UNIVERSITA DEGLI STUDI DI MILANO

PHD 1N COMPUTER SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

DOTTORATO DI RICERCA IN INFORMATICA
XXIX Ciclo

ADVANCED SLA MANAGEMENT IN CLOUD
COMPUTING

INF/o1 INFORMATICA

DOCTORAL DISSERTATION OF:
Gerson Antunes Soares
SUPERVISOR:
Prof. Vincenzo Piuri

CO-SUPERVISOR:
Prof. Sara Foresti

DIRECTOR OF PHD PROGRAM:
Prof. Paolo Boldi

Academic Year 2015/16

“There is no such thing as a "self-made” man.

We are made up of thousands of others.

Everyone who has ever done a kind deed for us, or spoken one word of
encouragement to us, has entered into the make-up of our character
and of our thoughts, as well as our success.”

— George Matthew Adams

ACKNOWLEDGMENTS

First of all, I want to thank God that blessed every day of my life, to enlighten my path
and gave me the strength to continue on.

I thank Prof. Vincenzo Piuri for the opportunity to have him as my supervisor. I am
very proud to quote him as one of the people responsible for my formation. I thank
him for his trust, for his friendship, for his advice and for his patience. It is an example
of understanding and competence that goes far beyond what is required. Concerned
not only with the work, but mainly with the human being. I want to thank also Prof.
Sara Foresti for her help and support as co-supervisor during the research work.

My wife, Daiana da Silva Dors Soares, and our children (Maria Clara, Ana Carolina
and Jodo Miguel) who often donated and renounced their dreams, so that I could
accomplish mine. I want to say that this achievement is not only mine, but ours. All I
got was only possible thanks to the love, support and dedication they always had for
me.

To my parents, Jurandi and Maria, who have always taught me to act with respect,
simplicity, dignity, honesty and love for others. And thanks to the union of all, the
obstacles were overcome, victories were won and divided joys. Thanks a lot for their
patience and understanding with my absence during this long journey. To my father
and mother in-law, Marcial and Clara, and all the family, who were distant in location
but always near to me, thanks so much.

I would like to thank my friends, with no particular order: Ravi Jhawar, Aleksandar
Rikalovic, Giovanni Livraga, Abhinav Anand, Ala Arman, Ruggero Donida Labati, An-
gelo Genovese, Gianluca Sforza, Enrique Mufioz Ballester, Ebadollah Kheirati Roonizi,
Md. Aktaruzzaman, Massimo Walter Rivolta, Ruby Karmacharya and Tewodros Mu-
lugeta Dagnew, for having made the day-to-day life at the university so enjoyable! It
was extremely enriching to meet and to live with each of them. Thanks for the daily
company, for the friend’s shoulder, for the trust, the trips and the moments that we
spent together.

To all the professors who received me so well. Thanks for the support, encourage-
ment and, above all, the opportunity to learn from people I admire so much. To the
employees of the Department of Computer Science: Claudia, Daniela, Mirko, Mario,
Danio and Davide for constant collaboration and availability. And, in a special way, to
Lorena Sala, for the gratifying coexistence throughout this journey.

I

I would like to thank the referees Vijay Atluri, Sushil Jajodia, and Laurence T. Yang,
for their time spent in reading my thesis and for giving me valuable suggestions for
improving my work.

Lastly, I want to thank the other people who contributed directly or indirectly in the
elaboration of this work or participated in my life, and that, by chance, I have forgotten

to thank.

v

ABSTRACT

The advent of high-performance technologies and the increase in volume of data used
by organizations led to the need for migration from an internal structure to Cloud
environment. The continuous development of tools, methods and techniques have ex-
panded the understanding of the various functions, structures and processes related
to Cloud Computing. However, the increase in computing power led to the develop-
ment and use of more complex models, including this scope the complexity of Service
Level Agreements (SLA). The need for understanding at a high level of SLAs estab-
lished between customers and service providers in Cloud led to different studies on
the definition and standardization of these agreements.

Nowadays, cloud computing technologies are becoming more and more popular,
especially with respect to data storage. However, the processes used to determine the
Cloud Service Agreements do not consider the final customer’s needs, considering
only the supply capacity of the service provider. For these reasons, the development of
service agreements that meets the needs of customers should be designed in order to
increase the usability of Cloud environments, and enabling the discovery of new areas
of application in accordance with market demand.

In this context, the use of ontologies that describes the information that composes
each type of service, and thus enable an understanding of the agreements reached, is
configured as an approach to be considered. Moreover, the generalization and abstrac-
tion of information that can be observed in different services allows a broader vision
for managing SLAs.

For these reasons, this thesis aims to find innovative methods for the composition of
Service Level Agreements in Cloud Computing. In particular, the methods presented
allow demonstrate the convergence of several consolidated techniques in research on
Cloud SLA using a new approach that considers new demands on Cloud and allows
control of the established agreements, in addition to effectively ensure the application
of the concept of XaaS (everything as a service). The originality of the approach allows
the registration, search, composition and control of services in Cloud using the same
structure.

The new approach presented in this thesis allows the understanding of the impact
of the new services requested by customers, giving the provider the possibility of sim-
ulating the use of the necessary resources to meet the new services’ requests. From
the presentation of a conceptual framework we can demonstrate the use of our ap-
proach through the examples of different situations presented in the real world and
considering the new market possibilities.

CONTENTS

ABSTRACT . . o v ittt ittt e et e e e e e e e e e v
LIST OF FIGURES . . . v v v vt v vttt et e XI
LIST OF TABLES . & & v v v v v vt e vt e XIII
T INTRODUCTION . & ¢ v vt vttt et e e et e e e e e et e e e e e e 1
1.1 Motivation 2

1.2 Objectives 3

1.3 Contributions of the Thesis 5
1.3.1 Advanced SLA in Cloud Computing 5

1.3.2 Automated Framework to Cloud SLA Management 6

1.3.3 Dynamic SLA Management 7

1.4 Organizationofthe Thesis 8

2 RELATED WORKS . « ¢ v vt v vt ettt e et e e e e e e e e e e e e e e 11
2.1 The SLA in Cloud Computing 11
2.2 Approaches in SLA Composition 16
2.3 Frameworks in Cloud Computing 18
231 LoM2HIS 19

2.3.2 DeSVI 20

2.3.3 SLA-based Resource Virtualization (SRV) 22

2.3.4 SLA for Scientific Research Clouds 23

2.3.5 Comparison of studied frameworks 24

2.4 SLA Monitoring 26
2.5 Management of Cloud Properties 29
251 MetricsinCloud SLA 30

2.5.2 Ontologies for Cloud Services 32

2.6 Chapter Summary 40

3 ADVANCED SLA IN CLOUD COMPUTING . « « ¢ v v v v v v et e e e e e e 43
3.1 Introduction 43
3.1.1 ChapterOutline. 44

3.2 Generalized Service Level Agreement 44
3.2.1 Generic Description 00 L 45

3.2.2 Formal Definition 47

3.3 Objective of Ontology 50

vl

VIII

CONTENTS
3.4 Characteristics of the Ontology 50
3.4.1 Service Conditions in XML Schema 51
3.4.2 Service Requestin XML Schema 57
3.5 Advanced IssuesinagenericSLA 61
3.5.1 Determiningavalid SLA 63
3.5.2 CSP Formulation 66
3.6 Shared Liability in Cloud SLA 68
3.7 Chapter Summary 70

4 AUTOMATED FRAMEWORK TO CLOUD SLA MANAGEMENT: CONCEPTUAL
MODEL . . ot vt vttt et e e e e e e e e e 71
41 Introduction Lo 71
411 ChapterOutline. 72
42 Objectives 72
4.3 Framework Structure 73
431 TheUsersLayers 74
4.3.2 The Framework Layer 82
4.4 The Framework Operation 91
4.5 Chapter Summary 95
5 MANAGEMENT OF NOVEL PROPERTIES AND VALUES 97
5.1 Introduction 97
51.1 ChapterOutline. 98
5.2 PropertiesInventory 0oL, 98
53 UsageScenarios e 103
5.3.1 Application example for the scenarioS, 103
5.3.2 Application example for the scenarioS, 105
5.3.3 Application example for the scenarioS; 106
5.3.4 Application example for the scenarioS, 108
5.4 Information Clustering 110
5.5 Chapter Summary, 113
6 USE OF FUZZY PARAMETERS vt i ittt it et 115
6.1 Introduction 115
6.1.1 ChapterOutline. 116
6.2 Fuzzy Logic in Cloud Systems Management 116
6.3 Fuzzy Customer Requirements 118
6.3.1 Fuzzy Parameters., 118
632 FuzzyConcepts 120
6.4 Fuzzy Concepts and Fuzzy Parameters on the Provider Side 121
6.5 Application of Fuzzy Logic in the Framework Proposed 123
6.6 Chapter Summary 125

CONTENTS

7 DYNAMIC RESOURCES MANAGEMENT vt v v v vi i e e e e e e e e 127
7.1 Introduction 127
7.1.1 ChapterOutline. 128

7.2 VSLA Monitor Module 128

7.3 Dynamic Properties 129
7.3.1 Description of the Available Resources 130

7.3.2 Description of Dynamic Needs of Resources 131

7.3.3 Mapping of Resources and Properties 132

7.4 Context Monitoring 135

7.5 PredictionSystem L o L L oo 137

7.6 Approach Overview 139
7.7 Chapter Summary 140

8 CONCLUSION AND FUTURE WORKS . « « ¢ v v v v vttt e e et e e e 143
8.1 Summary of the Contributions 143
82 Future Works 144

83 Closing Remarks 145
REFERENCES . . . vttt vttt e e e et e e e e e e e e e e e e e 147

A PUBLICATIONS . . . o o i it it e 161

LIST OF FIGURES

Figure 2.1
Figure 2.2

Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15

Figure 3.16
Figure 3.17

Figure 3.18
Figure 3.19

Figure 4.1
Figure 4.2

Figure 4.3
Figure 4.4

LoM2HiS Architecture (adapted from [51]) 19
DeSVI architecture and interaction between components (adapted
from [52]) 21
SRV Architecture (adapted from [53]) 22
Architecture for Research Clouds (adapted from [54]) 23
Survey results presented by [8o] o oo 28
mOSAIC SLA Ontology (extracted from [142]) 37
mOSAIC SLO branch (extracted from [142]) 38
Subset of rules in SWRL (extracted from [142]) 39
Fragment of User SLA request in WS-Agreement (extracted from
[143]) - - - o o 40
Cloud Services representation 45
Cloud Services and attributes representation 46
Cloud Services, attributes and resources representation 46
Properties representation L 46
Example of a set of conditions 48
Example of conditions dependencies 49
Properties representation in service conditions XML Schema . . . 52
Service Conditions representation in XML Schema 53
Service Conditions XML Schema 54
XML file to a Service Condition 56
Example of a service condition in the ontology 56
Properties representation in a service request XML Schema ... 57
Properties representation in a service request XML Schema . .. 58
Fragment of XML Schema for a list of established properties . . . 59
Fragment of XML Schema for a set of values for the element
"Equal" 59
Properties representation in a XML file of service request 60
Ontology proposed in three complementary groups: Service Con-
ditions (a), Request (b) and VSLA (c) 61

Graphical representation of Problem 3.1 for our running example 65
Color propagation in the hypergraph of Problem 3.1 for our run-

ningexample. L L o L Lo 66
Overview of the Framework Architecture 74
Scenario of interaction between the users of framework, repre-

sented in Use Cases. 75
Formal representation of a service request. 76
Formal representation of a serviceplan 78

XI

XII

LIST OF FIGURES

Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

Figure 4.9
Figure 4.10

Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

Figure 5.5
Figure 5.6
Figure 5.7
Figure 6.1
Figure 6.2
Figure 6.3
Figure 7.1
Figure 7.2

Figure 7.3

Figure 7.4
Figure 7.5

Example of a service plan summary 78
XML file to service conditions 81
Properties Management module 82
Fragment of XML schema with the established properties shown

intheexample L L. 83
Integrated Ontology 84
Fragment of XML schema with absolute values for established

properties. 84
Lists of services integrated in a public ontology 85
SLA Managementmodule 86
Example of inputs and outputs of framework 92
Services and framework modules 93
Framework Class Diagram 94
Process (simplified) to determine a "Established" property 99
Process for requesting established properties 101

Fragment of XML schema with the list of established properties . 101
Fragment of XML schema with absolute values for property Lo-

cation 102
Process for requesting new properties 102
Repositories used by Properties Inventory 106
Stages of Text Mining process 112
Element Fuzzy Description in a Service Conditions XML Schema 119
Example of fuzzy specification of key length parameter 119
Example of fuzzy specification of data security concept 120
VSLA Monitormodule 0 000 128

Fuzzy Inference System with input c,=0.129 like "Low" param-
eter (a) and Fuzzy Inference System with input c¢,=0.193 like

"Low" parameter (b) 136
Fuzzy Inference System with input ¢,=0.637 like "Medium" pa-

rameter L e 137
Fuzzy Inference System to Simulate the Resource Usage 138
Approach Overview 139

LIST OF TABLES

Table 2.1
Table 2.2
Table 2.3

Table 2.4
Table 2.5
Table 2.6

Table 2.7
Table 3.1
Table 3.2
Table 3.3

Table 3.4
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 4.10
Table 4.11
Table 4.12
Table 4.13
Table 4.14
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 5.9
Table 6.1

Comparison of the SLA languages (adapted from [46]) 18
Comparison of studied frameworks 25
Comparison features of cloud monitoring platform (adapted from

[46]) - . . o 27
SLOs or QoS requirements for clouds (adapted from [37]) 30

Summary of metrics evaluation techniques (adapted from [91]) . 31
Example of concepts and individuals used in Cloudle (adapted

from[139]) 36
Example of triples used in Cloudle (adapted from [139]) 36
An example of property descriptions L. 62
An example of property values 63
Requirement, Dependencies, and Conflicts with their CSP for-

mulation 68
Properties on Shared Liability Situations. 70
Example of a service request used in the search for properties . . 76
Example of aserviceplan 77
Example of a list of serviceplans 78
Registration of a single property 79
Records to propertyc; 79
Example of a list of services 8o
List of services to the Properties Management Module 83
Table of Properties 86
Preliminary list of selected services 87
Example of SLA composition by framework 88
Example of service plans from different providers 89
Table of serviceplans 90
Services to meet the request by property c;, L. 90
Characteristics of selected services for property c;,. 91
List of compatible services for the property Location 104

List of compatible services considering the property Encryption . 106
Example of information maintained by the properties repository 107

Example of reallocation of property values 108
Example of reallocation of services 108
Example of status repository 109
Example of statuschange 109
Counter table fornew values 110
Table of document-term, 113
Dependence of properties for fuzzy concepts 124

XIII

X1V

LIST OF TABLES

Table 7.1
Table 7.2
Table 7.3
Table 7.4

Information about valid SLAs in the vSLA repository 129
Mapping between Properties and Resources 133
Mapping between Service Conditions and Resource Requirements134
Different Contexts in the vVSLA repository 137

INTRODUCTION

The evolution of communication and computing technologies has been increasing the
use of cloud computing in various fields such as industry, health and education. Es-
pecially in the industrial area, the provision of information in the cloud, such as man-
agement indicators, needs to maintain the privacy of the results, the confidentiality of
information and data integrity. In practice, these requirements can be met through the
use of vulnerabilities analysis, strong authentication methods, access control restric-
tions, etc [1].

Taking as example the management of industrial information, which transforms the
data available in high-value information, the availability of this information in a cloud
environment needs to consider a few key points to keep information security (privacy,
confidentiality and integrity). In this sense the Service Level Agreement (SLA) must
also reflect the needs of control of customer.

With Cloud Computing, many user applications as well as their files and data no
longer need to be installed or stored on the computer, getting available in the "cloud".
The application vendor is responsible for all development tasks, storage, maintenance,
upgrade, backup, scheduling, etc. Thus, all materials and documents are available in
any environment regardless of where the application is running. [2] supplemented
with the following advantages: portability of documents, increase the power of appli-
cations, platform independence and ease of abstraction. Besides the advantages men-
tioned, there is the fact of ease of adaptation to different devices that are accessing the
Cloud application.

Since failures in data centers usually occur outside the scope of the client organi-
zation, the perception of the degree of the risks in customer orders also changed [3].
In addition, the traditional ways to achieve fault tolerance require customers to have
a deeper knowledge of the mechanisms used, however the abstraction model and the
cloud computing business do not allow the architectural details of the environment
in Cloud are widely available to customers [3]. This implies that the traditional ser-

INTRODUCTION

vice agreements often do not report the cloud computing environment and there is a
growing need to solve the reliability concerns.

When establishing a SLA between a customer and a provider, the process should
culminate in a contract that spells out the obligations and requirements of all play-
ers involved. In Cloud Computing normally this agreement only shows the service
provider’s obligations, while it does not consider all customer requirements. Therefore
is necessary to establish an agreement that allows the customer to retain control (at
least with contractual guarantees) of data and information available in Cloud.

In [4] the authors describe that one of the principles for the development of the Ser-
vice Level Agreement in Cloud Computing should be based on neutral business model
and should not require a specific approach for each concept. Another important aspect
is the continued evolution of Cloud Computing that features a dynamic behavior when
we note the possibility of new markets migrate to this environment.

Also according to [4] Standards and guidelines for cloud SLAs should be able to
meet the needs of both smaller customers and corporate customers. In addition, each
provider uses a different SLA specification language to meet their own Service Level
Objective (SLO) and document their own methods to achieve the SLOs although based
on standard concepts and vocabulary.

In this thesis, we propose a model of advanced SLA management based on customer
requirements, which considers information about their needs and takes a number of sit-
uations, events and information necessary for the correct understanding of the service
agreement. As a result, we created a management model that allows easy implementa-
tion of dynamic control of resources and the determination of new services based on
market demand. In addition to supporting an effective way to establish the construc-
tion of Service Level Agreements through a simplified generic ontology.

1.1 MOTIVATION

The popularity of cloud computing has increased considerably compared to traditional
information processing systems [3]. To meet effectively the demand for cloud-based
services, the service providers to increase their capacity building huge data centers
that are spread over several geographical regions (e.g., [5], [6], [7]). As a result of this
growth and the availability of resources, many customers are migrating to cloud-based
services to make their applications and business processes.

In general, the data centers maintained by providers are constructed with hundreds
of thousands of commodity servers. Moreover, virtualization technology is used to
maintain the provision computing resources over the Internet and, often, the delivery
of services follows the pay-per-use business model [5]. According to [3] a single phys-
ical host can be used as a set of multiple virtual hosts by the provider, this benefit
"masks" the perception of customers with relation to the available resources making it
look like an inexhaustible source of computing resources.

Thanks to its elasticity, convenience, and economic advantage, cloud computing is
today one of the reference paradigms for data storage and management and for run-
ning (heavy computational) applications. To fully benefit from the advantages of cloud

1.2 OBJECTIVES

systems, customers need to have sufficient warranties on the overall dependability of
these systems, including the reliability and resilience of cloud architectures, the contin-
uous availability of the services they pay for, the security of the operating environment
and infrastructure, the protection guarantees on data and applications in the whole
operating flow [8].

To ensure full user satisfaction, the customer and the cloud provider need to care-
fully specify and agree upon a comprehensive Service Level Agreement. Such SLA
should define the infrastructure configuration expected by the customer to support its
applications. Conventional approaches to SLA specification (e.g., [9]) allow customers
to define her requirements by choosing the most appropriate values for the parameters
made available by the cloud provider (e.g., the amount of data storage and speed in
data transfer) but it does not guarantee that all customer needs are met. On the ba-
sis of the SLA agreed with the customer, the cloud provider identifies a mapping of
the customers needs (in terms of the minimum resources required by the customers
applications) onto the cloud architecture and services but it does not have the ability
to identify new demands. During operation, possible changes in the cloud infrastruc-
ture (e.g., faults of connections or processing nodes, and security vulnerabilities) may
impair the ability of satisfying customers requirements in the due time or even at all.
Monitoring and possibly dynamically adjusting the resource mapping is therefore de-
sirable to ensure complete dependability of the cloud architecture.

It is observed the modern information society uses a very broad set of information
to allow businesses to remain competitive and improve their production processes.
However we see that process automation is reaching its limits. New quality and man-
agement practices require a broad view of processes and their interrelationships, de-
manding of software tools and traditional hardware more than they are able to offer.
The effective and efficient use of dependable cloud infrastructures requires a more
transparent agreement between customers and cloud providers on resources, services,
operating conditions, and features as well as the mapping of customers requirements
onto the cloud architecture.

While generally SLA specifications require the definition of values for configuration
parameters, customers would appreciate the availability of a more flexible way for
expressing their needs, since customers often do not have an exact understanding of the
real requirements of their applications. Also, the management of complex and dynamic
environments would benefit from flexibility in reasoning on the mappings of customers
requirements onto cloud resources. Therefore, the motivation appears to approve and
validate an advanced SLA management model in cloud computing enabling a more
realistic approach to the characteristics and needs of different customers and situations
including the provision of "everything as a service" (XaaS) by providers.

1.2 OBJECTIVES

Basically we consider three key aspects when designing a solution for the Cloud SLA
Management, these aspects are described briefly below.

INTRODUCTION

o Greater flexibility in SLA trading. The need of creation of a set of features to
include flexibility (adaptation and extension) in Service Level Agreements for
Cloud Computing. The advent of high-performance technologies in Cloud Com-
puting will result in a growth in the volume of data and information that can
migrate to this environment. The continuous development of tools, methods and
techniques have expanded the understanding of the various functions, structures
and processes related to services in Cloud Computing. This increased computa-
tional power leads the development and use of more complex arrangements. The
agreements for this new environment should allow various features presented
at different scales, can be combined, complementing each other and providing a
more accurate view of customer needs. Thus, the use of a conceptual modeling
language which can describe declarative and reusable way the application do-
main, using a shared vocabulary, and development tools so that players can work
with different scenarios, are important requirements for the project a framework
for Advanced SLA Management. In order to use a generic ontology, two impor-
tant issues should be addressed. The first one refers to the representation of on-
tology. Although diagrams, textual description and equations can be used in the
publication of the models, they are subject to typographical errors and the lack
of definition of the initial conditions or boundary to the ontology. The second
issue is related to implementation. The need to apply advanced methods limits
the effective use of the ontology.

o Support for future markets in Cloud Computing. The design of a conceptual frame-
work based on a generic ontology to support adaptable and extensible compo-
nents in Advanced SLA Management. Only the use of an ontology, that allows a
more flexible SLA negotiation, is not enough for the process of creation of new
service agreements because it should provide custom annotation mechanisms to
facilitate the reuse and modification of components. The ontology may be de-
scribed using markup languages and should be validated for syntax errors and
for the adherence to specification. However, semantic issues can not be effectively
treated directly in a relatively simple schema and should be left to the implemen-
tation phase. This implementation phase can be represented through conceptual
frameworks arranged in modules that may implement the execution of usage
scenarios in Cloud environments allowing the creation of new services and the
effective application of the concept of XaaS (everything as a service).

o Description of a set of adaptive methods for Dynamic SLA Management. It is an instan-
tiation process and control of requirements independent of the implementation
technology for the proposed framework. The use of a standardized and recom-
mended format by W3C enables service agreements to be integrable and domain
independent. Any effort to develop advanced management methods to SLAs in
Cloud Computing should consider the cloud services industry capabilities. Af-
ter introducing specific concepts for the definition of an advanced management
for cloud SLAs we need to determine proof points to ensure that the concept is
feasible for both technical perspectives as well as to business prospects.

1.3 CONTRIBUTIONS OF THE THESIS

This thesis focuses on three high-level objectives mentioned above, with the objective
of defining a comprehensive solution for Advanced SLA Management in Cloud Com-
puting. In the rest of the chapter, we discuss in more detail the specific contributions
of this work.

1.3 CONTRIBUTIONS OF THE THESIS

The wide market acceptance that cloud computing gained, will make the current data
centers work more together, converging into a global architecture of virtual distributed
services - hardware, storage, processing, transformation, etc. - Allowing users to access
and deploy applications on demand, being anywhere in the world and with a propor-
tional cost to the contracted Quality of Service (QoS) parameters [10]. This integration
of services and applications in the cloud, in turn, is also demanding new cloud-based
services, for example, to provide interoperability, coordination and load balancing be-
tween departments or even the discovery of new services and applications. In addition
to requiring more comprehensive service agreements.

This thesis deals with problems related to the availability of data and information in
Cloud Computing when the data owner wants to migrate to this environment while
maintaining effective control over the information. The specific contributions of the
thesis are the aspects of SLA management illustrated above, i.e., a greater flexibility in
SLA trading, the support for future markets in Cloud Computing, and the description
of a set of adaptive methods for dynamic SLA Management. In the rest of this section,
we illustrate these contributions in more detail.

