Table of service plans

Provider Service ID Properties

A 11219 c4; c11; c2; c15

A 11220 c4; c11; c3; c14

A 11221 c4; c12; c2; c
16

A 11222 c4; c12; c2; c20 c21

A 11223 c5; c11; c2; c15

A 11224 c5; c11; c3; c14

A 11225 c
6
; c11; c2; c15

A 11226 c
6
; c11; c3; c14

B 12132 c7; c11; c1; c17

B 12133 c7; c11; c2; c19

B 12134 c7; c11; c3; c
18

B 12135 c
8
; c11; c1; c17

B 12136 c
8
; c11; c2; c19

B 12137 c
8
; c11; c3; c

18

B 12138 c9; c11; c1; c17

B 12139 c9; c11; c2; c19

B 12140 c9; c11; c3; c
18

C 13408 c11 c10; c
18

C 13409 c4; c12; c19

C 13410 c4; c13; c17

C 13411 c5; c12; c19

C 13412 c
8
; c12; c19

Supposing that a customer needs a storage service of 200 TB, this information is
translated as property c12 and the services that meet this request are presented as in
Table 4.13.

Table 4.13: Services to meet the request by property c12

Provider Service ID Properties

A 11221 c4; c12; c2; c
16

A 11222 c4; c12; c2; c20 c21

C 13409 c4; c12; c19

C 13411 c5; c12; c19

C 13412 c
8
; c12; c19

The result presented in Table 4.13 shows five possibilities for the customer and each
one can be described as in the Table 4.14 with the following characteristics:

4.4 the framework operation 91

Table 4.14: Characteristics of selected services for property c12

Service ID Characteristics

11221 Provider A with data storage capacity between 100 and
200 TB (inclusive) which is located in the USA, using AES
encryption at the price of US$ 9.9 per month.

11222 Provider A with data storage capacity between 100 and
200 TB (inclusive) which is located in the USA, using AES
encryption at the price of US$ 8.5 per month with con-
tract time more than 1 year.

13409 Provider C with data storage capacity between 100 and
200 TB (inclusive) which is located in the USA at the price
of US$ 59.99 per year.

13411 Provider C with data storage capacity between 100 and
200 TB (inclusive) which is located in the Italy at the price
of US$ 59.99 per year.

13412 Provider C with data storage capacity between 100 and
200 TB (inclusive) which is located in the Brazil at the
price of US$ 59.99 per year.

Based on this result the customer may refer to MCDM techniques with their own
utility functions to determine the best choice. We can also observe the dependence
presented in the service 11222 that may or may not be accepted by the customer, estab-
lished a negotiation phase to the composition of the SLA. Once the characteristics are
clearly understandable and the service is agreed, this information can be then used to
create the SLA composition and the contract between the parties.

4.4 the framework operation

Basically, the framework uses the inputs from the providers and customers to perform
the selection of services and, after negotiation, to show the composition of SLA to
players, as shown in Figure 4.13.

92 automated framework to cloud sla management : conceptual model

Figure 4.13: Example of inputs and outputs of framework

Figure 4.13 shows the inputs of providers that are lists of properties (which are
handled by the Properties Management module and grouped in a single ontology)
and the service conditions (which are treated by SLA Management module based on
pre-defined ontology) and the customer input that is the service request.

After the selection of services and acceptance by the customer, one of the outputs
delivered by the framework is the SLA composition that is sent to both the provider
and the customer. Another presented output is the inventory of properties that will be
described in the next chapter of this thesis.

The framework provides four services to each user:

• Registry: Registration of the SLA models in the system. From a document (XML
file) provided by Cloud Services Provider, the lists of established properties and
service conditions are stored in their respective databases.

• Search: Search SLA models. The customer provides a request encoded query and
receives as a result a list of properties that satisfies the query or approaching it
(the new properties are handled by properties inventory and will be treated in
the next chapter).

• Compose: SLA composition. The framework provides an XML file to specify which
services should be composed and the amounts agreed for the same. With the
agreement between the customer and the provider, a valid SLA (vSLA) is gener-
ated and stored in the database.

• Control: vSLA Monitoring. The framework compares vSLA with requests that
originated them in order to determine any dynamic exchange and also checks
the properties in order to indicate possible violations.

4.4 the framework operation 93

The integration of these services with the functional modules of the framework is
shown in Figure 4.14.

Figure 4.14: Services and framework modules

This approach promotes loose coupling between subsystems and customers allowing
them to make changes to the subsystem without affecting the clients. As our approach
is based on XML schema, each of the interfaces on the components is either an input
point, output or input and output to XML files. These interfaces consist of a description
and its corresponding direction.

Simple components are correlated to an implementation. This implementation con-
tains the location of the classes that implement the component. Each implementation
must have a main class, but can also refer helper classes necessary for its implemen-
tation. Another important point to create the framework is the runtime environment.
This execution environment should receive the XML files, control them and return the
results.

Regarding the user layer, it can describe the services and operations of the user com-
ponent as follows:

Registry holds the record of the information contained in the lists of established
properties by providers and also the record of service conditions. These data are inter-
nally processed by the Property Management module.

Search can be run either by customers or as by service providers. In the case of use
by customers this operation performs the search for properties and values, in addition
to enabling the query in the form of service request. When used by providers, this
operation enables query contained in the property inventory (which will be explained
in detail in the next chapter of this thesis).

94 automated framework to cloud sla management : conceptual model

Compose Receives the list of services that match with service requests by customers.
After performing the selection of the services the SLA management module waits for
the customer agreement to then carry out the SLA composition.

Control is responsible for controlling over the valid SLA, these operations are per-
formed internally by vSLA Monitor module that will be detailed in the Chapter 7.

The general operation of the framework, including processing requests and proper-
ties inventory, requires the use of a prepared database to store the characteristics to be
manipulated. The class diagram shown in Figure 4.15 represents the conceptual model
proposed to organize these features.

Figure 4.15: Framework Class Diagram

Both the objects created by the class "Request" and "Service Conditions" must comply
with the definitions set forth by the XML schema provided by the framework. The
class "Request" in addition to contain information relating to the customer and the
identification of the request also includes information on the required properties such
as name, value and unit, it should be noted that if it is requested a new property (not
established by providers) this relationship can also include the description for this new
property. Class "Service Conditions" contains the identification of the provider and the
service, in addition to include information on the properties that composes the service
(whether it be described as a single service or as a services plan). In the case of class
"Property" used in the service conditions this class has, besides the identification of
the property, its name, value and unit, also has the responsible for the property, that
guarantees the aspects of shared liability presented in Chapter 3, and the dependences
between properties that are necessary.

4.5 chapter summary 95

The "SLA composition" class is performed by the SLA Management module and
after the selection of services and the customer agreement is executed inheriting the
information contained in the classes "Request" and "Service Conditions".

The classes "Properties Inventory", "vSLA" and "Dynamic Properties" will be de-
scribed in the next chapters.

4.5 chapter summary

In this chapter we present the proposed conceptual framework that is meant as a repos-
itory of information about Cloud services. This framework is configured as a storage
system, accessible via network, which has mechanisms for managing properties and
allows to add objects, search for information relating to it and make them available to
the end user. Its architecture enables the definition of the properties, as the definition of
rules that composes the service conditions. The handling of data and metadata is made
through web services exposed by using interfaces that allow management, access and
search. In addition, the framework can be used as an integrated component systems
that provides additional functions for organizations or end users. As the framework
architecture is designed to manage different types of Cloud services and this manage-
ment is through web services, it is natural that retrieving information about objects
occurs in the same way. The semantic search is also foreseen by SLA composition mod-
ule that enables the use of internal ontology of the framework itself. Implemented as
a web service, it can be used and integrated into already existing applications. The
framework structure and operations have been described and examples of use of the
framework illustrate their viability.

5
M A N A G E M E N T O F N O V E L P R O P E RT I E S A N D VA L U E S

In Chapter 3 we have described the Ontology proposed in this thesis, with its structure,
features and a detailed description of its elements. In Chapter 4 we have described the
conceptual model of the proposed framework for using the Ontology, its architecture
and the description of some of its modules. In this Chapter we present the operation
of the Property Inventory component used in the Property Management module. This
component is responsible for the organization and manipulation of new services re-
quired by customers.

5.1 introduction

In general, to support the different needs of its users, Service Levels Agreements need
to be more flexible, especially in relation to its facilities. As in the context of Cloud
computing, the need for customizable feature set of adjustment is an important factor.
It is often necessary that the systems allow their customization in terms of SLAs in
order to extend its flexibility of adaptation and extension, in addition to changes of the
configuration. However, this type of customization is not always feasible because the
providers do not provide their internal structure of services and open source systems
are usually built on integrated architectures, which customization is complicated by
the need to understand the system code as a whole to perform any modification.

Adding to the complexity in architecture, there are other features, available in the
SLA, that also hamper their adaptation. For example: fixed roles and permissions on
the system; platform dependency and specific databases and set of features designed
according to local experiences (usually experiences of developers).

Considering the difficulties of adapting the Service Level Agreements, it becomes
relevant to investigate models that offer a higher level of flexibility for these systems.
A perfectly adaptable approach to this problem is the use of frameworks and software
components. Frameworks are defined as semi-complete and reusable applications that,

97

98 management of novel properties and values

when specialized, produce custom applications within a specific domain [161]. Soft-
ware components are replaceable parts of the system that stress the interface and
implementation separation. This separation facilitates communication between system
components and the replacement of their implementations, because all communication
with the component is made through its interface. Although they are typically meant
for reuse, frameworks and components have characteristics, such as dependence on
well-defined interfaces, design reuse and architecture, and the use of patterns that can
assist in the development of systems with more organized architectures to allow easier
adaptation and extension.

In the specific case of our framework, and presented ontology, we use "established"
properties and "new" properties that allow customization of the SLA. These properties
are handled by a specific module called "Properties Inventory" that will be detailed in
this chapter.

5.1.1 chapter outline

This chapter describes and illustrates how new properties and new values are managed
through the Properties Inventory component, shows the scenarios where this module
is used in our framework and shows how the new data can be clustered to allow the
adaptation and extension for Service Level Agreements. The main contribution of this
Chapter is the description of how the proposed framework identifies the demand for
new services and how providers can use this information to deploy these services.

5.2 properties inventory

The fundamental problem addressed in this thesis is the customization of SLAs based
on customer needs. In the previous chapters, we proved that it is possible to simplify
the customization process using a generic ontology that can be described in an XML
schema. However, in order to make sure that new properties and new values are ac-
cepted by the framework, mapping of existing properties and values is necessary. This
mapping depends on information that characterizes each property individually and
must allow the addition of new values without compromising the initial character-
istics of each property. Another important factor is that each new property must be
analyzed to restrict ambiguities between similar properties, only after this analysis it
will be able to be submitted to the service providers so that they can alert the status of
"New" for a "Established" property.

To address this problem, we insert in the proposed framework a component called
Properties Inventory. This component is part of the Property Management module
and is responsible for the manipulation of alterations in already existing properties
values and controls of new properties and values. Basically this component receives
all properties listed by service providers and stores it in a common list of properties,
which, in time, can be consulted by the providers to determine the inclusion of new
properties.

5.2 properties inventory 99

The Figure 5.1 depicts a process (simplified) to determine the inclusion of a property
with status "established".

Figure 5.1: Process (simplified) to determine a "Established" property

As the first function of the Properties Inventory component has precisely determined
the established properties, it is important to carry out a control on similar properties,
so that there are not ambiguous or duplicate properties. As shown in Figure 5.1, when
a Cloud Service (as a list of properties) is received by the Properties Inventory it should
check for similarities between services previously established and, based on this result,
sets new services or integrating similar services. For example if two providers provide
the service "Response Time", the first attribution of Property Inventory is to determine
whether this is a single property or in their descriptions are presented details that can
establish a difference between them, creating two similar properties.

As our premise is to simplify the process of creating a SLA as well as facilitate the
use of the framework for the users, the determination of a new established property
can be carried out also by the provider. To illustrate this, let us analyze the following
situation:

1. Our framework is started with a empty list of properties and values;

2. The provider A provides a list of services among them "Response Time";

3. The framework, through the Properties Inventory component, stores this list
of properties with their respective descriptions, where the property "Response
Time" is now pα ("Response Time considering x");

4. The provider B needs to present its list of services, including a property also
called "Response Time";

100 management of novel properties and values

5. The provider B can see the list of properties in the Property Inventory and verify
that the description of pα is consistent with their own description for the property
"Response Time";

6. In the case where they are equal and do not exhibit ambiguity, the two properties
provided by different providers can be considered the same pα, regardless of
having different values for it;

7. If the provider B checks that the description of pα is not consistent with their
service him can create a new property, called for instance "Response Time con-
sidering y".

8. In this case, the Properties Inventory has two different properties for different
services: pα and pβ. Which can be requested by customers.

As in this situation, in which the providers determine the "behavior" of its proper-
ties, it is easy to identify that the occurrence of ambiguities is reduced to zero, since
a provider knows to determine the difference between its own service and the service
offered by another provider. This situation is a little different when we consider the cus-
tomers of services and their needs. So that customers require that the list of properties
and their descriptions need to be clear.

Since the property "Response Time" is not a trivial property and may consider several
factors, the difference between properties pα ("Response Time considering x") and pβ
("Response Time considering y") makes it clear to the provider and the customer which
service is being hired and added to the SLA.

As seen in Chapter 3, a customer can request services using an ontology that allows
the composition of a SLA according to their needs. In this sense a customer can re-
quest established properties with defined values (or new values) or requesting new
properties. In case of established properties we can present this as described in Figure
5.2.

5.2 properties inventory 101

Figure 5.2: Process for requesting established properties

In the example shown in Figure 5.2, we have a request of a customer seeking services
based on the list of established properties, and this list is presented to the customer
using our XML schema (as in Figure 5.3):

Figure 5.3: Fragment of XML schema with the list of established properties

Taking as example the property "Location", our framework provides a set of values
determined for this property (Figure 5.4):

102 management of novel properties and values

Figure 5.4: Fragment of XML schema with absolute values for property Location

If the customer requires the property Location with a value like "Spain", for exam-
ple, but this value is not part of the set of possible values, the Properties Management
module can determine the selection of possible services for the customer. Moreover,
Properties Inventory can put the new value in a standby situation, to be further as-
sessed by the providers of this type of service.

Another situation considered by the Properties Inventory concerns the new proper-
ties, an example of this process is demonstrated in Figure 5.5.

Figure 5.5: Process for requesting new properties

As shown in Figure 5.5 a customer can request a property not yet established, such
as a new property called "Video Streaming", this new property is put on standby and
the information related to their description need to be clustered to reduce ambiguities.
After that a service provider can query the inventory of new properties with the option
to deploy new services.

In summary the Properties Inventory component has four functions:

1. Keep the control on established properties;

2. Put new values and properties in a standby state;

3. Information clustering;

4. Control of changes.

These functions can be used in different scenarios, as described in the next section.

5.3 usage scenarios 103

5.3 usage scenarios

As the Properties Inventory component is part of the property management module
and this composes the proposed framework, we can describe some scenarios that can
be handled directly by the functions assigned to the component. So, the following
scenarios present, briefly, the usage possibilities of the framework:

• S1: From a service or feature of interest, the user searches in the generic ontology
the semantic representation and sends a request to the framework. After obtain-
ing this representation, the framework searches in a repository which models are
somehow associated with the service or resource. From the list of SLA candidate
models, the user selects the most suitable one to make the composition of the
SLA.

• S2: The user can request a new service model by composing new properties or
existing properties with new values. These new properties and/or values are
stored and inventoried.

• S3: Based on the Properties Inventory, a service provider can generate new SLA
models. These new models of Service Level Agreements can be created consider-
ing the new properties and new values demanded by customers.

• S4: After some change in the status, the framework can inform the users in order
to fulfill a preliminary request.

Because these scenarios are specific to the use of our framework, obviously it does
not exist algorithms that address these situations, so that we present our own algorithm
and for a better understanding we illustrate this as follows.

5.3.1 application example for the scenario s1

The first usage scenario is the simplest of all: the user searches for services that have
properties and values already established. In this case, the Property Management mod-
ule starts an algorithm that searches in the Properties Inventory (the first part of the
algorithm is represented by the pseudocode in Algorithm 1) .

104 management of novel properties and values

Algorithm 1 Properties Inventory (part 1)

Input: RP: requested property, EP: established properties, rv: requested value, sv: set-
ted values

Output: SS: list of selected services
1: procedure Search(RP, EP, rv, sv)
2: if RP = EP then
3: sv’ ← sv ∈ EP
4: if rv = sv’ then
5: SS ← (EP, sv’)
6: return SS
7: end if
8: end if
9: end procedure

As described in Algorithm 1, the inputs for the algorithm are the requested property
by the customer (RP), the list of established properties (EP), the requested value (rv)
and the setted values for the established properties (sv). As output, we have the list of
selected services (SS). After the search of information, that can be made by customers
using our XML schema, the request (RP) is compared with the list of established prop-
erties (EP) (in line 2) and existing compatibilities are compared the requested values
(rv) with the set of values (sv) assumed by the property (line 4). Considering the service
conditions determined beforehand by the provider, the framework can return the list
of selected services (SS) that match with the solicitation (lines 5 and 6).

Using the example shown in section 5.2 we can consider the request for a service
of location in USA like R:(Location=USA) where "Location" is the established property
and "USA" is one of the absolute values for this property. As we saw in chapter 3 this
tuple (p op val) in the provider side is a service condition, then hypothetically we can
say that this tuple takes the identification c4 to the framework.

With the compatibility of the properties and values required, the framework returns
the list of selected services considering the service conditions made by each provider,
as shown in Table 5.1.

Table 5.1: List of compatible services for the property Location

Provider Service ID Properties

A 11219 c4; c11; c2; c15

A 11220 c4; c11; c3; c14

A 11221 c4; c12; c2; c
16

A 11222 c4; c12; c2; c20 c21

C 13409 c4; c12; c19

C 13410 c4; c13; c17

This list of services enables the customer to hold the choice of service plans based
on their priorities.

5.3 usage scenarios 105

5.3.2 application example for the scenario s2

The second usage scenario presents two situations, the first one is the solicitation of
new properties and the second is the solicitation of new values for properties already
established. To control these two situations is necessary to perform some changes to
our initial part of the algorithm, complementing it as shown in Algorithm 2:

Algorithm 2 Control of new properties and new values

Input: RP: requested property, EP: established properties, rv: requested value, sv: set-
ted values

Output: SS: list of selected services, PS: property in standby, vS: value in standby
1: procedure Search(RP, EP, rv, sv)
2: if RP = EP then
3: sv’← sv ∈ EP
4: if rv = sv’ then
5: SS← (EP, sv’)
6: return SS
7: else
8: vS← rv
9: SS← (EP, sv)

10: return (SS, vS)
11: end if
12: else
13: PS← RP
14: return PS
15: end if
16: end procedure

As inputs we keep the same information (RP, EP, rv and sv). As output, in addition
to display the list of selected services (SS), the algorithm can set properties and values
in standby status (PS and vS). Until the line 6 the procedure is the same presented in
the first part of the algorithm after this the algorithm needs to control two situations.
The first situation occurs when the customer requests a property that has not yet been
established by the framework (lines 12). In this case, the new property is placed on
standby by the Properties Inventory (lines 13 and 14). The second situation occurs
when the customer requests a new value for a property already established (line 7).
In this case, in addition to put the new value in standby (line 8), the framework also
returns all possible values for the property requested (line 9). In this way, it is possible
to present some alternatives to the customer, since their original request can not be
met.

Regarding the first situation we can consider as example the new property "Video
Streaming", as this property is not in the list of established properties is impossible
for the framework to determine the compatibility of this new property to the list of

106 management of novel properties and values

known properties, having the Properties Inventory put this new property on standby
for further evaluation by providers.

For the second situation we take as an example a request consisting of two proper-
ties (Encryption and Location) with the following values: (Encryption=RSA) and (Loca-
tion=Spain). Since this two properties are already established, the framework needs to
control only its values. In this case the framework locates the compatible value for the
property Encryption (c1) but does not have a value that matches the value requested
for the property Location, therefore the Properties Inventory puts the new value on
standby and returns a service selection considering the possible values for both proper-
ties, obviously prioritizing the property that showed value compatible with the request,
as shown in Table 5.2.

Table 5.2: List of compatible services considering the property Encryption

Provider Service ID Properties

B 12132 c7; c11; c1; c17

B 12135 c
8
; c11; c1; c17

B 12138 c9; c11; c1; c17

As can be seen in Table 5.2 the framework suggests other values for the requested
property also considering other properties present in the service condition.

5.3.3 application example for the scenario s3

The third usage scenario considers the repositories established by Properties Inventory
(Figure 5.6).

Figure 5.6: Repositories used by Properties Inventory

As can be seen in Figure 5.6 the Properties Inventory component is responsible for
four different repositories: a) Established Properties; b) New Values; c) New Proper-
ties and d) Requested Properties. These four repositories are linked together and the

5.3 usage scenarios 107

repositories "New Values" and "New Properties" are considered transient repository
since their information tend to migrate to the repository of Established Properties. The
repository "Requested Properties" will be described in the next subsection.

The proposed framework, in addition to allow customization and freedom to the
customer requesting services according to their needs, also appears as a source of in-
formation for service providers. Once a provider can see the demand for new services
(in the form of properties and values) this provider can consider deploying these re-
quests to meet the market demand.

We can describe this scenario as the representation of service models that can be
found, made and changed by the providers according to their market perception. To
illustrate this situation take as example the Table 5.3:

Table 5.3: Example of information maintained by the properties repository

Established Properties New Values New Properties

Location

USA

Italy

Location

Spain

Video Streaming

Encryption

RSA

AES

As we can see in the example shown in Table 5.3, our approach presents a set of
information in an organized and simplified manner. This simplification allows service
providers to consult these data (mostly New Values and New Properties) allowing its
implantation if they wish.

We assume that a provider, fulfilling the needs of customers in services located in
Spain, resolves to meet this demand by establishing this service. This new situation
is delivered to the framework when the provider presents a new service. Thus the
Properties Inventory component passes a value, that was previously set in standby for
an established property, with the new value (Table 5.4)

108 management of novel properties and values

Table 5.4: Example of reallocation of property values

Established Properties New Values New Properties

Location

USA

Italy

Spain

Video Streaming

Encryption

RSA

AES

The same can happen with new properties, a provider can simulate the composition
of their services to determine their plans and implement new services with their values,
as shown in Table 5.5.

Table 5.5: Example of reallocation of services

Established Properties New Values New Properties

Location

USA

Italy

Spain

Encryption

RSA

AES

Video Streaming

720p

With this approach, the proposed framework can be established as an interfacing
channel between the customer market of Cloud services (that need more freedom and
control for the composition of their SLAs) and service providers (which need to be
alert to new markets).

5.3.4 application example for the scenario s4

As the Properties Inventory also tracks changes status of properties and values (standby
for established), we can use the information regarding these changes to inform cus-
tomers in order to be able to meet any previously requested service.

5.3 usage scenarios 109

For this, it is necessary to have a control over the Service Agreements established
previously, this control is carried out by vSLA Monitor module that will be detailed in
chapter 7. This module uses the information provided by the Properties Inventory that
informs whenever a new value or a new property is established.

Considering the example shown in subsection 5.3.2, let us say that the customer
00452 has chosen the service 12132 with the following properties: (c7, c11, c1, c17) where
c7 is (Location=Uruguay) but their first request has property like (Location=Spain). As
previously seen the value contained in the request was not met and this value then
goes to standby status, so we have the following situation (Table 5.6).

Table 5.6: Example of status repository

Established Properties Requested Properties Standby Values Selected Properties

Location

USA

Italy

Uruguay

France

Location: Spain

Location

Spain

Location: Uruguay

User ID SLA ID User ID SLA ID

00452 1521 00452 1521

01254 1678 Location: Italy

00687 User ID SLA ID

01254 1678

The information presented in Table 5.6 are:

1. Established Properties: the list of properties by providers;

2. Requested Properties: properties requested by customers;

3. Standby Values: list of property values in standby controlled by Properties Inven-
tory module;

4. Selected Properties: properties selected by the customer and subsequently stored
in a valid SLA (vSLA).

The items 1 and 3 have been described previously while items 2 and 4 needs to.
For this, we observe what it happens when a property has its status changed from
"Standby" to "Established" (Table 5.7).

Table 5.7: Example of status change

Established Properties Requested Properties Standby Values Selected Properties

Location

USA

Italy

Uruguay

France

Spain

Location: Spain Location: Uruguay

User ID SLA ID User ID SLA ID

00452 1521 00452 1521

01254 1678

Location: Italy

User ID SLA ID

01254 1678

110 management of novel properties and values

When a property passes to the status "Established", the Properties Inventory com-
ponent checks the repository of Requested Properties if this property was required
previously (the yellow items in Table 5.7), if the result is positive the Properties Man-
agement module informs the vSLA Monitor module through mapping of the SLA ID
(the green items in Table 5.7).

Note that this mapping is also carried out in relation to the User ID, this approach
allows the retrieval of information on the market needs and can identify customers
who have requested these services. This is possible because the proposed framework
are mapping new values in already known properties, but we must pay attention when
it comes to new properties, for it, it is necessary to organize and cluster the new infor-
mation so that they can be handled in the best way by the framework modules, this
approach will be described in the next section.

5.4 information clustering

As seen in previous sections the management of new values and new properties is re-
sponsibility of Properties Inventory component. This management is based on a struc-
ture of repositories that keeps information on the properties used in different services.
The information on these services are from generic Ontology that was presented in
Chapter 3 where the information on established properties are presented by on Cloud
service providers and the information about new properties and new values are pre-
sented by customers in the form of service requests.

Regarding the information on new properties and new values so that they can be
analyzed and established by the service providers, it is necessary that the framework
produces it in a qualified way. It is not enough to simply store this information, they
need to present some value to providers.

Considering the occurrence of new values is relatively easy to introduce an approach
that allows a decision making by the provider. Since these are new values for estab-
lished properties, it is enough that the framework applies a counter for each new
displayed value. An example of this is shown in Table 5.8.

Table 5.8: Counter table for new values

Property: Location

Value N. Occurrences

Spain 16423

Chile 538

Poland 612

Pakistan 45

According to the example shown in Table 5.8, we can see an higher occurrence of
requests requesting services located in Spain. In this way, the counter table allows
the service provider to review this information and take their decision about it. This
approach can not be used for new properties because it is not a trivial situation. For

5.4 information clustering 111

this the framework must present an exploratory analysis of the descriptions for each
new property requested.

Different customers may submit service requests with different properties names but
with similar descriptions. Of course, if the list of established properties contains a com-
prehensive number of possible services that reduce the need to request new services
by customers but the framework needs to consider this new situation. The framework,
through the Properties Inventory, have the function to establish mechanisms that can
organize this information. For this we suggest the use of text mining and clustering
techniques which are a way to explore data analysis. In essence, the cluster analysis
provides a means to explore and verify present structures in the data, organizing them
into clusters of similar objects.

The purpose of this section is not to present or create techniques for extraction of
knowledge, but to prove that our approach, based on the framework and generic on-
tology, can be perfectly used for these situations.

The goal of the clustering is to find a structure of clusters in the data, where each
cluster contains objects that share some characteristics considered relevant to the field
of data studied. As the service requests used in our Ontology receive descriptions of
the properties in textual form through XML files, we can say that the texts contained in
those files are important repositories and the intelligent organization of these textual
collections is of great importance for the proposed framework as it streamlines the
search process and information retrieval. In this context, the application of Text Mining
techniques allows the transformation of this volume of textual unstructured data into
useful knowledge.

The use of Text Mining techniques can extract knowledge from raw textual data
(unstructured), providing support elements to knowledge management, which refers
to how knowledge is created, used, shared, stored and rated. Technologically, the sup-
port of Text Mining for knowledge management takes place in the transformation
of content information repositories for knowledge to be analyzed and shared among
stakeholders.

For the unsupervised extraction and organization of the knowledge from textual
data, the differential is in the standard extraction step, in which grouping texts meth-
ods to organize collections of documents in cluster are used. Then, they need to ap-
ply some selection technique descriptors for the clusters formed, that are, words and
phrases that assist the interpretation of the groups. After validation of the results, the
hierarchical clustering and their descriptors can be used as a topical hierarchy for ex-
ploratory analysis of texts tasks and support of information retrieval systems.

The three main steps are included in Text Mining (as shown in Figure 5.7): 1) Prepro-
cessing of documents; 2) Standards Extraction with Texts Grouping and 3) Knowledge
Assessment. In this section, our focus is on the first stage and how the files provided by
the Properties Inventory can help to facilitate the extraction of knowledge by providers.

112 management of novel properties and values

Figure 5.7: Stages of Text Mining process

The preprocessing stage is the main difference between the Text Mining processes
and Data Mining processes: the structuring of the text in a format suitable for knowl-
edge extraction. Many authors consider this step the most time consuming throughout
the Text Mining cycle. The purpose of preprocessing is to convert text written in nat-
ural language (inherently unstructured) into a structured representation, concise and
manageable by grouping text algorithms. For such task, standardization activities are
performed on the collection of texts, selection of terms (words) most significant and,
finally, the textual representation collection in a structured format that preserves the
main characteristics of the data.

In this sense, the proposed framework, especially with the Ontology, enables this
phase to be simplified since the terms to be analyzed and structured are in a common
source provided by the structure of XML files.

One way to perform the selection of terms is evaluate them by simple measures statis-
tics such as term frequency (known as TF) and document frequency (known as DF).
The term frequency records the absolute frequency of a particular term throughout the
text collection. The document frequency, in turn, counts the number of documents in
which a term appears.

Once selected the most representative terms of our text collection (which are de-
scriptions of new properties presented in the XML file) must seek the structure of doc-
uments, in order to make them processable by clustering algorithms that are used for
bundling texts. The most widely used model for representing textual data is the space-
vector model, in which each document is a vector in a multidimensional space, and
each dimension is a term of the collection [162]. To do this, we can structure the text in
a bag-of-words, in which the terms are considered independent, forming a disorderly
assembly in which the occurrence of word order does not matter. The bag-of-words is
a document-term table as illustrated in Table 5.9 where di corresponds to the ith docu-
ment, tj is the jth term and aij is a value that relates the ith document with the jth term.
Note that in the representation shown here does not have class information, since the
learning task grouping method is unsupervised.

5.5 chapter summary 113

Table 5.9: Table of document-term

t1 t2 · · · tm

d1 a11 a12 · · · a1m

d2 a21 a22 · · · a2m
...

...
...

. . .
...

dn an1 an2 · · · anm

Using the table of document-term presented in Table 5.9, each document can be

represented as a vector
→
di= (ai1, ai2, ..., aim). The value of aij measure can be obtained in

two ways:

• Using a value that indicates whether a term is present or not in a given document;
and

• Using a value that indicates the importance of the term and distribution along
the collection of documents, for example, the value of TF.