1.3.1 ADVANCED SLA IN CLOUD COMPUTING

The first contribution of this thesis is related to the determination of Service Level
Agreements that includes the needs of customers, satisfies the service conditions set by
the providers and supports greater flexibility in SLA trading. The contribution of our
work can be summarized as follows.

Problem modeling. The determination of a Service Level Agreements should find a
good balance between the need for control over the information for the customer and
the need to ensure the proper functioning of the cloud environment by providers. The
specification of services in a generic way can effectively meet both the market needs as
the possible operating restrictions brought in new scenarios. In this thesis, we build an
approach for determining SLA that is defined with a generic ontology to describe the
characteristics of different services. The peculiarity of our solution consists of a new
model of SLA composition problem, which explores the representation of services
and restrictions as service conditions and interprets its rules as truth assignments of
Boolean variables and XML schema. This model is the basis for defining an effective
solution to the SLA composition problem.

INTRODUCTION

Efficient modeling. Thanks to the generic definition of the problem, the SLA compo-
sition may consider integrating different services trying to satisfy the market needs.
To this end, we create an ontology which includes the restructured and adapted infor-
mation from other ontologies. This generic ontology is used for interfacing the infor-
mation between players and supporting needs presented by the customers. We take
our modeling based on a generic ontology to formulate efficiently service conditions
considered by providers. In addition, to meet the necessary operations for the SLA
composition, our modeling also provides support for future markets in Cloud comput-
ing.

Freedom of choices. Given a set of needs presented by customers, our goal is to com-
pute a selection of services that can match these needs. The logic is to determine utility
functions that are compatible with the services, presenting an integration of the ser-
vices with same nature and a set of values that can be manipulated by providers.
Therefore, the utility functions of the data presented to end users can be changed ac-
cording to the customer’s preference and their practical needs. For this purpose, we
define a structure that can receive established values from the providers and, new ser-
vices and values from customers.

Shared liability. For the use of new services and values required by customers, con-
sidering their freedom of choice, we must supplement this data with responsibility
information. However, the SLA composition only considers the responsibility of the
providers. In this thesis, we present the concept of shared liability which allows the
determination of different aspects of the services provided, the relevant dependencies
to each one and responsibilities assigned to their values. First, we defined that service
conditions are submitted by providers, considering internal and external dependencies
between different services. Following, we describe an approach to determine how the
responsibility is assigned in a shared way to support the monitoring of SLAs. In doing
so, we provide a general solution, applicable to real-world scenarios to better meet
customer needs services in cloud and not committing a breach of the agreements.

1.3.2 AUTOMATED FRAMEWORK TO CLOUD SLA MANAGEMENT

The second contribution of this thesis is the definition of a conceptual framework for
managing the SLA. Since we use an ontology that integrates different characteristics
we define concepts and modules that can handle these information. This framework
considers the registration and research of SLA models and perform the SLA composi-
tion and its control. The contribution our work can be summarized as follows.

Simplified structure. We have identified and modeled the possible scenarios presented
during the process of SLA composition so we could pull a simplified structure that per-
fectly fits the situations presented. We address a general problem, which is the creation
of a SLA, observing the specific characteristics related to each Cloud service provider.
With this approach we noted our concern to enable freedom of choice for the cus-

1.3 CONTRIBUTIONS OF THE THESIS

tomers using a simplified structure at the same time respects the existing ontologies
and taxonomies in the market. Also, it is flexible enough to support new modules and
properties.

Flexibility and adaptability. Based on the metrics identified for each scenario and the
settings formally presented in our concepts we describe the modules of control and
management for the framework. As the internal modules to the framework are based
on a generic concept and a simplified structure is possible to ensure the flexibility to
receive new information from both customers and providers. In addition the structure
of the framework makes possible to adapt to other monitoring and management ser-
vices for example, since their outputs represent information that can be manipulated
by external modules.

1.3.3 DYNAMIC SLA MANAGEMENT

The third and final contribution of this thesis is a solution for dynamic management
of information in a Service Level Agreement. To monitor the non-violation of adjusted
values between the parties is necessary to observe the dynamic nature of some proper-
ties. Accordingly, our approach is based on the monitoring of different scenarios. The
original contribution of our work can be summarized as follows.

Identification of demand for new services. Once we allow freedom of choice for cus-
tomers, we give the possibility to request non-established services. In this sense we
propitiate the identification of new services through the pooling of information and
the monitoring of its implementation enabling the application of the concept of XaaS.
In our approach, the framework provides a module for inventory of properties that
controls the behavior of services. This enables providers identify new demands and
eventually deploys the services to meet the market.

Use of natural language. Traditional solutions for the SLA composition assume that
the values required for the services to be static and punctual, not considering the needs
or the differences in perceptions between the parties, which implies that a simple dif-
ference of values makes the customer’s request unanswered and that the provider lose
market or have no knowledge of it. Such an assumption may result in a market re-
stricted to the providers. We solved this limitation by proposing an approach using
values described in fuzzy logic, this allows an approximation between the parties since
they can use natural language to describe certain values and allows a greater range of
service opportunities for providers.

Control of dynamic information. Analyzing the characteristics of some services in
Cloud and the set of relationships between their properties is possible to identify dy-
namic aspects that influence the composition of services and consequently determine
some particular situations for Service Level Agreements management. We present an
approach that allows us to consider this behavior and demonstrates how these dynamic

INTRODUCTION

changes can be used to monitor and control cloud services resources and possible vio-
lations of SLAs.

1.4 ORGANIZATION OF THE THESIS

In this chapter, we discuss the motivations behind the work proposed in this thesis,
and illustrate our high-level objectives and main contributions. The remaining chap-
ters are organized as follows.

Chapter 2 presents the state-of-the-art on Service Level Agreements in Cloud comput-
ing environments. It presents the needs of standardization and techniques used for
the composition of SLAs, besides describing some frameworks used in the Cloud SLA
scope also describes the use and representation of different ontologies that describe
the different services in the Cloud.

Chapter 3 illustrates our solution based on the integration and generalization of the
information presented by different services in Cloud, ensuring the necessary flexibility
to ensure freedom of choice for service Cloud customers. In this chapter, we present the
formal definition of our approach and the developed generic ontology that provides
the basis for the solutions presented in the another chapters. This formal definition
refers to conceptual modeling of the information in SLA composition, and represents
values independent of domain.

Chapter 4 provides an overview of the proposed framework in this thesis. The main
elements are discussed and the framework architecture is described.

Chapter 5 focuses on the request for issue of new services that have non-established
values by providers. The chapter illustrates the possible scenarios for the use of the
framework and our model to control and group new information, where sensitive in-
formation is characterized by market demand. Then, it describes how service providers
can use this approach to develop its portfolio of services.

Chapter 6 addresses the problem of interpretation of values in Service Level Agree-
ments. First, it describes how to identify the possibility of using fuzzy logic at different
times in the determination procedure of a SLA. Then, it illustrates our approach to
the use of natural language in the services requirements of customers and how this
approach can also be used on the provider side.

Chapter 7 shows how the framework presented in this work can be used to control the
changes of properties values in the Service Level Agreements. In addition, we describe
how the dynamic behavior of certain services is handled by our approach. The pa-
rameters that must be monitored to ensure the stability of the agreement between the
parties and also how this feature can be used for dynamic prediction and prospecting

1.4 ORGANIZATION OF THE THESIS

for new Cloud services.

Chapter 8 provides an overview of our approach and summarizes the contributions of
this thesis provides our concluding remarks and outlines directions for future work.

Appendix A reports a list of publications related to the work shown in this thesis.

9

RELATED WORKS

To define an advanced SLA management strategy in Cloud environment is necessary
to understand how is the trading and composition of service agreements in different
circumstances and presenting their use and control over various aspects.

This chapter provides considerations about the types of service agreements pre-
sented in Cloud Computing and highlights the problem of non-standardization to
define SLAs, i.e., the lack of an unique and clear model to determine the relation-
ships between different Cloud Computing areas. In addition, we present some con-
siderations regarding frameworks of Cloud Computing and we describe the use and
representation of different ontologies that describe the different services in the Cloud.
Throughout this chapter we also present results of some surveys related to SLA man-
agement in Cloud Computing.

2.1 THE SLA IN CLOUD COMPUTING

A SLA on a Cloud Computing service must be negotiated and agreed with the cus-
tomer to provide the features and requirements necessary to meet the SLO. From the
customer’s point of view an important issue is to have the assurance that all business
requirements are met in the choice of new services.

In [11] the authors state that the parameters of services, metrics and functions should
be included in a SLA and should be precisely specified in order to define the values
of the service properties. In [12] the author points out that, when we have a SLA for
cloud environments, certain topics should be clearly identified, discussed and nego-
tiated in order to ensure the protection of information and business functions. Some
of these aspects are: support for service interruption, security guarantees of informa-
tion, services and systems, procedures for incident response, auditability to implement
security, payment of compensation for losses and reliable certification (among others).

11

12

RELATED WORKS

Although the term "SLA" has become widely known and used, it is common to
find documents related to poorly written agreements with missing information and
confusing definitions. This is not good for the provider, and not good for the customer
as it gives room for discussions that could jeopardize the good relationship between the
parties, and in severe cases even cause a contract termination (in case of external service
providers) or the decision by outsourcing (in the case of domestic service providers).

We need to understand that a Service Level Agreement is much more than a docu-
ment describing service time and problem solving. This is an agreement that should
make clear all the guarantees that the service provider in relation to services that were
hired, and how these service levels will be measured, reported and improved continu-
ously. This requires the understanding of some concepts related to Cloud Computing.

Usually the Cloud structures are explored through a model "pay-per-use" [13] with
guarantees provided by SLAs [14]. According to NIST - National Institute of Stan-
dards and Technology [15], the cloud computing concept is "a model for enabling
network access, convenient, on-demand to a shared pool of computing resources (such
as networks, servers, storage, applications and services) that they can be rapidly pro-
visioned and released with minimal management effort or interaction with the service
provider".

Furthermore, the service models in the Cloud Computing may vary according to
the nature of the technology offered by providers. According to [16] the architectural
models can be commonly referenced by the acronyms "laaS", "PaaS" and "SaaS". We
can describe these architectures with the following settings:

e laaS - Infrastructure as a Service It is the model that is the provision processing,
storage, networking and other computer resources that allows the user to exe-
cute and implement any software [15]. The user does not manage or control the
cloud infrastructure where the service is provided, but have control over the op-
erating system, installed applications and limited control over the network com-
ponents. The service provider manages all infrastructures, while the customer is
only responsible for other aspects of system deployment.

o Paa$ - Platform as a Service is a service model of Cloud Computing that allows
customers to implement and run infrastructure applications in the Cloud. These
applications can be created using languages, libraries, services and tools sup-
ported by the service provider [15]. The user has no access or control of cloud in-
frastructure including network, servers, operating system or storage. Compared
to traditional environments of application development, the use of PaaS strategy
may result in a reduced development time and offers dozens of tools and services
that allow rapid scalability application [17].

e SaaS - Software as a Service is a model that provides software systems for spe-
cific purposes that are available to users from multiple devices through a client
interface. In the SaaS architecture the users do not manage or control the in-
frastructure they directly access the application [18].The only responsibility of
the users is send and manage the data that the application will process and the

2.1 THE SLA IN CLOUD COMPUTING

stages of interaction with the application. Thus, new features can be automati-
cally incorporated into the software systems without users noticing these actions,
making transparent the development and updating of systems. Everything else
is the company’s responsibility that provides the service [19].

The companies began to adopt Cloud Computing when they realized that this shared
infrastructure would reduce costs and make the process more efficient. Since compa-
nies do not need a large investment in equipment, manpower or expensive licenses, it
is more advantageous to buy a custom package and pay only for what is used. The fact
that everything is turning into a "service" is the essence of what is the XaaS (everything
as a service): this concept encompasses all the other concepts and reflects a trend in
IT in recent years that is turning products into services [20]. Although all architectures
generally follow the designs described, it can be said that each service provider has
a number of characteristics which vary from provide or not provide all models, the
supported programming languages and other forms of services.

Analyzing the services offered, we can state that the main providers of commercial
cloud services are Amazon (Amazon Web Services - AWS) [5], Google (Google App
Engine - GAE) [21] and Microsoft (Microsoft Windows Azure) [22]. This statement is
reinforced by name and size of the organizations involved and and by the potential
investment to become the leader in this sector [23]. We describe these three service
provides as follows:

Amazon Web Services - AWS provides the most complete set of support cloud com-
puting services [24], even though commercial platforms are the oldest ones (launched
in 2002). The Amazon Web Services consists of a set of systems, among which we can
highlight processing, storage and monitoring. Amazon AWS can be classified as laaS.
The used processing service is the Elastic Compute Cloud (EC2) [25]. It is responsible
for the provision and management of virtual server instances on Amazon’s infrastruc-
ture. EC2 allows full control of instances of systems, being able to access and interact
with each one of these, similar to conventional machines [26]. Is possible also choose
the characteristics of each instance, such as operating system, software packages and
configurations of machines, such as CPU, memory and storage.

Microsoft Windows Azure is Microsoft’s proposed computing services in the Cloud.
The service consists of a platform (SaaS) for running applications. The platform is com-
posed essentially of three major components that form the core of the service; they are
the computing units, storage space and the Fabric. The latter is a software responsible
for managing and monitoring all resources of the data center, such as servers, load
balancers, switches, routers. This component is also responsible for the management
process of the application life cycle and maintaining satisfactory levels of services [27].

Google App Engine is the platform (PaaS) development that enables Web applica-
tion being available on Google’s infrastructure. This platform has many features for
developers such as support for Java and Python languages, application models, APIs
for integration with Google features and providing an environment with automatic

13

14

RELATED WORKS

load balancing and adjustments [28]. Google also offers services ranging from systems
for sending emails and editing images to APIs for authentication using an integrated
account with Google, scheduling functions, cache and a recovery URL.

Several open source technologies are behind the commercial computing cloud ser-
vices [29]. Therefore, there are community efforts to create middleware open source
to cloud platform. These efforts include the softwares Eucalyptus, OpenNebula and
Nimbus.

Eucalyptus: was developed by the University of California. Eucalyptus is an open
source infrastructure that recreates Amazon’s EC2 from the APIs provided by Amazon
service [30]. This allows the customer to have its own structure Cloud (Private Cloud)
and can scale to Amazon’s service during a "peak demand".

A private cloud with Eucalyptus consists of at least one host and one or more clients
or nodes. According to [31] the Eucalyptus architecture consists of four parts. 1) Cloud
Controller (CLC): Top level that controls the cloud as a whole. 2) Storage Controller
(Walrus): Top level that manages data traffic in and out of the cloud. 3) Cluster Con-
troller (CC): intermediate level which is the communication bridge between CLC and
NC. 4) Node Controller (NC): lower level controls instances of virtual machines in the
nodes.

OpenNebula: is a set of open source tools to create private and hybrid clouds [30].
Just as Eucalyptus, it supports Amazon EC2 and elasticity. The OpenNebula is also
modeled in a classic cluster structure [32]. A master node makes the queuing of tasks,
performs scaling and submits jobs to the cluster machines. The work nodes provide
the computational power to process jobs sent by the master node.

In OpenNebula it is also possible to add new work nodes and transfer instances of
virtual machines between nodes. The architecture can be divided into three lines. 1)
Tools: developed management tools using the interfaces provided by the OpenNebula
core. 2) Core: contains the main virtual machine, storage, networking for Virtual Ma-
chines (VMs) and hosts management components. And 3) Drivers: drivers for different
VM, storage drivers and monitoring drivers and cloud services to the core.

In addition to allowing the creation of private and hybrid clouds, OpenNebula al-
lows creating public clouds, where users can access the infrastructure through public
APIs compatible with AWS.

Nimbus: similar to OpenNebula, it implements the AWS APIs. It specifically targets
the scientific community [30]. The Nimbus offers features relevant to the community.
It can be integrated into the Portable Batch System and Sun Grid Engine. Both tools
are widely used by the scientific community to process tasks in large distributed in-
frastructures. The Nimbus offers features such as dynamic creation of virtual machine
clusters [33]. It implements a compliant storage engine with Amazon S3 called Cumu-
lus, designed to be used primarily as a repository of virtual machines; however, it is
also possible to use it independently.

2.1 THE SLA IN CLOUD COMPUTING

Considering the Cloud Computing definition in [34], the authors draw attention to
the need to guarantee the supply of services in the cloud using Service Level Agree-
ments (SLA). Cloud Computing gives users less control in the provision of services, so
they need to take precautions in order to not suffer poor performance, long periods
of inactivity or loss of critical data. The SLA becomes therefore an important part of
cloud service delivery model [35].

By definition a SLA is a formal document negotiated between the parties involved
in hiring a service [36]. A SLA aims to specify the minimum acceptable for the pro-
posed service and is essential for managing the quality of services provided. A SLA is
designed for each individual service and is made prior to purchase, before being in-
voked and used. According to [37] a SLA should include a description of the services,
the guarantees given by providers and the actions and penalties to be observed in case
of violation of these guarantees.

Within the SLAs there are SLOs (Service Level Objectives), which describe the actual
topics to be observed and measured in a SLA. A SLO is a requirement that the service
provider must offer. According to [38] the descriptions of SLOs highly depend on the
service architecture to be provided.

Considering the presented concepts and the generalization of service agreements we
can then present the life cycle of a SLA as the steps in [39]:

e Negotiate: An initial SLA is negotiated to document the desired requirements of
the service. The customer and the service provider, which are the parties involved
in the process, must accept the terms of the SLA that links them. They must
also detail the responsibilities of each party and the resulting consequences of
violation of the rules. This negotiation can consume lot of time representing a
long process. In an automated SLA, the availability of an interface where the
parties can discuss conflicting points of SLA can generate a quick agreement,
benefiting more quickly to all;

e Start: The service is configured and started to meet the SLA. When a provider
accepts an agreement, it must put in a queue and use a scheduling policy to set
the order that will meet the services. In addition, the provider must also consider
how to optimize the use of resources and how to preserve the QoS parameters
that are guaranteed by the SLA. In this scenario, it is very important to consider
the possibility of the arrival of new service requests and their priorities, even
being already running other tasks, to meet them with the resources that meet the
requirements as appropriate;

e Evaluate: The executions of services are monitored and evaluated to ensure that
the terms of the SLA will be met. Considering the fact that a provider began
providing access to resources, it should monitor the operation of these resources.
The monitored information can be used to verify that the QoS attributes defined
in the SLA are being fulfilled. Those involved that it should not only be interested
in knowing only if a task is being performed correctly. Other information such

15

16

RELATED WORKS

as breach of contract or usage statistics are also relevant to the verification of the
SLA.

Based on this we can say that the identification of relevant information is important
to describe faithfully the process. At any time, one of the parties to the contract may
want to change the resource usage policies, typically to comply with some external
demand arising from changes in context. Considering that changes will always exist
while the system is running, it is important to consider this aspect, but despite the
environment subject to change the behavior of processes should remain unchanged.
That is, we need to ensure that after any migration, addition or removal of the system
resources will continue to function properly. The use of resources must obviously gen-
erate a list describing which were used, to what extent and for how long, as well as
relating the values agreed for the use of each of them in accordance with the definitions
set forth in the SLA.

2.2 APPROACHES IN SLA COMPOSITION

From the point of view of customers, the existing SLA in commercial clouds like Ama-
zon and Microsoft are simple because they are static and pre-defined by the providers
[40]. The life cycle of the SLA will be described below: The first step performed by the
customer is to find service providers according to their needs. The customers find the
provider by searching the Internet, and then exploit the suppliers web site to collect
more information. Cloud service providers offer static document of SLA. In this case,
the following steps are the selection of monitoring and tracking service that normally
occur with third-party tools [41].

Considering the SLAs in commercial clouds [42] and [6] describes that Amazon
provides its users a SLA related only to availability. Also according to [6] in Windows
Azure from Microsoft, the response time is considered, but this only occurs in some
of the services. Besides not cover all the metrics needed for computing cloud services,
these SLA proposals are just static documents.

In cloud computing middleware Eucalyptus provides a SLA based on regions or
availability zones [31]. Similar to availability zones in Amazon AWS, if a SLA is vio-
lated is possible to migrate the services to other availability zones. However, there is
no integrated monitoring to the SLA and the migration of services is not automatically
triggered. Similarly, monitoring of Cloud Computing middleware only provide infor-
mation on the state of VMs if they are pending, active or off [30]. For more effective
monitoring is necessary to retrieve information directly from hypervisors. These de-
liver information as amount of CPU used, amount of memory available and used, and
network traffic.

It can be observed that the existing solutions of cloud computing provide some level
of SLA and service quality, but do not present dynamics in the negotiation of the SLA.
The solutions of these SLAs are static. Cloud services are subject to load fluctuations
and SLA violations are more likely to happen during these fluctuations. The nature
of these variations are unpredictable and therefore a static SLA to withstand these
conditions will not be efficient.

2.2 APPROACHES IN SLA COMPOSITION

In the academic community, there are efforts to create protocols to automate the cre-
ation and monitoring of SLAs in Web services. The WSLA (Web Service Level Agree-
ment Language) [43] is a protocol to define SLAs based on Web Services and XML,
where it creates an XML Schema that includes the definition of the parties involved,
the service guarantees and the service description. The WSLA has the following main
components: "Parties”, "Service Definition" and "Obligations" [38]. Parties describes
who is involved in the service (client or provider). Service Definition describes the
services connected to the SLA, representing the understanding of both parties on the
parameters of the described service. Finally, Obligations defines the level of service that
must be guaranteed with respect to the parameters defined in the Service Definition.
The WSLA allows management of penalties or compensation when violations occur.
However, it assumes that the SLA is already created and not allow the negotiations to
create the SLA.

In [44] the authors specify an XML-based protocol, the WS-Agreement (Web Services
Agreement Specification), for the establishment of Service Level Agreements and guar-
antees of offers between a provider and a Web service client. In this specification, an
agreement involves multiple services and includes attributes for the parties, to refer
previous agreements, service definitions and terms of warranty [45]. The specification
is divided into three parts which can be used to specify an arrangement, a structure
for specifying a contract template and a set of types of transactions for managing the
agreement life cycle, including the creation, validity and monitoring states.

These protocols generally only handle the negotiation of a simple service with the
basic message exchange. Auto-negotiation of multiple services and multiple steps still
lacks maturity. In addition, both protocols are specific to Web Services and were not
applied to Cloud Computing scenarios [46].

According to [47] most commercial providers offers SLAs for cloud computing ser-
vices only as texts and transfers the activity of monitoring and controlling the SLA for
customers. The authors present a new language for the composition of Service Level
Agreements in Cloud named SLAC and add a comparison between the most known,
which are: 1) SLA* [48] used in general purpose services, 2) SLAng [49], that is a do-
main specific language for IT services, 3) WSLA [43], 4) WSOL [50], an XML notation
compatible with the WSDL (Web Services Description Language), 5) WS-Agreement
[44] and 6) SLAC [47]. In the work presented by [46], the authors propose the Cloud
Service Level Agreement (CSLA) which is based on WSLA and increased the number
of comparison performed by [47]. As a result of this comparisons, the authors present
the following information (Table 2.1):

17

18

RELATED WORKS

Table 2.1: Comparison of the SLA languages (adapted from [46])

Features WSOL | WSLA | SLAng | WS-A | SLA* | CSLA | SLAC
Cloud Domain - - - - S} S 2
Cloud Service Models - - - - S ® S
Multi-Party - - - - - ® d
Broker Support - - - - - S D
Ease of Use S - O S S @ O
Business Metrics S) S) S S S S 2
Price Schemes O © - S S S @

According to the results presented in [46] and summarized in Table 2.1 we have: ®
represents a feature that is covered in the language, © is a partially covered feature
and - when no support is provided for the feature.

As we can see by the results shown in Table 2.1, none of the SLA composition lan-
guages meet all the specifications required by the authors, especially with regards to
service models in Cloud, ease of use and support for brokering. This shows that these
languages are not enough to meet the new demands of the market, considering the
transparency between the parties and the control needs of customers.

In addition to these SLA composition languages it is also important to relate the use
of frameworks that seeks to provide SLAs for Cloud Computing services or, failing
that, models that provide SLAs for Web Services.

2.3 FRAMEWORKS IN CLOUD COMPUTING

The frameworks discussed in this thesis were analyzed in relation to hiring interface,
level of expertise of the metrics or SLOs, if has dynamic aspects, it has integrated mon-
itoring and work with multiple metrics. In this sense, scientific proposals were chosen
to have characteristics that somehow meet the requirements, but differ in important
ways to the comparative analysis of the models.

Among the considered works, there are the LoM2HiS (Low Level Metrics to High
Level SLAs) [51], the DeSVi (Architecture for Detecting SLA Violations in Cloud Com-
puting Infrastructures) [52], the SRV (SLA-based Resource Virtualization) [53], and an
approach to a general SaaS architecture for scientific software [54]. Finally, a compari-
son is made between the studied models and we added the results of different surveys
found in the literature.