In our approach, we suggest the use of the second way. In order to perform the
extraction of patterns after the representation of texts in a structured format, we should
use methods of grouping texts for organizing the documents. The various grouping
strategies are in practice algorithms that seek an approximate solution to the clustering
problem. To illustrate a brute force algorithm that seeks the best partition of a set of n
documents into k groups need to evaluate kn/k! possible partitions.

There are several tools that provide algorithms to clustering texts. Among the most
relevant, we can mention the Cluto (Clustering Toolkit [163]), which supports the main
clustering algorithms present in the literature, various measures of similarity, and
graphical interfaces for analysis of results. It is important to note that due to exten-
sive use of clustering algorithms, various mathematical and statistical software, such
as Matlab [164] and R [165] also provide clustering algorithms that can be employed
in standard extraction tasks.

Given the above, we can say that based on the files provided by our framework the
service providers can apply their own techniques and tools to determine the demand
for new services.

5.5 chapter summary

In this chapter, we present the Properties Inventory component that integrates the
Property Management module and works as a set of repositories. This component is re-
sponsible for the management of information on the properties previously established
by providers and also the information on new values and new properties requested by
customers. We present how the storage of this information is organized and how the
status changes enable the interaction between the framework and service customers
especially when there is a change in the set of services provided. Also, we present how

114 management of novel properties and values

the information provided by the framework can be used to facilitate understanding of
new demands by service providers.

6
U S E O F F U Z Z Y PA R A M E T E R S

In the previous chapters we define the control of properties in SLAs using absolute
values (or crisp values) but this traditional solutions for the SLA composition assume
that the values required for the services to be static and punctual, not considering the
needs or the differences in perceptions between the parties, which implies that a simple
difference of values makes the customer’s request unanswered and that the provider
loses market or have no knowledge of it. Such an assumption may result in a market
restricted to the providers. We solved this limitation by proposing an approach using
values described in fuzzy logic [89]. This allows an approximation between the parties
since they can use natural language to describe certain values and allows a wider range
of service opportunities for providers.

6.1 introduction

Despite the growth of fuzzy control applications in several areas, in many cases, it
remains the difficulty in assessing the choice between fuzzy logic rather than the classic
one. According to [166], there are two main reasons for the choice of fuzzy logic and not
a classic. The first, when the process is unable to provide accurate information which
can be quantified and used and the second, when the process supports imprecision.
These two features can be seen in service requests demanded by customers as well as
in certain resources controlled by providers.

Fuzzy sets do not give absolute relevance to its elements. Any element of the uni-
verse of discourse belongs to the fuzzy set, which obtains a degree of membership
(membership function) that refers as how the element belongs to the set. Therefore, the
interpretation given to the fuzzy set of elements is not "if the element belongs to the
set" but "as it belongs to the set".

The fuzzy sets are important because they can represent inaccurate or diffuse knowl-
edge, which can be expressed and manipulated to generate decisions. Human language

115

116 use of fuzzy parameters

uses often concepts (linguistic terms) for the description of knowledge. The conditional
statements, based on the theory of fuzzy sets, involving logical product (minimum) of
the background blocks "IF", which are combined within the logical sums (maximum)
of subsequent blocks "THEN".

Since in our approach the service providers can present their solutions in the form
of service conditions we can see that these models are typically multidimensional and
with multiple condition, related to the dependencies between the properties. In this
sense, the fuzzy logic control algorithms can use linguistic terms to describe the process
variables to safety, economy, effectiveness, ease and applicability, without the need for
mathematical models.

Due to difficulties in process control and the complexity of simultaneous phenom-
ena, the mathematical modeling and the model accuracy, the actuation time of control
algorithms, dynamic conditions and knowledge of the process, the fuzzy logic becomes
convenient. Such convenience works because it features the facilities on the appropri-
ateness of human control strategy, simplicity of control laws, the flexibility of linguistic
variables and accuracy for computational implementation.

For a given property Fuzzy logic can be used in a control system using the service
conditions, it is necessary to take the result of the inference of the various rules (which
are fuzzy sets) and turn it into numerical values to control signals associated with
variables language used in the inferred propositions.

6.1.1 chapter outline

In this chapter, we will describe where and how we can use the fuzzy logic within our
framework and solutions presented by him. We address the problem of interpretation
of values in Service Level Agreements considering the possibility of using fuzzy logic
at different times in the determination of a SLA. Then, we illustrate our approach to
the use of natural language services to customer requirements and how this approach
can also be used on the provider side, ending with a practical example of this approach.
The main contribution of the Chapter is the description of the utilization of fuzzy logic
to model property values that can be requested by customers, while allowing wider
flexibility in controlling these properties for the providers.

6.2 fuzzy logic in cloud systems management

Cloud systems management can exploit the advantages of fuzzy logic in different ways,
from representing knowledge and observed facts in a way similar to humans (i.e., with
natural language and its imprecisions), to approximate reasoning including incomplete
or inaccurate information (like humans are able to do). We identify and analyze the
different uses of fuzzy logic in cloud systems management, pointing out its adoption
in various components, and the advantages it provides.

Fuzzy specification of customer’s preferences on requirements. In many practical situations
it may not be possible to satisfy all the requirements that the user specified in the SLA

6.2 fuzzy logic in cloud systems management 117

because they are conflicting or there are not enough resources. Customer’s require-
ments do not always have the same relevance and impact on the correct and timely
execution of the applications. Fuzzy logic can be used to enable users to easily define
the relative relevance or their preferences among requirements. For instance, in a big
data application, a user can specify that storage requirement has "high importance",
application performance has "medium importance", and user interface and interaction
have "low importance". Merging requirements taking into account their relative prefer-
ences may guide the resource allocation engine in finding a feasible solution, by solv-
ing a multi-objective optimization problem. Considering that our approach presents
another vision for the utilization of fuzzy parameters by the customer, this vision will
be demonstrated in the next section.

Fuzzy allocation of resources to tasks. The allocation of cloud resources to the tasks of
customer’s applications is a complex problem, which needs to take into account vari-
ous aspects (e.g., applications performance, customers and provider costs, energy con-
sumption, resource usage, security, data protection, and system reliability and avail-
ability). This problem has conflicting goals and is usually addressed using a multiob-
jective decision making approach. In dynamic scenarios, where tasks are continuously
activated/deactivated, a strategy that reaches the global optimum at each update is
not practical as it may imply moving tasks and data. To overcome this issue, incre-
mental approaches allocate (as optimally as possible) only the new tasks according to
their SLAs. Fuzzy logic can be useful to support flexible reasoning during mapping
of the requests of new tasks onto available cloud resources, especially by merging all
requirements similarly to adaptable human reasoning. In particular, fuzzy similarity
can be used to measure the distance between solutions and find the optimal allocation
of resources. This approach will be demonstrated in Section 6.4.

Fuzzy monitoring and prediction of cloud status. Cloud systems evolve mainly because
of workload activation and dynamic operation changes, faults or malfunctioning com-
ponents, security threats and attacks, changing application needs, and need for energy
saving. Monitoring the cloud system permits to understand and possibly anticipate
critical situations, ensuring dependability based on continuity and quality of service.
In fact, starting from observed behavioral trends, prediction tools are able to infer the
future system behavior from the past condition and current situation. In critical sit-
uations, applications reallocation may be suggested to maintain the desired level of
service quality and fulfill the SLAs. Monitoring and prediction of the cloud system op-
eration can benefit from flexible reasoning based on fuzzy logic, suited to understand
the cloud status and identify (nearly-) critical situations. This approach will be demon-
strated in the next Chapter.

Fuzzy dynamic allocation of resources to tasks. Dynamic re-allocation of resources to ap-
plications tasks can be adopted in dependable cloud system management to ensure
dynamic adaptation to changing operating conditions. This could in fact guarantee
continuous complete fulfillment of the SLAs. The resource (re-)allocation algorithm

118 use of fuzzy parameters

should then be executed, either periodically or when the status monitor/predictor
points out a significant change, which may impair (or is shortly expected to impair)
the normal system operation. Fuzzy logic can be useful also to support flexible multi-
objective reasoning for dynamic adaptation of the resource mapping to the evolving
operating conditions. Also this approach will be demonstrated in the next Chapter.

Finally, we can say that fuzzy logic can be applied to meet the customer’s needs
and to define parameters that can be used by services providers. To demonstrate this
situation the next two sections show how fuzzy logic can be applied on the customer’s
and provider’s sides.

6.3 fuzzy customer requirements

Customers often tend to overestimate their requirements in SLAs, to prevent possible
problems during the working of their applications. However, this leads to a waste
of paid resources and reduces resource availability in the cloud. To limit this waste
of resources (and money for final users), we propose to use fuzzy logic to support
SLA specification. Fuzzy logic allows the customers to define their applications needs
in a flexible way, capturing natural linguistic expressions, when customers are not
specialists in information systems and technologies and when requirements are not so
crispy defined or easily definable. Fuzzy logic can support the definition of customer’s
requirements as fuzzy parameters and fuzzy concepts as follows.

6.3.1 fuzzy parameters

Fuzzy parameters permit customers to define their requirements when they are unable
to determine an exact, specific value of a characteristic of the cloud environment, but
they are fully conscious of the required size of the considered characteristic and are
linguistically able to describe it (e.g., with adjectives of periphrases). For instance, a
customer who would like to use a large key for the encryption of her data, may not
have a precise idea of the needed key length. In this case, the customer may prefer to
state that a long key is needed, accepting a conventionally defined concept of "Long"
as a fuzzy range of values. Mutual agreement about the significance of linguistic ex-
pressions is essential to understand and satisfy the customer’s requirement.

As there can be differences of perception between what a customer meant by "Long"
and what a provider defines a "Long", we must ensure that these differences are elimi-
nated. That our framework can accept service requests containing requests with fuzzy
values a provider must first establish these values, as seen in Chapter 3, then a property
in a service conditions must present a fuzzy description as seen in Figure 6.1.

6.3 fuzzy customer requirements 119

Figure 6.1: Element Fuzzy Description in a Service Conditions XML Schema

The Element "FuzzyDescription" shown in Figure 6.1 should describe the range of
values determined for the fuzzy value.

For example a property "Key Length" defined in the conventional crisp way has the
following typical form: Key Length = 384 bit and may be better replaced by a fuzzy
definition like: Key Length should be "Long" provided that the customer follows the
fuzzy definition of sizes defined by the provider (e.g., Figure 6.2).

Fuzzy label Range

very short 1-32 bit

short 16-128 bit

medium 64-256 bit

long 128-1024 bit

very long 512-2048 bit

Figure 6.2: Example of fuzzy specification of key length parameter

The separation between ranges of key length is not crisp, but ranges may overlap.
This fuzzy specification of parameters in SLAs allows cloud providers to manage with
higher elasticity their resources, without living them unused when applications do not
explicitly demand for them. This enables for better resource allocation, with higher
quality of service at lower costs for both the provider and the customers.

It might be difficult for a customer to define the exact value of a given resource,
that is facilitated when the provider has a set of options with their descriptions. As an
example we can describe the following situation:

A service provider provides the property "Support Response Time" in fuzzy values
presented as follows: High (12 hours < 48 hours), Medium (5 hours 6 12 hours) and

120 use of fuzzy parameters

Low (< 5 hours). Then, a customer can request this property in two ways: one using
crisp values such as (Support Response Time < 12 hours) or by using the fuzzy deter-
mination displayed by the provider (Support Response Time = Medium). In this way,
the provider can determine their service plans considering these rules and in the case
of property "Support Response Time" can also control its service priority.

We can considers that the Service Agreement established between the customer and
the provider consider the following tuple: (Support Response Time = Medium). Thus,
any request that has a Support Response Time between 5 and 12 hours has been in
accordance with the SLA. If in a particular demand the customer needs a faster re-
sponse, for example in 1 hour, this would be a change of plan and could be charged
by the provider. If, on the other hand, the provider answers any demand in more than
12 hours this would be a violation of the SLA. This approach allows the flexibility of
SLA composition process and ensures its management in a more transparent manner
between the parties.

6.3.2 fuzzy concepts

Fuzzy concepts operate at abstract level, allowing customers to define features that do
not directly correspond to a cloud characteristic or parameter, but map on an appro-
priate combination of them. Fuzzy logic can provide the mathematical foundation for
merging real characteristics and metrics, by translating the linguistic high-level descrip-
tion given by the customer. For example, if a customer wants to protect his data but
does not know the characteristics that are relevant for data protection, he may prefer
to request "high data security". The provider then can relies on fuzzy logic for formal-
izing and processing this concept, translating it into proper parameter values (e.g., see
Figure 6.3).

Fuzzy concept Parameters

high data security encryption: Elliptic Curve

min. key length: 384 bit

redundancy: 5 copies

HMAC: SHA-512

hash key length: 512 bit

Figure 6.3: Example of fuzzy specification of data security concept

Fuzzy parameters and fuzzy concepts can then be transformed in a format that
the SLA Management module can process in a homogeneous way with other crisp
requirements, to take all of them into account in a comprehensive resource allocation
strategy and optimization. Thus the service customers can define their requests using
natural language since the fuzzy concepts can be described for the properties specified
in fuzzy way.

6.4 fuzzy concepts and fuzzy parameters on the provider side 121

As you can see from the example shown in Figure 6.3 this structure can be charac-
terized as our definition of dependence on a service condition, this approach will be
detailed in the next section.

6.4 fuzzy concepts and fuzzy parameters on the provider side

Once we identify the possible use of fuzzy logic in various stages in the SLA compo-
sition, we can easily infer that the rules used in the fuzzy logic can also be replicated
in the rules established by the providers to determine their service conditions. For this
we can define a fuzzy proposition as the combination of a fuzzy set representing a
concept as a linguistic variable. A fuzzy proposition can be represented generally by
the following construct (x is θ) where x is a linguistic variable, and θ is a fuzzy set.

Based on this premise we can define a fuzzy rule as a production that uses fuzzy
propositions representing a concept. Each rule consists of an antecedent, representing
a condition, and a consequent representing an action structured in terms of an associ-
ation of fuzzy propositions. The basic structure of a fuzzy rule is as follows:

IF (u1 is θ1) AND (u2 is θ2) AND ... AND (un is θn) THEN (y is θ)N.

A rule is usually represented in the form R: if <complex> then <class> = Ci, where
Ci is one of the possible class values, i.e. Ci ∈ {C1, C2, ..., Cn} and <complex> is a
disjunction of conjunctions of conditions for the attributes of the form Xi op value, with
Xi ∈ X.

Any rule can be generally represented by Body→ Head or, briefly, B→ H. Thus, it is
said that an example Ei is covered by a rule R, if and only if the sample meets all the
rule conditions. That is, an example Ei is covered by a rule R, if and only if B is true.

As an example we can present to the request of a property "Response Time" rules of
the following type:

IF (x is Low) AND (y is Low) THEN (z is Low)

Where x is a variable representing the property "Request Rate", y a variable repre-
senting the property "Use of Resources" and z representing the property "Response
Time". Meaning that if the "Request Rate" is low and "Use of Resources" is low then
the provider can guarantee a low "Response Time".

Note that this rule is nothing more than the translation of our concept of dependence
on a service condition by applying fuzzy parameters to determine the values of the
properties, as can be seen in the following example:

d1: (response_time = Low) (req_rate = Low) ∧ (use_resources = Low)

It is interesting to note that in this example we present the dependence of internal
properties to the provider (Use of Resources) and also demonstrate the shared liability
using the dependence of an external property to the provider (Request Rate).

The definition of what is "High" or "Low" is given by the functions of relevance of
each set, which is given for each type of linguistic variable. The connective THEN used

122 use of fuzzy parameters

in the description of fuzzy rules corresponds to the fuzzy implication operator. Thus
the inference procedure processes the fuzzy input data, along with the rules, in order
to infer fuzzy control actions by applying the fuzzy implication operator and the rules
of inference of fuzzy logic. The knowledge base consists of a rule base, characterizing
the control strategy and goals of each provider. The membership functions define the
commonalities of the universes of discourse, the fuzzy partitions and forms of input
and output spaces. The advantage of using fuzzy rules is to be close to the form of
presentation of human language.

As the ontology used in our framework establishes a control for determining SLAs
we can say that this structure is configured as a control system. For certain information
to be used in a control system, it is necessary to take the result of the inference of
the various rules (which are fuzzy sets) and turn it into numerical values correspond-
ing to the control signals associated with the linguistic variables used in the inferred
propositions.

In conventional process control, assumptions and simplifications are often used to
construct a mathematical model that can be far from real phenomenon. In contrast,
the fuzzy control is capable of operating in complex processes in which knowledge is
restricted and the mathematical models are not available.

The design of a fuzzy system consists in defining the set of terms used for the input
and output variables, their respective membership functions and a database of rules
representing the expert knowledge of the system. The design of a system using fuzzy
logic involves the following steps:

1. Characterization of the range of values that the input and output variables can
assume;

2. Definition of a set of functions, called membership functions, which map the
input and output variables in the interval [0,1]. These functions take "labels"
looking verbally translate some meaning to the modeled physical phenomenon
(linguistic variables);

3. Definition of a set of rules by using logical operators, seeking to establish a rela-
tionship between the input and output values;

4. Once defined the rules derived from a symbolic language and with very intuitive
meaning to the designer, going to the mathematical translation stage built sym-
bolic language. This is conducted by using logical operators defined by the theory
of fuzzy sets. This task is divided into three sub-stages: the first transforms the
actual values of the input variables in degrees of relevance to a particular set
(fuzzyfication); the second operates with the rules, "labels" and the result of fuzzy-
fication phase generating a set of fuzzy variables through the inference engine;
the third and final sub-step transforms the results of the inference in a numerical
output (defuzzyfication).

It should be noted that if a problem is not well understood and can not be mathemat-
ically represented, but has a good practical understanding, a system with fuzzy logic

6.5 application of fuzzy logic in the framework proposed 123

can be used successfully. The utilization of fuzzy logic is inherently non-linear, unlike
other methods, such as neural networks, it is characterized by easy to determine the
action that should be taken for a given situation as it presents analytical structures. The
rule base is constructed by general observation and knowledge of the problem, being
simple to design.

Based on the assumptions presented we can prove that use of fuzzy logic in our
framework is feasible, through the example shown in the next section.

6.5 application of fuzzy logic in the framework proposed

As seen in previous chapters each property has its value assigned by the provider ac-
cording to the conditions in which they are available. On the other hand each property
has the value requested by the user according to their needs. This approach allows the
establishment of a model that considers aspects recognized by both parties through
the service conditions and the customer requests.

Summarising the given definitions, we have that, in the provider side, a "service
condition" can be described as follows:

Cond = α | α = (p op v) where p ∈ P, op is an operator and v is the value available.
As example:

Cond = (Availability > 99.95%), (Location = USA), (Number of Replicas 6 5), (Stor-
age Capacity 6 2 TB)

On the user side we can use the same description to describe a request for services,
as follows:

Req = β | β = (p op v). As example:

Req = (Availability > 99.9%), (Location = USA), (Number of Replicas = 5), (Storage
Capacity 6 1 TB)

So, we can say that a SLA is a merging of the customer request and the service
condition (Req = Cond) or, as definition: SLA = ∀α ∈ Req | ∃β ∈ Cond

As the results of both expressions (α and β) can present a range of values this range
can be represented by fuzzy specifications. The use of fuzzy logic allows the frame-
work to treat information of a non-numerical way. These fuzzy inputs (the customer
request and the properties dependencies) are used in the SLA Management module to
determine whether the SLA can be established (or not) based in a fuzzy output which
is determined by the result of service condition.

Usually, the determining of a SLA can support numerical requirements but in our
case we can also specify the treatment of linguistic requirements, which can be dis-
played in two ways: fuzzy parameters and fuzzy concepts. We can also assign to prop-
erties some fuzzy parameters which include all features that these resources can take.
And we can assign to the services the fuzzy concepts that comprise all necessary re-
sources for the implementation of service.

124 use of fuzzy parameters

According to this specification, we can use fuzzy values in the service request from
the customers as follow:

Req = (Storage Capacity = Medium), (Location = USA), (Number of Replicas = High),
(Key Length = Long), (Security = High)

The behavior presented by fuzzy logic has great similarities to human form to pro-
cess the information and is not Boolean bringing inferences and approximations. Thus,
we can determine that the service conditions can be presented in the form of rules
"if-then". For this to happen it is necessary that all possible properties are mapped in
the same way, for this the provider can use a table of properties as shown in Table 6.1.

Table 6.1: Dependence of properties for fuzzy concepts

Property Dependence

Storage
Storage Time

Storage Capacity

Location

Performance Processing Time

Security
Key Length

Hash Key Length

Availability Redundancy

In the representation shown in the Table 6.1 we can describe the first column as the
request of the customer and the second column as the necessary properties (dependen-
cies) to determine the fuzzy rules by provider. Both levels can present fuzzy scales like:
Very Low, Low, Medium, High, Very High, Big or Very Big, depending on the nature
and the field of property.

The process consists in the fuzzy inputs are treated by the fuzzifier that describes the
inputs by the linguistic variables. After this the fuzzy inference engine takes these in-
puts and applies the rules to give the results. Finally the defuzzification phase converts
the fuzzy output set in a single number or a range of possible solutions.

The SLA Management module is used in our approach to verify the compatibility
of the properties in the composition of a SLA. If the SLA is supported means that the
provider can meet the customer requirements. The rules "if-then" based on service con-
ditions by the provider can be represented like this:

Cond = (Storage = High), (Storage Time = Low), (Storage Capacity = Very High),
(Location = USA)

This service condition gives us a rule like this:

• Dependencies - if Storage Time = Low and Storage Capacity = Very High and
Location = USA

6.6 chapter summary 125

• Solution - then Storage = High

If the condition is not satisfied, the rule returns an empty result. In this way the
weighted requirements, with the properties required by the customer and their de-
pendencies, shows all possible values to be submitted by properties: crisp and fuzzy
requirements, fuzzy concepts and fuzzy parameters.

In addition, changes in the rule base, changes in the provisions of the membership
functions and the allocation of earnings to the inputs and outputs of the fuzzy system
are techniques that can be used to simulate the ability to perform services by providers.

The mapping of service conditions in fuzzy rules allows monitoring and prediction
of cloud services beyond the possibility of dynamic allocation of resources. This ap-
proach will be demonstrated in the next Chapter.

6.6 chapter summary

This Chapter introduced the use of fuzzy logic for determining values in properties
in Cloud services illustrating how these values can be displayed by providers using
our ontology and also how these values can be requested by customers keeping their
freedom of choice. The presented approach proves that the used ontology allows flex-
ibility and adaptation of values handled by different providers, guaranteeing freedom
of choice by customers and maintaining the control to the stakeholders involved, since
customers can request services according to their needs while that providers can estab-
lish the relations of internal and external dependencies for the properties.

7
D Y N A M I C R E S O U R C E S M A N A G E M E N T

In order to use the generic Ontology presented in Chapter 3, we create a conceptual
framework that deals with the information presented. As seen in Chapter 4, this frame-
work has three complementary modules: Property Management, SLA Management
and vSLA Monitor. The first two modules were described with in the previous chap-
ters (4 and 5), this Chapter presents the vSLA Monitor module that completes the
framework, in addition to the chapters describing the framework we also present the
utilization of fuzzy logic in Chapter 6. This approach is also used for monitoring and
control of the values determined in the valid Service Level Agreements.

7.1 introduction

The conceptual framework proposed in this thesis aims to support advanced manage-
ment of Service Level Agreements in Cloud Computing. For this management to be
carried out, it is necessary that information about services is collected and organized.
In addition, the framework should ensure that agreements are not violated and also
keep monitoring on the changing scenarios.

From a SLA management perspective, it appears that the use of services in Cloud
has expanded to several areas. However, models of agreements only consider the re-
quirements of each domain by setting specific elements to be used in each agreement
individually. That is, there are no conceptual models that consider the abstraction of
general characteristics to be instantiated and reused in different applications, including
preserving portability across domains and also, they are not models that have service
integration with contextual information.

Thus, this thesis inspects specific aspects presented in each type of service and their
behavior in different settings, obtaining a conceptual modeling approach to Service
Levels Agreements representing this information in the form of a generic ontology.
With this approach we could manage this information separately allowing the creation

127

128 dynamic resources management

of a structure that can control each specificity without compromising the composition
of agreements.

For that the proposed framework provides a module called vSLA Monitor that con-
trols the agreements and enables the monitoring of the contexts where different prop-
erties are located. To be able to perform the Service Agreements monitoring, resource
management has to be considered. This resource management, in the scope of our
framework, must be generated from independent external modules based on business
process models of each provider and built using our definition of properties.

7.1.1 chapter outline

This Chapter shows how the framework presented in this work can be used to con-
trol the changes of properties values in the Service Level Agreements. In addition to
describing how the dynamic behavior of certain services is handled by our approach.
Also, it describes the parameters that must be monitored to ensure the stability of the
agreement between the parties and also how this feature can be used for dynamic pre-
diction and prospecting for new Cloud services. The main contribution of this chapter
is the description of the vSLA Monitor module that integrates the proposed frame-
work and how this module manages the dynamic characteristic presented by different
properties allowing the advanced management of Service Level Agreements with a
method for stochastic modeling of resource management. The chapter is finishes with
an overview of our approach.

7.2 vsla monitor module

As seen in Chapter 4, our framework has three complementary modules: Property
Management, SLA Management and vSLA Monitor. The vSLA Monitor module is re-
sponsible for controlling the SLAs and monitoring the change of scenarios and possible
violations. This module consider the structure shown in Figure 7.1.

Figure 7.1: vSLA Monitor module

The vSLA Monitor module receives (from the SLA Management module) the valid
Service Agreements that were previously accepted and agreed between customers and
providers and maintains a repository containing the information inherent in each of
these agreements, as mentioned in Chapter 5 and shown by example in Table 7.1.

7.3 dynamic properties 129

Table 7.1: Information about valid SLAs in the vSLA repository

SLA ID User ID Provider ID Service ID Service Conditions

1521 00452 2542 12132 c7, c11, c1, c17

1678 01254 1367 11222 c4; c12; c2; c20 c21

934 05363 6985 13410 c4; c13; c17

15231 00896 1367 11219 c4; c11; c2; c15

123 00125 3674 13408 c11 c10; c
18

This repository contains the information for each SLA that has been established
between the parties, which are: the SLA Identifier (SLA ID), the user identification
(User ID), identification of the service provider (Provider ID), the service identifier
(Service ID) and the properties that composes each service plan (Service Conditions).
In addition to this repository, the vSLA Monitor has a component that monitors the
changes that may occur in properties that have dynamic characteristics: this component
is called Dynamic Changes.

The Dynamic Changes component receives information about the values of all prop-
erties contained in service agreements and considers monitoring tools that can be ap-
plied in different properties.

Since some properties may suffer dynamic alterations and these alterations can in-
fluence the agreements established the framework must have a component that reports
the possible violations. Considering this situation, we analyze what are dynamic prop-
erties and how effectively the vSLA Monitor module performs this monitoring.

7.3 dynamic properties

As previously seen, services in Cloud computing typically rely on different resources
to be realized. The expected performance for a particular service depends on how its
resources are provisioned and used. The resource management defines: (1) what are
the necessary resources for the execution of the service, (2) how many they are, (3)
what are the job skill/requirements, and (4) how and what services they are accessed.

According to the definitions in Chapter 3, we can state that a resource may also
be considered as a property. In this section we define a proposal to use the dynamic
features of the property with information about managing resources. This proposal
aims to facilitate the evaluation of services in Cloud considering the necessary tasks
for the deployment of services.

The proposed method uses our previous settings to adapt a business process that
considers the use of resources. This method is composed of:

1. a notation that allows the use of properties like tasks of services to be modeled;

2. a method to include in the models the quantitative information that can be drawn
from those properties.

130 dynamic resources management

This approach is part of the proposed framework and allows our generic ontology
to be used for monitoring and control of cloud resources. To describe better how our
monitoring of dynamic properties works, we can divide it into two phases:

1. description of the available resources;

2. description of dynamic needs of resources.

In the Subsection 7.3.1, we define the notation to consider the resource manage-
ment in the modeling of the business process. This notation, although simple, is de-
tailed enough to capture much of the resource requirements that a SLA can have. The
Subsection 7.3.2 addresses the problem of resource allocation from the perspective of
stochastic modeling. In this section, we also define a method to model the management
capabilities that can be used by providers as well as a simulation tool for new services.

7.3.1 description of the available resources

In Chapter 3, we present a definition for the generalization of information on SLAs
for Cloud computing. The model reflects the behavior of an instance of a business
process, without considering the resource requirements and the degradation that the
contention for resources causes to the performance of the requested service (especially
when several instances of processes are executed in parallel). However, if we want a
analysis that really approximates the expected values for the real-world applications
the model should contain a resource management policy associated with the service
considered. For this to happen, we must map the properties of each service to the
resources needed for its execution. In the sequence, we formalize the notion of resource
used in this work.

Definition 7.1 (Resource). A Resource R is a tuple: R = {c, ϕ} , where c is a service condition
that specifies the type of resource being modeled together with a value that determines the
amount of resource that can be accessed, given an operator and a value in the form of (p op
v) this variable can consider values expressed in crisp mode and in fuzzy mode; and ϕ is the
strategy that determines how the task instances are assigned to the feature.

Regarding the task assignments there are several possible ways of access. We can
cite as an example the terminology commonly found in the Queueing theory [167]:

• first-in-first-out (FIFO): first come, first out, the first to arrive will be the first to be
attended by the resource;

• last-in-first-out (LIFO): last come, first-out, where the last to arrive, will be first to
be attended by the resource;

• random choice: a task instance will be randomly chosen among the others who are
waiting for the access to the resource;

• timesharing: the resource processing time is divided equally between all parallel
instances that need to access it;

7.3 dynamic properties 131

• priority systems: the instances of tasks are selected to access the resource according
to their level of priority. A priority system can be preemptive (when instances
of requests of higher priority can interrupt the instances that are already using
the feature) or non-preemptive (when the instances that are already using the
resource can not be interrupted).

In the context proposed in this thesis, we present examples using only two of these
modes: time sharing and priority systems.

Definition 7.2 (Resource Set). A Resource Set RS of a service s, denoted by RS(s), is a set
RS(s) = {R | R is a necessary resource for any task of the service s}.

As an example for a Resource Set we can have:

RS(s) = ("server 1"=2; "Timesharing"), ("server 2"=1; "Timesharing"), ("support opera-
tor"=3; "Priority Systems")

This example of a Resource Set corresponds to a business process model for a given
service s with three different types of resources, such that:

• There are two resources of type "server 1", each one has as access mode the
timesharing;

• There is only one resource of type "server 2" which has as access mode the time-
sharing;

• There are 3 resources of type "support operator" who have as access mode the
priority system.