Some frameworks in the area of Cloud Computing were disregarded as is the case of
CASViD [55] which is a framework that considers only the monitoring and detection
of violations and the framework presented in [56] that only considers security aspects.

2.3 FRAMEWORKS IN CLOUD COMPUTING
2.3.1 LOM2HIS
The LoM2HiS [51] allows the hiring of SLA from QoS requirements, also called high-

level requirements, such as response time rather than low-level requirements or in-

frastructure such as amount of CPU or memory. Figure 2.1 shows the architecture
LoM2HiS.

FoSlIl Infrastructure

LoM2Hi% Framework 1. Mappings
Agreed SLA Mapped I Service
Repository Metrics I Provider
7. Get/Store
2. Service I 3. Get SLA] Values
Request/
. Response Services
Service " " :
Customer Run-time Monitor 8. Notifications
-
c
5. Push £
Measured 6. Resource 2
Metrics Status E
]
Host Monitor " g
B
- E
4. Raw Metrics w
9. Rules
Resources (Hardware) —

Figure 2.1: LoM2HiS Architecture (adapted from [51])

In Figure 2.1 we have that the service component is the application layer, where ser-
vices are implemented using a Web container and the run-time monitor is a component

designed to monitor the services based on negotiated and agreed SLAs [51]. Following
the steps set out in [51] we have:

Step 1: After agreeing to terms of Agreement the service provider creates mapping
rules for LoM2HiS using Domain Specific Languages (DSLs) that are simple languages
that can be adapted to a particular problem domain;

Step 2: The client requests the delivery of an agreed service;

Step 3: The run-time monitor loads the SLA repository with the SLA agreed;

Step 4: The provision of services is based on the available computing resources. The
metrics of these resources are measured by monitoring agents;

Step 5: The host monitor extracts the metrics and submit to the run-time monitor;

Step 6: The host monitor reports the status of the resource to the enactor component;

19

20

RELATED WORKS

Step 7: Upon receipt of the metrics, the run-time monitor and the low-level metrics
monitor compares based on pre-defined rules to determine the equivalent SLA. The
result is stored in a mapping store;

Step 8: The run-time monitor uses the values mapped to monitor the status of exe-
cution of the services. If there are threats of future violations of the SLA, the enactor
component is notified for preventive action;

Step 9: The decisions of enactor components run directly on the available resources.

The LoM2HiS not have arrangements for the negotiation of SLA since it assumes that
the negotiation process has been completed and the SLAs already previously agreed
are stored in the service provisioning repository.

2.3.2 DESVI

Regarding the violation of SLA, the DesVi framework [52] performs the detection of
SLA violations by monitoring cloud computing infrastructure resources. The DeSVi
allocates the resources needed for the service based on the user’s request and orga-
nizes the implementation thereof within a virtualized environment. Once the level of
service is pre-set, it is possible to detect potential SLA violations. According to [52],
knowledge bases are used to manage the SLA violations and these knowledge bases
are implemented using learning techniques. In [52] the authors also present the exe-
cution results in heterogeneous environment showing that DeSVI is able to monitor
and prevent SLA violations, considering workloads and different measuring ranges.
The service life cycle of DeSVi includes activities such as trading SLA, allocation of
resources, resource monitoring and detection of SLA violation. The DeSVI architecture
is shown in Figure 2.2.

2.3 FRAMEWORKS IN CLOUD COMPUTING

Users

// I\'l 1. User Service
— \ ,-"'I Request/Response

Run-Time Application
Monitor Deployer

a A
B 2. Resource
= Allocation
= L
=
¢
"g LoM2HiS | [VM Deployer
c A
3. VM
configuration
k.
[Host Monitor] [Host Monitor]
[A K -
L 3‘ : _ ¢\ 4. Metrics
{ ———sFalover «— ¢ " Monitor
o]
v V] v
Resources Resources

Figure 2.2: DeSVI architecture and interaction between components (adapted from [52])

In the Figure 2.2 the top layer is the users who request services to a service provider
and according [52] the interaction can follow the following steps:

Step 1: The user requests service provisioning to the cloud provider;

Step 2: The provider handles user service requests based on the SLA negotiated and
agreed previously. The application allocates the necessary resources for the requested
service and organizes its deployment on VMs;

Step 3: Then it is performed the deployment and configuration of virtual machines;

Step 4: The host monitor notes the resource pool metrics comprising virtual ma-
chines and physical hosts. LoM2HiS manages the relationship between the metrics of
resources and SLAs.

In Figure 2.2, the redundancy in the monitoring mechanism is indicated by failover
arrow [52]. The host monitor uses monitoring agents that are incorporated into the
resources to monitor the metrics. Such agents transmit the monitored values for the
other players on the same set of resources, enabling access to the status of resources
for any service.

The DeSVI has the capacity to carry out the monitoring and detection of SLA viola-
tions with automatic deployer of VMs. However, the DeSVI does not address applica-
tions with large variability of resource consumption [52]. In addition, the DeSVI does
not address monitoring and SLA violation in the level of applications (only infrastruc-
ture).

21

22

RELATED WORKS

2.3.3 SLA-BASED RESOURCE VIRTUALIZATION (SRV)

The SRV [53] has three main components: a meta-trading component for the manage-
ment of a generic SLA, an intermediate component to a diversified management and an
automated deployment service that uses virtualization capabilities. Figure 2.3 shows a
service architecture that illustrates these components.

User
MN
MB
B.r Bn
IEN §1 -
S|R R R

Figure 2.3: SRV Architecture (adapted from [53])

In Figure 2.3 we have "User" that is the person who wants to use a service. "Meta
Negotiator" (MN), a component that manages the level of service. This component
mediates between the user and the Meta-Broker, selects the appropriate protocols for
agreements and negotiating the creation of the SLA and the treatment of violations.
"Meta-Broker" (MB) component that has the function of selecting an agent capable
of deploying a service with the requirements specified by the user. "Broker" (B) that
interacts with the physical and virtual resources and when the service needs to be
deployed it interacts directly with ASD. Auto Service Deployment (ASD) installs the
required service on the selected feature on demand. "Service" (S) is the service that
users want to deploy and/or run. "Resources” (R) are the physical machines into virtual
machines can be deployed/installed.

This architecture shows that the negotiation of the agreement and service deploy-
ment are closely related. The SRV contains a base model for negotiating the SLA,
however, in addition to treating only the negotiation it is generic for virtualized en-
vironments and has not been evaluated for Cloud Computing environments.

2.3 FRAMEWORKS IN CLOUD COMPUTING

2.3.4 SLA FOR SCIENTIFIC RESEARCH CLOUDS

In [54] the authors propose a SLA architecture for SaaS scientific research clouds using
algorithms estimates that are able to assess the viability of the SLA in advance the
use of services. In this work the authors use machine learning principles to create
algorithms that control the provisioning of virtual machines to maintain the SLAs.
Figure 2.4 shows the SLA Saa$S architecture for scientific research clouds.

Costs
— :_}
User __i[_____‘“-:]
N_sLo JE/;“? }

Web Services

Cost
Agent | Estimation
| ——

[Sensors | [Actuators|

|\ Cloudapl / |

!

L) /

"'\QOS XFrovisioning
\ i,
\ ¥
B laas
Storage Prowider

Figure 2.4: Architecture for Research Clouds (adapted from [54])

The cloud infrastructure can be seen at the bottom of the Figure 2.4, where an IaaS
provider offering instances of virtual machines within their data center. Just above, a
layer called cloud API encapsulates access to infrastructure. The storage containing
the data of the applications are located within the cloud. In the next layer, there are
sensors and actuators. The components interact with the cloud and running instances.
Especially sensors are dependent on the application because they are used to control
the state of application. Actuators are used to create, modify, configure and terminate
instances of virtual machines. There is also an agent and a cost estimation module.
The agent handles the service while running and ensures the service agreement. The
cost evaluation module is initially used to check the feasibility of user requests and
estimate costs. On top of the architecture provided a Web Service interface, providing
access from a user interface and used to communicate with the agent and cost estima-
tion module. The estimated costs are presented to the user and the architecture also
provides the allocation of resources in advance. After this, the Agent module invokes
the work. Submission implies that the user and the service provider agree with the

23

24

RELATED WORKS

SLA. The task of the agents is to enforce compliance with the SLO and minimize the
resources used.

This architecture was designed for scientific research SaaS providers and HPC appli-
cations (High Performance Computing). In this case, a job is not interrupted until it
is completed. Thus, the SLA can only be accepted once and is valid until the end of
execution of the work. There is no dynamic renegotiation of the SLA.

2.3.5 COMPARISON OF STUDIED FRAMEWORKS

Considering the frameworks studied in this section, we highlight some aspects: hir-
ing interface, level of expertise of the metrics, it is dynamicity, integrated monitoring,
which cloud model is served, strengths and weaknesses.

The SLA hiring interface refers to how the user interacts with the model in hiring
the SLA. Requirements or application metrics are usually expressed in low-level or
technical language, such as packets, number of bytes received and sent. Furthermore,
these metrics can be measured using different units of measurement. Since the goal is
to compare how the requirements of customers and providers are negotiated, different
units of measurement and expressed in technical language can hinder this comparison.
In this sense a requirements of speech interface to QoS parameters, also called the
highest level, is expressed in order to be less technical and how it is directed to the
evaluation of quality, allowing comparisons with less complexity. The LoM2HiS and
the SLA for scientific research clouds have high-level hiring interface.

Considering the hiring metrics used, none of the evaluated models have specific
metrics for cloud computing. Furthermore, the models studied using the metrics in
isolation from each other. A qualification system could prioritize actions when there
are violations of specific metrics by assigning different weights, priorities or degree of
importance to a group or type of metrics.

The dynamicity indicates whether the model allows the negotiation and renegotia-
tion of the SLA dynamically, following the elastic behavior of the Cloud. Between the
models studied the DeSVI is the only one that is designed to handle the life cycle of
the SLA, including trading activities, allocation of resources based on monitoring and
forecasting of violations using learning techniques.

Except for the SRV, the studied models perform monitoring of integrated SLA re-
sources. A summary of this evaluation can be seen in Table 2.2, which are also given
the strengths, weaknesses and the cloud model where these frameworks are used.

Table 2.2: Comparison of studied frameworks

2.3 FRAMEWORKS IN CLOUD COMPUTING

7] ("]
Framework E £ é £ %D g =
k= p= g § & $ g
A p & = o
LoM2HiS high-level | Only Static yes | Allows Focus on lan- | JaaS
infras- the SLA | guage parser for
tructure, contract the requirements
does not using for the metrics,
work with higher does not allow
multiple level the negotiation of
metrics language the SLA
DeSVI low-level | Only Dynamic yes | Automatic | Does not address | IaaS
infras- but not deploy- applications with
tructure, supports ment of | large variabil-
does not | elasticity VMs ity of resource
work with consumption,
multiple does not address
metrics monitoring and
SLA violation in
the application
level
SRV low-level | Generic Static not | Negotiation| It is generic for | N/A
for vir- virtualized envi-
tualized ronments so it
environ- does not address
ments, cloud specificities
does not
work with
multiple
metrics
SLA for scien- | high-level | Does not | Static yes | Cost Esti- | Does not address | SaaS
tific research allow the mate dynamic negotia-
renegoti- tion of SLA
ation of
the SLA,
does not
work with
multiple
metrics

It is possible to realize that the framework LoM2HiS [51] allows the transformation
of application requirements (low-level) in quality requirements (high-level) for hiring
the SLA, but does not allow the negotiation of the SLA. The DeSVi [52] allows the
detection of SLA violations through monitoring capabilities, but does not address large

resource consumption variability (elasticity). The framework SRV [53] is a base model

for SLA negotiation, but was not applied to cloud computing. The SLA architecture

for search cloud [54] was designed for SaaS providers of scientific research and HPC

applications (High Performance Computing). In this case a job usually to be started is

25

26

RELATED WORKS

not interrupted until it is completed. Thus, the SLA can only be accepted once and is
valid until the end of execution of the work.

2.4 SLA MONITORING

To ensure the life cycle of the SLA, it needs to be checked periodically [57]. For this
it must be monitored to ensure it is still valid and feasible. The result of monitoring
will inform the SLA may be terminated or renegotiated. This feature should lead to
optimization of the execution of an instance of an application, task or service based on
SLA parameters in order to maximize the likelihood of SLA satisfaction. The requests
submitted to a SLA, are processed to select the best host among all available. The best
setting for a host depends on the state of a number of variables in the system, such as
available resources, the resources that are needed to meet the SLA requirements and
further optimization goals.

Some goals are directly related to the knowledge of the requirements of a SLA,
such as reducing the completion time, minimizing costs, maximizing the probability
of success [58]. While other objectives are related to the system status, for example
the workload balancing. The monitoring process of running an instance of a service,
related to the definitions of a SLA, is meant to verify whether the contract is being
fulfilled or not. During execution, if any parameter associated with the SLOs, which
are effectively the topics to be measured within the SLA, reaches a threshold value,
identifies the threat and recovery actions can be activated in order to preserve the SLA
or even minimize the consequences of an effective breach of contract.

An interesting option for monitoring is to send threat alerts to the provider enabling
him to take steps to try to prevent the violation. Another option for this feature is the
ability to provide information to the user who signed the SLA, informing it about the
current status of the SLA, making the process more transparent.

To demonstrate these features we present a survey on Cloud monitoring that was
carried out in [59] where the authors made comparisons between commercial monitor-
ing platforms and open source monitoring platform. To perform these comparisons the
authors found features that must be submitted by monitoring platforms. According to
[59] these features are:

e Scalability: A monitoring system is scalable if it can cope with a large number of
probes (according to [60]);

e Elasticity: A monitoring system is elastic if it can cope with dynamic changes of
monitored entities [60];

o Adaptability: In [60] the authors states that a monitoring system is adaptable if it
can adapt to varying computational and network loads;

o Timeliness: A monitoring system is timely if detected events are available on time
for their intended use [61];

o Autonomicity: According to [62] an autonomic monitoring system is able to self-

manage its distributed resources by automatically reacting to unpredictable changes;

2.4 SLA MONITORING 27

o Comprehensiveness: A monitoring system is comprehensive if it supports different
types of resources, several kinds of monitoring data, and multiple tenants [63];

e Extensibility: It is extensible if such support can easily be extended [64];

e Resilience: According to [65] monitoring system is resilient when the persistence
of service delivery can justifiably be trusted when facing changes;

e Reliability: A monitoring system is reliable when it can perform a required func-
tion under stated conditions for a specified period of time [66];

o Auvailability: According to [66] a monitoring system is available if it provides ser-
vices according to the system design whenever users request them;

e Accuracy: A monitoring system is accurate when the measures it provides are as
close as possible to the real value to be measured [59].

The result of the comparison of these features are presented in Table 2.3.

Table 2.3: Comparison features of cloud monitoring platform (adapted from [46])

[72)
o &
> 2 >,
Plp 8 3E s
= = b= c o=t a = E'_": — 3
Platform < é § = g 5 —% % 2 g5
< s 2 E §|E| B8 =F RS
ClEH|IS B S B %L E<
@ < g4 <
o
O
CloudWatch [67] @ @ D
AzureWatch [68] | @& & & <)
Monitis [69] &)
LogicMonitor [70] | & | @
Aneka [71] D | D
GroundWork [72] @
Nagios [73] &)
OpenNebula [74] | @ &
Nimbus [75] @
PCMONS [76] @
DARGOS [77] @ <)
Hyperic-HQ [78] | @ ®
Sensu [79] & @

The symbol @ represents a feature covered by the monitoring platforms, as we can
see from the results shown in Table 2.3, none of the monitoring platforms meet all

RELATED WORKS

established features. A complementary work to this is presented by [80]. Figure 2.5
shows ipsis litteris the results presented by [8o0] once identified the realization of com-
prehensive surveys in the area of Cloud Computing (this is not the scope of this thesis).
These results provide the basis for the identification of gaps in SLAs management in
Cloud.

Cloud based monitoring tool analysis.

Capability/features Percentage CloudKick Nimsoft ~ Monitis ~ Amazon Azure PCMONS ~ Boundary ~ mOSAIC CASVID

implemented Cloud Watch Watch app.

monitor

Scalability 78% yes yes yes yes yes no yes no yes
Portability 56% limited ~ yes yes no no no yes yes yes
Non-intrusiveness® 94% yes yes yes yes yes limited yes yes yes
Robustness 67% yes yes yes yes yes no yes no no
Multi-tenancy 44% yes yes no yes yes no no no no
Interoperability 33% no no no no no yes no yes yes
Customizability 100% yes yes yes yes yes yes yes yes yes
Extensibility 100% yes yes yes yes yes yes yes yes yes
Shared Resource monitoring ~ 78% yes yes yes yes yes no yes no yes
Usability* 94% yes yes yes yes yes limited yes yes yes
Affordability 50% limited limited limited no no yes no yes yes
Archivability 18% yes yes yes yes yes yes yes no no
Verifiable measuring 0% no no no no no no no no no
Resource usage metering 100% yes yes yes yes yes yes yes yes yes
Service usage metering 100% yes yes yes yes yes yes yes yes yes
Service KPI monitoring 0% no no no no no no no no no
QoS 89% yes yes yes yes yes no yes yes yes
Risk assessment 92% yes yes limited ~ yes yes yes yes yes yes
Component status 100% yes yes yes yes yes yes yes yes yes
identification
Service load monitoring 100% yes yes yes yes yes yes yes yes yes
Configuration verification 78% yes yes yes yes yes yes no no yes
Configuration drift 78% yes yes yes yes yes yes no no yes
identification
Configuration effect 100% yes yes yes yes yes yes yes yes yes
monitoring
Security breaches monitoring ~ 56% yes yes no yes yes no yes no no
User access control 67% yes yes yes yes yes no yes no no
User activity monitoring 0% no ne no no no no no no no
Secured notification 33% no yes no yes yes no no no no
Secured storage 33% no yes no yes yes no no no no
Service dependency 1% no no no no no no yes no no
Percentage covered by tools 78% 87% 70% 85% 83% 52% 73% 54% 69%

* We note that some of these capabilities are somewnhat subjective. With that in mind the evaluation presented here is based on the weight of opinion as reflected in the
reviewed literature.

Figure 2.5: Survey results presented by [80]

As we can see in Figure 2.5 in this work the authors added more characteristics, such
as: "Shared Resource Monitoring", "Service KPI Monitoring", "Service Dependency”
among others. In addition to performing the comparison, they added other monitoring
tools and compared with a cloud resource ontology, i.e., mOSAIC [81] [82].

Despite the research carried out yet they are perceived gaps in relation to the life cy-
cle of a SLA especially when they are considered different metrics. This can be further
strengthened by the lack of standardization in the sense that each type of service in
Cloud has its peculiarities. So we must understand the market demands and the clever
use of any available resource in the cloud environment.

2.5 MANAGEMENT OF CLOUD PROPERTIES

2.5 MANAGEMENT OF CLOUD PROPERTIES

The increasing need for flexibility and scalability in the use of computing resources
considering attractive costs and independence of devices results in the search for the
adoption of Cloud Computing environments in several areas [3]. Although the benefits
envisioned for this migration can be huge, this computing paradigm still presents a
large number of uncertainties regarding system faults and their management. As a
results of these uncertainties, there is a considerable concern raised by customers [83],
especially when it dealing with the reliability and availability of services in Cloud
Computing [84].

Some studies reported in the literature, such as [85] and [86] also identifies that
the use of commodity components can expose the hardware used in Cloud environ-
ments to conditions that were not originally designed. Furthermore, due to the highly
complex nature presented in an infrastructure of this type, many data centers, even if
carefully manipulated, managed and protected are subject to a large number of fail-
ures. [87]. Of course, the occurrence of these failures reduces the overall reliability and
availability of the service. As a result, fault tolerance techniques become very impor-
tant for customers and service providers to ensure proper and continuous operation of
the system.

According to [16] Cloud Computing architecture comprises four distinct layers, that
are:

1. Physical resources, like most computing architectures are considered the lowest
layer of the stack, on it are embedded virtualization tools to form the layer of
Infrastructure-as-a-Service (IaaS);

2. The IaaS layer typically uses virtualization technology to maximize the use of
physical resources and ensure the quality of services;

3. The layer above the IaaS connecting all the user-level middleware tools is known
as Platform-as-a-Service (PaaS);

4. Applications at the user level that are built and hosted on the Paa$S layer comprise
the Software-as-Service layer (SaaS).

The failure occurrence in a particular layer causes impacts on the services offered
by the layers above it [87]. For example, if faults occur in the physical hardware or
virtualized structure of the IaaS layer, these failures will affect the majority of services
in PaaS and SaaS layers. Similarly, a failure in a middleware in the PaaS layer can
produce errors in the instantiated software services in the Saa$S layer.

As these layers are interdependent, it is necessary that they are linked between each
other as well. To do so, in this section, we present some approaches related to metrics
in Cloud SLA and the basic concepts relating to its modeling, are also discussed the
levels at which the semantics can be express and made a description of ontologies that
describe the different services available in Cloud.

29

30

RELATED WORKS

2.5.1 METRICS IN CLOUD SLA

As seen earlier in cloud computing there are three levels of service, IaaS, PaaS and
SaaS. In [37] the authors list the specific and most important metrics for a cloud com-
puting scenario. As can be seen in Table 2.4, a model of SLA needs to consider these
metrics and the terms of each level of service showing a list of requirements that can
be comparable in terms of SLA.

Table 2.4: SLOs or QoS requirements for clouds (adapted from [37])
Cloud Model | Metrics

IaaS CPU quantity, memory size, bandwidth, boot time, stor-
age capacity, maximum and minimum number of servers
per user, time to increase and decrease the number of
servers

PaaS Integration with other platforms services, scalability, cost,
versions of servers and browsers, simultaneous number
of developers

SaaS Usability, customization for different types of user, time
available services, capacity for a large number of users

General Availability, performance, reliability, monitoring meth-
ods, service cost and how is it calculated, encryption,
security, communication (flow, load balancing) support
methods to services, privacy, location and legislation

It should be noted that when dealing with XaaS we will have infinite possibilities. In
many works, terms typically treat the IaaS model. However, it notes that the terms of
the SLA to PaaS and SaaS Clouds are not widely treated. This is because these specific
metrics are qualitative, such as the "reliability” and "usability" and therefore difficult
to compare.

Another problem encountered in the treatment of multiple metrics concerning how
to quantify the relative importance of each of them, plus the fact that they possess dif-
ferent degrees of importance. Although it is not possible to assert that there is a com-
monly accepted method for setting weights, there are several proposals in the literature
for these procedures. Generally the techniques for comparing metrics in Cloud Com-
puting are used for selection of Cloud services based on QoS requirements. Among
these techniques we can mention the order of the metrics with the scale and distribu-
tion of points [88], the fuzzy logic [89] and the procedures based on pairwise compar-
ison with technique Analytic Hierarchy Process (AHP) [9o0]. These techniques aim to
facilitate the solution of decision-making related to complex problems. Through them,
weights and priorities are derived from a set of subjective judgments made by evalua-
tors or participants involved in the selection of services.

In [91] the authors present a survey with the evaluation of different techniques used
in the selection of Cloud Services based on metrics of QoS. The results of this work are
summarized in Table 2.5.

2.5 MANAGEMENT OF CLOUD PROPERTIES

Table 2.5: Summary of metrics evaluation techniques (adapted from [91])

Evaluated Techniques

Limitation

Ranking of Cloud Services using AHP [92]

All QoS requirements are not implemented

An approximate Markov chain model [93]

Not suitable for burst arrivals

Cloud Monitoring System for QoS [94]

Failed to calculate communication cost

Optimal resource allocation replica for maximiz-
ing revenue [95]

Not suitable for sensitive QoS applications

Generic QoS framework for Cloud workflow sys-
tems [96]

Complex problems such as monitoring and viola-
tion handling occurs

Personalized QoS ranking prediction [97]

Accuracy of ranking method has to be considered

AHP based ranking mechanism [98]

Non quantifiable QoS attributes are not used

Cloud Monitoring System for Virtualization [99]

Single QoS Parameter is considered

Software agent based automated service negotia-
tion [100]

Multiple interactions are not possible

A Queueing network model with infinite queue
[101]

Only response time is considered as a major factor

Algorithm for resource allocation [102]

Security problems occurs

A scheduling heuristic with multiple parameters
[103]

Response time and performance parameters are
not used

QoS-aware service selection algorithms [99]

Service Provisioning problems are not overcomed

Profit Balancing and pricing model for QoS [104]

Utilization is not considered for computational
cost

Multi-Constraints Path problem [105]

NP-Hard problem occurs

Delay Constrained Least Cost (DCLC) [106]

QoS constraints are not used

AHP hierarchy using SMI architecture [107]

Ranking Algorithms can be deployed to rank in-
frastructures

A framework for performance monitoring and
analysis tools [108]

After analyzing the services can be ranked

A framework to compare the performance of dif-
ferent Cloud services [109]

Authors must deployed more constraints for com-
parison

AHP hierarchy for web services [110]

VM capacity parameter is not used

Energy efficient resource allocation and schedul-
ing algorithms [111]

QoS parameters are not considered as a major con-
straints

Business Rules for maximise the revenue of
Providers [112]

Customers are not satisfied without QoS Require-
ments

Admission Control and Scheduling algorithm
[113]

Only fewer QoS constraints are considered

Other methods to define weights in comparing metrics are also cited in the literature,
such as decision trees [114], artificial neural networks [115] and genetic algorithms
[116], but these represent enormous complexity for the treatment of multiple metrics.