Based on these definitions we can then describe the available resources and deter-
mine how the modeling of properties in resources can be used in business models
contributing to the monitoring of dynamic properties.

7.3.2 description of dynamic needs of resources

Once the vSLA Monitor module considers the monitoring of external properties to the
framework (considering shared liability and resources dependencies of provider) we
should describe the needs of monitored resources. For this, we make three assumptions
about the utilization of resources considered in this work:

1. the resource requirements do not vary with time, i.e., the amount of work and/or
the number of resources needed for each service does not vary with time;

2. the resource requirements are state-dependent, i.e., the necessary resources for
each service should consider the state changes of the properties;

3. when a service requires more than one resource, it only will be executed when
all the resources it requires are available.

132 dynamic resources management

Given these assumptions, the following definitions formalize our concept of resource
requirements for services in Cloud:

Definition 7.3 (Simple Resource Requirement (SRR)). A Simple Resource Requirement (SRR)
of a service can be expressed as a simple service condition c, where c is the identifier of a type
of resource necessary for the service considering a value that determines how many work units
will be processed by the resource, i.e., c = {p op v}, this value considers information in crisp
mode and fuzzy mode.

Definition 7.4 (Composed Resource Requirements (CRR)). The Composed Resource Require-
ments (CRR) of a given service a, denoted by CRR(a), can be described by an expression in-
volving SRRs and two logical operators of composition: ∧ (AND) or ∨ (OR). In an expression
of CRR, the AND operator has a higher precedence than the OR operator and parentheses can
be used to force the order of evaluation of operations.

As an example, let us consider the following situation: A service a as the solicitation
of a property "Response Time" and the following Composed Resource Requirements
(CRR) for this service:

CRR(a) = (Request Rate=Low) ∧ ((server 1=2) ∨ (server 2=2))

The Composed Resource Requirements of the service a determine that this service
requires 1 resource of type "Request Rate" which can consider a low rate of requisitions
and 1 resource of type "server 1" or "server 2 " that should consider the execution of
two work units.

If a task for a service requires more than one unit of the same resource type, then
we can express this fact in its expression of CRR through different SRRs with the same
type of resource, as shown in the following example:

Consider the service b, with CRR(b) = ("server 1"=4) ∧ ("server 1"=2)

The Resource Requirements of the service b determine that this service requires 2

features like "server 1": one to hold four work units and the other to perform two work
units.

We chose to represent a requirement for x units of a resource R as x SRR to R (as
shown in the previous example) because this approach allows the provider set as the
service demanded of R will be divided between the x resource units. Thus, the resource
requirements of the set of all the necessary tasks for the realization of a service can be
translated using the same definitions used by the service conditions of our framework.

7.3.3 mapping of resources and properties

A Service Level Agreement should consider the fact that some services depend on
different resources to run. For this reason, before the execution of a service, it is nec-
essary that their resources are assigned. In this thesis we do not directly deal with the
allocation of resources but we provide mechanisms through our framework for this to

7.3 dynamic properties 133

be done, so that this allocation can also allow monitoring of the agreements reached.
Once we allow providers to express the values of their properties also in fuzzy way, we
can use this approach also to monitor the necessary resources for this. To illustrate this
situation we analyze the mapping between properties and resources shown in Table
7.2:

Table 7.2: Mapping between Properties and Resources

List of Properties P Resource Set RS

Storage Capacity
• ("Server 1"=2; "Timesharing")

• ("Server 2"=1; "Timesharing")

• ("HD"=100TB; "Timesharing")

• ("Location"=USA; "Timesharing")

Response Time
• ("Request Rate"=Low; "FIFO")

• ("Resource Usage"=Medium; "Timesharing")

Location
• ("Location"=Italy; "Timesharing")

• ("Location"=France; "Timesharing")

• ("Location"=Brazil; "Timesharing")

• ("Location"=USA; "Timesharing")

Security
• ("Key Length"=High; "Random Choice")

• ("Hash Key Length"=High; "Random Choice")

Storage
• ("Storage Time"=High; "Timesharing")

• ("Storage Capacity"=Very High; "Timesharing")

Resource Usage
• ("Server 1"=10; "Timesharing")

• ("Server 2"=10; "Timesharing")

The example shown in Table 7.2 illustrates the list of properties displayed by a
provider for the provision of its services and the necessary resources so that these
services can be realized. Considering these information, we can determine the service
conditions of which are presented to the framework and the resource requirements
observed by the provider (Table 7.3).

134 dynamic resources management

Table 7.3: Mapping between Service Conditions and Resource Requirements

Service Service Condition Resource Requirements

a: c1: response_time=Low c1 c7 ∧ c17 CRR(a) = (Request Rate=Low) ∧ (Resource Usage=Low)

b: c2: storage610TB c2 c
8
∧ c10 CRR(b) = (Storage Time=Low) ∧ (Storage Capacity=10TB)

c: c3: security=High c3 c20 ∧ c25 CRR(c) = (Key Length=Very Long) ∧ (Hash Key Length=512bit)

Note that, in both Table 7.2 and Table 7.3, we have the property "Resource Usage"
(c17). Obviously, this property is not available as a service by the provider but serves
to illustrate that the use of our approach can allow an effective control over resources
provider since the provider can control the internal use of its resources considering the
same rules scheme introduced by our approach. Disregarding this property into a real
example of service "Response Time" could be made available as follows:

service a: c1: response_time=Low | c1 c7 | SRR(a) = (Request Rate=Low)

We can see that for the service b, presented as a solicitation in Table 7.3, the provider
needs to allocate an amount equivalent to the amount of solicitation otherwise could
not meet this demand.

Furthermore, it is clear that both the service a and c shown in Table 7.3, the provider
has the opportunity to present the same service considering fuzzy concepts, since our
approach presented in Chapter 6 allows it.

Considering the assumptions presented in Subsection 7.3.1 we have:

• The resource requirements necessary to meet the service b exemplifying the first
assumption, i.e., "the resource requirements do not vary with time" as the amount
of resource available to meet this demand can not be changed. As noted in the
example, to set up 10TB of storage, the provider must provide a storage capacity
equal to 10TB, if this requirement changes with time, for example providing 8TB
after a certain period of time, that characterize a violation of the agreement.

• Precisely for this feature, we consider the second assumption ("the resource re-
quirements are state-dependent"), such as to meet the service a, the customer
(having shared liability) must maintain a rate of requests equal to the values as-
signed to the fuzzy parameter "Low". Obviously this property undergoes state
changes as it is possible the customer does not make any request keeping this
rate equal to zero, the same way that the customer can perform requests with a
request rate equal to "Medium" and even "High", featuring the dynamic nature
of the property.

• As all services shown as an example in Table 7.3 we can say that the third as-
sumption is also served by that "one service only will be executed when all the
resources it requires are available."

Furthermore, we must consider that in the case of a timesharing resource exists
the possibility that, at some time in the service execution, the number of instances

7.4 context monitoring 135

accessing the resource can be greater than the number of units of that resource. For
this reason, the vSLA Monitor module should monitor the dynamic changes that occur
during execution, i.e. to monitor the context in which property is located.

7.4 context monitoring

As seen in Chapter 5 the information about the changes of new values of property
already established can serve as suggestion of new service agreements, since vSLAs
are stored and the relevant properties are monitored. Using this same approach we can
monitor the dynamic changes in property values in SLA already established (vSLA). To
do this, we must consider the intrinsic knowledge in the service conditions determined
to establish the SLA in question.

The main source of knowledge to build an algorithm of control and monitoring
comes from the control experience of human operator, in our case the service provider.
Given this premise setting up a monitoring system for dynamic values is a set of
conditional (if - then), where the first part is called "antecedent" (conditions) and the
second part, called "consequent" deals with an action (control) that has to be performed.
Thus, in the same way that human strategy, fuzzy rule bases express how the control
should be performed when a certain state of controlled value is observed, from the
service provider’s knowledge.

The construction of a fuzzy controller to be used in the control and monitoring
of a service should consider the service behavior in response to change the value of
some variable. This allows the monitoring of property values presented for each ser-
vice agreement and allows the provider to qualitatively predict the results that can be
displayed.

As an example, we consider the following service condition:

Given a service "Response Time"=Low which considers the following condition "Re-
quest Rate"=Low we have (c1 c7)

Applying our approach we have as "antecedent" (conditions) the property c7 (which
is external and has shared liability) and as "consequent" (control) we have the property
c1.

Once in possession of the knowledge base formed by the provider and the set of
generated rules, it is possible to distinguish which service conditions are being met
through a Fuzzy Inference System that observes entries for each vSLA, as shown in
Figures 7.2(a) and 7.2(b).

136 dynamic resources management

(a)

(b)

Figure 7.2: Fuzzy Inference System with input c7=0.129 like "Low" parameter (a) and Fuzzy
Inference System with input c7=0.193 like "Low" parameter (b)

As shown in Figure 7.2, the change of the input values for the property c7 does not
compromise the agreement reached because the monitored property values remains
within the range set by the rule. Consider that in a given period of time the monitored
values of this property have the following situation (Figure 7.3):

7.5 prediction system 137

Figure 7.3: Fuzzy Inference System with input c7=0.637 like "Medium" parameter

In the case shown in Figure 7.3, the request rate presented by the customer is greater
than the value permitted in this agreement, configured as a violation of the SLA.

In this sense we can apply this approach to monitor the different contexts presented
for different vSLA according to the example shown in Table 7.4.

Table 7.4: Different Contexts in the vSLA repository

SLA ID User ID Provider ID Service ID Service Conditions

1522 00452 6985 12135 c1 c7

1679 00896 6985 12135 c1 c7

Note that the same service condition is presented in a service established in two
vSLAs for two different customers. Each property is then monitored according to the
context presented to each customer, that is, the values presented by each customer
should be related to their respective agreements, exemplifying:

The USER 00452 have a "Request Rate"=0.193 so the SLA 1522 is OK but the USER
00896 have a "Request Rate"=0.637 causing the SLA 1679 is violated. This violation can
then be informed by the Report Violations component that is part of the vSLA Monitor
module. It is important to mention that to make a correct monitoring of the property
values, sometimes, it can be necessary to use external monitoring tools, since many
properties can belong to external environments to the framework.

In addition to allowing monitoring of dynamic changes and report possible vio-
lations, the approach presented to the vSLA Monitor module can also be used for
simulation services for providers.

7.5 prediction system

As seen throughout this chapter, monitoring the use of resources is of utmost impor-
tance for the service provider. Also, predicting how many resources will be necessary

138 dynamic resources management

to perform a particular service helps to better determine the allocation of these re-
sources. Therefore, a demand predictor can exert direct influence on the mesh of a
provider resources and, by consequence, the strategy of control and provision of new
services. Thus, a service provider, before a request for new services, can determine the
necessary resources to meet the new demand and predict how these resources will be
necessary to provide the new service. Thus, the predictors developed by each provider
can simulate to meet the new demands. This approach also allows the prediction of
violations of agreements before it occurs.

A prediction system based on our approach can consider the logic fuzzy demon-
strated in Chapter 6, where the inputs are the resources needed to perform the service
and the output will be the demand service capacity. For example, consider the follow-
ing service condition used by the provider (considering its internal resources to meet
a service):

c1 c7 ∧ c17, where CRR(a) = (Request Rate=Low) ∧ (Resource Usage=Low)

Considering the set of rules established by the provider to meet the property c1 we
can have a situation as shown by Figure 7.4:

Figure 7.4: Fuzzy Inference System to Simulate the Resource Usage

In the example shown in Figure 7.4 the provider simulates the input value for the
property "Resource Usage" by setting it as fuzzy parameter "High" while keeping the
value for the "Request Rate" property to "Low". Obviously this situation presents a
result in which the provider can not meet the SLA established. As the property "Re-
source Usage" may be based on the resources available by the provider, such as number
of servers, the provider can apply the same approach to create rules that simulate these
features. Thus, the provider can predict the amount of resource that needs to be allo-
cated to meet specific demand.

7.6 approach overview 139

7.6 approach overview

Once the vSLA Monitor module completes the proposed framework, we can then
present an overview of our approach. In this section we present a simplified structure
of the proposed framework showing all the features described in previous chapters,
thereby enabling a complete understanding of our approach. For this we divided our
sample into four distinct and complementary parts, as shown in Figure 7.5.

Figure 7.5: Approach Overview

The features reported in Figure 7.5 can be described according to the following se-
quence:

1. First, the service provider, using our XML Schema, offers its property list con-
taining all services that it might offer, containing values both in crisp mode as
in fuzzy mode, including the conditions for each service can be executed, and
consequently their own service plans.

2. Then, the framework maintains a repository containing a list of all services pro-
vided by different providers and organizes in a generic ontology containing the
established properties and their values.

3. Based on this information, the customer can consult the services provided and
submit his service request that can contain even the solicitation of new values
and/or new services (properties).

4. The framework performs the search for the services that match the customer’s
request and presents the service selection.

140 dynamic resources management

5. Based on customer choice, the framework presents the SLA composition and
stores the valid SLA (vSLA) which is monitored by vSLA Monitor module.

6. Considering the customer’s freedom to order services according to their needs,
if a request contains the solicitation of new values and/or new properties, this
information will be placed on standby and controlled by Properties Inventory
component.

7. The information related to new services and new values demanded by customers
can be accessed by providers to establish services that can meet this new market
demand.

8. Using our approach to service conditions and properties dependence, the provider
can simulate their resource allocation to meet new demands.

9. When new values and new properties are presented by the provider, the Prop-
erty Inventory component can refer to the valid SLA and report these situations
to customers.

10. To ensure the performance of services, the provider may submit plans that may
contain the dependence of internal properties to its own structure and also exter-
nal properties, featuring thus shared liability for the service.

11. Considering our concept of property dependences the vSLA Monitor module can
be combined with external monitoring tools to signal violations in valid SLAs.

Finally, we conclude the description of our approach to Advanced SLA Management
in Cloud computing, also reporting some show cases as examples.

7.7 chapter summary

In this chapter, we present the vSLA Monitor module used in our conceptual frame-
work for monitoring and control of the properties established in each Service Level
Agreement. This module uses information from monitoring tools (which may be exter-
nal) to verify if the dynamic changes that occur in property values do not change what
was established in the agreement, thus enabling monitoring of violations that can be
perceived both by customers service as the providers. This chapter also shows how our
approach can be used to predict the use of resources and the prospecting of new cloud
services. In addition to presenting concepts of dynamic properties the chapter also
presents a description of dynamic needs for Cloud resources and how these resources
can be made available by the providers through our approach. Concluding the Chapter

7.7 chapter summary 141

we present the overview of the proposed approach for Advanced SLA Management in
Cloud Computing.

8
C O N C L U S I O N A N D F U T U R E W O R K S

In this thesis, we define a new approach to advanced management of Service Level
Agreements in Cloud Computing. This approach consists of the rating of a generic
ontology that allows specification of services, attributes and resources in the form of
properties and this definition is then used in a conceptual framework that allows the
management of these properties. We address the problem of transparency and control
of information in Service Level Agreements and verify sensitive information presented
in different scenarios of selection and SLAs composition in Cloud Computing. After
some introductory remarks and a discussion of related works, we focused on three
specific issues: the greater flexibility in SLA trading by defining of an Advanced SLA
in Cloud Computing, the support for future markets in Cloud Computing, and the
description of a set of adaptive methods for Dynamic SLA Management. In this chapter,
we summarize the contributions of this thesis, and outlined possible directions for
future works, concluding with our final remarks.

8.1 summary of the contributions

The contribution of this thesis is threefold.