Decision trees, for example, become more complex as the number of factors increase.

As regards the assessment of weights, whenever necessary to express the priorities of

a particular group of metrics or criteria, the pairwise comparison method is strongly

recommended [117].

31

32

RELATED WORKS

Considering the qualitative aspects presented by different metrics and that the termi-
nology of cloud service measurements is not well defined, [118] introduces the concept
of abstract metric in combination with the concept of concrete metric. According to def-
initions presented in [118] an abstract metric is "a collection of elements that defines
the expression of a specific metric for a given metric category" and a concrete metric
is "a collection of elements that complete an abstract metric definition by linking the
metric to its primary abstract metric and assigning specific values to the rule(s) and
parameter(s) defined in the abstract metric definition".

Besides this, [118] also presents the context definition in Cloud Computing as "the
circumstances that form the setting for an event, statement, or idea, in which the mean-
ing of a metric can be fully understood and assessed".

2.5.2 ONTOLOGIES FOR CLOUD SERVICES

In order to understand the relationships between the various metrics presented on a
Cloud SLA it is necessary to understand how these metrics can be modeled conceptu-
ally and how they are described in different ontologies presented in the area. Accord-
ing to [119], conceptual modeling has been characterized in several ways. However, an
important definition that we consider in this thesis is offered by [120], which presents
the conceptual modeling as a process to formulate and collect conceptual knowledge
about an Universe of Discurse and document the results in the form of a conceptual
scheme. The Universe of Discourse refers to the set of all entities of interest being
modeled and its use is common in logic and mathematics.

This conceptualization process, promoted by modeling, aims to describe a domain
(or universe of discourse) through the entities that compose the relationships between
these entities. In [121] the process of modeling is presented in detail, including ques-
tions relating to the representation of semantic models.

A model is an abstraction of something that omits details that are not essential and
able to deal with complex situations and objects [122]. Through abstraction, some real-
world aspects are removed or simplified. The emphasis is placed on essential features,
creating a vision, that is naturally incomplete or partial, of the environment or modeled
context. Normally the modeling is done through an analysis process in which the
whole is reduced into component parts that can be addressed separately, in a simpler
way.

The conceptual modeling is the process in which knowledge of a domain is orga-
nized into levels of abstraction in order to gain a better understanding of the domain,
encapsulating details. Thus, the description of an object X in a N; abstraction level con-
tains more details than the description of the same object X in a N, level of abstraction,
if N, is at a level higher than N;.

The models, being an abstract representation, require some representation made by
signals - such as icons, images, objects, symbols and tokens. In the context of a particu-
lar model, these signals have a form and an associated meaning. The semantics studies
the aspects of meaning, while the syntax is related to the form. The representation of a
model, therefore, is made using a modeling language, in turn, has an associated syntax

2.5 MANAGEMENT OF CLOUD PROPERTIES

and semantics. A metamodel is a model that establishes the grammar of the language
used to build other models.

From the construction of a model, we can get information that is of interest, for
example, for the determination of an agreement between the parties that considers in-
formations relevant to the domain. Information is an informal abstraction [123] that
represents something significant in a certain context. The information may be repre-
sented by data. At a higher level of abstraction there is the knowledge. Knowledge can
be characterized as information combined with experience, context, interpretation and
reflection [124]. According to [125] there are basically two types of knowledge: tacit
and explicit. Tacit knowledge is that available to people and that is not formalized in
practical ways. The explicit knowledge is that which can be stored, for example, in
documents, manuals, databases or in other media.

With regard to models, formal models are constructed with formal languages, or
languages that have strict rules for its construction and interpretation. The rules for the
construction define the syntax of the language, while the rules for the interpretation
define its semantics.

The syntax works with the formal and structural relations between signs or tokens,
as well as the production of new signals or tokens [126]. The syntax of a language
involves the definition of the set of reserved words, their parameters and the correct
order in which the words are used in an expression. An XML file, for example, used
for interoperability and integration between systems, must have a precise syntax. If
syntactical rules are not observed, the file can not be processed.

The semantics studies the relationships between the system of signs and its meaning
[127]. The goal of semantics is totally different of syntax. This works with the formal
structure in which something can be expressed while the semantics is concerned with
what something means. One aspect about the semantics, computationally, is to define
a formal representation language to capture the semantics in a way processable by
machines, achieving a consistent interpretation.

According to [127] and [126] a model that has some form of formal semantics is more
expressive than one featuring only implicit semantics. One way to add some semantics
to the models is through metadata.

Metadata may exist in different levels. These levels are not mutually exclusive and
include information on the content, structure and semantics of the data. Syntactical
metadata describe no contextual information about the content, usually providing gen-
eral information (e.g., document size, creation date, etc.). Structural metadata on the
other hand, provide information about the structure of data, independent of the con-
tent. They describe how items are arranged in the document and the rules for this
organization. An XML schema, for example, shows the structural metadata of an XML
document. Metadata add semantic rules, relationships and restrictions on syntactic and
structural metadata.

Metadata describe semantic information about the data that are important in a given
context or domain, allowing a certain interpretation. Semantic data enable a way to
high precision research and allows interoperability between systems or source of het-
erogeneous data. These data are used to provide the meaning of the elements de-

33

34

RELATED WORKS

scribed by syntactic or structural metadata. An important aspect in creating a semantic
meta-model for the data, is the possibility of using the inference capability for logical
conclusions based on the meta-model, according to the semantic level adopted [126].

[126] points out that: "depending on the approach, models and methods used to
add semantic metadata four representations can be used to organize the concepts that
semantically describe the terms: controlled vocabularies, taxonomies, thesaurus and
ontologies". In this thesis we discuss the characteristics presented by ontologies, since
we use this type of representation to describe our approach to the determination of
Cloud Service Level Agreements.

In the area of computer science, an ontology defines a formal and explicit specifica-
tion of the terms of a domain and the relationships between them [128] [129] [130]. An
ontology provides a mechanism to capture the common understanding of objects and
their relationships in a certain area of interest, and provides a formal and manipulable
model of a domain. The formal specification of the meaning of the terms used enables
the creation of new terms by combining existing and allows integration with other
ontologies.

The study and the use of ontologies in software were popularized with the semantic
web idea introduced in [131]. In this article the authors present the semantic web vi-
sion "as an extension of the current web in which information is given a well-defined
meaning, enabling the cooperative work of computers and people". In this context, the
most common type of ontology consists of a taxonomy and a set of inference rules,
which allow to capture the knowledge that is not explicit in the taxonomy.

The ontologies can extend the hierarchical relationships of taxonomies, allowing hor-
izontal relationships between terms in a structure type graph. Thus, the ontology fa-
cilitates the modeling of typical data requirements of the real world. According [132]
different formalisms for knowledge representation exist for implementation of ontolo-
gies. Although components of each are different, a minimum set is common to all:

o Classes: represent domain concepts; They are defined by terms generally orga-
nized in a taxonomy.

e Relations: represent a kind of association between classes. Generally associations
are binary, with the first argument being called domain and the second argu-
ment being the limit (range). The relationships are instantiated according to the
available knowledge about the domain. The binary relationships are also used to
express attributes or properties of classes. Attributes are different relationships,
because they are limited to one type of data (not a class).

e Instances: represent elements or individuals in an ontology.

An important property of ontologies is that their representation allows the computer
to process similar, being based on logical languages, which allows the formal defini-
tion of semantic concepts. In this thesis we present two of the most commonly logics
languages to represent ontologies, they are OWL (Web Ontology Language) and SWRL
(Semantic Web Rule Language).

2.5 MANAGEMENT OF CLOUD PROPERTIES

OWL
According to [131], a language for representing ontologies must have a well-defined
syntax and semantics, have supported the inference, be efficient and expressive. In 2004
the W3C (World Wide Web Consortium) presented the OWL (Web Ontology Language)
[133], an ontology language for the Web, based on description logic. OWL is designed
to meet the needs of an ontology language for the Web, as the languages that preceded
it have some limitations. XML provides a syntax for semi-structured documents [134],
but does not associate semantics to the markers. RDF (Resource Description Frame-
work) [135] standardizes the definition and use of metadata, but has a very simple
data model, based on triple (subject, predicate, object), to represent the relationship
between resources. The RDF Schema provides a type system for RDF, which allows
users to define resources with classes, properties and values. However, some features
such as cardinality constraint, class disjunction and local scope properties can not be
expressed in RDF Schema.

The objective of OWL is to provide an ontology language that can be used to describe,
in a natural way, classes and relationships among classes of documents and Web ap-
plications. The terms used in an ontology must be written so that they can be used
by different software. According to [121] OWL distinguishes between constructors and
axioms. OWL constructors are primitive used to specify new classes and axioms are
the primitives to make additional statements about classes and properties. The OWL
dialects provide builders based classes in descriptive logic. These builders use the data
types defined in XML Schema.

As it is based on descriptive logic, OWL enables the use of inference engines allow
explicit knowledge that are implicit in a knowledge base. As a result, an OWL docu-
ment should not be considered only from the point of view of its syntax, but also of
their semantics. This means that two superficially different documents in syntactical
terms can express the same knowledge if they legitimize the same inferences.

SWRL
Considering the number and variety of existing systems, SWRL (Semantic Web Rule
Language) [136] is a proposal for standardization of language rules, aimed at inter-
operability between these various systems. The SWRL is based on a combination of
two sub-languages OWL (OWL Lite and OWL DL) with a RuleML sub-language (Rule
Markup Language) [137]. The rules written by users using SWRL can be used to infer
new knowledge based on prior knowledge expressed in OWL. Besides this the terms
of OWL concepts can be written in HLR (Horn-like rules) [138].

According to [136] SWRL rules are written in antecedent-consequent pair. In this
terminology, the antecedent is the body of rule, while the consequent is the head of the
rule. The body and the head consist of a combination of one or more atoms. In the
proposal submitted to the W3C [136] "SWRL does not support more complex logical
combinations of atoms".

The rules SWRL perform inference about OWL individuals in terms of classes and
properties. OWL can also refer explicitly OWL individuals. SWRL also supports the
concepts of same-as and different-from also supports the use of several prebuilt predi-

35

36

RELATED WORKS

cates (built-in), which expands its power of expression.

Based on these languages some initiatives are presented in order to create ontologies
that can be applied in Cloud Computing. Among them we can mention a search en-
gine called Cloudle [139], the mOSAIC ontology (Open-Source API and Platform for
Multiple Clouds) [81] and an ontology-based resource management presented in [140].

In [139] the authors present a services search engine in Cloud Computing based on
an Cloud ontology. This ontology contains a set of cloud concepts, the individuals of
these concepts, and the relationships between these individuals. In addition to service
Cloud models presented previously (IaaS, PaaS and SaaS) in Cloudle the authors add
the concepts of CaaS and DaaS where CaaS is an outsourcing model for business
communication and DaaS is a data storage service. The applied ontology using the
OWL language and is based on the similarity of properties to find compatible service.
To determine this similarity the authors present the ontology in the form of a triple
containing a subject, a predicate and a datatype value.

Considering this triple an example for an individual "Provider1" with a predicate
"hasMemory" and value "g000" would be expressed as follows: (Provider1, hasMemory,
4000). Table 2.6 shows some examples of concepts and their individuals presented in

[139]:

Table 2.6: Example of concepts and individuals used in Cloudle (adapted from [139])

Concept Individual
PaaS Provider1
TaaS Provider2
IntelCPU CPU1
AMDCPU | CPU2
FileSystem | NTFS

Based on the concepts presented, the authors create the triples to be used in the
calculation of similarity. These triples may be exemplified as shown in Table 2.7:

Table 2.7: Example of triples used in Cloudle (adapted from [139])

Individual | Property Name (Type) | Value
Provider1 hasCPU (Object) CPU1
Provider1 hasMemory (Datatype) | 4000
Provider1 hasFileSystem (Object) | NTFS
Provider2 hasCPU (Object) CPU:2
Provider2 hasMemory (Datatype) | 2000
CPU:2 hasSpeed (Datatype) 3.4

Using the triple shown in Table 2.7 the calculation of similarity is performed by
joining common objects between the providers, such as: U={(CPU1,CPU2),(4000,2000)}.

2.5 MANAGEMENT OF CLOUD PROPERTIES

We do not show how this calculation is performed because this is not the scope of this
thesis, but we point out some observations of how the ontology is applied.

For example we can observe the information given in the Tables 2.6 and 2.7 that
some individuals can also be expressed as values for other individuals, as is the case
of the individual "CPU2" which also serves as a value for the individual "Provider2".
Therefore, there exists freedom to express values for Individuals at the same time we
observe a strong dependence to express service models, as the ontology only considers
the five models presented in this approach (IaaS, PaaS, SaaS, CaaS and DaaS) It is
necessary one prior and thorough knowledge about these structures and not allowing
the creation of new models, or by the providers or by the customers, who do not have
the option to request new services. Another observation is that this ontology treats
only aspects related to functional requirements.

In the approach by [82] the authors present the mOSAIC project that also consid-
ers non-functional aspects of the services on Cloud. According to the authors, the
main non-functional properties used by Cloud components are: "Scalability; Auton-
omy; Availability, QoS, Performance, Consistency, Security and Reliability" [82]. Al-
though these non-functional characteristics are mentioned, the authors describe some
limitations of the approach. According to the authors these limitations are: 1) the intel-
ligent discovery of services, 2) the composition of services and 3) the SLA management
[82]. These items are considered limited since the ontology partially solves these chal-
lenges.

mOSAIC uses OWL language and often describes his ontology using hierarchical
information. The Figures 2.6 and 2.7 shows two fragments of the mOSAIC ontology
using an ontology editor [141]. The Figure 2.6 exemplifies items that composes a SLA
contract according to the authors.

ContractualTerm
5

* @ CreditPolicy
Transferability \ XParameterCredi

LicensedSw - I t
SLO

Renewals

[CreditThreshold l

J CreditPercentag ‘
e

Figure 2.6: mOSAIC SLA Ontology (extracted from [142])

The Figure 2.7 shows the Service Level Objective considering quantitative and quali-
tative aspects.

37

38 RELATED WORKS

*@ sLo
*@ Metric i
@ ServiceAvailabi P \ -\ » IdentityManagem
ServiceAvailabi eer— ke
lity \
DataPerformance I [@ Confidentiality l
@ NetworkPerforma

nce

@ StorageAvailabi
lity A [® VMPerformance]

» 1/OPerSec e [\ '
! Vv @ Laten
,‘, [® vmavailabiity |

@ NetworkAvailabi ‘ |

lity
| @ Bandwidth
| # PacketlLoss

Figure 2.7: mOSAIC SLO branch (extracted from [142])

In the Figure 2.7 we can see the hierarchy of items displayed in each type of ser-
vice, such as the parameters "Latency” and "Bandwitch" belonging to "NetworkPerfor-
mance" which in turn is a "Quantitative” parameter. These figures were extracted from
the work presented in [142]. In this work, the authors introduced a new parameter that
can quantitatively measure the idea of "Metric". It contains four properties: "hasUnit",
"hasValue", "specifiesCompareFunction" and "isMeasuredByThirdParty" [142]. Besides that
use SWRL language to set rules for the request of individuals. An example of these
rules is presented in Figure 2.8.

2.5 MANAGEMENT OF CLOUD PROPERTIES

l. Request(Trequest) A Of fer(loffer)
— matchesWith(Mrequest, lof fer)
2. Request(Trequest)
A specifiesMosaicServiceModel(Trequest, Tmodel)
A matchesWith(Trequest, of fer)
— isOf MosaicServiceModelType(Tof fer, Tmodel)
3. Request(Irequest)
A hasAcquisitionStrategyTime(Trequest, Mime)
A Future(Mtime) nmatchesWith(Trequest, of fer)
A isPublishedIn(?of fer, Tmarket)
A hasType(Mmarket, Mtype) — Forward(type)
4. Request(Trequest)
A specifiesMosaicService Model (Trequest, Tmodel)
A TaaS(Imodel)
A hasAcquisitionStrategyT ype (Trequest, Jacquisition)
A Buy(lacquisition)
A hasUsage Pattern(Irequest, Tpattern)
A Continuous(? pattern)
A hasDuration(Mrequest, Mduration)
A QuerSixMonths(Mduration)
A matchesWith(Trequest, Tof fer)
A hasPriceModel(lof fer, Iprice)
— PrePaid(7price)

Figure 2.8: Subset of rules in SWRL (extracted from [142])

It is important to note that, the use of these rules in the ontology has a certain level
of difficulty, being not trivial its implementation. Besides that this approach applies
only to quantitative parameters and beyond to consider service models IaaS, PaaS and
SaaS$ also adds BPaaS model (Business Process as a Service).

According to the authors, the main problem in the definition of ontology is the het-
erogeneity by different terms used by service providers as well as the lack of standard-
ization identified in standards that have different terminology for services on Cloud
[82].

Another approach that shows the utilization of the mOSAIC is demonstrated in [143]
in this work the authors present the utilization of WS-Agreement language to represent
a service request, as shown in Figure 2.9.

39

40 RELATED WORKS

[..]
<usag:VariableSet>
<wsag:.Variable wsag:Name="UserRequests" wsag:Metric="1xs:integer">
<wsag:Location>
$this/wsag:Terns/wsag:ALl/wsag:ServiceDescriptionTern [Cwsag:Name = *Terni’]/mosaic:JobSubnission/MNaxRequests
<[wsag:Location>
</usag:Variable>
<wsag:Variable wsag:Name="UserCredit" wsag:Metric="xs:integer">
(..]
<wsag:GuaranteeTern wsag:Name="laxCredit">
<wsag:ServicelevelObjective
<wsag:KPITarget >
<wsag:KPIName>MaxCreditLevel </wsag:KPIName>
<wsag: CustomServiceLevel>UserCredit GT 0</wsag:CustonServicelevel
<[usag:KPITarget>
</wsag:ServiceLevelObjective>
<[usag:GuaranteeTern>
<vsag:GuaranteeTern wsag:Name="MaxRequests">

[..]

Figure 2.9: Fragment of User SLA request in WS-Agreement (extracted from [143])

The use of WS-Agreement language proves the flexibility of ontology allowing the
creation of specific solutions for each service model. Similarly this approach proves
that the SLA management using the mOSAIC ontology does not offer a single general-
purpose solution that can ensure the SLA management for any type of Cloud service.
Since both SWRL and WS-Agreement needs an exact determination of the parameters
to be used, it does not allow the addition of new services in a more simplified form.

In addition to the approaches presented in this chapter we also present the results
of a survey conducted by [84]. In this work, the authors showed the results related
to Service Level Agreements in Cloud Computing, among the research explored in
[84] include: Cloud4SOA [144], OPTIMIS [145], RESERVOIR [146], 4CaaSt [147], CON-
TRAIL [148], IRMOS [149], SLA@SOI [150], ETICS [151], GEYSERS [152], VISION [153]
and CumuloNimbo [154].

As a synthesis of the results shown by [84] we can extract some interesting aspects:
"Service Level Agreements are increasingly becoming the key criterion for service selec-
tion. Users are now demanding agreements with clear attainable terms, services with
guaranteed quality levels, offerings that meet specific legal and protection terms, accu-
rate reporting on the service usage and runtime adaptation for evolving requirements".
In fact, considering on the approaches presented, we can claim that the main problem
in cloud computing is the lack of unified standards.

2.6 CHAPTER SUMMARY

The need for a management model that showcases the flexibility and control of the
information contained in Service Level Agreements in Cloud Computing has been rec-

2.6 CHAPTER SUMMARY

ognized by the research community. Many studies try to present different models and
techniques to ensure consistent management with market needs. In this chapter, we
illustrate some of the known approaches, as well as the results of surveys carried out
in the scope of Cloud SLA. We focus on approaches to SLA composition focusing on
languages of agreements specification and we describe some frameworks used to sup-
port its management, we also describe some metrics used in Cloud SLA and ontologies
that use these metrics, highlighting the gaps shown in the different approaches. In the
rest of this thesis, we propose a new ontology considering the lack of standardization
in the terminology used in Cloud Computing and also to support new services, thus
illustrating a possible way to improve the usefulness of the agreements in an advanced
management process. We will also present a conceptual framework to support this
new ontology, considering aspects of composition, monitoring and resource allocation.
Finally, we will present the overview of our approach.

41

ADVANCED SLA IN CLOUD COMPUTING

Efforts to standardize the representation of Service Levels Agreements generated dif-
ferent languages, as seen in the previous chapter, while identifying the need for greater
clarity to agreements between customers and service providers. Both technical ap-
proaches and the search for standardization advocated by international entities such
as ISO/IEC for example, provide a formal representation of the main components of
Cloud Computing for each type of Cloud service: However, on the other hand, these
approaches do not specifically aim the generic modeling task of a SLA, limited to the
specificities of each business model.

This chapter proposes the use of an ontology applied to SLA representation creating
a set of resources to include adaptation and extension of business models allowing
greater flexibility in SLA negotiation. The use of an expressive logical language to
represent different services in Cloud allows enrich them through the application of
inference mechanisms and the definition of semantic rules.

3.1 INTRODUCTION

Along with the processing capacity, generation capacity and data storage are also grow-
ing in similar proportions. This evolution can be seen by the way the man stored and
passed through ideas of the times, from the paintings on the walls made by our ances-
tors, through the invention of writing, the role and the Gutenberg printing machine,
until we reach the current medias of storage. Currently, we are used to deal with huge
amounts of data and information in our lives. Government and commercial agencies
devoted enormous resources to collect and store information. Systems of automation
and information are becoming common in most companies. The science also has be-
come another major producer of data.

Although methodological advances in data analysis are necessary to transform the
experimental techniques in information and knowledge, the problems in the era of

43

44

ADVANCED SLA IN CLOUD COMPUTING

Cloud Computing are not just experimental or technical but also conceptual. Accord-
ing to [155], conceptual modeling has been characterized in several ways. However,
an important setting for this thesis is offered by [156], which presents the conceptual
modeling as a process to formulate and collect conceptual knowledge about a universe
of discourse and documents the results in the form of a conceptual scheme. This con-
ceptualization process, promoted by modeling, aims to describe a domain through the
entities that compose it and the relationships between those entities.

Clearly, a model that has some formal semantics is more expressive than one featur-
ing only implicit semantics. One way to add some semantics to the models is through
metadata. Metadata may be defined as "data about data" [157] and the goal of adding
metadata models and data sources is to allow the user to find relevant items according
to the context. The use of metadata is influenced by the structure of the data. The data
can be unstructured, structured or semi-structured. Unstructured data can be of any
kind and do not necessarily follow any format, rule or order. Semi-structured data have
some structure, but this is not rigid. Structured data have a rigid structure, describing
the objects through strongly typed attributes.

3.1.1 CHAPTER OUTLINE

Throughout this chapter we highlight the way in which resources are available in the
advanced SLA management in Cloud Computing and a generic ontology is defined
to support different services, and clarifies its relations, that is, regardless of the appli-
cation domain. Objectives, characteristics and an ontology overview with a detailed
description of its elements are presented. Initially we present the terminology and ex-
plain the concepts and then present the formal specification of the terms that will be
used in the proposed generic ontology. It is noted that while many of the examples
used in this chapter are related to existing areas in Cloud Computing, the proposed
approach can also be used for new services, such as Internet of Things (IoT) environ-
ments. The main contribution of the Chapter is the presentation of a generic ontology
that allows freedom of choice of services to customers and introduces the concept of
shared responsibility.

3.2 GENERALIZED SERVICE LEVEL AGREEMENT

The interaction between a Cloud Provider (CP), offering a service, and the customers
to which the service is delivered is usually based on SLAs. A SLA represents a contract
between the Cloud Provider and the customers on different functional /nonfunctional
properties of the provided service. However, relying on predefined SLAs might repre-
sent a limitation in the context of the customers needs, due to the richness and diversity
of collected data, and the heterogeneity of the applicative scenarios. For instance, differ-
ently from traditional outsourcing scenarios in which oftentimes a bulk data collection
is entirely transmitted to the provider at outsourcing time, an IoT application for pollu-
tant monitoring, for example, might require timely transmission to the Cloud Provider
of each measurement as soon as it is captured by a sensor.

3.2 GENERALIZED SERVICE LEVEL AGREEMENT

The SLA between the customer and the Cloud Provider, rather than being based
on a pre-defined model produced by the CP, can therefore be established by taking
into consideration all specific requirements characterizing the application. This prob-
lem can however be complicated by the fact that the satisfaction of some requirements
might depend on the satisfaction of other requirements, of which the subject might be
unaware. For instance, to ensure a response time less than a given threshold, due to its
hardware and software configurations, a CP might not be able to provide other features
(e.g., the encryption of the communication with the data sources). Our solution over-
comes this problem by taking into consideration dependencies among requirements in
the establishment of the SLA.

Building on these observations, in this section we aim at bridging the gap between
customers and Cloud Providers by proposing an approach for supporting specific ser-
vice requirements in the definition of a generalized SLA.

3.2.1 GENERIC DESCRIPTION

To create a consistent SLA between the customer and the Cloud Provider we must
present it into three complementary scenarios:

1. The enforceability of services by the provider: To define the services that are made
available by the provider we introduce the following description: S = {s4,..., 5n}
where S is the set of the end services provided by the provider and s; to s, rep-
resents each service separately. For example: S = {Storage, Security, Availability,
etc.} as in Figure 3.1.

Storage
Cloud Services Security

Avallability

Figure 3.1: Cloud Services representation

2. The necessary attributes for each service or resource: Each service or resource may
depend on other attributes that are not classified as service or even as a resource.
These attributes are described as follows: A = {a4,..., a,} where A is the set of

attributes and 4, to a, represent each attribute. For example: A = {Location, Key
Length, Time of Service, etc.} as in Figure 3.2.

45

46 ADVANCED SLA IN CLOUD COMPUTING

Storage Location

Cloud Services Security Key Lenght
Availability Time of Service

Figure 3.2: Cloud Services and attributes representation

3. The resources used by the services: The third part relates to the resources prop-
erly used for the performance of services and assumes the following description:
R = {ry,..., a} where R is the set of required features and r, to r, represent each
resource. For example: R = {Number of Replicas, Number of Virtual Machines,
CPU usage, etc.} as in Figure 3.3.

Storage Location
Key Lenght
Security) .
Cloud Services Number of Replicas Number of Virtual Machines

Time of Service

Availability
CPU Usage

Figure 3.3: Cloud Services, attributes and resources representation

As these three scenarios may be represented in the same way and are complemen-
tary to them, we can use a single representation to incorporate the three characteristics.
We called this representation "property". A property is a single description that repre-
sents each service, resource or attribute available. To define how the provider offers its
properties and how the customer holds the request we use this description: P = {p;,...,
pn} where P represents the set of all possible properties of being set in a SLA and p; to
pn represents each property separately. For example: P = {Storage, Location, Security,
Key Length, Number of Replicas,..., CPU usage, etc.} as in Figure 3.4.

Storage
Location
Security
Key Lenght
Cloud Services Number of Replicas
Number of Virtual Machines
Availability
Time of Service

CPU Usage

Figure 3.4: Properties representation

3.2 GENERALIZED SERVICE LEVEL AGREEMENT

Each property is then meant as a generalization of different scenarios in Cloud en-
vironments, where we describe the integration of different services highlighting its
special features and a simpler way for the customer.

With the use of properties (P) the customer can order end services (S) with attributes
(A) of some services or specific resources (R) according to the user’s needs. Each prop-
erty has its value assigned by the provider according to the conditions in which they
are available. On the other hand each property has the value requested by the cus-
tomer according to their needs. This approach allows the establishment of a model
that considers aspects recognized by both parties through the service conditions and
the customer requests.

Through a request, a customer can order any property it deems relevant to the ser-
vice agreement, keeping track of what it is negotiated. And the provider can provide
all the properties that it considers to be necessary to settle the agreement. Then the
service requirements are formulated as Boolean formulas over conditions defined on
properties that represent (functional or non-functional) properties characterizing the
cloud services and are taken from a common/shared ontology.

3.2.2 FORMAL DEFINITION

The following properties: srv_loc, resp_time, encr, sec_audit, and access_log are examples
of properties (modeling the physical location of a server, the response time of the
service, the encryption algorithm adopted by the provider, the auditing frequency, and
whether accesses are logged respectively) that can be used to define conditions on the
required service. Let P be the set of properties. Each property p € P takes values from
its domain dom(p). For instance, dom(srv_loc)={USA, France}, dom(resp_time)={10, 20, 50},
dom(encr)={AES, DES, no}, dom(sec_audit)={weekly, monthly, no}, dom(access_log)={yes,
no}, etc. A condition defined over a property restricts the values that the property can
assume in the provision of the service. A condition is formally defined as follows.

Definition 3.1 (Condition). Given a set P of properties, a property p € P with domain dom(p),
and a value val € dom(p), a condition c over p is a term of the form c : (p op val), with
op € {=,#,<,<,>, 2} a comparison operator.

The Figure 3.5 illustrates a set of conditions for an example in Cloud environment.
For instance, cs: (resp_time < 10) and c;,: (srv_loc = USA) model two conditions demand-
ing that the service exhibits a response time less than 10 milliseconds (c5) and uses a
storage server being located in USA (c;,). Service requirements can be composed of
different conditions over different properties. More precisely, by interpreting each con-
dition c as a Boolean variable, a service requirement can be naturally expressed as a
Boolean formula over such variables.

47

48

ADVANCED SLA IN CLOUD COMPUTING

1t (proc_num > 2) cs: (resp_time < 10) Cy: (backup = daily)
C,: (encr = AES) Co: (sec_audit = weekly) c40: (srv_loc = USA)
c3: (encr = no) c,: (access_log = yes) C11: (storage < 100TB)
c,: (req_rate < 1/min) cg: (backup = no) C12: (storage > 100TB)

Figure 3.5: Example of a set of conditions

For simplicity but without loss of generality, we assume requirements to be in dis-
junctive normal form (DNF). A service requirement is defined as follows.

Definition 3.2 (Service requirement). Given a set C = {cy,..., cu/) of conditions over a set P of
properties, a service requirement R over C is a formula of the form /1™, (/\?Z(a)cij), with k(i)
the number of conditions of the i clause, and ci; € C.

For instance, considering the conditions in Figure 3.5, the service requirement can be
formulated as R : (c5 A\ cio) V (c5/\c2) V (c5 /A cg). Intuitively, R states that to satisfy the
requirements, the cloud service should exhibit a response time less than 10 millisec-
onds (c5) and use a storage server located in USA (c;,), or exhibit a response time less
than 10 milliseconds (c5) and use AES for encryption (c;), or exhibit a response time
less than 10 milliseconds (c;) and weekly execute security auditing (cs).

A SLA should also consider possible dependencies related to the conditions included
in R. Dependencies capture generic relationships among properties, implying that the
enforcement of a condition over a property depends on the enforcement of another
condition over another property. For instance, with reference to our running example,
properties resp_time and req_rate are linked by a dependency. If R includes a condition
over resp_time, then a valid SLA should also include a condition over req_rate.

While property dependencies can be considered to always hold (e.g., the respon-
siveness of a service is always impacted by rate of requests it receives), the specific
conditions holding for the properties involved in a dependency can vary depending
on the CP (e.g., a CP with a set of servers running in parallel might accept more re-
quests per time unit than another CP with a single server). Upon receiving a service
requirement R from the customer, the CP must verify whether the conditions in R
imply other conditions due to the presence of dependencies. Note that dependencies
can model both incompatibilities among conditions (i.e., enforcing a condition over g4;
does not allow to enforce another condition over g;) and implications among them (i.e.,
enforcing a condition over a; requires the enforcement of another condition over ;).
Building on our interpretation of conditions as Boolean variables, a condition depen-
dency, meaning a property dependency instantiated with conditions over its attributes,
is defined as follows.

Definition 3.3 (Condition dependency). Given a set C = {c,..., cn.} of conditions over a set P, a
condition dependency d over C is defined as d : cy, ~ (VI (/\;;“])cij)), with k(i) the number
of conditions of the i" clause, and cn.ci; € C

3.2 GENERALIZED SERVICE LEVEL AGREEMENT

A dependency d : cr, ~ (VI (/\L(z)cij)) can be interpreted as a material implication:
if condition cy, is satisfied, then also VI , (/\;;(l-l)cij) must be satisfied.
The Figure 3.6 illustrates five condition dependencies defined over the set of condi-

tions shown in Figure 3.5.

dy: (serv_loc = USA) ~~ (storage < 100TB)
d,: (resp_time < 10) ~» (backup = no) /\ (req_rate < 1/min) /\ (encr = no)
dy: (encr = AES) ~~ (proc_num > 2)
d,: (backup = daily) ~~ (storage > 100TB)

ds: (sec_audit = weekly) ~ (access_log = yes)

Figure 3.6: Example of conditions dependencies

The dependency d, states that providing a server located in USA implies a maximum
storage capacity of 100TB. Dependency d, states that a response time less than 1oms
is incompatible with the execution of backups and of encryption operations (incom-
patibilities), and imposes a maximum rate of requests of 1 per minute. Dependency d;
states that to provide AES encryption, the server must have at least two processors. De-
pendency d, states that a daily backup requires a storage capacity greater or equal to
100TB. Dependency d5 states that to ensure a weekly auditing process, accesses should
be logged. Conditions in a dependency can involve properties under the control of
either the CP (e.g., storage < 100TB in d,) or the customers (e.g., req_rate < 1/min in d,,
being the request rate dependent on the operations of the customers).

In our scenario, given a set C = {c,..., cn} of conditions, a SLA is naturally represented
as a set {cy,..., cx} € C of conditions, whose enforcement is guaranteed by the CP in the
service provision. Note that a SLA should include at most one condition over each
property p € P (as otherwise they would be in conflict).

We refer to a set of conditions satisfying this property as well-formed, as follows.

Definition 3.4 (Well-formed set of conditions). Given a set C of conditions over a set P of
properties, C is said to be well-formed iff Vc € C,Vp € P, ICp|< 1, with C,ccC the conditions
over property p.

For instance, with reference to the conditions in Figure 3.5, the set {c,, c11, ¢12} is not
well-formed as c;; and ¢, are defined over the same property storage.

Given a set C = {cy,..., cn} of conditions, a service requirement R over C, and a set D
= {dy,..., 41} of dependencies over C, our goal is to find a subset of conditions in C that
forms a valid SLA, meaning that the SLA is well-formed and satisfies both R and D.
Following our logical modeling where conditions are interpreted as Boolean variables,
service requirements as Boolean formulas, and dependencies as material implications,
we introduce an assignment function f : C — {o,1} assigning to each condition in C a
value from the set {o,1}. With a slight abuse of notation, we use f to denote also the
list of values assigned by f to the conditions in C. Therefore, given a requirement R
over C, f(R) will denote the result of the evaluation of R with respect to the values in f.

49

50

ADVANCED SLA IN CLOUD COMPUTING

Since R must be satisfied when assigning values to C to compute a SLA, f is a correct
assignment w.r.t. a requirement R iff f(R) = 1. Similarly, a dependency c, ~ P(cj,..., cj)
is satistied provided that, if f(c;) = 1, then f(P(c;,..., ¢;)) = 1. Therefore, f is a correct
assignment w.r.t. a set D of dependencies iff f(d) = 1,vd € D.

A SLA is then interpreted as a complete value assignment over the conditions in C,
where the conditions included in the SLA are those assigned value 1 by f. Based on the
presented formal concepts began the description of the generic proposal ontology.

3.3 OBJECTIVE OF ONTOLOGY

According to [158], one of the main objectives of development ontology is to provide
interfaces between the human, that understands the concepts, and the machine, which
provides accurate, consistent and unambiguous representations of the models. The
specific objectives of the construction and application of generic ontology proposal
are:

1. To represent a model for the description of Service Levels Agreements with a
logical language, with inference capability and usage rules.

2. Represent the adaptation of the existing models, described in Chapter 2, with
annotations semantics in order to overcome the limitations described. This im-
plies explicitly represent knowledge that is implicit in the various services by
associating semantics to the components and variables.

3. Allow the creation of agreements to which the variables are defined from its
meaning and not just syntactically.

4. Allow the creation of a repository of templates that can be searched semantically,
either directly through the web, or through a database capable of inference.

5. To promote the reuse of existing agreements, by the possibility of automatic or
semi-automatic composition of complex models from simpler existing models.

These objectives determine the fundamental characteristics to our ontology, other
relevant aspects considered in this work are: the representation of classes as property
values, the modeling of the whole-part type relationships, the definition of n-ary rela-
tionships and representation of values through set of values.

3.4 CHARACTERISTICS OF THE ONTOLOGY

The language chosen for the representation of service agreements was XML, this lan-
guage is based on Description Logics, being expressive enough to represent the compo-
nents and services properties, while allowing the use of inference mechanisms and the
definition of semantic rules. A description of XML can be found in [134]. Considering
the applicability of ontology for the description and simulation of service agreements
in Cloud Computing, the existence and availability of various services and various

3.4 CHARACTERISTICS OF THE ONTOLOGY

tools that work with the language, the project of ontology sought to reflect a structure
of a general service agreement and dynamic to facilitate the use of existing designs.

The simplification and integration of the proposal ontology, with ontology defined
for various services, allows the create of tools to integrate existing templates, so that
the user work has a high level of abstraction.

Another important issue is associated with the service request validations. Since it
is based on XML, the validation is merely syntactic. Through the use of Schemes, the
request can be validated for syntax errors and for the adherence to service conditions
determined by the CP. Semantic questions can be effectively treated (e.g. prevent a
property "response time" contains a value like "USA") or are left to the implementation
phase (e.g. compliance in the use of different measurement units for the variables, as
"second" and "milliseconds").

Since it is based on XML, the ontology can specify elements that can be used to rep-
resent service agreements formally, unambiguous, human readable and processable
by machines. Metadata of each agreement can be stored together with the own agree-
ment. The controls of the properties may be represented independently of a specific
implementation. The ontology can be used to represent, store and share agreements,
increasing their availability and facilitating the use and validation by customers.

Basically the elements in our approach are used to describe properties, values and
units. These elements are grouped to represent service conditions and service requests.

3.4.1 SERVICE CONDITIONS IN XML SCHEMA

As seen in subsection 3.2.2 a condition ¢ over p is a term of the form c : (p op val), with
op € {=#,<,<,>,2} a comparison operator. This definition should be represented
in our XML Schema. To enable the desired generalization we must also introduce the
definition of dependency in the same schema.

The Figure 3.7 shows a diagram of the elements that make up a property to a ser-
vice condition. The following will be described the main elements that composes this
Schema.

51

52

ADVANCED SLA IN CLOUD COMPUTING

(£ | Responsible : string
(E] D : positiveInteger

i] Name : string
Tﬂ Minimum : string

- ['E | MinInclusive : string

.
E | Range Tl

[E | Maximum : string

| G | Properties ..E & | E | Property ..E (] Vvalue
" '_[: ['E | MaxInclusive : string
.

E| Equal : string
[E | NotEqual : string
| E | FuzzyDescription : string
"E| unit :string

0= ('€ | Dependency [G] <Ref> : Properties

Figure 3.7: Properties representation in service conditions XML Schema

Since a property set is represented as P = {p;,..., pn} then we define a Group of prop-
erties containing one or many properties Elements. Each element property contains
his "name", "value" and "unit." We added the concept of "dependency" that allows a
property to be dependent on other properties. In addition to a "identifier" element and
a "responsible" element for the property, which will be detailed later. We also add the
element "FuzzyDescription" which will be explained in the Chapter 6.

The element "name" is actually the name of the property and is used to identify the
different services, attributes and resources sold by CP.

According to the Definition 3.1 the element "value" takes on the different possibil-
ities according to the property in question, i.e., Range (<, <,>,>) to properties that
have values expressed in minimum, minimum inclusive, maximum or maximum in-
clusive (or two of these situations), Equal (=) to properties that express exact values
and NotEqual (#) to determine values not required or not supported by the provider.

The element "unit" to determine the unit of measurement or identification of a prop-
erty as second, millisecond, country, etc.

The element "dependency" that enables mapping a property that depends on the
value of another property or set of properties.

The Figure 3.8 shows the XML schema representation of a service condition, and
as a set of properties is arranged, besides the elements already described, we add
the "provider" attribute to identify the service provider and a "ServiceID" attribute as

identifier.

3.4 CHARACTERISTICS OF THE ONTOLOGY

(G| Properties

(G| <Ref> : Properties

['E | Responsible : string
TL] j o] : positiveIlnteger
[E] Name : string

’5 i* [E | Property 0{3 [E] value

[E | ServiceConditions - i -
E I FuzzyDescription : string

[E | unit : string

0.= ['E | Dependency

(A | Provider : string

(A | ServicelD : string

Figure 3.8: Service Conditions representation in XML Schema

The Figure 3.9 shows the code to the XML Schema used in the creation of a service
condition, note that the "responsible" element have three possible values: Provider,
Customer and Both Parts. Since the ontology presented is generic, it can be used to
describe any type of service agreement, including Master Service Agreements and
Contracts. Then we can show who is responsible for certain property.

This approach facilitates the registration and storage of templates for services of any
kind, both Cloud and for other environments.

The dependencies are used in the ontology with the basic purpose of inferring knowl-
edge that is implicit in existing models, converted to the ontology; This is done by asso-
ciating the properties defined in the ontology, from the details obtained from existing
template (e.g., from the name of the property), also considering the already established
knowledge (e.g., resource values that can be associated with end services).

The dependencies can also be used to validate semantically the agreement regard-
ing their consistency and completeness; a validation example is to check whether the
composition of the properties is in line with the service hierarchy.

53

54 ADVANCED SLA IN CLOUD COMPUTING

<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:group name="Properties">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="unbounded" name="Property">
<xs:complexType>
<Xs:sequence>
<xs:element minCccurs="0" maxOccurs="1" name="Responsible">
<xs:simpleType>
<xs:restriction bhase="xs:string">
<xs:enumeration value="Provider" />
<xs:enumeration value="Customer" />
<xs:enumeration value="Both Parts" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element minOccurs="1" maxOccurs="1" name="ID" type="xs:positivelnteger" />
<xs:element minOccurs="1" maxOccurs="1" name="Name" type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1" name="Value">
<xs:complexType>
<xs:choice minOccurs="1" maxOccurs="1">
<xs:element name="Range'">
<xs:complexType>
<xs:choice minOccurs="1" maxOccurs="2">
<xs:element minOccurs="1" maxOccurs="1" name="Minimum" type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1" name="MinInclusive" type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1" name="Maximum" type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1" name="MaxInclusive" type="xs:string" />
</xs:choice>
</xs:complexType>
</xs:element>
<xs:element minOccurs="1" maxOccurs="1" name="Equal" type="xs:string" />
<xs:ielement minOccurs="1" maxOccurs="1" name="NotEqual" type="xs:string" />
</xs:choice>
</xs:complexType>
</xs:element>
<xs:element minOccurs="0" maxOccurs="1" name="FuzzyDescription" type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1" name="Unit" type="xs:string" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="Dependency">
<xs:complexType>
<xs:group ref="Properties" />
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:group>
<xs:element name="ServiceConditions">
<xs:complexType>
<xs:group minOccurs="1" maxOccurs="1" ref="Properties" />
<xs:attribute name="Provider" type="xs:string" use="required" />
<xs:attribute name="ServiceID" type="xs:string" use="required" />
</xs:complexType>
</xs:element>
</xs:schema>

Figure 3.9: Service Conditions XML Schema

Since XML allows the sharing of information independent of the type of application
used to view, it is necessary to identify the structure of the XML document. That is,
an XML Schema allows the definition of the structure, content and semantics of a
document. In the XML schema shown in figure 3.9 we define a group of elements

3.4 CHARACTERISTICS OF THE ONTOLOGY

called Properties (<xs:group name="Properties">) this allows elements to be specified
within other elements and obeys an order or specific choice through connectors.

Then we use the connector "sequence" that is specified for all elements of each prop-
erty appear in the correct order. The first statement in the sequence creates an element
called "Property"”, which may appear at least one (1) time and no maximum limit.
Within each "Property” element we have a "complexType" with a new connector "se-
quence". The first element of this sequence is the "responsible”" which is optional and
when used presents one of three restricted values (Provider, Customer or Both Parts).
Following the sequence we have the elements "ID" as a type positive integer, element
"Name" as a type string and the element "Value".

The element "Value" has another complex type with a connector "choice" that is
mandatory. If the choice is the element "Range" we have another complex type with
another connector "choice". In this case the choice can be for only one alternative and
at most two alternatives. All elements in this code fragment are of type string and the
alternatives are "Minimum", "minInclusive”, "Maximum" and "maxInclusive". If the
choice is not the element "Range" then the choice should be between the other two
elements of type string: "Equal” and "NotEqual". Following the sequence we have the
element "FuzzyDescription" of type string and is optional, the element "Unit" of type
string and mandatory and the element "Dependency" which is optional and makes
reference to the group of elements "Properties".

The element "ServiceConditions" has the group of elements "Properties" as described,
plus two attributes of string type and binding. The first is the attribute "Provider" and
second attribute is the "ServicelD".

This XML Schema can be used as follows: for example if the provider Amazon
want to register an audit service and, for this, access should be logged, as shown in
dependency: ds: (sec_audit = weekly) ~ (access_log = yes) an XML file in accordance
with the proposed Schema would be presented as in Figure 3.10.

55

56

ADVANCED SLA IN CLOUD COMPUTING

<?xml version="1.0" encoding="utf-8"?>
<ServiceConditions xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="C:\Users\Gerson\Desktop\Works\ArquivosXML\ServiceConditions.xsd"
Provider="Amazon" ServiceID="15223">
<Property>
<Responsible>Provider</Responsible>
<ID>2995563595</1D>
<Name>Auditing Frequency</Name>
<Value>
<Equal>weekly</Equal>
</Value>
<Unit>period</Unit>
<Dependency>
<Property>
<Responsible>Customer</Responsible>
<ID»3635883089</ID>
<Name>Access Log</Name>
<Value>
<Equal>yes</Equal>
</Value>
<Unit>response</Unit>
</Property>
</Dependency>
</Property>
</ServiceConditions>

Figure 3.10: XML file to a Service Condition

In this way, a service provider can register and post their service plans more simply
adding all the properties related to each service/plan, including contractual properties
such as price, time of contract, among others.

Complementing the example of service condition in Figure 3.10 we can add more
information to the service with the following properties and dependencies: C: {d;:
(serv_loc = USA) ~~ (storage < 100TB), d,: (resp_time < 10) ~» (backup = no) N (req_rate <
1/min) A (encr = no), ds: (sec_audit = weekly) ~ (access_log = yes), c;: (price = 100)} as
shown in Figure 3.11.

Storage <100TB

/' Location =USA

Response Time <10
" Backup ~=ho
RequestRate ~ <1/min

 Encryption =ho

 Auditing Frequency _ =weekly
AccessLog =Ves

\ Price =$100

Figure 3.11: Example of a service condition in the ontology

3.4 CHARACTERISTICS OF THE ONTOLOGY

The Figure 3.11 illustrates the dependencies between the properties as: Service Lo-
cation in USA depends on a smaller storage capacity than 100 TB; A response time
smaller than 10 ms depends on a request rate lower than 1 per minute and that does
not have backup or encryption and a weekly audit frequency since access logging is
performed.

These dependencies are optionally indicated by the provider to make strong and
transparent the agreement between the parties, in addition to determining the respon-
sible for each property at the time of service registration. Dependencies are important
for the CP to determine how the services can be composed. At the same time they are
not used by customers in their requests as they are not necessary at this time.

3.4.2 SERVICE REQUEST IN XML SCHEMA

As shown in subsection 3.2.2 a service requirement is also based on properties and their
values, thus proving that the proposal ontology is common for all parties involved in
the elaboration of service agreements.

As one of the main objectives pursued in this thesis is to give greater freedom to
service customers in the preparation of agreements we should describe a specific XML
Schema for service requests, which contains elements that allow this freedom.

The Figure 3.12 shows how XML elements are arranged in a service request.

['E | Established : string

[E| Name
[E| New :string

[E | Minimum : string

['E | MinInclusive : string

r L]
ST —
['E | Maximum : string
[E | MaxInclusive : string
[G | Properties o o [E | Property [E | value
) .-Es : il Set : string
[E | Equal .{E
TE| New :string
(E] set : string
[E] NotEqual o

(E| New :string
[E] unit :string

['E | Description : string
Figure 3.12: Properties representation in a service request XML Schema

According to the Definition 3.2 a Service Request can be represented as: R : (p; /\ pn).
To simplify the procedure for service request by the customer we can infer that a
request can also be represented as follows: R: (py,..., Pn).

In this way, we can use the same property record format used in the service condi-
tions, adding the peculiarities inherent to the desired freedom.

57

58

ADVANCED SLA IN CLOUD COMPUTING

In the Service Request of the XML Schema, the elements "Name", "Value" and "Unit"
has the same function presented in XML Schema Service Conditions.

The element "Name", that in the service condition was simply a type string, now
shows two other elements: "Established” and "New". The element "Established" has
the properties already registered and recognized by service providers. This approach
should be used by a Broker service this element takes the list of all properties available
for all providers. If a service desired by the customer is not yet established, it can
request through the element "New".