Greater flexibility in SLA trading.
We proposed our solution to enable the application of different services by customers
guaranteeing freedom to request services according to their needs in addition to pro-
vide the effective application of the concept of XaaS. Our approach is based on the def-
inition of concepts that considers each and every service attribute or resource in Cloud
environment as properties with the same importance, it enables the the model require-
ments to make each service and observe the dependencies that may exist between
different properties. We provide a generic ontology to support the specific characteris-
tics of each property, allowing greater flexibility in negotiating SLAs and present the

143

144 conclusion and future works

modeling of the problem in a generic way considering the freedom of customer choice
and shared liability present in some dependencies. The efficiency of our approach is
based on the use of XML schemas that are used to facilitate the access to information
and the SLA models presented by each service provider.

Support for future markets in Cloud Computing.
We provide our solution to capture and store information related to new market de-
mands considering properties and values already established by the service providers
and use our generic ontology to enable the discovery of new customer needs. For this
we describe the structure of our conceptual framework that allows the application of
our ontology to describe the features presented for each situation. Our solution consid-
ers the monitoring of information in order to provide important data for the Advanced
SLA Management allowing flexibility and adaptation of services.

Description of a set of adaptive methods for Dynamic SLA Management.
We define an information control solution in Cloud SLA that allows the use of differ-
ent methods already used in Cloud Computing, such as external certification services
and the use of fuzzy logic. In our approach, we deal with dynamic changes present in
values of different properties as an information base for control of services. With this,
we can use control rules to ensure both the simulation of new market demands as well
as to simulate the allocation of resources by providers. Our approach also allows the
application of techniques of text mining and clustering information to enable service
providers to the identification of these new markets. Thus, our proposal allows the use
of different methods and techniques already consolidated in Cloud environment and
guarantees the freedom choice for customers and a more effective control by providers.

8.2 future works

To continue the work of this PhD thesis, we have two suggestions. The first one can
be developed in the short term, while the second requires further research efforts. The
proposals are described below.

Adaptation of the necessary algorithms in BPMN (Business Process Model and
Notation).
For the algorithms presented in Chapter 5, and the use of fuzzy logic presented in
Chapters 6 and 7 considered as valid entries the properties presented in each service
condition, although already describe, in a way the business processes, it would be
interesting to extend these algorithms to process diagrams containing other objects or
even other types of BPMN models like collaboration diagrams.

For example, in process diagrams and collaboration diagrams of BPMN, there are
several objects that can be activated with the occurrence of an external event to the
business process (such as alterations of values in certain properties). If we can associate
a rate of occurrence of these external events, then we can also model these objects.

8.3 closing remarks 145

When these external events are generated by business processes whose model is known,
it can, in some cases, estimate the rate of generation of events through the performance
of this model analysis.

Motivated by this notion of decomposition, our proposal is to decompose a business
process model even before it is established as a service. Thus, the semantics of the
constructs used to model the flow control business processes could help in the devel-
opment of a new method of specific breakdown for each application domain.

Framework implementation with the provision of different services and methods.
As seen in the examples, the monitoring of properties is a subject related to the analysis
of subarea business processes and can be performed by external tools. The objective
of this monitoring is to check the behavior of certain properties and establish the con-
sequences that alterations in their value can result in Service Level Agreements. In
addition, the monitoring methods should consider the dependencies presented in each
service condition.

Motivated by the possibility of creating different techniques of monitoring enabled
by the generalization concept presented, we propose the implementation of the frame-
work to support the integration of new control methods looking for the scope of new
services. Thus, the proposed framework can serve as a basis for testing for research on
new services in the cloud, considering the aspects of the consolidation of Service Level
Agreements.

8.3 closing remarks

The main result of the study presented in this thesis was to demonstrate that the gener-
alization of information in Cloud Computing can enable a multitude of composition of
services. Since the entire information regarding services available in Cloud can be pre-
sented in the same way, it allows different aspects of services, resources and attributes
to be combined to form new services. This result corroborates the main purpose of this
thesis: Allow freedom of choice of services for customers while maintaining control
over the agreements reached. It is also shown that the combination of different tech-
niques in a conceptual framework allows the approach presented to be implemented
to a model that effectively supports the concept of XaaS (everything as a service).

R E F E R E N C E S

[1] ISO/IEC, “ISO/IEC 15408-1:2009 - evaluation criteria for it security,” ISO/IEC
- International Standartization Organization/International Engineering Consor-
tium, Tech. Rep., 2009. (Cited on page 1)

[2] K. Jeffery and B. Neidecker-Lutz, The Future of Cloud Computing: Opportunities for
European Cloud Computing Beyond 2010, K. E. Jeffery and B. S. R. Neidecker-Lutz,
Eds. European Commission - Information Society and Media, 2010. (Cited on
page 1)

[3] R. Jhawar, V. Piuri, and M. Santambrogio, “Fault tolerance management in cloud
computing: A system-level perspective,” IEEE Systems Journal, vol. 7, no. 2, pp.
288–297, 2013. (Cited on pages 1, 2, and 29)

[4] A. Van der Wees, D. Catteddu, J. Luna, M. Edwards, N. Schifano, M. Scoca Lucia,
and S. Tagliabue, “Cloud Service Level Agreement Standardisation Guidelines,”
Cloud Select Industry Group - Subgroup on Service Level Agreement (C-SIG-
SLA), Tech. Rep., 2014. (Cited on pages 2 and 62)

[5] “Amazon CloudWatch.” [Online]. Available: http://aws.amazon.com/
cloudwatch/?nc2=h_ls (Cited on pages 2 and 13)

[6] V. R. Wadhe and V. A. Bharadi, “Review on Existing Cloud Platforms,” Interna-
tional Journal of Applied Information Systems, vol. 6, no. 8, pp. 21–26, feb 2014. (Cited
on pages 2 and 16)

[7] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud Computing: State-of-the-Art and
Research Challenges,” Journal of Internet Services and Applications, vol. 1, no. 1, pp.
7–18, apr 2010. (Cited on page 2)

[8] P. Samarati and S. De Capitani di Vimercati, “Cloud security: Issues and con-
cerns,” in Encyclopedia on Cloud Computing, S. Murugesan and I. Bojanova, Eds.
Wiley, 2016. (Cited on page 3)

[9] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing
as the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599–616,
2009. (Cited on page 3)

[10] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-Oriented Federa-
tion of Cloud Computing Environments for Scaling of Application Services,” in
ICA3PP’10 Proceedings of the 10th international conference on Algorithms and Archi-
tectures for Parallel Processing, 2010, pp. 13–31. (Cited on page 5)

147

http://aws.amazon.com/cloudwatch/?nc2=h_ls
http://aws.amazon.com/cloudwatch/?nc2=h_ls

148 references

[11] R. Buyya, J. Broberg, and A. Goscinski, Cloud Computing: Principles and Paradigms.
Wiley, 2011. (Cited on page 11)

[12] B. Halpert, Auditing Cloud Computing: a security and privacy guide. Wiley, 2011.
(Cited on page 11)

[13] M. Al-Roomi, S. Al-Ebrahim, S. Buqrais, and I. Ahmad, “Cloud Computing Pric-
ing Models: A Survey,” International Journal of Grid and Distributed Computing,
vol. 6, no. 5, pp. 93–106, 2013. (Cited on page 12)

[14] W. Iqbal, M. Dailey, and D. Carrera, “SLA-Driven Adaptive Resource Manage-
ment for Web Applications on a Heterogeneous Compute Cloud,” in CloudCom
’09 Proceedings of the 1st International Conference on Cloud Computing, 2009, pp. 243–
253. (Cited on page 12)

[15] P. Mell and T. Grance, “The nist definition of cloud computing,” 2011. (Cited on
page 12)

[16] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the Clouds: A Berkeley
View of Cloud Computing,” University of California at Berkeley, Tech. Rep. 2,
mar 2009. (Cited on pages 12 and 29)

[17] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy, survey, and issues of cloud
computing ecosystems,” in Cloud Computing. Springer, 2010, pp. 21–46. (Cited on
page 12)

[18] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s inside the cloud?
an architectural map of the cloud landscape,” in Proceedings of the 2009 ICSE
Workshop on Software Engineering Challenges of Cloud Computing. IEEE Computer
Society, 2009, pp. 23–31. (Cited on page 12)

[19] B. Sosinsky, Cloud computing bible. John Wiley & Sons, 2010, vol. 762. (Cited on
page 13)

[20] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu, “Everything as a
Service (XaaS) on the Cloud: Origins, Current and Future Trends,” Proceedings -
2015 IEEE 8th International Conference on Cloud Computing, CLOUD 2015, pp. 621–
628, 2015. (Cited on page 13)

[21] “Google App Engine (GAE).” [Online]. Available: https://cloud.google.com/
appengine/ (Cited on page 13)

[22] “Microsoft Windows Azure.” [Online]. Available: https://azure.microsoft.com
(Cited on page 13)

[23] S. Ried, H. Kisker, P. Matzke, A. Bartels, and M. Lisserman, “Sizing the cloud, un-
derstanding and quantifying the future of cloud computing,” Forrester Research,
Inc, vol. 21, 2011. (Cited on page 13)

https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://azure.microsoft.com

references 149

[24] K. Breitman, M. Endler, R. Pereira, and M. Azambuja, “When tv dies, will it go
to the cloud?” Computer, vol. 43, no. 4, pp. 81–83, 2010. (Cited on page 13)

[25] G. Wang and T. S. E. Ng, “The Impact of Virtualization on Network Performance
of Amazon EC2 Data Center,” in INFOCOM’10 Proceedings of the 29th conference
on Information communications. IEEE, mar 2010, pp. 1–9. (Cited on page 13)

[26] M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, and S. Loureiro, “A Security
Analysis of Amazon’s Elastic Compute Cloud Service,” in Proceedings of the 27th
Annual ACM Symposium on Applied Computing - SAC ’12. ACM Press, 2012, p.
1427. (Cited on page 13)

[27] T. Redkar, T. Guidici, and T. Meister, Windows Azure Platform. Springer, 2011,
vol. 1. (Cited on page 13)

[28] C. Severance, Using Google App Engine. " O’Reilly Media, Inc.", 2009. (Cited on
page 14)

[29] M. Abualkibash and K. Elleithy, “Cloud Computing: The Future of IT Industry,”
International Journal of Distributed and Parallel systems, vol. 3, no. 4, pp. 1–12, jul
2012. (Cited on page 14)

[30] P. Sempolinski and D. Thain, “A comparison and critique of eucalyptus, open-
nebula and nimbus,” in Cloud Computing Technology and Science (CloudCom), 2010
IEEE Second International Conference on. Ieee, 2010, pp. 417–426. (Cited on
pages 14 and 16)

[31] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov, “The Eucalyptus Open-Source Cloud-Computing System,” in
2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid.
IEEE, 2009, pp. 124–131. (Cited on pages 14 and 16)

[32] N. Sadashiv and S. M. D. Kumar, “Cluster, Grid and Cloud Computing: A De-
tailed Comparison,” 2011 6th International Conference on Computer Science Educa-
tion (ICCSE), no. Iccse, pp. 477–482, aug 2011. (Cited on page 14)

[33] J. S. Ward and A. Barker, “Observing the Clouds: a survey and taxonomy of
cloud monitoring,” Journal of Cloud Computing, vol. 3, no. 1, p. 24, 2014. (Cited on
page 14)

[34] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the
clouds: towards a cloud definition,” ACM SIGCOMM Computer Communication
Review, vol. 39, no. 1, pp. 50–55, 2008. (Cited on page 15)

[35] A. Undheim, A. Chilwan, and P. Heegaard, “Differentiated availability in cloud
computing slas,” in 2011 IEEE/ACM 12th International Conference on Grid Comput-
ing. IEEE, 2011, pp. 129–136. (Cited on page 15)

[36] A. Arenas and M. Wilson, “Contracts as trust substitutes in collaborative busi-
ness,” Computer, no. 7, pp. 80–83, 2008. (Cited on page 15)

150 references

[37] M. Alhamad, T. Dillon, and E. Chang, “Conceptual SLA Framework for Cloud
Computing,” in 4th IEEE International Conference on Digital Ecosystems and Tech-
nologies. IEEE, 2010, pp. 606–610. (Cited on pages XIII, 15, and 30)

[38] A. Keller and H. Ludwig, “The WSLA Framework: Specifying and Monitoring
Service Level Agreements for Web Services,” Journal of Network and Systems Man-
agement, vol. 11, no. 1, pp. 57–81, 2003. (Cited on pages 15 and 17)

[39] M. Smit and E. Stroulia, “Maintaining and evolving service level agreements:
Motivation and case study,” in 2011 International Workshop on the Maintenance and
Evolution of Service-Oriented and Cloud-Based Systems. IEEE, 2011, pp. 1–9. (Cited
on page 15)

[40] L. Wu and R. Buyya, “Service Level Agreement (SLA) in Utility Computing Sys-
tems,” in Performance and Dependability in Service Computing: Concepts, Techniques
and Research Directions, 2011, ch. 1, pp. 1–25. (Cited on page 16)

[41] L. Ye, H. Zhang, J. Shi, and X. Du, “Verifying Cloud Service Level Agreement,”
in 2012 IEEE Global Communications Conference (GLOBECOM). IEEE, dec 2012,
pp. 777–782. (Cited on page 16)

[42] D. Serrano, S. Bouchenak, Y. Kouki, T. Ledoux, J. Lejeune, J. Sopena, L. Arantes,
and P. Sens, “Towards QoS-Oriented SLA Guarantees for Online Cloud Services,”
2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Comput-
ing, pp. 50–57, may 2013. (Cited on page 16)

[43] H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck, “Web Service Level
Agreement (WSLA) Language Specification,” IBM Corporation, Tech. Rep., 2002.
(Cited on page 17)

[44] A. Andrieux, K. Czajkowski, K. Keahey, A. Dan, K. Keahey, H. Ludwig, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu, “Web Services Agreement Specification (WS-
Agreement),” in Global Grid Forum GRAAP-WG, vol. 192, 2006, pp. 1–80. (Cited on
page 17)

[45] A. Pichot, P. Wieder, O. Wäldrich, and W. Ziegler, “Dynamic SLA-Negotiation
Based on WS-Agreement,” Tech. Rep., 2007. (Cited on page 17)

[46] A. Maarouf, A. Marzouk, and A. Haqiq, “A Review of SLA Specification
Languages in the Cloud Computing,” 10th International Conference on Intelli-
gent Systems: Theories and Applications (SITA), 2015, pp. 1–6, 2015. (Cited on
pages XIII, 17, 18, and 27)

[47] R. B. Uriarte, F. Tiezzi, and R. De Nicola, “SLAC: A Formal Service-Level-
Agreement Language for Cloud Computing,” Proceedings - 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing, UCC 2014, pp. 419–426,
2014. (Cited on page 17)

references 151

[48] K. T. Kearney, F. Torelli, and C. Kotsokalis, “SLA*: An Abstract Syntax for Service
Level Agreements,” 2010 11th IEEE/ACM International Conference on Grid Comput-
ing, pp. 217–224, oct 2010. (Cited on page 17)

[49] D. D. Lamanna, J. Skene, and W. Emmerich, “SLAng: A Language for Defin-
ing Service Level Agreements,” in Proceedings of the 9th IEEE Workshop on Future
Trends in Distributed Computing Systems-FTDCS. (Cited on page 17)

[50] V. Tosic, K. Patel, and B. Pagurek, “WSOL - Web Service Offerings Language,” in
Lecture Notes in Computer Science - CAiSE 2002 and WES 2002, 2512nd ed., C. Bus-
sler, S. McIlraith, M. Orlowska, B. Pernici, and J. Yang, Eds. Springer, 2002, vol.
2512, pp. 57–67. (Cited on page 17)