The same procedure occurs with the elements "Equal" and "NotEqual". If the value
is already evaluated and recorded by the provider this amount is listed in the element
"set" if the value still does not exist may be asked by the element "New" of the absolute
values.

Once a property is new, the customer has the option to describe the desired charac-
teristics in the element "Description” that will be later used by the properties repository.

The Figure 3.13 shows the XML schema representation of a Service Request, besides
the elements already described, we add the attribute "Customer" to identify the client
requesting the service. This then enables the elaboration of the agreement between the
parties.

(G | Properties
[G| <Ref> : Properties
[£ | Established : string
[E] Name .{3
(E| New :string
[€] Minimum : string
[£ | MinInclusive : string
[£ | Range = H
i [E | Maximum : string
[E] MaxInclusive : string
E [E | Property [E] value
R t .E = -
E] Reques 8 H [(E] Set : string
[E | Equal .{E
[E] New :string
(E | Set : string
(E | NotEqual H

(E| New :string
[E] unit :string

| E | Description : string

(A’| Customer : string

Figure 3.13: Properties representation in a service request XML Schema

The use of the element "Established" allows the customer to search for services al-
ready registered by the providers according to the ontology proposed as well as allow-
ing the insertion of new properties according to the real needs of the customer. The
same also happens to property values already listed by the provider. If the customer
does not locate the desired value it has the possibility to ask the provider.

3.4 CHARACTERISTICS OF THE ONTOLOGY

The Figures 3.14 and 3.15 shows two XML schema fragments used for the composi-

tion of a service request. The Figure 3.14 exemplifies a list of established properties by

providers.

<xs:element name="Established">
<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="Location" />
<xs:enumeration value="Response Time" />
<xs:enumeration value="Access Log" />
<xs:enumeration value="Backup" />
<xs:enumeration value="Storage" />
<xs:enumeration value="Time of Contract" />
<xs:enumeration value="Bandwidth" />
<xs:enumeration value="Latency" />

<xs:enumeration value="Request rate" />
<xs:enumeration value="Number of Servers" />
<xs:enumeration value="Throughput" />
<xs:enumeration value="Processing Time" />
<xs:enumeration value="Encryption" />
<xs:enumeration value="Price" />
</xs:restriction>
</xs:simpleType>
</xs:element>

Figure 3.14: Fragment of XML Schema for a list of established properties

The Figure 3.15 shows an example of values assumed in the properties, here we can
also take the choice between some previously setted value or the insertion of a new
value.

<xs:element name="Equal">
<xs:complexType>
<xs:choice minOccurs="1" maxOccurs="1">
<xs:element name="Set">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="USA" />
<xs:enumeration value="UK" />
<xs:enumeration value="Italy" />
<xsienumeration value="yes" />
<xs:enumeration value="no" />
<xs:enumeration value="weekly" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element minOccurs="1" maxOccurs="1" name="New" type="xs:string" />
</xs:choice>
</xs:complexType>
</xs:element>

Figure 3.15: Fragment of XML Schema for a set of values for the element "Equal”

In the Figure 3.15 the element "Equal” has a complex type with a connector "choice",
this connector allows the choice between an element "Set" and an element "New". If the

59

60

ADVANCED SLA IN CLOUD COMPUTING

choice is the element "Set" the customer can choose between the values presented, if
the choice is the element "New" the customers can customize the solicitation according
to their needs.

To illustrate the use of this XML Schema we demonstrate how a service request can
be submitted by a customer (Figure 3.16).

<?xml version="1.0" encoding="utf-8"?2>
<Request xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="D:\Gerson\Documents\Works\ArquivosXML\Request.xsd"
Customer="ABC">
<Property>
<Name>
<Established>Locaticon</Established>
</Name>
<Value>
<Equal>
<New>France</New>
</Equal>
</Value>
<Unit>country</Unit>
</Property>
<Property>
<Name>
<New>Video Streaming</New>
</Name>
<Value>
<Equal>
<New>720p</New>
</Equal>
</Value>
<Unit>resclution</Unit>
<Description>Videco streaming with 720p resolution (also known as HD) is a
progressive HDTV signal format with 720 horizontal lines and an aspect ratio (AR)
of 16:9 (1.78:1)</Description>
</Property>
</Request>

Figure 3.16: Properties representation in a XML file of service request

In this example, the customer ABC needs a video streaming service with 720p of
resolution on servers located in France, so he order a service with two properties. The
property "Location" (p,) that is established by providers and a new property called
"Video Streaming" (p,). The property "Location" do not have the country France on
her list of values, then the customer can request a new value to this information. For
the new property "Video Streaming" in addition to the procedure to request the new
property and its value the customer can also give a generic description for the service
thus aiding the understanding of its needs by the provider.

Based on pre-defined conditions of service and the customer requirement we can
then define all service concepts at a higher level needed for use in a real agreement.
Thus determining the creation of a SLA that can be generalized to suit any customiza-
tion required by the customer and ensuring the effective implementation of the concept
of XaaS (everything as a service).

3.5 ADVANCED ISSUES IN A GENERIC SLA 61

3.5 ADVANCED ISSUES IN A GENERIC SLA

One of the initial tasks carried out in the research for this study was the identification
of requirements that must be met to establish a Service Level Agreement. As seen until
the moment these requirements were divided into three groups: service conditions
(given by the CP), service request (given by customer) and valid SLA (goal of our

approach).

The ontology used for a valid SLA (vSLA) is defined through the integration of
the two ontologies presented previously (ServiceConditions and Request) as shown in

Figure 3.17.
Provider
Responsible

o
‘ Name
l““

_ |

‘iServiceConditions) Range

<\ Senice Properties ' . Maximum
o —4< Value | e

\ |
-

| NotEqual

|\

| _ Dependence

(@)

Provider

-

/ Customer

. Service

Figure 3.17: Ontology proposed in three complementary groups: Service Conditions (a), Re-

quest (b) and vSLA (c)

Customer

~ Y

| Request | | | | Waxinclusive
. Request Properties | Value | —
— 1 Set
\ | Equal ~—
\ [New
| \ Sef
\ . NotEqual
| T New
. Unit
. Description
(b)
Responsible
[1o
Name
{ Minimum
[Mininclusive
Range ,—
< Maximum
. Value | \—
) ~ Maxinclusive
l | Equal
| | NotEqual
| Unit
Description

(©

Established
Name ~—
T New
Minimum
| Mininclusive
‘ Range)

| / . Maximum

62

ADVANCED SLA IN CLOUD COMPUTING

This approach meets one of the ontology proposed objectives which is to allow the
creation of agreements to which the variables are defined from its meaning and not
just syntactically.

Furthermore we can use patterns already established in the market, as in [4] to estab-
lish a repository of description of properties to be used by providers in the enforcement
of their services and to facilitate the search for services by customers.

From the customer’s point of view a service request R to determine a vSLA should
consider two important aspects:

1) Knowledge and understanding of the required properties: Once the goal is to es-
tablish a high level of freedom for the customer we must use the definition of property
in a way that both parties can understand their meaning. For this we use the property
descriptions to determine a common sense for each property. As in Table 3.1.

Table 3.1: An example of property descriptions

Property Name Description

Authentication Specifies the available authentication mechanisms
supported by the CP on its offered cloud services.

Availability The property of being accessible and usable upon de-
mand by an authorized entity.

Response Time Time interval between a cloud service customer ini-
tiated event (stimulus) and a cloud service provider
initiated event in response to that stimulus.

Service Reliability Describes the ability of the cloud service to perform
its function correctly and without failure over some
specified period.

These descriptions were taken from [4]. However, our approach allows some generic
description, such as response time to be edited and present a more specialized descrip-
tion, e.g., determining which stimulus starts the event.

The response time is a measure related to the overall performance of the system
and not of either component. The response time is defined as the difference between
the time that the customer has initiated a request or question and the time that the
system presented to the customer her answer. For example, the time interval between
the request for an account balance in a bank terminal and the presentation in the
video response (the account balance). Or we can determine that the response time is
the time the CP has met the request to perform a particular task. Such as performing
mathematical calculations and presentation of results.

So we may have different properties "Response Time" characterized by their descrip-
tion and with different names such as: "Response Time for bank account balance" and
"Response Time for mathematical calculations" each one with its respective description.

2) Determining the values of the required properties: Freedom in the composition of
a SLA also must allow the customer to request new values for the required properties.
For this, the values of each property are shown as in Table 3.2.

3.5 ADVANCED ISSUES IN A GENERIC SLA

Table 3.2: An example of property values
Established Property Set of Absolute Values
=USA
=Italy

Location
=Brazil

#North Korea
=no

=Triple DES
=RSA
=Blowfish
=Twofish
=AES
=weekly

Encryption

Auditing Frequency

=monthly

This common nomenclature allows the creation of a repository of templates that can
be searched semantically, either directly through the web, either through a database
capable of inference. Besides to represent a model for the description of Service Levels
Agreements with a logical language, with inference capability and usage rules. The
VSLA is then interpreted as an assignment of values on properties P, where the condi-
tions included in the SLA are those value 1 assigned by the service conditions C.

3.5.1 DETERMINING A VALID SLA

Our problem of determining vSLA given an service request R and a set D of depen-
dencies over a set C of conditions can therefore be interpreted as finding a value as-
signment f being correct w.r.t. R and D, and such that the set of conditions assigned
value 1 by f be well-formed, as formally defined as follows.

Problem 3.1 (vSLA). Given a set C = {cy,..., ¢y} a service request R over C, and a set D =
{d,,..., di} of dependencies over C, determine (if it exists) a value assignment f to the conditions
in Cs.t.:

1. (R) = 1 (requirement satisfaction);
2. fld) = 1,Vd € D (dependence satisfaction);
3. {ci € C: f(c;) = 1} is well-formed according to Definition 3.4 (conflict satisfaction).

To demonstrate the generality of our approach, we refer our examples to a munic-
ipality owning a sensor network to measure air pollutants in its area. Each sensor
measures specific pollutants at regular time intervals, and the recorded measurements

63

64

ADVANCED SLA IN CLOUD COMPUTING

need to be collected and analyzed to set appropriate countermeasures (e.g., restrict-
ing vehicles circulation) when needed. Since sensors have limited storage capacity, the
municipality aims at relying on an external CP to store and manage the collected data.

Outsourced measurements need to be retrieved by the municipality health office
whenever needed and, since timely retrieval is a critical factor for fast air quality anal-
ysis, the municipality wishes the CP to ensure a maximum response time to requests.
Since the outsourced measurements are considered sensitive information (the existence
of correlations between high levels of air pollutants in a certain area and respiratory
diseases of citizens living nearby is well known), the municipality wishes also that data
be either: i) physically stored in a chosen trusted country, or ii) physically stored at a
CP audited for security every week; or iii) encrypted by the CP (since measurements
cannot be encrypted before storage, we assume for the sake of the example the mu-
nicipality to choose a CP among those considered trusted for accessing plain text data,
hence confidentiality is required against intruders/unauthorized third parties). These
requirements set the parameters of the service that the CP provides to the municipality
and are part of the SLA between the CP and the municipality (hereinafter, the customer
of the service).

The SLA establishment starts with the communication to the CP of the requirements
imposing arbitrary conditions on functional/nonfunctional properties to be satisfied
in the service provision. For instance, in our running example the municipality appli-
cation requirements comprise a condition restricting the response time to a maximum
value. Upon receiving the request, the CP can check whether it can satisfy them and, if
this is the case, the conditions in the request are inserted into a SLA on which both the
CP and the requesting party can agree. If the CP cannot satisfy the given conditions, a
SLA cannot be established.

The process of checking whether the request can be fulfilled can be complicated
by the possibility that the enforcement of a condition might be possible only provided
that other conditions be also enforced. For instance, to ensure a response time less than
a given threshold, a CP might be able to accept only a limited number of requests per
time unit. This is due to the fact that the response time of a system is not an isolated
property: on the contrary, it is linked to other properties by a dependence (such as the
rate of requests, which have a clear impact on the responsiveness of a system).

We note that dependencies cannot be assumed to be known by IoT infrastructure
authorities, and taken into account before formulating their application requirements.
In fact, they can be provider-dependent, meaning that some dependencies might hold
for a given CP while not holding for other ones. While dependencies must therefore
be transparent for the customers, each CP knows the specific dependencies that hold
for its services. To build a vSLA starting from application requirements, the CP must
then check such requirements against possible dependencies.

It is easy to see that the consideration of both requests and dependencies in the
establishment of a SLA can result in different outcomes: i) the service conditions can
be satisfied as they are (i.e., no dependency is involved) and can be put into a vSLA;
i) the conditions cannot be satisfied (e.g., the CP does not have resources to fulfill
them), and a vSLA cannot be created; and iii) some conditions involve dependencies

3.5 ADVANCED ISSUES IN A GENERIC SLA

that require the enforcement of further conditions, which then also need to be inserted
into a vSLA.

Our problem can be naturally represented through a mixed and colored hypergraph
representing the input of Problem 3.1. And then we can present a solution based on
a translation of the problem as a Constraint Satisfaction Problem (CSP) [159]. Such
mixed hypergraph G (V, E, E¥), with V the set of vertices and E (E¥, resp.) the set of
directed (undirected, resp.) hyperedges, is defined as follows.

e Each condition appearing in R and in the set D = {d;,..., d;} of dependencies
holding for the CP, as well as the request R, correspond to a vertex v € V;

e Each dependency d : ¢, ~ P(cj,..., ¢j) where P(c,..., ¢;) is composed of m OR-
ed terms is translated into m directed hyperedges in E where the i hyperedge
connects ¢, to all conditions of the i term, i = {1,..., m});

e The request R, composed of m OR-ed terms, is translated into m directed hyper-
edges in E where the i hyperedge connects vertex R to all conditions of the i
term, i = {1,..., m};

e For each property p appearing in the conditions in the graph, the set C, of condi-
tions defined over the same property p is translated in an undirected hyperedge
in E" connecting all conditions in Cp.

The Figure 3.18 illustrates the hypergraph modeling our running example, where
hyperedges in E (E¥, resp.) are represented as arrows (dotted boxes, resp.) linking
(surrounding, resp.) the involved conditions. The computation of a solution to Problem
3.1 can be interpreted as a coloring of the vertices of the hypergraph, starting from
the vertex representing R and recursively propagating the color through the directed
hyperedges in E.

7
(fr_eq_rate resp| tlme sec au access log SIV_ l stora
@:c numj ﬂ;cr- AES \. <1 /min _J <][_“u kl C . backup |1n _USA <|U(]l B

f
encr=no
——

Figure 3.18: Graphical representation of Problem 3.1 for our running example

€y

ﬁackupw ! storage
: A\ >100TB

r,-

Note that, when more than one hyperedge originates from the same vertex v € V, it
is sufficient to propagate the color through one hyperedge (recall that m hyperedges
correspond to m OR-ed terms). Such color propagation through directed hyperedges
guarantees that the colored vertices represent a set of conditions satisfying the first two

65

66

ADVANCED SLA IN CLOUD COMPUTING

conditions in Problem 3.1. In fact, directed hyperedges link all conditions included in
the OR-ed terms in R, and also conditions in the OR-ed terms in the dependencies
enabled by the coloring of a term in R.

The Figure 3.19 illustrates the hypergraph of Figure 3.18 after the color propagation
from R through the hyperedge representing R : (c5 /\ ¢10).

1

s Ie ti di t-\ | : t
s q.rate resp ime) (“sec.audit) (access og\ _ storage
e j Gmcr \LW <1/mm <10 =weekly _/ —\u__) backup na USA <100TB

! @)

backup : st orag

A\ =daily) N 2 llll]TB
: - —

Il encr=no

Figure 3.19: Color propagation in the hypergraph of Problem 3.1 for our running example

Once color has propagated through directed hyperedges in E, undirected hyper-
edges in E* can be exploited to check the satisfaction of the conflict condition (Condi-
tion 3) in Problem 3.1. By restricting G (V, E, E¥) to G (V, E*), such condition is satisfied
iff the colored vertices represent an independent set for G'. In fact, since all conditions
defined over the same property are connected through an undirected hyperedge, if for
every hyperedge [v;,..., v;] in E", at most one vertex vy € {v;, ..., vj} is colored, then the
set of colored vertices in G includes at most one condition for every property. Figure
3.19 shows that the set of colored vertices form an independent set for G (V, E*). To find
a solution to our problem, we represent it as a CSP [159], which can then be solved
with CSP solvers [160].

3.5.2 CSP FORMULATION

According to [160] a Constraint Satisfaction Problem can be formulated as follows:
given a triple (X, D, K), with X a set of variables, D the domain of variables in X,
and K a set of constraints over X, find an assignment w : X — D that satisfies all the
constraints in K. Our translation interprets:

e All conditions appearing in R and in the set D of dependencies as the set X of
variables;

o The set of integers {1, o} as the domain D of the variables in X;

e The requirement R, the set D of dependencies, and the conflicts among conditions
as the set K of constraints.

A solution to the problem so defined corresponds to a value assignment w(c) to all
conditions in C such that w satisfies all the constraints in K. With reference to our

3.5 ADVANCED ISSUES IN A GENERIC SLA

hypergraph, X corresponds to the set V of vertices excluding R, D corresponds to the
domain of colors (1 translates to gray), K corresponds to R and the dependencies and
conflicts modeled through hyperedges, and w corresponds to the coloring function.

We now illustrate how the requests, dependencies, and conflicts can be translated
into equivalent CSP constraints.

1. Requests: Given a service request

R: Vi, (/\r:(i])cij)

Composed of m OR-ed terms, then all conditions in at least one of these terms
must be included in a vSLA. In terms of the CSP assignment function w, at
least one of the m terms must be assigned value 1. Formally, a requirement R is
interpreted as

m
\/ (Ci1 =..= Cik(i] = 1)
i=1

2. Dependencies: Given a dependence

d:cy~ Plci, ..., cj)
With P(cj, ..., ¢j) = V%, (/\;‘:(11)01].), then all conditions in at least one of the m OR-
ed terms must be included in a vSLA if ¢, is also included. In terms of the CSP
assignment function w, at least one of the m terms must be assigned value 1, if
also cy, is assigned value 1. Formally, a dependency ¢, ~ P(c;,..., ¢j) is interpreted
as

1

(ch=0)V (\/ (ci; = ... = Cipy, = 1))
=1

3. Conflicts: Given the set C, of conditions over property p, then at most one condi-
tion ¢ € C, can be included in a vSLA. In terms of the CSP assignment function
w, at most one condition ¢ € C, must be assigned value 1. Formally, a set C, =
{c1, ..., cx} is interpreted as

k

(c1=..=cx=0)V (\/ (ci=1A(cj, = .. =¢j, = 0))) ,¢i €{ct, . axt\ fei)

i=1

Note that CSP constraints correspond to the conditions of Problem 3.1, and a
function w satisfying them corresponds to a correct value assignment f of Prob-
lem 3.1.

The Table 3.3 illustrates the CSP constraints for our running example. A vSLA will
include all conditions assigned value 1 by the assignment function w.

67

68 ADVANCED SLA IN CLOUD COMPUTING

Table 3.3: Requirement, Dependencies, and Conflicts with their CSP formulation

Input CSP formulation
Requirements | (c5/\ci0) V (c5/\¢a) V (c5/\¢cp) (cs=cio=1)V(cs=c=1)V(cs=c6=1)
c5 ~ cg/A\cy/\cg (cs=0)V(cg=c4y=c3=1)
Cio ~ C11 (cio=0)V (e =1)
Dependencies | ¢, ~ ¢, (ca=0)V(cy=1)
Cg ~ C12 (cg=0)Vi(ciz=1)
Co ~ Cy (c6=0)V(c,=1)
Cstorage = {€11, C12} (11 =0Ac2=1)V(c12 =0)
Conflicts Chackup = 1€, C8} (cg=0Acg=T1)V (cg=0)
Cener ={c2,¢3} (c3=0Nc; =1)V (c, =0)

The CSP translation illustrated in Table 3.3 can be solved by adopting any CSP solver
and obtains a result assigning value 1 to the colored vertices in Figure 3.19, correspond-
ing to a VSLA (i.e., a solution to Problem 3.1). With the determination of a vSLA we
can then consider the responsibilities assigned to each property.

3.6 SHARED LIABILITY IN CLOUD SLA

In order to create a VSLA where the customer has the control over some aspects of
the service, also the customer must give mechanisms that support this feature. In this
sense our approach applies the use of shared liability and policies to establish a certain
level of freedom for the negotiation.

Usually the QoS parameters are used by companies to check their technical per-
formance and to check customer satisfaction with its services. Quality monitoring of
services provided to companies in SLAs gives to provider the opportunity to support
new services and applications, building a strong reputation based on stable relation-
ships and brand image, allowing maintenance and increasing its market share. Based
on this premise we can infer that the same monitoring of internal QoS can be extended
to the monitoring of external metrics to CP.

So that the provider can support new services it is necessary to establish a context
for the use of agreed resources. The challenge, then, is based on creating an enabling
environment to meet different customer needs, balancing issues of control and trans-
parency, and at the same time can be monitored through the contextual information
provided by the shared liability relationship.

In our approach we assume that any property required by customer can have many
assumptions for its smooth functioning. And these dependencies must be mapped
and used in accordance with shared information, both internal and external to the
provider. In this case we use the NIST definitions given in [118] which defines abstract
and concrete metrics.

Thus we adopt the definition of abstract metrics to provide the customer a choice
of parameters it needs, regardless of the resources provided by the provider, i.e., in-
dependent of the list of services provided by each provider, the customer can request

36 SHARED LIABILITY IN CLOUD SLA

a particular property based on their needs and control of services thus enabling the
usage control over their information. In this way we ensure that any property can be
requested by the customer.

But for the management of these abstract metrics (and consequently, the control of
concrete metrics) is important define the behavior of the same. Moreover, using this
approach, we can define the use of dynamic and static properties, which could be
considered both to ensure a certain level of service by the supplier as to require a
certain level of use by the customer.

If a metric is static the property takes a value that is unchanging in time. But if
the metric is dynamic, i.e., the property value has changes over time, then it is neces-
sary to establish the relationship of responsibility between the entity that controls and
controlled property.

The determination of responsibility for each property is defined by the cloud provider
in the service conditions. By default each property is the provider’s responsibility but
if we have a dependence on external properties such as inherent to the customer prop-
erties, this relationship can be considered as a dependence to the shared responsibility.
By definition our approach on shared liability presents the following situations:

e No Liability Statement: A service condition may have a property that does not
have a direct responsible, for example, a condition of incompatibility where a
property can not assume certain value such as "Location # North Korea", in this
case the provider can inform that do not performs services in a particular location

or the customer requests a service indicating an undesired location. Therefore we
have no direct responsible for this condition;

e Provider’s Liability: When a property has values or conditions that are uniquely
provider responsibility, such as "Backup Frequency = weekly", where the provider
assumes that backs up the information according to the established period or "Lo-
cation = USA", when the provider ensures that where the information is stored

will be the same as described in the agreement;

e Customer’s Liability: Once we present properties that depend on other proper-

ties some of them may be different responsibility of the service provider, for
example "Request Rate < 1/min" that determines the rate of requests made by
the customer;

e Liability of Both Parties: Some properties may have shared liability itself, i.e., the

two entities present in the agreement (provider and customer) are responsible for
maintaining the property value, such as: "Contract Time = 1 year".

We then briefly describe these situations in the Table 3.4:

69

70

ADVANCED SLA IN CLOUD COMPUTING

Table 3.4: Properties on Shared Liability Situations

Property Liability No Provider | Customer | Both Parties
Location # North Korea | = USA

Backup Frequency = weekly

Request Rate < 1/min

Contract Time =1 year

Note that with this approach, we can clearly identify the entities responsible for
each property thus facilitating the monitoring of dependencies and we can say that
any change in the dynamic value of a property may indicate violations in the SLA
between the parties.

3.7 CHAPTER SUMMARY

In this chapter, we address the problem of creating a Service Level Agreement that
meets the customization needs of customers ensuring control over the process of mi-
grating to a Cloud environment. The proposed solution is based on a modeling based
on a generic ontology that takes advantage of an approach based on XML Schema
representing the relationships between different services in Cloud Computing. The
problem constraints observed in some types of service is then reformulated in terms
of dependencies modeling the fragments which satisfy the constraints and incompati-
bilities. The set of services and attributes is treated generically as properties and each
property is represented in tuples of service conditions which carry the necessary in-
formation for the correct formulation of a valid Service Level Agreement. We present
the characteristics of ontology, describing the XML Schemes for both the definition of
service conditions and the definition of requests and an approach to the treatment of
new properties and values to solve the problem of customization and generalization.
We also present an approach for managing and monitoring external properties to the
Cloud Provider, based on shared liability. First, we describe how the properties should
be treated and defined by providers and then present an approach to support the set-
ting using colored hypergraph to represent the problem of definition of a valid SLA
beyond to demonstrate how we can solve the problem through Constraint Satisfaction
Problem formulation.

AUTOMATED FRAMEWORK TO CLOUD SLA
MANAGEMENT: CONCEPTUAL MODEL

In the previous chapter we have detailed important aspects of the creation of a generic
ontology, fundamental to the development of the framework proposed in this thesis,
which are: the different definitions of services and the consequent variety of ontologies
and present a generic definition to support the dynamic nature of cloud environments.

The approach proposed in this work, in addition to use of techniques of Multi-
Criteria Decision Making (MCDM)), is the creation of a conceptual framework for anal-
ysis of models of Service Level Agreements. The most general objective of the proposal
is to develop a conceptual tool that facilitates the work of the cloud-services providers,
enabling efficient analysis on market needs and to allow the negotiation of service
agreements that keep track of the needs of users as well as keeping transparency. This
tool is based on a generic ontology to support adaptable and extensible components
in Advanced SLA Management and allows support for future markets in Cloud Com-
puting.

Since the creation of a generic ontology is not enough to achieve our goal of SLAs
customization it is important to create mechanisms that can support this approach,
in this sense we present a conceptual framework designed specifically to meet the
particularities of our ontology.

41 INTRODUCTION

The generic ontology presented is part of a broader context that is the conceptual
specification of an infrastructure for utilization in Service Level Agreements, whose
objective is to support the potential services in Cloud Computing and provide greater
control and freedom to customers to determine their needs. This infrastructure aims to
support the search and discovery of cloud services that are independent by the domain.

71

72

AUTOMATED FRAMEWORK TO CLOUD SLA MANAGEMENT: CONCEPTUAL MODEL

The ontology is then used as the basis for research and composition of Service Level
Agreements in the framework.

The conceptual framework proposed in this thesis is based on the rules and formal-
ities of object orientation and represented in the notation of the UML class diagram
methodology. The purpose of a conceptual framework is to provide a class diagram
that can be used as a basis for modeling of the application domain classes. A concep-
tual framework does not necessarily imply a finished and executable product, but in
a conceptual data schema that subsequently must be translated into a specific data
schema.

The framework for advanced management of SLA has been proposed with the aim
of easing the process of creation and use of services based on Cloud. The main con-
cern of the research reported in this thesis was, from its inception, the search for an
approach to determining SLA for Cloud-based services, and provide freedom to cus-
tomers to order services based on their needs, could facilitate the task of adaptation
and extension of new properties in an organized manner for the services providers.

The challenge to be overcome is the existence of a lot of services in Cloud, which cre-
ates a difficulty to be exposed to their target audience and applied more consistently.
Aiming to overcome this challenge, this thesis proposes the use of an infrastructure
approach that enables the documentation, storage and dissemination of the different
Cloud services through a repository of properties, documented from a metadata pro-
file, manageable and accessible via Web services.

4.1.1 CHAPTER OUTLINE

This chapter describes the objectives of the framework and the proposed architecture
for its effective implementation. It shows the scenario of using the framework based
on established properties and values determined by providers beyond the conceptual
description of the framework operation. The main contribution of the Chapter is the
presentation of a conceptual framework that enables the use of our generic ontology
through a simplified structure allowing flexibility and adaptability in the composition
of Service Level Agreements.

4.2 OBJECTIVES

The framework proposed in this thesis uses the concepts of template repository and
semantic web services. The objective of this framework is to provide an infrastructure
for registration, search, composition and simulation of components used in SLAs in
Cloud Services. Specifically, the framework should allow:

1. Registration and storage of semantic models for representing templates for Ser-
vice Levels Agreements and service composition in cloud computing.

2. Searches based on the semantics expressed in models with recovery templates as
a generic ontology.

4.3 FRAMEWORK STRUCTURE

3. Composition of SLA models to generate more complex templates that can be
stored and used as MSA.

4. Control and monitoring of valid SLAs, i.e. the submission of models for tools
that allow the simulation model and the return of the results generated.

The semantic description of properties allows the composition with other properties,
while referring to models that can be simulated in established tools (or building such
models, if necessary), it provides great flexibility to the process of creation of SLAs,
common in the Cloud Computing environment.

This framework can serve as a basis for the development of new components and
to explore other areas of research in cloud computing, hypercloud or also in Internet
of Things, providing a modular architecture for its own expansion. Each component is
also encapsulated in web services that may be run remotely (either independently or
with other compound components).

4.3 FRAMEWORK STRUCTURE

In essence, a data repository is a computing environment, usually a Web site capable
of storing data and metadata , i.e., resource, about a particular subject. The interested
community can access to the resource at any time, being available for indefinite period
of time by the repository. An overview of the framework architecture for this repository
is shown in Figure 4.1. The framework implement concepts of SOA and considers two
distinct layers, as shown:

o Advanced SLA Framework: is the framework itself. It is implemented as a web
service, and is independent of the interface that accesses their services, facilitating
integration with existing tools.

o Customer/Provider: 1t is the interface for interacting with users of the framework
and can be developed in any language with access to web services. This layer
considers two types of users for the framework: customers and providers.

73

74

AUTOMATED FRAMEWORK TO CLOUD SLA MANAGEMENT: CONCEPTUAL MODEL

Customer ADVANCED SLA FRAMEWORK Provider

Properties Management

List of Properties
Ontology
List of Properties
SLA Management
Service
Request Service - "
Service Conditions Selection SLA Composition
Contidions

vSLA Monitor

Dynamic
Changes

Report

vSLA Violations

Figure 4.1: Overview of the Framework Architecture

The interface layer for customers users is responsible for receiving service requests
from clients, while the interface for providers users is responsible for receiving the list
of established properties and the conditions of these services.

4.3.1 THE USERS LAYERS

Usually when working with frameworks, it is necessary to develop class libraries and
their subroutines. This way of setting up and running components shows quite cum-
bersome and unintuitive process that implies the use of documentation understand the
interfaces and write the code to be able to use the libraries.

The idea of creating a framework based on XML Services allows for easy composi-
tion of the components by utilizing any graphical interface. This allows the framework
a dual role serving for two types of users:

Providers can use the framework to register their services and check for new market
demands in addition to being able to use the framework as an aid mechanism for mon-
itoring their own agreements.

Customers who use the framework to search for available service environments in the
Cloud and can make the composition of services based on their needs, besides the
possibility of adding new services by solicitation.

To build a framework without worrying too much about the interaction with the user,
it is necessary to define interfaces independent from implementation. With respect to
this premise, efficient access to already implemented object classes is facilitated with

4.3 FRAMEWORK STRUCTURE

the use of generic ontology, allowing its easy extension since new components also
follow the same format.

The usual form of object orientation is often based on domain analysis, which leads
to the development of specialized and specific interfaces for each domain. Usually
most of the software interfaces are not adequate to fulfill the needs of customization
and interoperability.

When these subsystems are considered as part of a large class of subsystemes, it is
possible to define new interfaces that are applied to the entire system, and not only
to a single instance. If there are multiple subsystems on the same system, it can be
categorized in the same way then there are immediate benefits for interoperation.

As we have different services that can be made available in Cloud Computing and
since each user interface can be developed independently of the internal implementa-
tions of the framework, it is possible to carry out changes in the independent interfaces
without an impact on the system as a whole.

The internal and external interfaces of the framework define the static structures of
the proposed approach. This approach allows customers to be protected from frame-
work components, thereby reducing the number of objects to be used by the user,
making it easier to use the framework. For this to be possible we need an efficient
mechanism for storing and retrieving the properties and templates.

In this sense the properties can be grouped into service conditions according to
each description and the short hierarchical structure, the modularity and the need
for extension of service agreements can be described using the XML representations
presented in the previous chapter.

The Figure 4.2 presents a diagram of Use Cases that demonstrate the interaction

Records List of
Services
Records Service
Conditions

Figure 4.2: Scenario of interaction between the users of framework, represented in Use Cases.

between the users of the framework.

Search Properties J=——=—-

Customer Provider

Focused on customer problem, which is the search for cloud services that meet their
needs and maintain their control documented in the contract, and provided with a list
of services and conditions offered by the provider; it is the framework that reconciles
the information to perform analysis considering the scenarios that might solve the
problem.

75

76 AUTOMATED FRAMEWORK TO CLOUD SLA MANAGEMENT: CONCEPTUAL MODEL

As exemplified by the Use Case in Figure 4.2 and using the generic representation
services through the properties a customer can search services using only properties
and values as the example shown in the Table 4.1.

Table 4.1: Example of a service request used in the search for properties

Customer Response Service Storage Encryption Price
Time Location Capacity Algorithm
ABC < 30 (ms) =Uruguay | =100 (TB) | = AES | < 350
(country) (name) (US$/year)

Translating the information presented in Table 4.1 to our definition of property, we
have the following request service: R = {resp_time <30, location = Uruguay, storage = 100,
encryption = AES, price < 350}. Based on the definitions provided in chapter 3 we can
represent the example of Table 4.1 as follows in Figure 4.3:

p: resp_time < 30 (ms)
p2: location = Uruguay (country)
ps: storage = 100 (TB)
p4: encryption = AES (name)
ps: price < 350 (US$/year)

Figure 4.3: Formal representation of a service request

In this chapter we treat this search based only on values and properties previously
established by providers, so the property names and values must be already present
in the list of available services.

The list of services maintained by the framework is a simple list of all services
and possible values submitted by all providers, such as: resp_time={10, 20, 30}, loca-
tion={USA, Uruguay, France}, storage={100, 500}, encryption={AES, DES, no}, etc. In this
way our approach is shown to be compatible with existing market approaches facilitat-
ing its extension and utilization.

Therefore any provider can register their services. The services registration, besides
being based on the lists of properties and values, it is also based on service conditions
and can occur in two ways:

1. Registration of service plans: Where the properties are grouped into distinct services
plans.

2. Registration of single properties: Each property and its dependencies are recorded
separately.

In the first case the properties are registered in service plans that represent the
provider implementation possibilities. Where the provider can register each set of prop-
erties and dependencies combinations as a single block of service conditions. As in the
example shown in Table 4.2.

Table 4.2: Example of a service plan

4.3 FRAMEWORK STRUCTURE

Service ID: 15225
Provider | Properties
Resp. ID | Name Value Unit Dep.
Range
Provider o1 | Storage Min. | Max. | TB 02
100
Resp. ID | Name Value Unit Dep.
Equal
Provider | o2 | Location qua country
USA
Resp. ID | Name Value Unit Dep.
Range 04
Provider 03 | Response Time | Min. | Max. | ms 05
30 06
Resp. ID | Name Value Unit Dep.
Equal
Amazon 04 | Backup qua response
no
Resp. ID | Name Value Unit Dep.
Range
Customer | o5 | Request Rate Min. | Max. | Req./min.
1
Resp. ID | Name Value Unit Dep.
Equal
06 | Encryption qua response
no
Resp. ID | Name Value Unit Dep.
Equal
07 | Price qua US$/m.
100

In this example the provider Amazon offers a service plan with a stated maximum
data storage capacity of 100 TB which is located in the USA, adding a service of re-
sponse time less than 30 ms, backup is not allowed, none use of encryption and the
request rate should be less than 1 per minute, the provider also determines that the

price for this plan is US $ 100 per month.

Using our definitions we can represent the example of Table 4.2 as follows in Figure

4.4:

77

78 AUTOMATED FRAMEWORK TO CLOUD SLA MANAGEMENT: CONCEPTUAL MODEL

cq: storage < 100 (TB)
C»: location = USA (country)
c3: resp_time < 30 (ms)
¢,: backup = no (response)
c5: req_rate < 1 (req./min.)
Ce: encryption = no (response)

c,: price = 100 (US$/m.)

Figure 4.4: Formal representation of a service plan

Considering the service conditions and the dependencies presented for the proper-
ties ¢; and ¢; we can summarize the service plan as shown in Figure 4.5.

15225: C; ~ Ca; C3 ~ €4 /N €5 /\ Cq; C5

Figure 4.5: Example of a service plan summary

This allows the provider to present their service plans in accordance with the com-
binations it considers appropriate. Thus each provider can present its list of service
plans (as shown in Table 4.3) which will be used later as input to MCDM techniques
to determine the best choice for the customer.

Table 4.3: Example of a list of service plans

Service ID | Service Conditions

15222 Ca; Cs; C6; Cy

15225 €1 ~ Ca; ¢35~ ¢4 N es N cg;
15226 cg ~> Cg A C13; C10 ~* Cp; C11
15227 Cy; €10 ~ C6; C13

15230 g ~ Cg /\ C13; C15

15232 C4; C12; C16

15233 c3 ~ ¢4 /N5 N\ cg

As can be seen each service plan allows the sale of a set of properties. Consider-
ing, for example, the service plan 15222, we can see four properties (c,, ¢5, ¢6 and c;),
whereas the price of the service plan is also a property, our approach allows us to state
a services plan available in the framework is self sufficient and can be used to form the
SLA.

But let us say that a customer only needs the property c,, that obliges the customer
to purchase a plan with more properties. So we must ensure that the framework can
support any form of service delivery. This is possible through the registration of single
property.

As an example of this situation we present the Table 4.4.

4.3 FRAMEWORK STRUCTURE

Table 4.4: Registration of a single property

Service ID: 15233

Provider | Properties

Resp. ID | Name Value Unit Dep.
Range 04
Provider | 03 | Response Time | Min. | Max. | ms 05
30 06
Resp. ID | Name Value Unit Dep.
Equal
04 | Backup qua response
no
Amazon | Resp. ID | Name Value Unit Dep.
Range
Customer | o5 | Request Rate Min. | Max. | Req./min.
1
Resp. ID | Name Value Unit Dep.
Equal
06 | Encryption qua response
no

In this example the provider Amazon is only providing the response time service (cs),
the other properties (backup-c,, request rate-c5 and encryption-cs) are the dependencies
to ensure the service.

Considering the property c; we have then two occurrences, as shown in Table 4.5.

Table 4.5: Records to property c;

Service ID | Service Conditions

15225 €y~ Ca; €3~ €4 N\ C5 N\ C; €y

15233 c3 ~ ¢4 /N5 N\ cg

The first occurrence (the Service ID 15225) refers to a services plan that provides, in
addition to the property c;, also the property ¢, with its dependencies and the price for
the service plan (property c,). The second occurrence (Service ID 15233) refers to record
only the property c; (and its dependencies). This gives the freedom to the provider that
can create SLA templates based on their ability.

Given a list of services and values determined by the provider we can take an exam-
ple as demonstrated in Table 4.6.

79

8o

AUTOMATED FRAMEWORK TO CLOUD SLA MANAGEMENT: CONCEPTUAL MODEL

Table 4.6: Example of a list of services

Services Values
=1
Number of Processors | =»
=3
. =AES
Encryption
=no
Response Time <10 ms
Auditing Frequency =weekly
Backup =ho
=daily
=USA
Location =Italy
=France
<100 TB
Storage
>100 TB to <200 TB
=50 US$/m.
Price =100 US$/m.
=150 US$/m.

In the example shown in Table 4.6 is presented a list of different services converted
into properties that can be grouped to SLA composition. Once the user interfaces of
the framework are based on XML files, both service requests, as the service conditions,
can be presented in a format that can be easily handled by the framework. In the case
of services, a provider can provide both service plans as single properties using XML
files that meet the given XML schema for the service conditions, as shown in Figure
4.6.

4.3 FRAMEWORK STRUCTURE 81

<?xml version="1.0" encoding="utf-8"?>
<ServiceConditions xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:inoNamespaceSchemalocation="C:\Users\Gerson\Desktop\Works\ArquivosXML\ServiceConditions.xsd"
Provider="Amazon" ServiceID="15233">
<Property>
<Responsible>Provider</Responsible>
<ID>03</ID>
<Name>Response Time</Name>
<Value>
<Range>
<Minimum>30</Minimum>
</Range>
</Value>
<Unit>ms</Unit>
<Dependency>
<Property>
<ID>04</1D>
<Name>Backup</Name>
<Value>
<Equal>no</Equal>
</Value>
<Unit>response</Unit>
</Property>
</Dependency>
<Dependency>
<Property>
<Responsible>Customer</Responsible>
<ID>05</1D>
<Name>Request Rate</Name>
<Value>
<Range>
<Maximum>1</Maximum>
</Range>
</Value>
<Unit>req./min.</Unit>
</Property>
</Dependency>
<Dependency>
<Property>
<ID>06</ID>
<Name>Encryption</Name>
<Value>
<Equal>no</Equal>
</Value>
<Unit>response</Unit>
</Property>
</Dependency>
</Property>
<Property>
</ServiceConditions>

Figure 4.6: XML file to service conditions

As we can see by the example, the XML file shown in Figure 4.6 is exactly the
information in Table 4.4. This proves that the framework is sufficiently flexible enough
to support any composition determined by the provider and any request from the
customer.

82

AUTOMATED FRAMEWORK TO CLOUD SLA MANAGEMENT: CONCEPTUAL MODEL

4.3.2 THE FRAMEWORK LAYER

Focusing on information available and after receiving the customer’s request, the
framework should look for alternative solutions to meet the required needs. For this
the framework services are divided into three management modules:

1. Properties Management: Responsible for properties storage and integration of on-
tologies in the database, as well as to the inventory of properties for the service
providers.

2. SLA Management: Responsible for interaction with users of the framework. Its
purpose is to suggest the templates list to the service selection and later the SLA
composition.

3. vSLA Monitor: Responsible for controlling the SLAs and monitoring the change
of scenarios and possible violations.

In this chapter we present some aspects related to modules 1 (Properties Manage-
ment) and 2 (SLA Management). Module 3 (vVSLA Monitor) will be described in Chap-
ter 7.

The Properties Management module must consider the structure shown in Figure
4.7.

Properties Management

[3
[
Ontology
List of Properties

Figure 4.7: Properties Management module

This module receives the different lists of established properties from providers and
integrates the generic ontology in addition to performing the inventory of properties
(that will be explained in the next chapter of this thesis). The example in Table 4.7 al-
lows us to understand a practical real case application, involving services provided by
three providers. In this example, we have considered three lists of different providers,
each one containing the relation of available services and values that each property can
take according to the provider.

4.3 FRAMEWORK STRUCTURE

Table 4.7: List of services to the Properties Management Module

83

Services Values of Provider A | Values of Provider B | Values of Provider C
=AES =RSA
Encryption | =no =AES
=no
=USA =Uruguay =USA
Location =Italy =Brazil =lItaly
=France =Argentina =Brazil
#North Korea
<100 TB <100000 GB <100 TB
Storage >100 TB to <200 TB >100 TB to <200 TB
>200 TB

In the example presented in Table 4.7 the provider A provides a list of services
containing encryption, location and storage with the respective values for the properties;
the provider B offers the same services with different values for the properties and the
provider C offers a list containing only 2 services (location and storage) and their values.

These services are considered established properties by the framework and a frag-
ment of XML schema that represents this is shown in Figure 5.3.

<xs:element name="Established">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Encryption" />
<xs:enumeration value="Location" />
<xs:enumeration value="Storage" />
</xs:restriction>
</xs:simpleType>
</xs:element>

Figure 4.8: Fragment of XML schema with the established properties shown in the example

The list of absolute values present in the list of services is used as a set of values that
can be assumed by the properties in the XML schema provided by the framework. As
these lists are independent, the framework needs groups them in a integrated ontology
that can be presented as in Figure 4.9.

84 AUTOMATED FRAMEWORK TO CLOUD SLA MANAGEMENT: CONCEPTUAL MODEL

=RSA

_ Encryption =AES

f/..

=no

=UsA

7

| [=tay

=France

| Cloud Services |

Location =Uruguay

—

=Brazil
| =Argentina

\ #North Korea

N

\ ~ Storage

Figure 4.9: Integrated Ontology

Note that the integrated ontology does not present the values for the property storage,
this is because these values are not absolute but ranges of values. This ontology is then
published and serves as the basis for the absolute values used in the XML schema. An
example of how these absolute values are used by XML Schema is shown in Figure
4.10.

<xs:element name="Equal">

<xs:element name="Set">
<xsg:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="RSA" />
<xs:enumeration value="AES" />
<xs:enumeration value="no" />
<xs:enumeration value="USA" />
<xs:enumeration value="Italy" />
<xs:enumeration value="France" />
<xs:enumeration value="Uruguay" />
<xs:enumeration value="Brazil" />
<xs:enumeration value="Argentina" />
</xs:restriction>
</xs:simpleType>
</xs:element>

</xs:element>
<xs:element name="NotEqual">

<xs:element name="Set">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="North Korea" />
</xs:restriction>
</xs:simpleType>
</xs:element>

</xs:element>

Figure g.10: Fragment of XML schema with absolute values for established properties

4.3 FRAMEWORK STRUCTURE

These absolute values represent the alternative choice that customers have to request
in a Service Level Agreement. According to our approach, the XML schema used does
not use namespaces just to provide the necessary freedom for the customer to select
their properties according to their needs. For this reason it is important that the on-
tology is published for those developers who need to use the XML schema in their
interfaces not commit syntax errors.

Briefly this approach integrates the lists of services from different providers and
presents a public ontology that determines the XML schema, this ontology allows cus-
tomers to use the listed absolute values and the established properties as demonstrated
in Figure 4.11.

List of Provider A List of Provider B List of Provider C
Encryption Encryption Location
=AES =RSA =[JSA
=N =AES =ltaly
Location =no =Brazil
=LSA Location #North Korea
=ltaly =Uruguay Storage
=France =Brazil <100 TB
Storage =Argentina 2100 TB to 200 TB
<100 TB Storage >200 TB
2100 TB to <200 TB <100000 GB
Ontology
Properties Values
=RSA
Encryption =AFS
=no
=USA
=ltaly
=France
Location =Uruguay
=Brasil
=Argentina
#North Korea
Storage

Figure g4.11: Lists of services integrated in a public ontology

The integration of the list of services in a public ontology has great advantages such
as standardization and code reuse, and especially the possibility of variation in the
construction of specific Service Level Agreements to different fields in Cloud. Thus,

85

86

AUTOMATED FRAMEWORK TO CLOUD SLA MANAGEMENT: CONCEPTUAL MODEL

features such as aggregation capability of new services, clarity and overall vision was
fulfilled in the best possible way in our approach once the conceptual framework pro-
posed in this work keeps entirely free the possibility of variation for the determination
of SLAs.

Another issue to be addressed by the framework is that some values for the same
property can be displayed at different scales, the framework needs to determine a com-
mon scale so that the values are understood in the same way by the customer. Taking
as an example the property storage offering values in GB and TB, the framework needs
transforms all values on a same basis to be used in the service selection. Therefore, in
this case, the value "100000 GB" is converted into "100 TB".

After scaling transformation the list of properties and values can be then translated
into a table of properties as shown in Table 4.8.

Table 4.8: Table of Properties

Services Service ID A | Properties A | Service ID B | Properties B | Service ID C | Properties C
11212 (o 12125 o
Encryption | 11213 c5 12126 Ca
12127 C3
11214 Cy 12128 cy 13401 Cy
Location 11215 o 12129 s 13402 Cs
11216 Ce 12130 Cg 13403 cg
13404 C1o
11217 C11 12131 C11 13405 C11
Storage 11218 C1a 13406 C12
13407 C13

This table of properties is used internally by the framework to determine the service
selection, thus the framework has a list of established properties and default values
arranged in a generic ontology to manage the properties, so the next step is to de-
termine the SLA composition, this is accomplished by the SLA Management module.
This module is represented by the structure presented in Figure 4.12.

r 3

SLA Management

Service .
Service Conditions Selection SLA Composition
Caontidions

Figure 4.12: SLA Management module

4.3 FRAMEWORK STRUCTURE

This module receives the provider service conditions and stores them in a reposi-
tory which is used to compare with the requests of customers, determining thus the
selection of services that can matches and consequently creates the SLA composition.
Considering the proposed example we assume that, at first, there are no conditions for
the execution of the listed services and the customer X requests the following services
regardless of price: R= {Storage=80 TB, Location=Italy, Encryption=AES}. As the request
for the property Storage is equal to 8o TB the framework can assume that the request
is for a value less than 100 TB what formally means the property c;; and the request
may be represented as: R= {c;4, Cs, C2}.

Based on this information the framework selects the services and returns a list of
possibilities that can be used by external MCDM modules to determine the best choice
for the customer considering their priorities. For this example, a selected service list
can be presented as in Table 4.9.

Table 4.9: Preliminary list of selected services

Provider | Service ID | Properties
11217 Cr1
A 11215 Cs5
11212 C2
12131 c
B 3 11
12126 Ca
C 13405 C11
13402 Cs5

In this case the only one provider that has services that match the customer’s request
is the provider A with the services {11217, 11215, 11212}={cy;, C5, C2}.

After the framework performs the selection of services that matches the customer re-
quest, it is necessary that the service is accepted by the customer to be possible to make
the SLA composition. Since most of the necessary information for the composition of
a SLA can be manipulated as properties, and the structure of the ontology presented
in our approach enables the identification of other information, the framework can
establish that the SLA made for our example can be presented as in Table 4.10.