[51] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, “Low Level Metrics to
High Level SLAs - LoM2HiS Framework: Bridging the Gap Between Monitored
Metrics and SLA Parameters in Cloud Environments,” in 2010 International Con-
ference on High Performance Computing Simulation. IEEE, jun 2010, pp. 48–54.
(Cited on pages XI, 18, 19, and 25)

[52] V. C. Emeakaroha, R. N. Calheiros, M. a. S. Netto, I. Brandic, and C. De Rose,
“DeSVi: An Architecture for Detecting SLA Violations in Cloud Computing In-
frastructures,” Proceedings of the 2nd International ICST Conference on Cloud Com-
puting (CloudComp 2010), 2010. (Cited on pages XI, 18, 20, 21, and 25)

[53] A. Kertesz, G. Kecskemeti, and I. Brandic, “An SLA-based Resource Virtualiza-
tion Approach for On-demand Service Provision,” Proceedings of the 3rd inter-
national workshop on Virtualization technologies in distributed computing, pp. 27–34,
2009. (Cited on pages XI, 18, 22, and 25)

[54] O. Niehörster, A. Brinkmann, G. Fels, J. Krüger, and J. Simon, “Enforcing SLAs
in Scientific Clouds,” Proceedings - IEEE International Conference on Cluster Com-
puting, ICCC, pp. 178–187, 2010. (Cited on pages XI, 18, 23, and 25)

[55] V. C. Emeakaroha, T. C. Ferreto, M. A. S. Netto, I. Brandic, and C. A. F. De Rose,
“CASViD: Application Level Monitoring for SLA Violation Detection in Clouds,”
2012 IEEE 36th Annual Computer Software and Applications Conference, pp. 499–508,
jul 2012. (Cited on page 18)

[56] M. A. T. Rojas, N. M. Gonzalez, V. Fernando, F. F. Redígolo, and T. Carvalho,
“A Framework to Orchestrate Security SLA Lifecycle in Cloud Computing,” in
CISTI’2016 - 11a Conferencia Ibérica de Sistemas y Tecnologías de Información, 2016,
pp. 414–420. (Cited on page 18)

[57] A. Chazalet, “Service Level Checking in the Cloud Computing Context,” 2010
IEEE 3rd International Conference on Cloud Computing, pp. 297–304, jul 2010. (Cited
on page 26)

[58] S. Cimato, E. Damiani, F. Zavatarelli, and R. Menicocci, “Towards the Certifica-
tion of Cloud Services,” Proceedings - 2013 IEEE 9th World Congress on Services,
SERVICES 2013, pp. 92–97, 2013. (Cited on page 26)

152 references

[59] G. Aceto, A. Botta, W. de Donato, and A. Pescapè, “Cloud Monitoring: A survey,”
Computer Networks, vol. 57, no. 9, pp. 2093–2115, jun 2013. (Cited on pages 26 and 27)

[60] S. Clayman, A. Galis, and L. Mamatas, “Monitoring virtual networks with lat-
tice,” in Network Operations and Management Symposium Workshops (NOMS Wksps),
2010 IEEE/IFIP. IEEE, 2010, pp. 239–246. (Cited on page 26)

[61] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, and M. Wolf, “A flexi-
ble architecture integrating monitoring and analytics for managing large-scale
data centers,” in Proceedings of the 8th ACM international conference on Autonomic
computing. ACM, 2011, pp. 141–150. (Cited on page 26)

[62] R. Mian, P. Martin, and J. L. Vazquez-Poletti, “Provisioning data analytic work-
loads in a cloud,” Future Generation Computer Systems, vol. 29, no. 6, pp. 1452–
1458, 2013. (Cited on page 26)

[63] P. Hasselmeyer and N. d’Heureuse, “Towards holistic multi-tenant monitoring
for virtual data centers,” in Network Operations and Management Symposium Work-
shops (NOMS Wksps), 2010 IEEE/IFIP. IEEE, 2010, pp. 350–356. (Cited on page 27)

[64] G. Katsaros, R. Kübert, and G. Gallizo, “Building a service-oriented monitoring
framework with rest and nagios,” in Services Computing (SCC), 2011 IEEE Interna-
tional Conference on. IEEE, 2011, pp. 426–431. (Cited on page 27)

[65] J.-C. Laprie, “From dependability to resilience,” in 38th IEEE/IFIP Int. Conf. On
Dependable Systems and Networks. Citeseer, 2008, pp. G8–G9. (Cited on page 27)

[66] R. W. Shirey, “Internet security glossary, version 2,” 2007. (Cited on page 27)

[67] E. Amazon, “Cloudwatch,” 2014. (Cited on page 27)

[68] “AzureWatch.” [Online]. Available: https://www.paraleap.com/AzureWatch
(Cited on page 27)

[69] “Monitis.” [Online]. Available: http://www.monitis.com/ (Cited on page 27)

[70] “Logicmonitor.” [Online]. Available: http://ls.logicmonitor.com/monitoring/
storage/netapp-filers/ (Cited on page 27)

[71] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya, “The Aneka Plat-
form and QoS-Driven Resource Provisioning for Elastic Applications on Hybrid
Clouds,” Future Generation Computer Systems, vol. 28, no. 6, pp. 861–870, jun 2012.
(Cited on page 27)

[72] “GroundWork.” [Online]. Available: http://www.gwos.com/features/ (Cited on
page 27)

[73] “Nagios.” [Online]. Available: https://www.nagios.org/ (Cited on page 27)

[74] “OpenNebula.” [Online]. Available: http://opennebula.org/ (Cited on page 27)

https://www.paraleap.com/AzureWatch
http://www.monitis.com/
http://ls.logicmonitor.com/monitoring/storage/netapp-filers/
http://ls.logicmonitor.com/monitoring/storage/netapp-filers/
http://www.gwos.com/features/
https://www.nagios.org/
http://opennebula.org/

references 153

[75] “Nimbus.” [Online]. Available: http://www.nimbusproject.org/ (Cited on page 27)

[76] S. A. De Chaves, R. B. Uriarte, and C. B. Westphall, “Toward an Architecture for
Monitoring Private Clouds.” (Cited on page 27)

[77] A. Corradi, L. Foschini, J. Povedano-Molina, and J. M. Lopez-Soler, “Dds-enabled
cloud management support for fast task offloading,” in Computers and Communi-
cations (ISCC), 2012 IEEE Symposium on. IEEE, 2012, pp. 000 067–000 074. (Cited
on page 27)

[78] “Hyperic-hq.” [Online]. Available: https://sourceforge.net/projects/
hyperic-hq/ (Cited on page 27)

[79] “Sensu.” [Online]. Available: http://www.sonian.com/sensu/ (Cited on page 27)

[80] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn, “A Survey
of Cloud Monitoring Tools: Taxonomy, capabilities and objectives,” Journal of
Parallel and Distributed Computing, vol. 74, no. 10, pp. 2918–2933, oct 2014. (Cited
on pages XI and 28)

[81] “mOSAIC Project.” [Online]. Available: http://www.mosaic-cloud.eu/ (Cited on
pages 28 and 36)

[82] F. Moscato, R. Aversa, B. Di Martino, T.-F. Fortis, and V. Munteanu, “An Analysis
of mOSAIC Ontology for Cloud Resources Annotation,” Computer Science and
Information Systems (FedCSIS), pp. 973–980, 2011. (Cited on pages 28, 37, and 39)

[83] W. K. Hon, C. Millard, and I. Walden, “Negotiating cloud contracts-looking at
clouds from both sides now,” 2012. (Cited on page 29)

[84] D. Kyriazis, “Cloud computing service level agreements: exploitation of research
results,” European Commission Directorate General Communications Networks Con-
tent and Technology Unit, Tech. Rep, vol. 5, 2013. (Cited on pages 29 and 40)

[85] E. Feller, L. Rilling, and C. Morin, “Snooze: A Scalable and Autonomic Virtual
Machine Management Framework for Private Clouds,” 2012 12th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pp. 482–
489, may 2012. (Cited on page 29)

[86] K. V. Vishwanath and N. Nagappan, “Characterizing Cloud Computing Hard-
ware Reliability,” in Proceedings of the 1st ACM symposium on Cloud computing -
SoCC ’10. ACM Press, 2010, p. 193. (Cited on page 29)

[87] R. Jhawar and V. Piuri, “Fault Tolerance and Resilience in Cloud Computing
Environments,” in Computer and Informaion Security Handbook, 2nd ed., J. Vacca,
Ed. Morgan Kaufmann, 2013, vol. 2. (Cited on page 29)

[88] L. S. Meyers, G. Gamst, and A. J. Guarino, Applied multivariate research: Design
and interpretation. Sage, 2006. (Cited on page 30)

http://www.nimbusproject.org/
https://sourceforge.net/projects/hyperic-hq/
https://sourceforge.net/projects/hyperic-hq/
http://www.sonian.com/sensu/
http://www.mosaic-cloud.eu/

154 references

[89] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic. Prentice hall New Jersey, 1995,
vol. 4. (Cited on pages 30 and 115)

[90] S. Thomas et al., “The analytic hierarchy process: planning, priority setting, re-
source allocation,” Pittsburgh PA: University of Pittsburgh, 1980. (Cited on page 30)

[91] N. Mary and K. Jayapriya, “An Extensive Survey on QoS in Cloud Computing,”
(IJCSIT) International Journal of Computer Science and Information Technologies, vol. 5,
no. 1, pp. 1–5, 2014. (Cited on pages XIII, 30, and 31)

[92] M. M. K. Saravanan and M. L. Kantham, “an enhanced qos architecture based
framework for ranking of cloud services,” International Journal of Engineering
Trends and Technology (IJETT), vol. 4, no. 4, pp. 1022–1031, 2013. (Cited on page 31)

[93] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of cloud computing
centers using m/g/m/m+ r queuing systems,” IEEE Transactions on parallel and
distributed systems, vol. 23, no. 5, pp. 936–943, 2012. (Cited on page 31)

[94] B. Chitra, M. Sreekrishna, and A. Naveenkumar, “A survey on optimizing the qos
during service level agreement in cloud,” International Journal of Emerging Tech-
nology and Advanced Engineering (ISSN 2250-2459, ISO 9001: 2008 Certified Journal,
Volume 3, Issue 3, 2013. (Cited on page 31)

[95] G. Feng, S. Garg, R. Buyya, and W. Li, “Revenue maximization using adaptive
resource provisioning in cloud computing environments,” in Proceedings of the
2012 ACM/IEEE 13th International Conference on Grid Computing. IEEE Computer
Society, 2012, pp. 192–200. (Cited on page 31)

[96] X. Liu, Y. Yang, D. Yuan, G. Zhang, W. Li, and D. Cao, “A generic qos frame-
work for cloud workflow systems,” in Dependable, Autonomic and Secure Comput-
ing (DASC), 2011 IEEE Ninth International Conference on. IEEE, 2011, pp. 713–720.
(Cited on page 31)

[97] Z. Zheng, X. Wu, Y. Zhang, M. R. Lyu, and J. Wang, “Qos ranking prediction
for cloud services,” IEEE Transactions on Parallel and Distributed Systems, vol. 24,
no. 6, pp. 1213–1222, 2013. (Cited on page 31)

[98] S. K. Garg, S. Versteeg, and R. Buyya, “Smicloud: A framework for comparing
and ranking cloud services,” in Utility and Cloud Computing (UCC), 2011 Fourth
IEEE International Conference on. IEEE, 2011, pp. 210–218. (Cited on page 31)

[99] R. Yu, X. Yang, J. Huang, Q. Duan, Y. Ma, and Y. Tanaka, “Qos-aware service
selection in virtualization-based cloud computing,” in Network Operations and
Management Symposium (APNOMS), 2012 14th Asia-Pacific. IEEE, 2012, pp. 1–8.
(Cited on page 31)

[100] L. Pan, “Towards a ramework for automated service negotiation in cloud com-
puting,” in 2011 IEEE International Conference on Cloud Computing and Intelligence
Systems. IEEE, 2011, pp. 364–367. (Cited on page 31)

references 155

[101] K. Xiong and H. Perros, “Service performance and analysis in cloud computing,”
in 2009 Congress on Services-I. IEEE, 2009, pp. 693–700. (Cited on page 31)

[102] L. Wu, S. K. Garg, and R. Buyya, “Sla-based resource allocation for software as a
service provider (saas) in cloud computing environments,” in Cluster, Cloud and
Grid Computing (CCGrid), 2011 11th IEEE/ACM International Symposium on. IEEE,
2011, pp. 195–204. (Cited on page 31)

[103] V. C. Emeakaroha, I. Brandic, M. Maurer, and I. Breskovic, “Sla-aware application
deployment and resource allocation in clouds,” in Computer Software and Appli-
cations Conference Workshops (COMPSACW), 2011 IEEE 35th Annual. IEEE, 2011,
pp. 298–303. (Cited on page 31)

[104] B. Sharma, R. K. Thulasiram, P. Thulasiraman, S. K. Garg, and R. Buyya, “Pricing
cloud compute commodities: a novel financial economic model,” in Proceedings of
the 2012 12th IEEE/ACM international symposium on cluster, cloud and grid computing
(ccgrid 2012). IEEE Computer Society, 2012, pp. 451–457. (Cited on page 31)

[105] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting multimedia
applications,” IEEE Journal on Selected areas in communications, vol. 14, no. 7, pp.
1228–1234, 1996. (Cited on page 31)

[106] J. Huang, X. Huang, and Y. Ma, “An effective approximation scheme for mul-
ticonstrained quality-of-service routing,” in Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE. IEEE, 2010, pp. 1–6. (Cited on page 31)

[107] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking of cloud com-
puting services,” Future Generation Computer Systems, vol. 29, no. 4, pp. 1012–1023,
2013. (Cited on page 31)

[108] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema,
“Performance analysis of cloud computing services for many-tasks scientific com-
puting,” IEEE Transactions on Parallel and Distributed systems, vol. 22, no. 6, pp.
931–945, 2011. (Cited on page 31)

[109] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: comparing public cloud
providers,” in Proceedings of the 10th ACM SIGCOMM conference on Internet mea-
surement. ACM, 2010, pp. 1–14. (Cited on page 31)

[110] V. X. Tran, H. Tsuji, and R. Masuda, “A new qos ontology and its qos-based
ranking algorithm for web services,” Simulation Modelling Practice and Theory,
vol. 17, no. 8, pp. 1378–1398, 2009. (Cited on page 31)

[111] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing,” Future
generation computer systems, vol. 28, no. 5, pp. 755–768, 2012. (Cited on page 31)

[112] M. Macías Lloret, J. O. Fitó, and J. Guitart Fernández, “Rule-based sla manage-
ment for revenue maximisation in cloud computing markets,” in Proceedings of

156 references

the 2010 International Conference on Network and Service Management. IEEE Com-
puter Society Publications, 2010, pp. 354–357. (Cited on page 31)

[113] L. Wu, S. K. Garg, and R. Buyya, “Sla-based admission control for a software-
as-a-service provider in cloud computing environments,” Journal of Computer and
System Sciences, vol. 78, no. 5, pp. 1280–1299, 2012. (Cited on page 31)

[114] C. A. Ardagna, R. Jhawar, and V. Piuri, “Dependability Certification of Services:
A Model-Based Approach.” (Cited on page 31)