87

88 AUTOMATED FRAMEWORK TO CLOUD SLA MANAGEMENT: CONCEPTUAL MODEL

Table 4.10: Example of SLA composition by framework

Customer: X
Provider: A
Service ID: 11217
Properties
Resp. ID | Name Value Unit Dep.
Range
Both Parties | 11 | Storage Min. | Max. | TB
100
Service ID: 11215
Properties
Resp. ID | Name Value Unit Dep.
Provider 5 Location Equal country
Italy
Service ID: 11212
Properties
Resp. ID | Name Value Unit Dep.
Provider 2 Encryption Equal | name
AES

In the example shown in Table 4.10 we can see the customer’s identification, the
provider’s identification and the services compatible with the request, besides the re-
sponsible for the maintenance of each value.

Still considering the SLA management module, in another example we assume that
these same properties can be grouped into services plans with their prices as shown in
Table 4.11.

4.3 FRAMEWORK STRUCTURE

Table 4.11: Example of service plans from different providers

89

Provider | Service ID | Location Storage Encryption | Contract | Price

Time
A 11219 =USA <100 TB =AES =7.9 US$/m.
A 11220 =USA <100 TB =no =4.9 US$/m.
A 11221 =USA >100 TB to <200 TB | =AES =9.9 US$/m.
A 11222 =USA >100 TB to <200 TB | =AES >1 year =8.5 US$/m.
A 11223 =Italy <100 TB =AES =7.9 US$/m.
A 11224 =lItaly <100 TB =no =4.9 US$/m.
A 11225 =France <100 TB =AES =7.9 US$/m.
A 11226 =France <100 TB =no =4.9 US$/m.
B 12132 =Uruguay <1000000 GB =RSA =80 US$/y.
B 12133 =Uruguay <1000000 GB =AES =59.99 US$/y.
B 12134 =Uruguay <1000000 GB =no =24.99 US$/y.
B 12135 =Brazil <1000000 GB =RSA =80 US$/y.
B 12136 =Brazil <1000000 GB =AES =59.99 US$/y.
B 12137 =Brazil <1000000 GB =no =24.99 US$/y.
B 12138 =Argentina <1000000 GB =RSA =80 US$/y.
B 12139 =Argentina <1000000 GB =AES =59.99 US$/y.
B 12140 =Argentina <1000000 GB =no =24.99 US$/y.
C 13408 #North Korea | <100 TB =24.99 US$/y.
C 13409 =USA >100 TB to <200 TB =59.99 US$/y.
C 13410 =USA >200 TB =80 US$/y.
C 13411 =lItaly >100 TB to <200 TB =59.99 US$/y.
C 13412 =Brazil >100 TB to <200 TB =59.99 US$/y.

This table is a summary of the service conditions made by each provider separately.

Each of these service conditions is received by the framework that performs the equiv-

alences and stores them in one same place to be consulted at the time of service selec-

tion.

In this example we demonstrate the occurrence of two dependencies on service con-
ditions. The first is shown in the service 11222 of provider A, where the price of US$
8.5/m. only will be charged if the contract time is longer than one year, the second oc-
currence is perceived in the service 13408 of provider C which determines the storage
capacity less than 100 TB in places that are different from North Korea.

Considering the equivalence between prices with annual values and monthly values

and storage in gigabytes and terabytes we can translate the Table 4.11 as shown in

Table 4.12.

90

AUTOMATED FRAMEWORK TO CLOUD SLA MANAGEMENT: CONCEPTUAL MODEL

Table 4.12: Table of service plans

Provider | Service ID | Properties

A 11219 Cy; C11; C2; C15
A 11220 Cqs C11; C3; C14
A 11221 C47 C12; C2; C16
A 11222 C47 C12; C2; Co0 ~ C21
A 11223 Cs5; C11; C2; C15
A 11224 C5; C11;, C3; C1y
A 11225 C6; C11; C2; C15
A 11226 C6; C11; C3; C1g
B 12132 C7; €115 C1; C1y
B 12133 Cy; C11; C2; C19
B 12134 C7; C11; C3; C18
B 12135 C8; C11, C1; C1y
B 12136 €8, C11; C2; C19
B 12137 €8, C11, C3; C18
B 12138 Cg; C11; C1; C1y
B 12139 Cy; C11; C2; C19
B 12140 Cy; C11, C3; C18
C 13408 C11 ~ C10; C18
C 13409 Cy; C12; C19

C 13410 C4s C13; C17

C 13411 C5; C12; C1g

C 13412 Cg; C12; C1g

Supposing that a customer needs a storage service of 200 TB, this information is
translated as property c,, and the services that meet this request are presented as in
Table 4.13.

Table 4.13: Services to meet the request by property c;,

Provider | Service ID | Properties

A 11221 C47 C12; C2; C16

A 11222 €4 C12; C2; C20 ™7 C21
C 13409 Cy; C12; C19

C 13411 Cs; C12; C1g

C 13412 €8, C12; C19

The result presented in Table 4.13 shows five possibilities for the customer and each
one can be described as in the Table 4.14 with the following characteristics:

Table 4.14:

4.4 THE FRAMEWORK OPERATION

Characteristics of selected services for property c;»

Service ID

Characteristics

11221

Provider A with data storage capacity between 100 and
200 TB (inclusive) which is located in the USA, using AES
encryption at the price of US$ 9.9 per month.

11222

Provider A with data storage capacity between 100 and
200 TB (inclusive) which is located in the USA, using AES
encryption at the price of US$ 8.5 per month with con-
tract time more than 1 year.

13409

Provider C with data storage capacity between 100 and
200 TB (inclusive) which is located in the USA at the price
of US$ 59.99 per year.

13411

Provider C with data storage capacity between 100 and
200 TB (inclusive) which is located in the Italy at the price
of US$ 59.99 per year.

13412

Provider C with data storage capacity between 100 and
200 TB (inclusive) which is located in the Brazil at the
price of US$ 59.99 per year.

Based on this result the customer may refer to MCDM techniques with their own
utility functions to determine the best choice. We can also observe the dependence
presented in the service 11222 that may or may not be accepted by the customer, estab-
lished a negotiation phase to the composition of the SLA. Once the characteristics are
clearly understandable and the service is agreed, this information can be then used to

create the SLA composition and the contract between the parties.

4.4 THE FRAMEWORK OPERATION

Basically, the framework uses the inputs from the providers and customers to perform
the selection of services and, after negotiation, to show the composition of SLA to

players, as shown in Figure 4.13.

91

92

AUTOMATED FRAMEWORK TO CLOUD SLA MANAGEMENT: CONCEPTUAL MODEL

PLAYERS INPUTS PROCESS OUTPUTS PLAYERS

Ty
— 3
List of Properties Ontology 'Tr;z:;:

—

—
Me——

Service
Contidions Conditions

-
Service .

Process
End

Figure 4.13: Example of inputs and outputs of framework

Figure 4.13 shows the inputs of providers that are lists of properties (which are
handled by the Properties Management module and grouped in a single ontology)
and the service conditions (which are treated by SLA Management module based on
pre-defined ontology) and the customer input that is the service request.

After the selection of services and acceptance by the customer, one of the outputs
delivered by the framework is the SLA composition that is sent to both the provider
and the customer. Another presented output is the inventory of properties that will be
described in the next chapter of this thesis.

The framework provides four services to each user:

o Registry: Registration of the SLA models in the system. From a document (XML
file) provided by Cloud Services Provider, the lists of established properties and
service conditions are stored in their respective databases.

e Search: Search SLA models. The customer provides a request encoded query and
receives as a result a list of properties that satisfies the query or approaching it
(the new properties are handled by properties inventory and will be treated in
the next chapter).

o Compose: SLA composition. The framework provides an XML file to specify which
services should be composed and the amounts agreed for the same. With the
agreement between the customer and the provider, a valid SLA (vSLA) is gener-
ated and stored in the database.

e Control: vSLA Monitoring. The framework compares vSLA with requests that
originated them in order to determine any dynamic exchange and also checks
the properties in order to indicate possible violations.

4.4 THE FRAMEWORK OPERATION

The integration of these services with the functional modules of the framework is
shown in Figure 4.14.

User Layer Framework Layer |

Registry @

Properties

\Data Management
-/
Query
- Query
Searc/h_/—/Q/
P Result
I Result
= 2]

User Component Match

SLA Management

w User Interface
S 1
\CDﬁEIE{/_/

Result

_H__Q“}\ Parameters
\@k_‘_’___——
Result v5LA Monitor

Figure 4.14: Services and framework modules

This approach promotes loose coupling between subsystems and customers allowing
them to make changes to the subsystem without affecting the clients. As our approach
is based on XML schema, each of the interfaces on the components is either an input
point, output or input and output to XML files. These interfaces consist of a description
and its corresponding direction.

Simple components are correlated to an implementation. This implementation con-
tains the location of the classes that implement the component. Each implementation
must have a main class, but can also refer helper classes necessary for its implemen-
tation. Another important point to create the framework is the runtime environment.
This execution environment should receive the XML files, control them and return the
results.

Regarding the user layer, it can describe the services and operations of the user com-
ponent as follows:

Registry holds the record of the information contained in the lists of established
properties by providers and also the record of service conditions. These data are inter-
nally processed by the Property Management module.

Search can be run either by customers or as by service providers. In the case of use
by customers this operation performs the search for properties and values, in addition
to enabling the query in the form of service request. When used by providers, this
operation enables query contained in the property inventory (which will be explained
in detail in the next chapter of this thesis).

93

94

AUTOMATED FRAMEWORK TO CLOUD SLA MANAGEMENT: CONCEPTUAL MODEL

Compose Receives the list of services that match with service requests by customers.
After performing the selection of the services the SLA management module waits for
the customer agreement to then carry out the SLA composition.

Control is responsible for controlling over the valid SLA, these operations are per-
formed internally by vSLA Monitor module that will be detailed in the Chapter 7.

The general operation of the framework, including processing requests and proper-
ties inventory, requires the use of a prepared database to store the characteristics to be
manipulated. The class diagram shown in Figure 4.15 represents the conceptual model
proposed to organize these features.

Properties vSLA —
nventory Compose ID 1.* uses . Properties
Request ID

SLA
Composition

Compose ID
Request ID
Service ID

depends of
0.*

onditions "
\NJ;T: includes | pequest ID includes ﬁesponsablle
i ame
Unit L.* 0..*| Customer Service ID o 17| e

A Provider)
Description Unit

Dependency

Figure 4.15: Framework Class Diagram

Both the objects created by the class "Request” and "Service Conditions" must comply
with the definitions set forth by the XML schema provided by the framework. The
class "Request” in addition to contain information relating to the customer and the
identification of the request also includes information on the required properties such
as name, value and unit, it should be noted that if it is requested a new property (not
established by providers) this relationship can also include the description for this new
property. Class "Service Conditions" contains the identification of the provider and the
service, in addition to include information on the properties that composes the service
(whether it be described as a single service or as a services plan). In the case of class
"Property" used in the service conditions this class has, besides the identification of
the property, its name, value and unit, also has the responsible for the property, that
guarantees the aspects of shared liability presented in Chapter 3, and the dependences
between properties that are necessary.

4.5 CHAPTER SUMMARY

The "SLA composition" class is performed by the SLA Management module and
after the selection of services and the customer agreement is executed inheriting the
information contained in the classes "Request" and "Service Conditions".

The classes "Properties Inventory”, "vSLA" and "Dynamic Properties" will be de-
scribed in the next chapters.

4.5 CHAPTER SUMMARY

In this chapter we present the proposed conceptual framework that is meant as a repos-
itory of information about Cloud services. This framework is configured as a storage
system, accessible via network, which has mechanisms for managing properties and
allows to add objects, search for information relating to it and make them available to
the end user. Its architecture enables the definition of the properties, as the definition of
rules that composes the service conditions. The handling of data and metadata is made
through web services exposed by using interfaces that allow management, access and
search. In addition, the framework can be used as an integrated component systems
that provides additional functions for organizations or end users. As the framework
architecture is designed to manage different types of Cloud services and this manage-
ment is through web services, it is natural that retrieving information about objects
occurs in the same way. The semantic search is also foreseen by SLA composition mod-
ule that enables the use of internal ontology of the framework itself. Implemented as
a web service, it can be used and integrated into already existing applications. The
framework structure and operations have been described and examples of use of the
framework illustrate their viability.

95

MANAGEMENT OF NOVEL PROPERTIES AND VALUES

In Chapter 3 we have described the Ontology proposed in this thesis, with its structure,
features and a detailed description of its elements. In Chapter 4 we have described the
conceptual model of the proposed framework for using the Ontology, its architecture
and the description of some of its modules. In this Chapter we present the operation
of the Property Inventory component used in the Property Management module. This
component is responsible for the organization and manipulation of new services re-
quired by customers.

51 INTRODUCTION

In general, to support the different needs of its users, Service Levels Agreements need
to be more flexible, especially in relation to its facilities. As in the context of Cloud
computing, the need for customizable feature set of adjustment is an important factor.
It is often necessary that the systems allow their customization in terms of SLAs in
order to extend its flexibility of adaptation and extension, in addition to changes of the
configuration. However, this type of customization is not always feasible because the
providers do not provide their internal structure of services and open source systems
are usually built on integrated architectures, which customization is complicated by
the need to understand the system code as a whole to perform any modification.

Adding to the complexity in architecture, there are other features, available in the
SLA, that also hamper their adaptation. For example: fixed roles and permissions on
the system; platform dependency and specific databases and set of features designed
according to local experiences (usually experiences of developers).

Considering the difficulties of adapting the Service Level Agreements, it becomes
relevant to investigate models that offer a higher level of flexibility for these systems.
A perfectly adaptable approach to this problem is the use of frameworks and software
components. Frameworks are defined as semi-complete and reusable applications that,

97

98

MANAGEMENT OF NOVEL PROPERTIES AND VALUES

when specialized, produce custom applications within a specific domain [161]. Soft-
ware components are replaceable parts of the system that stress the interface and
implementation separation. This separation facilitates communication between system
components and the replacement of their implementations, because all communication
with the component is made through its interface. Although they are typically meant
for reuse, frameworks and components have characteristics, such as dependence on
well-defined interfaces, design reuse and architecture, and the use of patterns that can
assist in the development of systems with more organized architectures to allow easier
adaptation and extension.

In the specific case of our framework, and presented ontology, we use "established"
properties and "new" properties that allow customization of the SLA. These properties
are handled by a specific module called "Properties Inventory" that will be detailed in
this chapter.

5.1.1 CHAPTER OUTLINE

This chapter describes and illustrates how new properties and new values are managed
through the Properties Inventory component, shows the scenarios where this module
is used in our framework and shows how the new data can be clustered to allow the
adaptation and extension for Service Level Agreements. The main contribution of this
Chapter is the description of how the proposed framework identifies the demand for
new services and how providers can use this information to deploy these services.

5.2 PROPERTIES INVENTORY

The fundamental problem addressed in this thesis is the customization of SLAs based
on customer needs. In the previous chapters, we proved that it is possible to simplify
the customization process using a generic ontology that can be described in an XML
schema. However, in order to make sure that new properties and new values are ac-
cepted by the framework, mapping of existing properties and values is necessary. This
mapping depends on information that characterizes each property individually and
must allow the addition of new values without compromising the initial character-
istics of each property. Another important factor is that each new property must be
analyzed to restrict ambiguities between similar properties, only after this analysis it
will be able to be submitted to the service providers so that they can alert the status of
"New" for a "Established" property.

To address this problem, we insert in the proposed framework a component called
Properties Inventory. This component is part of the Property Management module
and is responsible for the manipulation of alterations in already existing properties
values and controls of new properties and values. Basically this component receives
all properties listed by service providers and stores it in a common list of properties,
which, in time, can be consulted by the providers to determine the inclusion of new
properties.

5.2 PROPERTIES INVENTORY

The Figure 5.1 depicts a process (simplified) to determine the inclusion of a property
with status "established".

List of
Froperties

Cloud Service

Stores
Estahlished
Properties

Check

Similarities

Figure 5.1: Process (simplified) to determine a "Established" property

As the first function of the Properties Inventory component has precisely determined
the established properties, it is important to carry out a control on similar properties,
so that there are not ambiguous or duplicate properties. As shown in Figure 5.1, when
a Cloud Service (as a list of properties) is received by the Properties Inventory it should
check for similarities between services previously established and, based on this result,
sets new services or integrating similar services. For example if two providers provide
the service "Response Time", the first attribution of Property Inventory is to determine
whether this is a single property or in their descriptions are presented details that can
establish a difference between them, creating two similar properties.

As our premise is to simplify the process of creating a SLA as well as facilitate the
use of the framework for the users, the determination of a new established property
can be carried out also by the provider. To illustrate this, let us analyze the following
situation:

1. Our framework is started with a empty list of properties and values;
2. The provider A provides a list of services among them "Response Time";

3. The framework, through the Properties Inventory component, stores this list
of properties with their respective descriptions, where the property "Response
Time" is now p« ("Response Time considering x");

4. The provider B needs to present its list of services, including a property also
called "Response Time";

99

100

MANAGEMENT OF NOVEL PROPERTIES AND VALUES

5. The provider B can see the list of properties in the Property Inventory and verify
that the description of p« is consistent with their own description for the property
"Response Time";

6. In the case where they are equal and do not exhibit ambiguity, the two properties
provided by different providers can be considered the same p, regardless of
having different values for it;

7. If the provider B checks that the description of p« is not consistent with their
service him can create a new property, called for instance "Response Time con-
sidering y".

8. In this case, the Properties Inventory has two different properties for different
services: py and pg. Which can be requested by customers.

As in this situation, in which the providers determine the "behavior" of its proper-
ties, it is easy to identify that the occurrence of ambiguities is reduced to zero, since
a provider knows to determine the difference between its own service and the service
offered by another provider. This situation is a little different when we consider the cus-
tomers of services and their needs. So that customers require that the list of properties
and their descriptions need to be clear.

Since the property "Response Time" is not a trivial property and may consider several
factors, the difference between properties p ("Response Time considering x") and pg
("Response Time considering y") makes it clear to the provider and the customer which
service is being hired and added to the SLA.

As seen in Chapter 3, a customer can request services using an ontology that allows
the composition of a SLA according to their needs. In this sense a customer can re-
quest established properties with defined values (or new values) or requesting new
properties. In case of established properties we can present this as described in Figure

5.2.

5.2 PROPERTIES INVENTORY

Request
Established
Property

List of
Properties

Check Values %

Service Standby New

Selection Values

SLA Composition End of request

Figure 5.2: Process for requesting established properties

In the example shown in Figure 5.2, we have a request of a customer seeking services
based on the list of established properties, and this list is presented to the customer
using our XML schema (as in Figure 5.3):

<xs:element name="Established">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Encryption" />
<xsg:enumeration value="Location" />
<xs:enumeration value="Storage" />
</xs:restriction>
</xs:simpleType>
</xs:element>

Figure 5.3: Fragment of XML schema with the list of established properties

Taking as example the property "Location", our framework provides a set of values
determined for this property (Figure 5.4):

101

102 MANAGEMENT OF NOVEL PROPERTIES AND VALUES

<xs:element name="Set">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="USA" />
<x¥s:enumeration value="Italy" />
<xs:enumeration value="France" />
<xs:enumeration value="Uruguay" />
<xs:enumeration value="Brazil" />
<xs:enumeration value="Argentina" />
</xs:restriction>
</xs:simpleType>
</xs:element>

Figure 5.4: Fragment of XML schema with absolute values for property Location

If the customer requires the property Location with a value like "Spain", for exam-
ple, but this value is not part of the set of possible values, the Properties Management
module can determine the selection of possible services for the customer. Moreover,
Properties Inventory can put the new value in a standby situation, to be further as-
sessed by the providers of this type of service.

Another situation considered by the Properties Inventory concerns the new proper-
ties, an example of this process is demonstrated in Figure 5.5.

Request New
Property

Deplay

Standby New Information Established

Properties Clustering

Properties

Figure 5.5: Process for requesting new properties

As shown in Figure 5.5 a customer can request a property not yet established, such
as a new property called "Video Streaming", this new property is put on standby and
the information related to their description need to be clustered to reduce ambiguities.
After that a service provider can query the inventory of new properties with the option
to deploy new services.

In summary the Properties Inventory component has four functions:

1. Keep the control on established properties;
2. Put new values and properties in a standby state;
3. Information clustering;

4. Control of changes.

These functions can be used in different scenarios, as described in the next section.

5.3 USAGE SCENARIOS

5.3 USAGE SCENARIOS

As the Properties Inventory component is part of the property management module
and this composes the proposed framework, we can describe some scenarios that can
be handled directly by the functions assigned to the component. So, the following
scenarios present, briefly, the usage possibilities of the framework:

e S,: From a service or feature of interest, the user searches in the generic ontology
the semantic representation and sends a request to the framework. After obtain-
ing this representation, the framework searches in a repository which models are
somehow associated with the service or resource. From the list of SLA candidate
models, the user selects the most suitable one to make the composition of the
SLA.

e S,: The user can request a new service model by composing new properties or
existing properties with new values. These new properties and/or values are
stored and inventoried.

e S;: Based on the Properties Inventory, a service provider can generate new SLA
models. These new models of Service Level Agreements can be created consider-
ing the new properties and new values demanded by customers.

e S,: After some change in the status, the framework can inform the users in order
to fulfill a preliminary request.

Because these scenarios are specific to the use of our framework, obviously it does
not exist algorithms that address these situations, so that we present our own algorithm
and for a better understanding we illustrate this as follows.

5.3.1 APPLICATION EXAMPLE FOR THE SCENARIO S

The first usage scenario is the simplest of all: the user searches for services that have
properties and values already established. In this case, the Property Management mod-
ule starts an algorithm that searches in the Properties Inventory (the first part of the
algorithm is represented by the pseudocode in Algorithm 1) .

103

104

MANAGEMENT OF NOVEL PROPERTIES AND VALUES

Algorithm 1 Properties Inventory (part 1)

Input: RP: requested property, EP: established properties, rv: requested value, sv: set-
ted values
Output: SS: list of selected services
1: procedure SEARCH(RP, EP, rv, sv)
2: if RP = EP then
3 sv’ < sv € EP
4 if rv = sv’ then
5 SS < (EP, sv’)
6: return SS
7 end if
8 end if
9: end procedure

As described in Algorithm 1, the inputs for the algorithm are the requested property
by the customer (RP), the list of established properties (EP), the requested value (rv)
and the setted values for the established properties (sv). As output, we have the list of
selected services (SS). After the search of information, that can be made by customers
using our XML schema, the request (RP) is compared with the list of established prop-
erties (EP) (in line 2) and existing compatibilities are compared the requested values
(rv) with the set of values (sv) assumed by the property (line 4). Considering the service
conditions determined beforehand by the provider, the framework can return the list
of selected services (SS) that match with the solicitation (lines 5 and 6).

Using the example shown in section 5.2 we can consider the request for a service
of location in USA like R:(Location=USA) where "Location" is the established property
and "USA" is one of the absolute values for this property. As we saw in chapter 3 this
tuple (p op val) in the provider side is a service condition, then hypothetically we can
say that this tuple takes the identification c, to the framework.

With the compatibility of the properties and values required, the framework returns
the list of selected services considering the service conditions made by each provider,
as shown in Table 5.1.

Table 5.1: List of compatible services for the property Location

Provider | Service ID | Properties

A 11219 C4; C11; C2; C15

A 11220 C4; C11; C3; C1q

A 11221 C4s C12; C2; C16

A 11222 C4; C12; C2; C20 ~ Ca1
C 13409 Cy; C12; C1g

C 13410 C47 C13; C1y

This list of services enables the customer to hold the choice of service plans based
on their priorities.

5.3 USAGE SCENARIOS

5.3.2 APPLICATION EXAMPLE FOR THE SCENARIO S,

The second usage scenario presents two situations, the first one is the solicitation of
new properties and the second is the solicitation of new values for properties already
established. To control these two situations is necessary to perform some changes to
our initial part of the algorithm, complementing it as shown in Algorithm 2:

Algorithm 2 Control of new properties and new values

Input: RP: requested property, EP: established properties, rv: requested value, sv: set-
ted values
Output: SS: list of selected services, PS: property in standby, vS: value in standby
1: procedure SEARCH(RP, EP, rv, sv)
2: if RP = EP then
sv’ < sv € EP

3:

4 if rv = sv” then

5 SS < (EP,sv’)
6: return SS

7: else

8: vS 1V

o: SS <+ (EP, sv)
10: return (SS, vS)
11: end if
12: else
13: PS + RP
14: return PS
15: end if

16: end procedure

As inputs we keep the same information (RP, EP, rv and sv). As output, in addition
to display the list of selected services (SS), the algorithm can set properties and values
in standby status (PS and vS). Un