[115] G. Kousiouris, A. Menychtas, D. Kyriazis, S. Gogouvitis, and T. Varvarigou, “Dy-
namic, Behavioral-Based Estimation of Resource Provisioning Based on High-
Level Application Terms in Cloud Platforms,” Future Generation Computer Sys-
tems, vol. 32, no. 1, pp. 27–40, 2014. (Cited on page 31)

[116] F. a. Omara and M. M. Arafa, “Genetic Algorithms for Task Scheduling Problem,”
Journal of Parallel and Distributed Computing, vol. 70, no. 1, pp. 13–22, jan 2010.
(Cited on page 31)

[117] J. Malczewski, “Gis-based multicriteria decision analysis: a survey of the liter-
ature,” International Journal of Geographical Information Science, vol. 20, no. 7, pp.
703–726, 2006. (Cited on page 31)

[118] National Institute of Standards and Technology, “Cloud Computing Service Met-
rics Description,” Tech. Rep., 2015. (Cited on pages 32 and 68)

[119] E. Marjomaa, “Necessary conditions for high quality conceptual schemata: Two
wicked problems,” Journal of Conceptual Modeling, vol. 1, no. 27, 2002. (Cited on
page 32)

[120] H. Kangassalo, “On the concept of concept for conceptual modelling and concept
detection,” Information modelling and knowledge bases, vol. 3, pp. 17–58, 1992. (Cited
on page 32)

[121] M. P. Singh and M. N. Huhns, Service-oriented computing: semantics, processes,
agents. John Wiley & Sons, 2006. (Cited on pages 32 and 35)

[122] M. Fowler, UML distilled: a brief guide to the standard object modeling language.
Addison-Wesley Professional, 2004. (Cited on page 32)

[123] V. W. Setzer, “Data, information, knowledge and competency,” Ciência da Infor-
mação, DataGramaZero, n. zero, dez, 1999. (Cited on page 33)

[124] N. Bontis, “Managing organisational knowledge by diagnosing intellectual capi-
tal: framing and advancing the state of the field,” International Journal of technology
management, vol. 18, no. 5-8, pp. 433–462, 1999. (Cited on page 33)

[125] E. A. Smith, “The role of tacit and explicit knowledge in the workplace,” Journal
of knowledge Management, vol. 5, no. 4, pp. 311–321, 2001. (Cited on page 33)

references 157

[126] J. Cardoso, “The syntactic and the semantic web,” IGI Global, p. 21, 2007. (Cited
on pages 33 and 34)

[127] J. Cardoso and A. Sheth, “The semantic web and its applications,” in Semantic
Web Services, Processes and Applications. Springer, 2006, pp. 3–33. (Cited on page 33)

[128] T. R. Gruber et al., “A translation approach to portable ontology specifications,”
Knowledge acquisition, vol. 5, no. 2, pp. 199–220, 1993. (Cited on page 34)

[129] T. R. Gruber, “Toward principles for the design of ontologies used for knowledge
sharing?” International journal of human-computer studies, vol. 43, no. 5, pp. 907–
928, 1995. (Cited on page 34)

[130] N. Borstw, “Construction of engineering ontologies,” Enschede: University of
Twente, 1997. (Cited on page 34)

[131] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web. a new form of web
content that is meaningful to computers will unleash a revolution of new possi-
bilities,” Scientific American, vol. 284, no. 5, pp. 1–5, 2001. (Cited on pages 34 and 35)

[132] O. Corcho, M. Fernandez-Lopez, and A. Gomez-Perez, “Ontological engineering:
what are ontologies and how can we build them?” 2007. (Cited on page 34)

[133] D. L. McGuinness, F. Van Harmelen et al., “Owl web ontology language
overview,” W3C recommendation, vol. 10, no. 10, p. 2004, 2004. (Cited on page 35)

[134] M. B. Almeida, “An Introduction to XML, its use on the Internet and some Com-
plementary Concepts,” Ci. Inf. vol.31 no.2, 2002. (Cited on pages 35 and 50)

[135] G. Klyne and J. J. Carroll, “Resource description framework (rdf): Concepts and
abstract syntax,” 2006. (Cited on page 35)

[136] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean et al.,
“Swrl: A semantic web rule language combining owl and ruleml,” W3C Member
submission, vol. 21, p. 79, 2004. (Cited on page 35)

[137] H. Boley, S. Tabet, and G. Wagner, “Design rationale for ruleml: A markup lan-
guage for semantic web rules.” in SWWS, vol. 1, 2001, pp. 381–401. (Cited on
page 35)

[138] A. Horn, “On sentences which are true of direct unions of algebras,” The Journal
of Symbolic Logic, vol. 16, no. 01, pp. 14–21, 1951. (Cited on page 35)

[139] J. Kang and K. M. Sim, “Cloudle: an ontology-enhanced cloud service search en-
gine,” in International Conference on Web Information Systems Engineering. Springer,
2010, pp. 416–427. (Cited on pages XIII and 36)

[140] Y. B. Ma, S. H. Jang, and J. S. Lee, “Ontology-based resource management for
cloud computing,” in Asian Conference on Intelligent Information and Database Sys-
tems. Springer, 2011, pp. 343–352. (Cited on page 36)

158 references

[141] M. Horridge, H. Knublauch, A. Rector, R. Stevens, and C. Wroe, “A practical
guide to building owl ontologies using the protégé-owl plugin and co-ode tools
edition 1.0,” University of Manchester, 2004. (Cited on page 37)

[142] G. Di Modica and O. Tomarchio, “Matching the business perspectives of
providers and customers in future cloud markets,” Cluster Computing, vol. 18,
no. 1, pp. 457–475, 2015. (Cited on pages XI, 37, 38, and 39)

[143] M. Rak, R. Aversa, S. Venticinque, and B. Di Martino, “User centric service level
management in mosaic applications,” in European Conference on Parallel Processing.
Springer, 2011, pp. 106–115. (Cited on pages XI, 39, and 40)

[144] F. DAndria, S. Bocconi, J. G. Cruz, J. Ahtes, and D. Zeginis, “Cloud4soa: multi-
cloud application management across paas offerings,” in Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), 2012 14th International Symposium
on. IEEE, 2012, pp. 407–414. (Cited on page 40)

[145] A. J. Ferrer, F. HernáNdez, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri, R. Sir-
vent, J. Guitart, R. M. Badia, K. Djemame et al., “Optimis: A holistic approach
to cloud service provisioning,” Future Generation Computer Systems, vol. 28, no. 1,
pp. 66–77, 2012. (Cited on page 40)

[146] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy, K. Nagin, J. Tords-
son, C. Ragusa, M. Villari, S. Clayman et al., “Reservoirâwhen one cloud is not
enough,” IEEE computer, vol. 44, no. 3, pp. 44–51, 2011. (Cited on page 40)

[147] “4CaaSt Project.” [Online]. Available: http://4caast.morfeo-project.org/ (Cited on
page 40)

[148] R. G. Cascella, C. Morin, P. Harsh, and Y. Jegou, “Contrail: A reliable and trust-
worthy cloud platform,” in Proceedings of the 1st European Workshop on Dependable
Cloud Computing. ACM, 2012, p. 6. (Cited on page 40)

[149] “IRMOS Project.” [Online]. Available: http://www.irmosproject.eu/ (Cited on
page 40)

[150] “SLA@SOI.” [Online]. Available: http://sla-at-soi.eu/ (Cited on page 40)

[151] “ETICS Project.” [Online]. Available: https://www.ict-etics.eu/ (Cited on page 40)

[152] A.-F. Antonescu, P. Robinson, L. M. C. Murillo, J. I. Aznar, S. Soudan, F. Anhalt,
and J. A. G. Espín, “Towards cross stratum sla management with the geysers
architecture.” in ISPA, 2012, pp. 527–533. (Cited on page 40)

[153] “VISION Cloud Project.” [Online]. Available: http://www.visioncloud.eu/
(Cited on page 40)

[154] “CumuloNimbo Project.” [Online]. Available: http://www.cumulonimbo.eu/
(Cited on page 40)

http://4caast.morfeo-project.org/
http://www.irmosproject.eu/
http://sla-at-soi.eu/
https://www.ict-etics.eu/
http://www.visioncloud.eu/
http://www.cumulonimbo.eu/

references 159

[155] D. L. Moody, “Theoretical and Practical Issues in Evaluating the Quality of Con-
ceptual Models: current state and future directions,” Data Knowl. Eng., vol. 55,
no. 3, pp. 243–276, 2005. (Cited on page 44)

[156] L. J. Campbell, T. A. Halpin, and H. A. Proper, “Conceptual Schemas with Ab-
stractions - Making flat conceptual schemas more comprehensible,” Data and
Knowledge Engineering, vol. 20, no. 1, pp. 39–85, 1996. (Cited on page 44)

[157] B. E. Bargmeyer and D. W. Gillman, “Metadata standards and metadata reg-
istries: An overview,” in International Conference on Establishment Surveys II,
vol. 19, 2000. (Cited on page 44)

[158] A. Gali and C. Chen, “From Ontology to Relational Databases,” Conceptual Mod-
eling for . . . , pp. 1–12, 2004. (Cited on page 50)

[159] E. Tsang, “Foundations of constraint satisfaction,” 1995. (Cited on pages 65 and 66)

[160] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi, and
P. Samarati, “Fragmentation in presence of data dependencies,” IEEE Transactions
on Dependable and Secure Computing (TDSC), vol. 11, no. 6, pp. 510–523, Novem-
ber/December 2014. (Cited on page 66)

[161] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of object-oriented
programming, vol. 1, no. 2, pp. 22–35, 1988. (Cited on page 98)

[162] R. Feldman and J. Sanger, The text mining handbook: advanced approaches in analyz-
ing unstructured data. Cambridge University Press, 2007. (Cited on page 112)

[163] W. L. Kuechler, “Business applications of unstructured text,” Communications of
the ACM, vol. 50, no. 10, pp. 86–93, 2007. (Cited on page 113)

[164] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011.
(Cited on page 113)

[165] D. Sullivan, Document warehousing and text mining: techniques for improving business
operations, marketing, and sales. John Wiley & Sons, Inc., 2001. (Cited on page 113)

[166] L. A. Zadeh, “Fuzzy logic= computing with words,” IEEE transactions on fuzzy
systems, vol. 4, no. 2, pp. 103–111, 1996. (Cited on page 115)

[167] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative system
performance: computer system analysis using queueing network models. Prentice-Hall,
Inc., 1984. (Cited on page 130)

A
P U B L I C AT I O N S

Some ideas and significant results present in this thesis were published in:

1. "On the Use of Fuzzy Logic in Dependable Cloud Management"

S. Foresti, V. Piuri, G.A. Soares

in Proc. of the 3rd IEEE Conference on Communications and Network Security
(CNS 2015), Florence, Italy, September 28-30, 2015.

Abstract: The effective and efficient use of dependable cloud infrastructures re-
quires the agreement between users and cloud providers on resources, services,
operating conditions, and features as well as the mapping of usersâ requirements
onto the cloud architecture. In this paper, we identify the different ways in which
fuzzy logic can be profitably adopted in performing these tasks, providing flexi-
bility in capturing usersâ needs and dealing with complex architectures and con-
flicting or hardly-satisfiable requirements. We specifically put forward the idea
of using fuzzy logic at the user-side, to enable the specification of usersâ needs
in crisp or fuzzy ways and their homogenous processing.

2. "Supporting Application Requirements in Clod-based IoT Information Pro-
cessing"

P. Samarati, G.A. Soares, V. Piuri, G. Livraga, S. De Capitani di Vimercati

in Proc. of the International Conference on Internet of Things and Big Data
(IoTBD 2016), Rome, Italy, April 23-25, 2016.

Abstract: IoT infrastructures can be seen as an interconnected network of sources
of data, whose analysis and processing can be beneficial for our society. Since
IoT devices are limited in storage and computation capabilities, relying on ex-
ternal cloud providers has recently been identified as a promising solution for

161

162 publications

storing and managing IoT data. Due to the heterogeneity of IoT data and ap-
plicative scenarios, the cloud service delivery should be driven by the specific
IoT applications. In this paper, we propose a novel approach for supporting ap-
plication requirements for cloud-based IoT data processing. Our solution allows
an IoT infrastructure authority to formulate conditions that the provider must
satisfy in service provisioning, and computes a SLA based on these conditions
while also accounting for possible dependencies among them. We also illustrate a
CSP-based formulation of the problem of computing a SLA, which can be solved
adopting off-the-shelves CSP solvers, possibly accommodating user preferences
in the computation of the solution.

	Abstract
	Contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions of the Thesis
	1.3.1 Advanced SLA in Cloud Computing
	1.3.2 Automated Framework to Cloud SLA Management
	1.3.3 Dynamic SLA Management

	1.4 Organization of the Thesis

	2 Related Works
	2.1 The SLA in Cloud Computing
	2.2 Approaches in SLA Composition
	2.3 Frameworks in Cloud Computing
	2.3.1 LoM2HIS
	2.3.2 DeSVI
	2.3.3 SLA-based Resource Virtualization (SRV)
	2.3.4 SLA for Scientific Research Clouds
	2.3.5 Comparison of studied frameworks

	2.4 SLA Monitoring
	2.5 Management of Cloud Properties
	2.5.1 Metrics in Cloud SLA
	2.5.2 Ontologies for Cloud Services

	2.6 Chapter Summary

	3 Advanced SLA in Cloud Computing
	3.1 Introduction
	3.1.1 Chapter Outline

	3.2 Generalized Service Level Agreement
	3.2.1 Generic Description
	3.2.2 Formal Definition

	3.3 Objective of Ontology
	3.4 Characteristics of the Ontology
	3.4.1 Service Conditions in XML Schema
	3.4.2 Service Request in XML Schema

	3.5 Advanced Issues in a generic SLA
	3.5.1 Determining a valid SLA
	3.5.2 CSP Formulation

	3.6 Shared Liability in Cloud SLA
	3.7 Chapter Summary

	4 Automated Framework to Cloud SLA Management: conceptual model
	4.1 Introduction
	4.1.1 Chapter Outline

	4.2 Objectives
	4.3 Framework Structure
	4.3.1 The Users Layers
	4.3.2 The Framework Layer

	4.4 The Framework Operation
	4.5 Chapter Summary

	5 Management of novel properties and values
	5.1 Introduction
	5.1.1 Chapter Outline

	5.2 Properties Inventory
	5.3 Usage Scenarios
	5.3.1 Application example for the scenario S1
	5.3.2 Application example for the scenario S2
	5.3.3 Application example for the scenario S3
	5.3.4 Application example for the scenario S4

	5.4 Information Clustering
	5.5 Chapter Summary

	6 Use of Fuzzy Parameters
	6.1 Introduction
	6.1.1 Chapter Outline

	6.2 Fuzzy Logic in Cloud Systems Management
	6.3 Fuzzy Customer Requirements
	6.3.1 Fuzzy Parameters
	6.3.2 Fuzzy Concepts

	6.4 Fuzzy Concepts and Fuzzy Parameters on the Provider Side
	6.5 Application of Fuzzy Logic in the Framework Proposed
	6.6 Chapter Summary

	7 Dynamic Resources Management
	7.1 Introduction
	7.1.1 Chapter Outline

	7.2 vSLA Monitor Module
	7.3 Dynamic Properties
	7.3.1 Description of the Available Resources
	7.3.2 Description of Dynamic Needs of Resources
	7.3.3 Mapping of Resources and Properties

	7.4 Context Monitoring
	7.5 Prediction System
	7.6 Approach Overview
	7.7 Chapter Summary

	8 Conclusion and Future Works
	8.1 Summary of the Contributions
	8.2 Future Works
	8.3 Closing Remarks

	References
	A Publications

